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1 Introduction

Let (E, ρ) be a separable metric space. The Kantorovich distance between (Borel)
probability measures µ and ν on E is defined by

W1(µ, ν) = inf
π

∫∫
ρ(x, y) dπ(x, y)

with infimum taken over all measures π on the product space E ×E having µ and ν as
marginal projections. One often tries to relate it to more tractable distance-like quantities
or measures of deviation such as the Kullback-Leibler informational divergence (relative
entropy)

D(ν|µ) =
∫
f log f dµ,

assuming that ν is absolutely continuous with respect to µ (ν << µ) and has density
f = dν

dµ . In particular, relations

W1(µ, ν) ≤ K
√
D(ν|µ) (1.1)

form an important class of transport-entropy inequalities, with interesting connections to
high-dimensional phenomena, limit theorems and other problems of Probability, Analysis
and Geometry (cf. e.g. [7], [8], [9]). The measure µ in (1.1) is commonly fixed and is
called a reference measure, while ν is arbitrary.

The validity of the inequality (1.1) with some (finite) constant K is known to be
equivalent to the property ∫

ecρ(x,x0)
2

dµ(x) <∞ (1.2)
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Optimal transport and Rényi informational divergence

which should hold with some c > 0 and x0 ∈ E ([1], [3]). This subgaussian condition
may occur to be rather restrictive in applications, since for the finiteness of W1 one
only needs the finiteness of the first moment

∫
ρ(x, x0) dµ(x). Therefore, it is natural to

consider weaker variants of (1.1) with other informational distances so that to involve a
larger class of reference distributions µ. As it turns out, to this aim the Rényi divergence
power of order α > 1,

Dα(ν|µ) =
1

α− 1

[∫
fα dµ− 1

]
,

can replace D. It is related to Rényi’s entropy like the Kullback-Leibler divergence is
related to Shannon’s entropy. Note that 0 ≤ Dα ≤ ∞, the function α → Dα is non-
decreasing, and that limα↓1Dα = D (as long as Dα < ∞ for some α > 1). We refer to
[5,6] for an account of basic properties of these functionals.

The aim of this note is to derive the following characterization complementing the
equivalence of (1.1) and (1.2).

Theorem 1.1. Let 1 < α ≤ 2. A probability measure µ on E satisfies the relation

W1(µ, ν) ≤ K
√
Dα(ν|µ) (1.3)

with some constant K for all probabilities ν << µ, if and only if, for some x0 ∈ E,

sup
r>0

[
rα
∗−2

∫
ρ(x,x0)≥r

ρ(x, x0)
α∗ dµ(x)

]
< ∞. (1.4)

Here and below α∗ = α
α−1 stands for the conjugate power. Note that α∗ ≥ 2 for

α ∈ (1, 2].
The weakest case in (1.3) is α = 2, which is possible according to (1.4), if and only if∫

ρ(x, x0)
2 dµ(x) <∞. Thus, Theorem 1.1 involves all probability distributions with finite

second moment. More generally, (1.4) is fulfilled as long as∫
ρ(x, x0)

2α∗−2 dµ(x) <∞. (1.5)

However, this moment condition is strictly stronger than (1.4) in general.
Since (1.4) may not be true for α > 2, a different description should appear for (1.3).

However, this case turns out to be essentially the same as α = 2.

Theorem 1.2. Let α ≥ 2. The relation (1.3) holds with some constant K for all probabil-
ities ν << µ, if and only if

∫
ρ(x, x0)

2 dµ(x) <∞ for some x0 ∈ E.

Example 1.3. Let µ be the generalized Cauchy distribution on the Euclidean space
E = Rn (equipped with the Euclidean distance ρ), i.e., with density with respect to
Lebesgue measure

dµ(x)

dx
=

c

(1 + |x|2)(n+d)/2
.

Here d is a real parameter (necessarily d > 0 for the integrability reason), and c is a
normalizing constant. Clearly, µ has finite second moment, when d > 2. In this case,
(1.4) is telling us that µ satisfies the transport-entropy inequality (1.3), if and only if
α ≥ 1 + 2

d . Note that (1.5) excludes the critical value α = 1 + 2
d .

One should mention that there exist results relating the transport cost W1(µ, ν) to
other quantities depending on the distribution under µ of the density f of ν. For example,
[2] provides a characterization for the inequalities including

W1(µ, ν) ≤ C
(∫

fα dµ

)1/β

(β ≥ α ≥ 1).
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Optimal transport and Rényi informational divergence

Here, the right-hand side has a strong relationship with the Rényi divergence power.
However, it does not have the meaning of a distance, and the inequality itself should be
viewed from a different point of view.

Let us also comment on the related functional – the Rényi divergence

dα(ν|µ) =
1

α− 1
log

∫
fα dµ, α > 1.

We have Dα = 1
α−1 (e

(α−1)dα − 1), so dα and Dα are equivalent, when these quantities
are small. Since in general D ≤ dα ≤ Dα, one may wonder whether or not the transport-
entropy inequality (1.3) can be replaced with a sronger relation

W1(µ, ν) ≤ K
√
dα(ν|µ).

However, this inequality turns out to be equivalent to the limit case α = 1. That is, it
holds if and only if the subgaussian integrability condition (1.2) is fulfilled (cf. Remark
4.2 below).

The paper is organized as follows. We start with the study of the Rényi divergence
power as a convex functional on the space of densities and provide its description in
the form of the supremum of certain linear functionals (Section 2); some immediate
consequences are then developed in Section 3. In sections 4-5 we prove Theorems
1.1-1.2, actually in a more quantified form of two-sided bounds on the optimal constant
K in (1.3). In particular, for p ≥ 2, we consider the quantities Kp = Kp(E, ρ, µ) ≥ 0 given
by

K2p−2
p = sup

u
sup
r>0

[
rp−2

∫
|u|≥r

|u|p dµ
]
, (1.6)

where the first supremum is running over all functions u on E with Lipschitz semi-norm
‖u‖Lip ≤ 1 and µ-mean zero. It will be shown that K ∼ Kα∗ within factors depending on
α ∈ (1, 2], only.

2 Linearization of the Rényi divergence power

Denote by P(µ) the collection of all (probability) densities f on an abstract measurable
space E with respect to a given probability measure µ. Being convex on P(µ), the
entropy functional D admits a well-known sup-linear representation, namely

D(ν|µ) =
∫
f log f dµ = sup

{∫
fg dµ :

∫
eg dµ ≤ 1

}
.

In other words, ∫
g dν ≤ D(ν|µ)

for all ν << µ, if and only if
∫
eg dµ ≤ 1. As a first step towards Theorem 1.1, we derive a

similar description for the Rényi divergence power of an arbitrary order α > 1.
In the sequel, we write t+ = max(t, 0) and denote by Lp(µ) the usual Lebesgue space

of all measurable functions g on E with finite norm ‖g‖p = (
∫
|g|p dµ)1/p, p ≥ 1.

Theorem 2.1. Assume that g+ ∈ Lα
∗
(µ). The relation∫

g dν ≤ Dα(ν|µ) (2.1)

holds for any probability measure ν << µ, if and only if∫
(g − c)α

∗

+ dµ ≤ −(α∗)α
∗(
c+ α∗ − 1

)
, (2.2)
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where c is a unique solution to the equation∫
(g − c)α

∗−1
+ dµ = (α∗)α

∗−1. (2.3)

As an equivalent description, Theorem 2.1 admits the following analog.

Theorem 2.2. Assume that g+ ∈ Lα
∗
(µ). The relation (2.1) holds for any probability

measure ν << µ, if and only if the condition (2.2) is fulfilled for at least one constant c.

We split the proof into two steps. On P(µ) introduce the concave functional

Tf =

∫
fg dµ− 1

α− 1

[∫
fα dµ− 1

]
with the convention that Tf = −∞ in case

∫
fα dµ = ∞. Note that Tf is just the

difference between the left and right-hand sides of (2.1).

Lemma 2.3. If g+ ∈ Lα
∗
(µ), the functional T is bounded above on P(µ) and attains

maximum at some function f ∈ P(µ) ∩ Lα(µ).

Proof. By Hölder’s inequality,

|Tf | ≤ ‖f‖α‖g‖α∗ −
1

α− 1

[
‖f‖αα − 1

]
≤ c0 + c1‖g‖α

∗

α∗

up to some constants c0 and c1 depending on α, only. Here, when taking the sup over
all f , one may assume that ‖f‖α ≤ C with some large C. Indeed, if ‖f‖α > C, the
expression

‖f‖α‖g‖α∗ −
1

α− 1

[
‖f‖αα − 1

]
tends to −∞ for C →∞. Therefore, T is bounded above on P by the finite constant

M = sup
{
Tf : f ∈ P(µ) ∩ Lα(µ), ‖f‖α ≤ C

}
.

Take a sequence fn ∈ P(µ) ∩ Lα(µ) with ‖fn‖α ≤ C such that Tfn → M as n → ∞.
The unit ball of Lα is weakly compact, so there is a subsequence fn′ weakly convergent
to some f with ‖f‖α ≤ C. Necessarily f ∈ P(µ) and

‖f‖α ≤ lim inf
n′→∞

‖fn′‖α.

As a result,

lim sup
n′→∞

Tfn′ = lim sup
n′→∞

(∫
fn′g dµ−

1

α− 1

[∫
fαn′ dµ− 1

])
= lim

n′→∞

∫
fn′g dµ− lim inf

n′→∞

1

α− 1

[∫
fαn′ dµ− 1

]
≤

∫
fg dµ− 1

α− 1

[∫
fα dµ− 1

]
= Tf.

It follows that Tf =M .

Lemma 2.4. If g+ ∈ Lα
∗
(µ), the maximizer for the functional T is unique and has the

form
f = (α∗)1−α

∗
(g − c)α

∗−1
+

for some constant c.
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Proof. Let f be a maximizer. For δ > 0, put Aδ = {x ∈ E : f(x) > δ}. Since f ≥ 0 and∫
f dµ = 1, we have µ(Aδ) > 0 for all δ small enough. This will be assumed.

Consider the functions of the form

fε = f + εu, ε ∈ R,

where u is a bounded measurable function on E vanishing outside Aδ and such that∫
u dµ = 0. Then, fε will belong to P(µ) ∩ Lα(µ) for all sufficiently small ε and hence

Tfε ≤ Tf.
On the other hand, using Taylor’s expansion, one can show that∫

fαε dµ =

∫
fα dµ+ αε

∫
fα−1u dµ+O(ε2).

Therefore,

Tfε − Tf = ε

∫ (
g − α∗fα−1

)
u dµ+O(ε2).

Since ε may be both positive and negative (although small), we conclude that∫ (
g − α∗fα−10

)
u dµ = 0

for all admissible functions u. But this is only possible when g − α∗fα−10 = c on Aδ for
some constant c. Since δ > 0 may also be arbitrary (although small), this constant c
cannot depend on δ. As a result, g − α∗fα−1 = c on the set A0 = {x ∈ E : f(x) > 0}.
Since 1

α−1 = α∗ − 1, the function f has the stated form.
Finally, let us see that the constant c is uniquely determined by the condition

∫
f dµ =

1. Define

ϕ(c) =

∫
(g − c)α

∗−1
+ dµ.

This function is continuous and non-increasing on the real line with ϕ(−∞) =∞, ϕ(∞) =

0. Moreover, it is (strictly) decreasing for

c ≤ c0 = ess sup g,

and we have ϕ(c0) = 0. Indeed, if ϕ(c1) = ϕ(c2) for c1 < c2, then (g − c1)+ = (g − c2)+
µ-a.e., that is,

min(g, c1) = min(g, c2) µ−a.e.
Here the left-hand side is dominated by the right-hand side. But if g(x) > c1 for
some x ∈ E, then min(g(x), c1) = c1, while min(g(x), c2) > c1, so the above equality is
impossible. Therefore, necessarily µ{g > c1} = 0 which proves the last assertion. In
particular, for any b > 0, the equation ϕ(c) = b has a unique solution c.

Proof of Theorem 2.1. Combining Lemmas 2.3 and 2.4, it remains to look at the value of
T on the extreme density f = (α∗)1−α

∗
(g − c)α

∗−1
+ . First, using the property

∫
f dµ = 1,

we have ∫
fg dµ = (α∗)−(α

∗−1)
∫

(g − c)α
∗−1

+

(
(g − c)+ + c

)
dµ

= (α∗)−(α
∗−1)

∫
(g − c)α

∗

+ dµ + c.

Secondly,

1

α− 1

[∫
fα dµ− 1

]
=

(α∗)−α
∗

α− 1

∫
(g − c)α

∗

+ dµ − 1

α− 1

= (α∗)−α
∗
(α∗ − 1)

∫
(g − c)α

∗

+ dµ − (α∗ − 1).
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Hence,

Tf = (α∗)−α
∗
∫
(g − c)α

∗

+ dµ + c+ α∗ − 1.

Using this extreme function (maximizer), one may rewrite the property "Tf ≤ 0 for all
f", that is, (2.1), in terms of Dα, as indicated in (2.2)-(2.3).

Proof of Theorem 2.2. The function

ψ(c) =

∫
(g − c)α

∗

+ dµ + (α∗)α
∗
c

is strictly convex and is differentiable on R, with ψ(−∞) = ψ(∞) = ∞. It attains
minimum at a unique point c, namely – at which

ψ′(c) = α∗
[
−
∫
(g − c)α

∗−1
+ dµ + (α∗)α

∗−1
]
= 0.

But this is exactly the equation (2.3), while the inequality ψ(c) ≤ −(α∗)α∗(α∗ − 1) being
stated at this point coincides with the condition (2.2).

3 Necessary and sufficient conditions

Since the description given in Theorem 2.1 for the property∫
g dν ≤ Dα(ν|µ) for any ν << µ (3.1)

is somewhat implicit, it would be interesting to get more tractable conditions, necessary
and sufficient, even if not simultaneously. Here we mention some of such conditions,
together with lower and upper bounds on the constant c appearing in (2.2)-(2.3). To
avoid situations when Dα(ν|µ) is finite, but the integral in (3.1) does not exist, we assume
that g+ ∈ Lα

∗
(µ).

In particular, applying (3.1) to the measure ν = µ, we get
∫
g dµ ≤ 0. A different

choice leads to stronger necessary condition∫ (
1 +

1

α∗ − 1
g
)α∗−1
+

dµ ≤ 1. (3.2)

On the other hand, choosing c = −α∗ in Theorem 2.2, we arrive at the sufficient condition∫ (
1 +

1

α∗
g
)α∗
+
dµ ≤ 1. (3.3)

As α ↓ 1, both (3.2) and (3.3) are asymptotically optimal. Indeed, in the limit they
yield

∫
eg dµ ≤ 1 which is necessary and sufficient for the relation

∫
g dν ≤ D(ν|µ).

Nevertheless, being quite explicit and working, (3.2)-(3.3) are not sharp enough to reach
simulteneously necessary and sufficient conditions as in Theorem 1.1.

Let us now return to Theorem 2.1 and recall the condition∫
(g − c)α

∗

+ dµ ≤ −(α∗)α
∗(
c+ α∗ − 1

)
, (3.4)

where c solves the equation ∫
(g − c)α

∗−1
+ dµ = (α∗)α

∗−1. (3.5)

ECP 20 (2015), paper 4.
Page 6/12

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v20-3431
http://ecp.ejpecp.org/


Optimal transport and Rényi informational divergence

Proposition 3.1. Under (3.4)− (3.5), necessarily c ≤ −α∗. Furthermore, if g ∈ L1(µ),

c ≥ −α∗ +
∫
g dµ in case 1 < α ≤ 2,

c ≥ −4 + α

∫
g dµ in case α ≥ 2.

In particular, in the corresponding cases,∫
gα
∗

+ dµ ≤ (α∗)α
∗
(
1−

∫
g dµ

)
, (3.6)∫

gα
∗

+ dµ ≤ (α∗)α
∗
(
4− α

∫
g dµ

)
. (3.7)

Proof. The weaker upper bound c ≤ −(α∗ − 1) immediately follows from (3.4). To refine
it, we use (3.5) and apply Markov’s inequality to get

(α∗)α
∗

=

[∫
(g − c)1/(α−1)+ dµ

]α
≤

∫
(g − c)α/(α−1)+ dµ ≤ −(α∗)α

∗(
c+ α∗ − 1

)
.

Hence, 1 ≤ −
(
c+ α∗ − 1

)
proving the first statement.

For the lower bound on c in case 1 < α ≤ 2, using convexity of the function t →
(t− c)α

∗−1
+ , one can apply Jensen’s inequality in (3.5) to get

(α∗)α
∗−1 =

∫
(g − c)α

∗−1
+ dµ ≥

[∫
g dµ− c

]α∗−1
+

.

Hence

α∗ ≥
[∫

g dµ− c
]
+

≥
∫
g dµ− c

which is the first lower bound. Using it in (3.4), we conclude that∫
gα
∗

+ dµ ≤
∫
(g − c)α

∗

+ dµ

≤ (α∗)α
∗(
− c− α∗ + 1

)
≤ (α∗)α

∗
(
1−

∫
g dµ

)
which is (3.6).

In case α ≥ 2, we start with (3.4) and first simplify it to
∫
(g − c)α∗+ dµ ≤ (α∗)α

∗
(−c).

By Jensen’s inequality, ∫
(g − c)α

∗

+ dµ ≥
[∫

g dµ− c
]α∗
+

giving ∫
g dµ− c ≤

[∫
g dµ− c

]
+

≤ α∗(−c)1/α
∗
.

Equivalently, substituting t = −c, p = α∗, q = α, a = −
∫
g dµ, we arrive at the relation

ϕ(t) ≡ t− pt1/p ≤ a.

This function is convex in t ≥ 0 and positive for t > t0 = pq, with ϕ(t0) = 0, ϕ′(t0) =

1− t−1/q0 = 1/q. Hence, for all t ≥ t0,

ϕ(t) ≥ ϕ(t0) + ϕ′(t0)(t− t0) =
1

q
(t− t0).
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Once ϕ(t) ≤ a and t ≥ t0, we then get t ≤ t0 + qa. But t0 ≤ 4 whenever q ≥ 2. Indeed,
for the function ψ(q) = log t0 = q log p we have ψ′′(q) = 1

q(q−1)2 > 0, so it is convex. In

addition, ψ′(∞) = 0, so it is decreasing. Hence, ψ(q) ≤ ψ(2) for all q ≥ 2, i.e., pq ≤ 4.
This gives the required upper bound on c. Again, using it in (3.4), we conclude that∫

gα
∗

+ dµ ≤ (α∗)α
∗(
− c− α∗ + 1

)
≤ (α∗)α

∗
(
5− α∗ − α

∫
g dµ

)
≤ (α∗)α

∗
(
4− α

∫
g dµ

)
which is (3.7). In fact, this last bound will not be needed for the proof of Theorem 1.2.

4 Finiteness of the second moment

We are prepared to turn to Theorems 1.1-1.2 which will be established in a more
quantitative form involving the quantities Kp introduced in (1.6). In particular,

K2
2 = sup

u∈L

∫
u2 dµ,

where the supremum is taken over the familiy L of all functions u on E with Lipschitz
semi-norm ‖u‖Lip ≤ 1, having µ-mean zero. This quantity is finite, if and only if µ has a
finite second moment. Indeed, for the finiteness, it is enough to consider the Lipschitz
function u(x) = ρ(x, x0)−

∫
ρ(x, x0) dµ(x) in the definition of K2 with an arbitrary fixed

point x0 ∈ E.
Recall that we consider the transport-entropy inequality

W1(µ, ν) ≤ K
√
Dα(ν|µ) (4.1)

with an arbitrary probability measure ν << µ. For example, if ν = µA has a constant
density f = 1

µ(A) 1A, then (4.1) becomes

W 2
1 (µ, µA) ≤ K2 µ(A)

1−α − 1

α− 1
.

Taking for A a ball of a sufficiently large radius so that µ(A) > 0, we get W1(µ, µA) <∞,
while µA has finite first moment. Hence, for (4.1) to hold, necessarily the reference
measure µ must have a finite first moment. In that case, by a simple approximation
argument, there will be no loss of generality to assume in (4.1) that ν have finite first
moments, as well.

Theorem 4.1. Let α > 1. Under (4.1), we have K2 ≤ K
√

α
2 .

Proof. By the Kantorovich-Ribinstein theorem, if µ and ν have finite first moments, there
is the representation

W1(µ, ν) = sup
u

∣∣∣∣∫ u dµ−
∫
u dν

∣∣∣∣ ,
where the supremum is running over all u on E with ‖u‖Lip ≤ 1 (cf. e.g. [4], p.330).
Then, (4.1) may equivalently be rewritten as

sup
u∈L

∫
u dν ≤ K

√
Dα(ν|µ). (4.2)

Given a bounded function h on E such that
∫
h dµ = 0 and ε > 0 small enough, the

function fε = 1 + εh represents the density of a probability measure, say ν = νε, with
respect to µ. In this case, (4.2) becomes

ε sup
u∈L

∫
uh dµ ≤ K

√
Dα(νε|µ). (4.3)
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Furthermore, by Taylor’s expansion over ε,

Dα(νε|µ) =
1

α− 1

[∫
fαε dµ− 1

]
=
αε2

2

∫
h2 dµ+O(ε3).

Inserting this in (4.3) and letting ε→ 0, we arrive at∫
uh dµ ≤ K

√
α

2
‖h‖2

holding for any u ∈ L. But this is equivalent to ‖u‖2 ≤ K
√

α
2 .

Remark 4.2. Let us look at the possible sharpening of (4.1) in terms of the
Rényi divergence, namely

W1(µ, ν) ≤ K
√
dα(ν|µ). (4.4)

By the definition, if ν = µA has a constant density f = 1
µ(A) 1A (as before),

then

dα(µA|µ) = log
1

µ(A)

which is independent of α. On the other hand (following Marton’s argument),
given two measurable sets A,B ⊂ E at distance r = ρ(A,B), we have W1(µA, µB) ≥
r. Applying the triangle inequality for the metric W1, (4.4) therefore yields

r ≤ W1(µ, µA) +W1(µ, µB) ≤ K

(√
log

1

µ(A)
+

√
log

1

µ(B)

)
.

In particular, if µ(A) ≥ 1
2, writing B = E\Ar in terms of the r-neighbourhood

Ar of A for the metric ρ, we get

1− µ(Ar) ≤ 1

2
e−r

2/(2K2), r > 0.

But this property is equivalent to the subgaussian condition (1.2). Therefore,
(4.4) is equivalent to the standard transport-entropy inequality (1.1), corresponding
to the order α = 1.

5 Theorems 1.1-1.2 and their refinements

Theorem 1.1 allows the following refinement in terms of the quantity

K2p−2
p = sup

u∈L
sup
r>0

[
rp−2

∫
|u|≥r

|u|p dµ
]
, p ≥ 2.

Theorem 5.1. Let 1 < α ≤ 2. The best value of K in the transport-entropy inequality

W1(µ, ν) ≤ K
√
Dα(ν|µ) (5.1)

satisfies
cαKα∗ ≤ K ≤ CαKα∗ (5.2)

up to some positive constants cα and Cα depending on α, only.

We also have K ∼ K2 for α > 2, up to α-depending factors.

Corollary 5.2. For α ≥ 2, the best value of K in (5.1) satisfies
√

2
α K2 ≤ K ≤ CK2 with

some absolute constant C.
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Indeed, by (5.1)-(5.2) with α = 2, and using the monotonicity of the divergence power
with respect to α, we get

W1(µ, ν) ≤ K
√
D2(ν|µ) ≤ C2K2

√
Dα(ν|µ).

This gives an upper bound K ≤ C2K2, while the lower bound is provided by Theorem
4.1.

Note that Theorems 1.1-1.2 are immediately obtained from Theorem 5.1 and Corollary
5.2, since Kα∗ is finite (with α ≤ 2), if and only if the expression in (1.4) is finite.

Before turning to the proof of Theorem 5.1, first let us explain how we will connect
(5.1) to the relations as in Theorem 2.1, i.e.,∫

g dν ≤ Dα(ν|µ). (5.3)

As was already mentioned in the previous section, (5.1) may equivalently be rewritten as∣∣∣ ∫ u dν
∣∣∣ ≤ K√Dα(ν|µ) for all u ∈ L.

Squaring and using supλ (λa− λ2) = a2

4 together with the property that −u ∈ L for all
u ∈ L, we are reduced to the inequality of the form (5.3). That is, we obtain:

Lemma 5.3. Let K be a positive constant. If µ and ν have finite first moments and
ν << µ, (5.1) is equivalent to the the relation∫ ( 2

K
λu− λ2

)
dν ≤ Dα(ν|µ) (5.4)

with arbitrary u ∈ L and λ > 0.

Proof of Theorem 5.1 (lower bound on K). First assume that u ∈ Lα∗(µ). By Proposition
3.1 with g = 2

K λu− λ2 (λ > 0), we get (3.6) as a necessary condition for (5.4), namely∫ ( 2

K
λu− λ2

)α∗
+
dµ ≤ (α∗)α

∗
(1 + λ2).

Restricting the integral to the set u ≥ Kλ, so that 2
K λu− λ2 ≥ λ

K u, the above yields

λα
∗

Kα∗

∫
u≥Kλ

uα
∗
dµ ≤ (α∗)α

∗
(1 + λ2).

To simplify, assume that λ ≥ 1, in which case we thus get

λα
∗−2

∫
u≥Kλ

uα
∗
dµ ≤ 2 (Kα∗)α

∗
.

Substituting λ = r/K and applying the same inequality to −u, we arrive at

rα
∗−2

∫
|u|≥r

|u|α
∗
dµ ≤ 4 (α∗)α

∗
K2α∗−2, r ≥ K. (5.5)

In case 0 ≤ r ≤ K, there is a similar obvious bound

rα
∗−2

∫
r≤|u|≤K

|u|α
∗
dµ ≤ K2α∗−2.
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On this step, the assumption u ∈ Lα∗(µ) can easily be removed: (5.5) can always be
applied to centered truncated Lipschitz functions un = vn −

∫
vn dµ, where v = u in case

|u| ≤ n, and v = ±n depending on whether u > n or u < −n. Letting n→∞, we arrive at

sup
r>0

[
rα
∗−2

∫
|u|≥r

|u|α
∗
dµ

]
≤
(
1 + 4 (α∗)α

∗)
K2α∗−2

which yields the left inequality in (5.2) with c−1α = 1 + 4 (α∗)α
∗
.

Upper bound on K. By Theorem 2.2 applied with the same function g = 2
K λu− λ2,

λ > 0, we know that the relation (5.4) holds true for all ν << µ, if and only if, for some
constant c, ∫ ( 2

K
λu− λ2 − c

)α∗
+
dµ ≤ (α∗)α

∗
(1− α∗ − c). (5.6)

Case 0 ≤ λ ≤ 2
√
α∗. It will be sufficient to establish the latter with c = −α∗ − λ2,

when (5.6) becomes

ξ(ε) ≡
∫ (

1 + ελu
)α∗
+
dµ ≤ 1 + λ2, ε =

2

Kα∗
. (5.7)

To obtain it with some ε = ε(K) independent of λ and u ∈ L, we use the definition of
R = Kα∗ to write∫

|u|α
∗
dµ ≤ rα

∗
+

∫
|u|≥r

|u|α
∗
dµ ≤ rα

∗
+
R2α∗−2

rα∗−2
(r > 0).

Choosing r = R, we get an upper bound
∫
|u|α∗ dµ ≤ 2Rα

∗
. In particular,∫

u2 dµ ≤ 2R2. (5.8)

Note that the function ξ is convex in the variable ε and is twice continuously differen-
tiable. We have

ξ′(ε) = α∗λ

∫
u
(
1 + ελu

)α∗−1
+

dµ,

so ξ(0) = 1, ξ′(0) = 0. In addition,

ξ′′(ε) = α∗(α∗ − 1)λ2
∫
u2
(
1 + ελu

)α∗−2
+

dµ. (5.9)

Using (a+ b)p ≤ 2p (ap + bp) (a, b, p ≥ 0) and the assumption on the range of λ, we have a
pointwise bound (

1 + ελu
)α∗−2
+

≤
(
4
√
α∗
)α∗−2 (

1 + εα
∗−2|u|α

∗−2
)
.

It then follows from (5.8)-(5.9) that

ξ′′(ε) ≤ α∗(α∗ − 1)
(
4
√
α∗
)α∗−2

λ2
∫ (

u2 + εα
∗−2|u|α

∗
)
dµ

≤ 2α∗(α∗ − 1)
(
4
√
α∗
)α∗−2

λ2
(
R2 + εα

∗−2Rα
∗)
.

By Taylor’s expansion for ξ(ε) up to ε2, we get that, for all ε > 0,

ξ(ε) ≤ 1 + α∗(α∗ − 1)
(
4
√
α∗
)α∗−2

λ2
(
(εR)2 + (εR)α

∗)
.
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It suffices to choose here

ε =
1

2R

√
α∗(α∗ − 1)

(
4
√
α∗
)α∗−2

to get that ξ(ε) ≤ 1 + λ2. This means that (5.7) and thus (5.4) are fulfilled with

K =
2

αε
= CαR, Cα =

4

√
α∗(α∗ − 1)

(
4
√
α∗
)α∗−2

α
. (5.10)

Case λ ≥ 2
√
α∗. We choose in (5.6) the value c = −α∗ − λ2

2 and then need to show
that

η(ε) ≡
∫ (

1 + ελu− λ2

2α∗

)α∗
+

dµ ≤ 1 +
λ2

2
, ε =

2

Kα∗
. (5.11)

Since λ2

2α∗ ≥ 2, the property 1 + ελu − λ2

2α∗ ≥ 0 is implied by u ≥ λ
ε . Hence, using the

definition of R, for all ε > 0,

η(ε) ≤
∫

(ελu)
α∗

1{u≥λε }
dµ ≤ (ελ)α

∗
· R

2α∗−2

(λε )
α∗−2

= λ2 (εR)2α
∗−2.

It suffices to choose here ε = 1
2R to get ξ(ε) ≤ λ2

2 . This means that (5.11) and thus (5.4)
are fulfilled with

K =
2

αε
=

4

α
R.

Comparing the two cases, we arrive at the right inequality in (5.2) with constant Cα
described in (5.10).
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