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Abstract. We extend to a functional setting the concept of quermassintegrals, well-known
within the Minkowski theory of convex bodies. We work in the class of quasi-concave func-
tions defined on the Euclidean space, and with the hierarchy of their subclasses given by
α-concave functions. In this setting, we investigate the most relevant features of functional
quermassintegrals, and we show they inherit the basic properties of their classical geomet-
ric counterpart. As a first main result, we prove a Steiner-type formula which holds true
by choosing a suitable functional equivalent of the unit ball. Then we establish concavity
inequalities for quermassintegrals and for other general hyperbolic functionals, which gen-
eralize the celebrated Prékopa–Leindler and Brascamp–Lieb inequalities. Further issues that
we transpose to this functional setting are integral-geometric formulae of Cauchy–Kubota
type, valuation property and isoperimetric/Urysohn-like inequalities.

1. Introduction

For every K belonging to the class Kn of non-empty convex compact sets in R
n ,

its quermassintegrals Wi (K ), for i = 0, . . . , n, are defined as the coefficients in
the polynomial expansion

Hn(K + ρB) =
n∑

i=0

(n

i

)
Wi (K ) ρ

i , (1.1)

where Hn denotes the Lebesgue measure on R
n and K + ρB is the Minkowski

sum of K plus ρ times the unit Euclidean ball B. As special cases, W0 is the Le-
besgue measure Hn, nW1 is the surface area, 2κ−1

n Wn−1 is the mean width, and
κ−1

n Wn = 1 is the Euler characteristic (where κn = Hn(B)).
The aim of this paper is to develop the notion of quermassintegrals for quasi-

concave functions, and to enlighten their basic properties. Quasi-concave functions
f on R

n are defined by the inequality
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f ((1 − λ)x0 + λx1) ≥ min{ f (x0), f (x1)}, ∀ x0, x1 ∈ R
n, ∀λ ∈ [0, 1],

and may also be described via the property that their superlevel sets { f ≥ t} =
{x ∈ R

n : f (x) ≥ t} are convex. More precisely, we will work in the following
class:

Qn =
{

f : Rn → [0,+∞] : f �≡ 0, f is quasi-concave, upper semi-continuous, lim‖x‖→+∞ f (x) = 0

}
,

and also on the subclasses Qn
α of Qn given by α-concave functions, for α ∈

[−∞,+∞] (see Sect. 2.4 for details). The class Qn can be considered a natu-
ral functional counterpart of Kn : in particular, for any K ∈ Kn , its characteristic
function χK lies in Qn . When passing from sets to (integrable) functions, the role
of the volume is played by the integral with respect to the Lebesgue measure:

I ( f ) =
∫

R
n

f (x) dx . (1.2)

This quite intuitive assertion, inspired by the equality I (χK ) = Hn(K ), is com-
monly accepted and is also confirmed by several functional counterparts of geo-
metric inequalities for convex bodies, in which the volume functional Hn(K ) is
replaced by the integral functional I ( f ). As a significant example, one may indi-
cate the celebrated Prékopa–Leindler inequality [13,23,28–30] (see also [5,6,9] for
recent related papers), or the functional form of the Blaschke–Santaló inequality
[2,3].

Less obvious it is how to give a functional definition of the quermassintegrals
Wi for i > 0. The goodness of such a definition should be evaluated through the
possibility of exporting to the functional framework the more relevant properties
of the quermassintegrals on Kn . Our approach goes exactly in this direction and
relies on Cavalieri’s principle: For any non-negative integrable function f on R

n ,

I ( f ) =
+∞∫

0

Hn({ f ≥ t}) dt.

With full consistency with abstract Measure Theory (including its part dealing with
integration over non-additive set functions), we define analogously the functionals

Wi ( f ) =
+∞∫

0

Wi ({ f ≥ t}) dt, f ∈ Qn .

The above functionals are well-defined, since the mappings t 
→ Wi ({ f ≥ t}) are
monotone increasing, which is a consequence of the monotonicity of the functionals
Wi with respect to set inclusion. Actually, one can adopt the same natural extension
from sets to functions in more general situations: If� is any functional with values
in [0,+∞), defined on Kn (or on the larger class of all Borel measurable subsets of
R

n), and if it is monotone increasing with respect to set inclusion, one can extend
it to the class Qn (respectively, to the class of all non-negative Borel measurable
functions), by setting
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�( f ) =
+∞∫

0

�({ f ≥ t}) dt. (1.3)

Definition (1.3) may look somewhat naïve if compared with previous notions exist-
ing in the literature for special quermassintegrals, such as the perimeter or the mean
width. These different definitions are rather based on the idea to mimic (1.1), that is,
by computing first order derivatives of the integral functional (1.2). More precisely,
starting from the equalities

Per(K ) = lim
ρ→0+

Hn(K + ρB)− Hn(K )

ρ
, M(K ) = lim

ρ→0+
Hn(B + ρK )− Hn(B)

ρ
,

which are valid up to normalization constants for every K ∈ Kn , in the recent
works [16,22,32,33], the following quantities have been proposed respectively as
definitions of perimeter and mean width for log-concave functions:

lim
ρ→0+

I ( f ⊕ ρ · ϕn)− I ( f )

ρ
, lim

ρ→0+
I (ϕn ⊕ ρ · f )− I ( f )

ρ
.

Some more comments are in order to correctly understand the meaning of the above
formulae. Firstly, the symbols · and ⊕ denote respectively a suitable multiplication
by a nonnegative scalar and a suitable addition of functions, which can be defined
so as to provide a natural extension of the usual Minkowski algebraic structure
on Kn to functions, see Sect. 2 for more details. Secondly, ϕn denotes the density
of the standard Gaussian measure on R

n . Thus, by comparison with the case of
sets, giving the above definitions of perimeter and mean width for functions cor-
responds to choosing ϕn as the functional counterpart of the unit ball on R

n . Now,
this choice may be somehow disputable. To some extent, it is justified by the fact
that the Gaussians turn out to be optimal in the functional version of meaningful
geometric inequalities for which the Euclidean balls are optimal (see e.g. [2]).

Notwithstanding, the investigation of the functional quermassintegrals (1.3),
carried on in this paper, suggests a different point of view. As a starting point, for
given f ∈ Qn and ρ > 0, we consider the functions

fρ(x) := sup
y∈Bρ(x)

f (y),

where Bρ(x) denotes the ball of radius r centered at x . In fact, this is equivalent
to perturbing f with the “unit ball” in the above mentioned algebraic structure,
namely, if f ∈ Qn

α , then

fρ = f ⊕ ρ ·	α(B).
Here 	α(B) is the image of the unit ball through a natural isomorphic embedding
of Kn into Qn

α (cf. Remark 2.2), while ⊕ and · denote the algebraic operations on
Qn
α (cf. Sect. 2.4). Applying these definitions, one can check that the value taken

by function f ⊕ ρ · 	α(B) at a point x is independent of α and agrees with the
supremum over Bρ(x) which defines fρ(x).
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In particular, if α = −∞, meaning f is merely quasi-concave,	α(B) is simply
the characteristic function χB . Therefore, in our perspective, χB is the most natural
functional equivalent of the ball B in the class Qn . Actually, in Theorem 3.4, we
prove a Steiner-type formula for the mapping ρ 
→ I ( fρ). More precisely, such
a mapping turns out to be a polynomial in ρ, in which the coefficients are pre-
cisely the quermassintegrals defined in (1.3), see Theorem 3.4. In particular, up
to normalization constants, the notions of perimeter and mean width of f , which
are obtained from (1.3) with i = 1 and i = n − 1, correspond respectively to the
coefficients of ρ and of ρn−1 in the polynomial I ( fρ):

I ( fρ) = I ( f )+ Per( f ) ρ + · · · + nκn

2
M( f ) ρn−1 + κn

(
max

R
n

f

)
ρn . (1.4)

We then focus on further main features of the quermassintegrals:

– concavity inequalities;
– integral-geometric formulae;
– valuation property;
– isoperimetric inequalities.

It is well-known that the functionals Wi ’s satisfy on Kn the following Brunn–Min-
kowski inequality (see e.g. [35, Theorem 6.4.3]):

Wi ((1 − λ)K0 + λK1)

≥
(
(1 − λ)Wi (K0)

1
n−i + λWi (K1)

1
n−i

) 1
n−i ∀ K0, K1 ∈ Kn, ∀λ ∈ [0, 1].

(1.5)

For short, this may be expressed as the property that the functional � = Wi is
α-concave on Kn with α = 1

n−i . For i = 0, i.e., for the Lebesgue measure, the
functional counterpart of (1.5) is given by the dimension-free inequality due to
Prékopa and Leindler and by its dimensional extension due to Brascamp and Lieb.
We obtain a further generalization of these results (Theorems 4.2 and 4.7), which
holds true for general monotone α-concave functionals� extended from Kn to Qn

according to the formula (1.3). As a special case, we thus obtain Prékopa–Leindler
inequalities for the functional quermassintegrals. In case of the surface area, i.e.,
for the functional� = W1, the possibility of such generalization was already dem-
onstrated in [7]. As further examples of functionals satisfying a Brunn–Minkowski
inequality, let us mention the p-capacity of convex bodies in R

n for 1 ≤ p < n (with
α = 1

n−p , see [12,17]), the first non-trivial eigenvalue of the Laplacian with the
Dirichlet boundary condition (with α = −2, see [13]) and other similar functionals
(see for instance [15] and [34]). These results link the study of quasi-concave func-
tions to the theory of elliptic PDE’s; an example of the interaction between these
subjects, particularly related to the matter treated here, can be found in [24].

Let us point out that our approach to prove Theorems 4.2 and 4.7 does not use
induction on the dimension (nor mass transportation) as in the more typical proof
of the Prékopa–Leindler inequality, but is rather based on a new one-dimensional
variant of it, inspired by a previous observation due to Ball [3]. It is also remarkable
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that, as we show by constructing suitable counterexamples, this kind of concavity
property turns out to fail, if one defines the perimeter of a function along the dif-
ferent line sketched above, namely as the derivative of the volume functional under
Gaussian-type perturbations.

Concerning integral-geometric results, we show that the Cauchy–Kubota for-
mula for the quermassintegrals on Kn can be suitably extended on Qn (see The-
orem 5.3). To that aim, we exploit as a crucial tool the concept of the functional
projection introduced in [22]. By combining it with definition (1.3), the desired
extension turns out to be quite straightforward. To the best of our knowledge, this
is the first step moved in the direction of translating integral-geometric properties
of convex bodies into a functional framework.

One of the most important characterizations of quermassintegrals is given by
the celebrated Hadwiger Theorem, which asserts that they generate the space of
rigid motion invariant valuations on Kn which are continuous with respect to the
Hausdorff metric (see [35]). The valuation property can be transferred in a natural
way from sets to functions (replacing union and intersection by max and min oper-
ations, respectively, see Sect. 5 for details). In Sect. 5 we check that the functionals
defined in (1.3) are in fact valuations on Qn . Let us mention that recently some
characterizations of valuations in various function spaces have been found, see for
instance [25,37].

Besides concavity inequalities, and partly as a consequence of them, quermass-
intergrals verify various inequalities of isoperimetric type; hence, having intro-
duced a similar notion for functions, it is natural to ask for corresponding results
in the functional setting. In Sect. 6 we derive two possible versions of the standard
isoperimetric inequalities for quermassintegrals of quasi-concave and log-concave
functions (see Theorems 6.1 and 6.2) along with a functional version of the Urysohn
inequality (Theorem 6.5).

The outline of the paper is as follows. After collecting some background material
in Sect. 2, in Sect. 3 we introduce and discuss our notion of functional quermas-
sintegrals and prove the corresponding Steiner formula. In Sect. 4 we deal with
generalized Prékopa–Leindler inequalities, while Sect. 5 is devoted to the integral-
geometric formulae and the valuation property for functional quermassintegrals.
Section 6 contains some concluding remarks on functional inequalities.

When this paper was in the final part of its preparation we learned from Milman
and Rotem about the paper [27], where the authors present ideas and results, found
independently, which partially overlap with those of the present paper.

2. Preliminaries

We work in the n-dimensional Euclidean space R
n , equipped with the usual Euclid-

ean norm ‖ · ‖ and scalar product (·, ·). For x ∈ R
n and r > 0, we set Br (x) =

B(x, r) = {y ∈ R
n : ‖y − x‖ ≤ r}, and B = B1(0). We denote by int(E) and

cl(E) the relative interior and the closure of a set E ⊂ R
n .

The unit sphere in R
n will be denoted by S

n−1. For k = 0, 1, . . . , n,Hk stands
for the k-dimensional Hausdorff measure on R

n . In particular, Hn denotes the usual
Lebesgue measure on R

n .
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2.1. Convex bodies

We denote by Kn the class of all non-empty convex compact sets in R
n (called

convex bodies). For the general theory of convex bodies, we refer the interested
reader to the monograph [35].

For every K ∈ Kn , we denote by χK the characteristic function, which equals
1 on K and 0 outside, and by IK the indicatrix function, which equals 0 on K and
+∞ outside. Note that IK is convex. We will also use the support function hK of a
convex body K , defined by hK (x) = supy∈K (x, y). The class Kn is endowed with
the Minkowski structure: For K , L in Kn , and α, β ≥ 0, we set

αK + βL = {αx + βy | x ∈ K , y ∈ L}.
It is worth noticing the following property connecting the Minkowski addition
and support functions: For every K , L ∈ Kn , and for every α, β ≥ 0, it holds
hαK+βL = αhK + βhL .

Let us also recall that Kn can be endowed with the Hausdorff metric. The
Hausdorff distance between K and L in Kn can be simply defined as δ(K , L) =
‖hK − hL‖L∞(Sn−1) (see [35, Sec. 1.8]).

2.2. Quermassintegrals of convex bodies

In this subsection we collect basic properties and relations satisfied by the quer-
massintegrals. Recall that, for every K ∈ Kn , the quermassintegrals Wi (K ), i =
0, . . . , n, represent the corresponding coefficients in the polynomial expansion
(1.1). In particular, W0(K ) = Hn(K ) is the volume of K ,Wn(K ) = κn :=
Hn(B), nW1(K ) = Hn−1(∂K ) is the surface area of K , and 2κ−1

n Wn−1(K ) is
the mean width, which is given by

∫

Sn−1

(hK (u)+ hK (−u)) dHn−1(u).

The quermassintegrals are invariant under rigid motions and continuous with
respect to the Hausdorff distance. They also have the following remarkable prop-
erties (where K , K0 and K1 denote arbitrary convex bodies in Kn).

(i) Homogeneity: Wi (λK ) = λn−i Wi (K ) ∀ λ ≥ 0.
(ii) Monotonicity: K0 ⊆ K1 ⇒ Wi (K0) ≤ Wi (K1).

(iii) Brunn–Minkowski-type inequality: For every λ ∈ [0, 1],

Wi ((1 − λ)K0 + λK1) ≥
(
(1 − λ)Wi (K0)

1/(n−i) + λWi (K1)
1/(n−i)

)n−i
.

(2.1)

Equivalently, the map λ → Wi ((1−λ)K0 +λK1)
α is concave on [0, 1], where

α = 1
n−i . We will refer to this property as the α-concavity of Wi . Note that in

each case, α represents the reciprocal of the homogeneity order of the relevant
quermassintegral. The usual Brunn–Minkowski inequality corresponds to the
case i = 0.
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(iv) Cauchy–Kubota integral formulae. Given k ∈ {1, . . . , n −1}, let Ln
k be the set

of all linear subspaces of R
n of dimension k, and let d Lk denote the integra-

tion with respect to the standard invariant probability measure on Ln
k . Then,

for every i = 1, . . . , k, we have

Wi (K ) = c(i, k, n)
∫

Ln
k

Wi (K |Lk) d Lk (2.2)

with a suitable constant c(i, k, n). Here K |Lk denotes the orthogonal projec-
tion of K onto Lk ∈ Ln

k . An exhaustive presentation of these formulas (along
with an explicit expression of the constant c(i, k, n)) may be found for instance
in [36]. In the particular case i = k = 1 we have the Cauchy integral formula
for the perimeter:

W1(K ) = c
∫

Sn−1

Hn−1(K |u⊥) du,

where c is a constant depending on n and du denotes integration with respect
to the invariant probability measure on the unit sphere.

(v) Valuation property. Every quermassintegral is a valuation on Kn , i.e., if K0
and K1 belong to Kn and are such that K0 ∪ K1 ∈ Kn , then

Wi (K0)+ Wi (K1) = Wi (K0 ∪ K1)+ Wi (K0 ∩ K1). (2.3)

According to a celebrated theorem by Hadwiger, this property together with
rigid motion invariance and continuity with respect to the Hausdorff distance
(or monotonicity), characterizes linear combinations of quermassintegrals; see
e.g. Theorems 4.2.6 and 4.2.7 in [35].

2.3. M-means and α-concave functions

In order to introduce the class of α-concave functions, we start with the definition
of α-means. The classic text [20] can serve as a general reference for the results
collected in this section. Given α ∈ (−∞,+∞) and s, t > 0, for every u, v > 0
we first define

M (s,t)
α (u, v) :=

⎧
⎪⎪⎨

⎪⎪⎩

(suα + tvα)1/α, if α �= 0,

usvt , if α = 0.

(2.4)

For α ≥ 0, definition (2.4) extends to the case when at least one of u and v is zero.
If α < 0 and uv = 0 (with u, v ≥ 0), we set M (s,t)

α (u, v) = 0. In the extreme cases
α = ±∞, we set

M (s,t)
−∞ (u, v) := min(u, v), M (s,t)

+∞ (u, v) := max(u, v).
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The functions u → M (s,t)
α (u, v) and v → M (s,t)

α (u, v) are non-decreasing. If
u = +∞ or v = +∞, the value M (s,t)

α (u, v) is defined so that the monotonic-
ity property is preserved. In particular, M (s,t)

α (+∞, v) = M (s,t)
α (u,+∞) = +∞

for every v (including v = +∞) in case α > 0. We also put M (s,t)
α (+∞, 0) :=

M (s,t)
α (0,+∞) = 0 for α ≤ 0.

The α-mean of u, v ≥ 0, with weight λ ∈ (0, 1) is defined as

M (λ)
α (u, v) = M (1−λ,λ)

α (u, v).

The particular cases α = 1, 0,−1 correspond to the arithmetic, geometric and
harmonic mean, respectively. In general, the functions α → M (λ)

α (u, v) are
non-decreasing. Note, however, that this property fails for the functions α →
M (s,t)
α (u, v) with s + t �= 1.

For α ∈ [−∞,+∞], we denote by Cα the family of all functions f : R
n →

[0,+∞] which are not identically zero and are α-concave, meaning that

f ((1 − λ)x + λy) ≥ M(λ)
α ( f (x), f (y)), ∀ x, y such that f (x) f (y) > 0, ∀ λ ∈ (0, 1).

The same definition may be given when f is defined on a convex subset of R
n .

Note that, as a consequence of the monotonicity of the α-means with respect to α,
we have Cα ⊆ Cα′ if α′ ≤ α.

The following particular cases of α describe canonical classes of α-concave
functions:

C−∞ is the largest class of quasi-concave functions;
C0 is the class of log-concave functions;
C1 is the class of concave functions on convex sets  (extended by zero
outside );
C+∞ is the class of multiples of characteristic functions of convex sets
 ⊂ R

n .

Any function f ∈ Cα is supported on the (nonempty) convex set K f = { f > 0},
and if α > −∞, it is continuous in the relative interior rel int(K f ) of K f . If α is
finite and nonzero, it has the form f = V 1/α , where V is concave on rel int(K f ) in
case α > 0, and is convex in case α < 0; for α = 0, the general form is f = e−V

for some convex function V on rel int(K f ).

2.4. Algebraic structure of the class of α-convex functions

For any α ∈ [−∞,∞], we are going to introduce in Cα an addition and a multipli-
cation by positive reals, which extend the usual Minkowski algebraic structure on
Kn .

Let be given f, g ∈ Cα and s, t > 0. If α ≤ 0, we put

(s · f ⊕ t · g)(z) := sup
{

M (s,t)
α ( f (x), g(y)) : z = sx + t y

}
; (2.5)
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if α > 0, we put

(s · f ⊕ t · g)(z) :=

⎧
⎪⎪⎨

⎪⎪⎩

sup
{

M (s,t)
α ( f (x), g(y)) : z =sx+t y, f (x)g(y) > 0

}
, if z ∈ sK f +t Kg,

0, otherwise.

(2.6)

Note that (2.6) is also applicable in case α ≤ 0, since M (s,t)
α (u, v) = 0, whenever

uv = 0; in this sense (2.6) is more general than (2.5).
Clearly the operations ⊕ and · depend on α. However for simplicity we will

not indicate this dependence explicitly, unless it is strictly needed. In particular,
this abuse of notation is consistent with the following immediate relation: For all
non-empty sets K and L in R

n and all s, t > 0,

s · χK ⊕ t · χL = χsK+t L

(in particular, in this case the left-hand side does not depend on α).
The operations ⊕ and · may also be used for arbitrary non-negative, not

identically zero functions, without any convexity assumption. For any fixed α ∈
[−∞,+∞], they are easily checked to enjoy the following general properties:

(i) Commutativity: s · f ⊕ t · g = t · g ⊕ s · f .
(ii) Associativity: (s · f ⊕ t · g)⊕ u · h = s · f ⊕ (t · g ⊕ u · h).

(iii) Homogeneity: s · f ⊕ t · g = (s + t)1/α ( s
s+t · f ⊕ t

s+t · g) (α �= 0).
(iv) Measurability: s · f ⊕ t · g is Lebesgue measurable as long as f and g are

Borel measurable.

Next, we show that every class Cα is closed under the introduced operations.

Proposition 2.1. If f, g ∈ Cα and s, t > 0, then s · f ⊕ t · g ∈ Cα .

Proof. First let α be non-zero. Using the homogeneity property (iii), it suffices to
consider the case s + t = 1. We set for brevity u(x, y) := M (s,t)

α ( f (x), g(y)) for
any x ∈ K f and y ∈ Kg; moreover, for z ∈ K = sK f + t Kg , we set

h(z) := (s · f ⊕ t · g)(z) = sup
{
u(x, y) : z = sx + t y, x ∈ K f , y ∈ Kg

}
,

putting h = 0 outside K . We claim that the function u is α-concave on the con-
vex supporting set K f × Kg . Indeed, if additionally α is finite, taking (x, y) =
s′(x1, y1) + t ′(x2, y2) with s′, t ′ > 0, s′ + t ′ = 1 and x1, x2 ∈ K f , y1, y2 ∈ Kg ,
we have

u(x, y) = M (s,t)
α ( f (s′x1 + t ′x2), g(s′y1 + t ′y2))

≥ M (s,t)
α

(
M (s′,t ′)
α ( f (x1), f (x2)),M (s′,t ′)

α (g(y1), g(y2))
)

= (
s
(
s′ f (x1)

α + t ′ f (x2)
α
) + t

(
s′g(y1)

α + t ′g(y2)
α
))1/α

= (
s′ (s f (x1)

α + tg(y1)
α
) + t ′

(
s f (x2)

α + tg(y2)
α
))1/α

= M (s′,t ′)
α

(
M (s,t)
α ( f (x1), g(y1)),M (s,t)

α ( f (x2), g(y2))
)

= M (s′,t ′)
α (u(x1, y1), u(x2, y2)).
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Thus,

u(s′(x1, y1)+ t ′(x2, y2)) ≥ M (s′,t ′)
α (u(x1, y1), u(x2, y2)),

which means α-concavity of u on R
2n (if we define it to be zero outside K f × Kg).

With corresponding modifications, or using continuity and monotonicity of the
function Mα with respect to α, we have a similar property of the function u in the
remaining cases.

Now, for z ∈ K , fix a decomposition z = sz1 + t z2, z1, z2 ∈ K . Using trun-
cation, if necessary, we may assume that both f and g are bounded, so that h is
bounded, as well. Then, given ε > 0, choose x1, x2 ∈ K f , y1, y2 ∈ Kg such that
z1 = sx1 + t y1, z2 = sx2 + t y2, h(z1) ≤ u(x1, y1)+ ε, and h(z2) ≤ u(x2, y2)+ ε.
Since u is α-concave, setting x = sx1 + t x2 and y = sy1 + t y2, we get

u(x, y) ≥ M (s,t)
α (u(x1, y1), u(x2, y2)) ≥ M (s,t)

α ((h(z1)− ε)+, (h(z2)− ε)+).

Letting ε → 0, the latter yields

u(x, y) ≥ M (s,t)
α (h(z1), h(z2)).

It remains to note that sx + t y = sz1 + t z2 = z, which implies u(x, y) ≤ h(z).
Now, let α = 0, in which case we should work with u(x, y) := f (x)s g(y)t

for any x, y ∈ R
n , and with a similarly defined function h. Again, for (x, y) =

s′(x1, y1)+ t ′(x2, y2), we have, using the log-concavity of f and g,

u(x, y) = f (s′x1 + t ′x2)
s g(s′y1 + t ′y2)

t

≥ f (x1)
ss′

f (x2)
st ′ g(y1)

ts′
g(y2)

t t ′ = M (s′,t ′)
0 (u(x1, y1), u(x2, y2)).

This means that u is log-concave on R
2n . The rest of the proof is similar to the

basic case. ��
In the next remarks we collect further comments on the operations ⊕ and ·,

more specifically on their relationship with the usual Minkowski structure in Kn

and on their interpretation in the two special cases α = −∞ and α = 0.

Remark 2.2. In view of Proposition 2.1, Cα can be seen as an extension of Kn which
preserves its algebraic structure. More precisely, the mappings 	α : Kn → Cα
defined by

	α(K ) :=

⎧
⎪⎪⎨

⎪⎪⎩

e−IK , if α = 0,

I −1
K , if α �= 0,

are isomorphic embeddings of Kn endowed with the Minkowski structure into Cα
endowed with the operations ⊕ and ·.
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Remark 2.3. In C−∞, the operations in (2.5) can be characterized through the Min-
kowski addition of the level sets K f (r) = {x ∈ R

n : f (x) ≥ r}. Namely, for
f, g ∈ C−∞ and s, t > 0, the functional equality

h(z) = (s · f ⊕ t · g)(z) = sup{min{ f (x), g(y)} : sx + t y = z}
is equivalent to the family of set equalities

Kh(r) = sK f (r)+ t Kg(r) ∀ r > 0. (2.7)

Note that for a general value of α, we only have the following set inclusion, valid
if s + t = 1:

Kh(r) ⊃ sK f (r)+ t Kg(r) ∀ r > 0. (2.8)

Remark 2.4. In C0, the operation ⊕ (defined as in (2.5) with t = s = 1) is related
to an operation introduced in 1991 by Maurey. More precisely, starting with U, V :
R

n → (−∞,+∞], we get

e−U ⊕ e−V = e−W , (2.9)

where W (z) = inf x [U (z − x) + V (x)] represents the infimum-convolution of
U and V . If these functions are convex, so is W (as we also know from Proposi-
tion 2.1). This fact is crucial in the study of the so-called “convex” concentration
for product measures, cf. [26].

2.5. Prékopa–Leindler and Brascamp–Lieb Theorems

The following well-known result due to Prékopa and Leindler [23,28–30] is a
functional extension of the classical Brunn–Minkowski inequality.

Theorem 2.5. Let λ ∈ (0, 1). Let f, g, h be non-negative measurable functions on
R

n. If

h(M (λ)
1 (x, y)) ≥ M (λ)

0 ( f (x), g(y)), ∀x, y ∈ R
n, (2.10)

then
∫

h ≥ M (λ)
0

(∫
f,
∫

g

)
. (2.11)

Given non-empty Borel sets A, B ⊂ R
n , and λ ∈ (0, 1), by applying the above

result with f = χA, g = χB , and h = χ(1−λ)A+λB (after noticing that h is Lebesgue
measurable), one gets

Hn((1 − λ)A + λB) ≥ Hn(A)1−λHn(B)λ. (2.12)

This is a multiplicative variant of the Brunn–Minkowski inequality

Hn((1 − λ)A + λB) ≥
(
(1 − λ)Hn(A)1/n + λHn(B)1/n

)n
(2.13)
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with convexity parameter α = 1/n (which is optimal). Though in principle (2.12)
is weaker than (2.13), using the homogeneity of the volume it is easy to derive
(2.13) from (2.12). However, the difference between (2.13) and (2.12) suggests
a different, dimension-dependent variant of Theorem 2.5, which would directly
yield (2.13) when applied to characteristic functions. Such a variant is known and
is recalled in Theorem 2.6 below. It was proposed by Brascamp and Lieb [13] and
somewhat implicitly in Borell [10,11]; cf. also [18] and [19].

Theorem 2.6. Let λ ∈ (0, 1) and let α ∈ [− 1
n ,+∞]. Let f, g, h be non-negative

measurable functions on R
n. If

h(M (λ)
1 (x, y)) ≥ M (λ)

α ( f (x), g(y)), ∀ x, y such that f (x)g(y) > 0, (2.14)

then
∫

h ≥ M (λ)
β

(∫
f,
∫

g

)
, where β := α

1 + αn
. (2.15)

In the extreme cases α = − 1
n and α = +∞, the definition of β in (2.15) is

understood respectively as β = −∞ and β = 1
n .

Since β = 0 for α = 0, Theorem 2.6 includes Theorem 2.5 as a particular
case. Note also that, if A, B and λ are as above, by applying Theorem 2.6 with
α = +∞, f = χA, g = χB and h = χ(1−λ)A+λB , one obtains directly the Brunn–
Minkowski inequality in its dimension-dependent form (2.13).

We point out that, under additional assumptions on f and g, the value of β
in (2.15) may be improved. For instance, in dimension n = 1, if ess sup f (x) =
ess sup g(x) = 1, then one may take β = 1 regardless of α, see for instance
[8]. Without additional constraints, the value of β in (2.15) is optimal. For
instance, for n = 1 and α = 0, take f (x) = ae−xχ(0,+∞)(x) and g(x) =
be−xχ(0,+∞)(x), where a and b are positive parameters. In this case, the func-

tion h(x) := M (λ)
0 (a, b) e−xχ(0,+∞)(x) satisfies (2.10), and (2.11) becomes an

equality.
As a further natural generalization of Theorem 2.6, one can consider the case

when λ and 1 − λ are replaced by arbitrary positive parameters s and t , not nec-
essarily satisfying the condition s + t = 1. Assume α �= 0 and α < +∞. If
non-negative measurable functions f, g, h satisfy the inequality h(M (s,t)

1 (x, y)) ≥
M (s,t)
α ( f (x), g(y)) for all x, y such that f (x)g(y) > 0, then the function

h̃(z) := 1

(s + t)1/α
h((s + t) z)

is easily checked to satisfy the hypothesis (2.14) with λ = t
s+t . Hence, by applying

Theorem 2.6, we arrive at the following statement (where also the case α = +∞
can be easily included as a limit):

Theorem 2.7. Let s, t > 0 and let α ∈ [− 1
n ,+∞], α �= 0. Let f, g, h be non-neg-

ative measurable functions on R
n. If

h(M (s,t)
1 (x, y)) ≥ M (s,t)

α ( f (x), g(y)), ∀ x, y such that f (x)g(y) > 0,
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then
∫

h ≥ M (s,t)
β

(∫
f,
∫

g

)
, where β := α

1 + αn
.

In the extreme cases α = − 1
n and α = +∞, the value of β has to be understood

as in Theorem 2.6.

We observe that, using the operations ⊕ and · introduced in the previous sec-
tion, Theorem 2.7 (and similarly also Theorems 2.5 and 2.6) can be written in a
more compact form as the inequality
∫
(s · f ⊕ t · g) ≥ M (s,t)

β

(∫
f,
∫

g

)
, where α ∈ [− 1

n
,+∞], α �= 0, and β = α

1 + αn
.

It holds true for all non-negative Borel measurable functions f and g on R
n and

for all t, s > 0, and where the assumption α �= 0 may be removed when t + s = 1.
In particular, taking s = t = 1 and replacing first f, g respectively with

f 1/α, g1/α and then replacing α with 1
α

, one gets that
∫
(sup{ f (x)+ g(y) : x + y = z, f (x)g(y) > 0})α ≥

[(∫
f α
) 1
α+n +

(∫
gα
) 1
α+n

]α+n

,

(2.16)

where α ≥ 0 or α ≤ −n. In dimension n = 1 and for the range α > 0, this
inequality was obtained in 1953 by Henstock and Macbeath as part of their proof
of the Brunn–Minkowski inequality, cf. [21]. Indeed, stated in R

n for characteristic
functions f = χA, g = χB and with α = 0, (2.16) gives back

Hn(A + B) ≥
(
Hn(A)1/n + Hn(B)1/n

)n
.

3. Functional quermassintegrals and a Steiner-type formula

Let us introduce the following class of admissible functions

Qn =
{

f : Rn → [0,+∞] : f �≡ 0, f is quasi-concave, upper semicontinuous, lim‖x‖→+∞ f (x) = 0

}
.

We also consider the subclasses formed by the functions in Qn which areα-con-
cave, by setting Qn

α := Qn ∩Cα for any α ∈ [−∞,+∞]. In particular, Qn = Qn−∞.
Note that, if f is quasi-concave, the property lim‖x‖→+∞ f (x) = 0 is necessary

to keep the integral I ( f ) = ∫
f finite. Indeed, the vanishing of f at infinity may

be equivalently formulated as the boundedness of all the superlevel sets { f ≥ t}
(with t > 0). But, if I ( f ) is finite, then all such convex sets have finite Lebesgue
measure and are therefore bounded.

We also observe that, if f ∈ Qn , the superlevel sets { f ≥ t} are convex closed
sets, because f is quasi-concave and upper semicontinuous; since f is vanishing
at infinity, these sets are also compact. Hence, supx f (x) is attained at some point,
and one may freely speak about the maximum value of f which in general may be
finite or not. In addition, all quermassintegrals of the sets { f ≥ t} are well-defined
and finite, so that we are allowed to give the the following definition.
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Definition 3.1. Let f ∈ Qn . For every i = 0, . . . , n, we define the i-th quermass-
integral of f as

Wi ( f ) :=
+∞∫

0

Wi ({ f ≥ t}) dt =
+∞∫

0

Wi (cl{ f > t}) dt. (3.1)

In particular,

I ( f ) = W0( f ) =
+∞∫

0

Hn({ f ≥ t}) dt.

As further special cases, by analogy with convex bodies, we define the perimeter,
the mean width and the Euler characteristic of f ∈ Qn respectively as

Per( f ) = nW1( f ) =
+∞∫

0

Per({ f ≥ t}) dt,

M( f ) = 2κ−1
n Wn−1( f ) =

+∞∫

0

M({ f ≥ t}) dt,

χ( f ) = κ−1
n Wn( f ) = max

x∈R
n

f (x).

Let us emphasize that the two integrals in (3.1) do coincide, so that we may use
any of them at our convenience. To see this fact, one may use the inclusion cl{ f >
t} ⊆ { f ≥ t}, which ensures that the second integral in (3.1) is dominated by the
first one (applying the monotonicity property of Wi ). On the other hand, for any
ε > 0, we have { f ≥ t + ε} ⊆ { f > t} ⊆ cl{ f > t}, which yields

+∞∫

ε

Wi ({ f ≥ t}) dt ≤
+∞∫

0

Wi (cl{ f > t}) dt.

Letting ε → 0, we obtain that the first integral in (3.1) is dominated by the second
one, as well.

3.1. Basic properties

Let us mention a few general properties of the functional quermassintegrals, which
follow immediately from Definition 3.1.

(i) Positivity. 0 ≤ Wi ( f ) ≤ +∞.
(ii) Homogeneity under dilations. Wi ( fλ) = λn−i Wi ( f ), where fλ(x) =

f (x/λ), λ > 0.
(iii) Monotonicity. Wi ( f ) ≤ Wi (g), whenever f ≤ g.

Concerning the finiteness of the quermassintergals, the problem of character-
izing those functions in Qn all of whose quermassintegrals are finite seems to be
an interesting question. Let us examine what happens in this respect within the
subfamily of radial functions.
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Example 3.2. Let f ∈ Qn be a radial function. Equivalently, it has the form f (x) =
F(|x |) for every x ∈ R

n , where F : [0,+∞) → [0,�] is a non-increasing upper
semi-continuous function vanishing at infinity, with maximum� = F(0), finite or
not.

Incidentally, this example shows that quasi-concave functions do not need to be
continuous on their domain, nor to be in L1(Rn), so that it may be that I ( f ) = +∞.

Define the inverse function F−1 : (0,�] → [0,+∞) canonically by F−1(t) =
min{r > 0 : F(r) ≥ t} for every t ∈ (0,�). Since { f ≥ t} = F−1(t)B, we have
Wi ({ f ≥ t}) = κn(F−1(t))n−i . Integrating this equality over t , we arrive at the
formula

Wi ( f ) = κn

+∞∫

0

rn−i d F(r), i = 0, 1, . . . , n,

where F may be treated as an arbitrary positive measure on (0,+∞), finite on com-
pact subsets of the positive half-axis. Hence, the quermassintegrals of the function
f are described as the first n moments of F (up to the normalization constant κn).

In particular, we see that the finiteness of Wn( f ) is equivalent to the finiteness
of the measure F (namely to the condition � < +∞), whereas the finiteness of
W0( f ) is equivalent to

∫ +∞
0 rn d F(r) < +∞. Thus we can conclude that the quer-

massintegrals Wi ( f ) are finite for all i = 0, . . . , n, if and only if they are finite for
i = 0 and i = n.

The above example suggests a simple way to find upper bounds on the quer-
massintegrals in the general case. Namely, the monotonicity property (iii) stated
above readily yields:

Proposition 3.3. Given a function f ∈ Qn, defineμ f (r) = max‖x‖≥r f (x), r > 0.
Then

Wi ( f ) ≤ κn

+∞∫

0

rn−i dμ f (r), i = 0, 1, . . . , n.

In particular, all quermassintegrals of f are finite, provided f is bounded and∫ +∞
0 rn dμ f (r) < +∞.

3.2. Steiner formula

Let f ∈ Qn . For ρ > 0, consider the function

fρ(x) = sup
y∈Bρ(x)

f (y).

If f ∈ Qn
α , using the operations ⊕ and · introduced in Sect. 2.4 on the class Cα , and

the isomorphic embeddings 	α of Remark 2.2 (recall that B = B1(0),	0(B) =
χB , and 	α(B) = I −1

B for α �= 0), the function fρ may also be rewritten as

fρ = f ⊕ ρ ·	α(B).
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Therefore, the function fρ can be seen as a perturbation of f through the unit ball.
Notice that, as already mentioned in the Introduction, the r.h.s. of the above

equality is actually independent of the choice of α.
The next result provides a functional analogue of the Steiner formula, stating

that the integral of fρ admits a polynomial expansion in ρ, with coefficients given
precisely by the functional quermassintegrals Wi ( f )’s.

Theorem 3.4. (Steiner-type formula) Let f ∈ Qn. For every ρ > 0,

I ( fρ) =
n∑

i=0

(n

i

)
Wi ( f ) ρi . (3.2)

Before giving the proof of Theorem 3.4, let us point out that, as a consequence of
(3.2), the following properties turn out to be equivalent to each other:

(i) Wi ( f ) < +∞ ∀i = 0, . . . , n;
(ii) I ( fρ) < +∞ for some ρ > 0;

(iii) I ( fρ) < +∞ for all ρ > 0.

In particular, the condition I ( f ) < +∞ is not sufficient to guarantee that
I ( fρ) < +∞ (as the latter condition implies the boundedness of f ). A simple
sufficient condition is for instance that f is of class C1(Rn), with I ( f ) < +∞ and

∫

R
n

max
y∈Bρ(x)

‖∇ f (y)‖ dx < +∞;

indeed, by using the inequality fρ(x) ≤ f (x) + maxy∈Bρ(x) ‖∇ f (y)‖, it follows
that I ( fρ) < +∞.

Whenever I ( fρ) is finite, as an immediate consequence of Theorem 3.4, the
quermassintegrals Wi ( f ) can be expressed through differential formulae involving
I ( fρ). In particular, it holds

Per( f ) = lim
ρ→0+

I ( fρ)− I ( f )

ρ
(3.3)

and

M( f ) = 2

nκn
lim

ρ→+∞
I ( fρ)− (κn maxR

n f ) ρn

ρn−1 . (3.4)

Remark 3.5. Let f ∈ Qn . Denote by K f the support set { f > 0}, by |D f |(Rn) the
total variation of f as a BV function on R

n , and by f+ the interior trace of f on
∂K f (we refer to [1, Theorem 3.77] for this definition). Then

Per( f )=
+∞∫

0

Per({ f ≥ t}) dt =|D f |(Rn)=
∫

K f

|∇ f | dx +
∫

∂K f

f+ dHn−1,

(3.5)
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where we have used the definition of Per( f ) and the coarea formula. This formula
is simplified to Per( f ) = ∫

R
n |∇ f | dx, if f is continuously differentiable on the

whole R
n (which also follows from (3.3) in case I ( fρ) < +∞, for some ρ > 0).

We point out that (3.5) may be seen as a variant of the representation formula
given by Theorem 4.6 in [16]: in fact, (3.5) can be derived “formally” by apply-
ing Theorem 4.6 in [16] beyond its assumptions (more precisely, by taking therein
ψ(y) = |y|).
Proof of Theorem 3.4. We start from the well-known elementary identity (which
is often used in the derivation of various Sobolev-type inequalities)

{ fρ > t} = { f > t} + ρB (ρ, t > 0). (3.6)

Define the sets

t = { f > t}, t
ρ = { fρ > t}, K t = clt , K t

ρ = clt
ρ.

Since f ∈ Qn , the convex setst are bounded, so aret
ρ , and one has Hn(t

ρ) =
Hn(K t

ρ). Then, by virtue of Cavalieri’s principle, we can express I ( fρ) as

I ( fρ) =
+∞∫

0

Hn(t
ρ) dt =

+∞∫

0

Hn(K t
ρ) dt.

By (3.6), we have

K t
ρ = cl(t

ρ) = cl(t + ρB) = cl(t )+ ρB = K t + ρB.

Hence,

I ( fρ) =
+∞∫

0

Hn(K t + ρB) dt.

Finally, using the Steiner formula for the convex bodies K t , we obtain

I ( fρ) =
+∞∫

0

n∑

i=0

ρi
(n

i

)
Wi (K

t ) dt =
n∑

i=0

ρi
(n

i

) +∞∫

0

Wi (K
t ) dt.

��

3.3. A dual expansion

One can observe that the functional mean width introduced in Definition 3.1 is not
linear with respect to the sum in Qn

α (unless α = −∞), while this is always the case
for the mean width of convex bodies. As the latter quantity can be also defined, up
to a dimensional constant, as

lim
ρ→0+

Hn(B + ρK )− Hn(B)

ρ
∀ K ∈ Kn,

it is natural to ask what happens, if in place of considering the map ρ 
→ I ( f ⊕
ρ · 	α(B)) as done in the previous section, one looks at its “dual” map ρ 
→
I (	α(B)⊕ ρ · f ).
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Here we focus on the case α = 0, namely on the class Qn
0 of log-concave

functions with the corresponding algebraic operations. As 	0(B) = χB , we set

�(ρ) := I (χB ⊕ ρ · f ) (3.7)

and

M̃( f ) := lim
ρ→0+

�(ρ)−�(0)

ρ
= � ′(0+),

whenever the latter limit exists. Let us stress that the operations ⊕ and · appearing
in (3.7) are those introduced in (2.5) with α = 0. The first derivative of the mapping
ρ 
→ �(ρ) is by construction linear in f (exactly as it occurs for the notion of the
mean width introduced by Klartag and Milman in [22], mentioned in the Introduc-
tion). It turns out that M̃( f ) is finite only when the support of f is compact: in this
case it can be computed explicitly, and it is given precisely by the logarithm of the
maximum of f plus the mean width of the support of f . More precisely we have
the following result, which is somehow dual to Theorem 3.4. For this reason we
call it “dual Steiner-type formula”; however we stress that using this expression is
somehow an abuse, since in this case the function ρ 
→ �(ρ) is not a polynomial
in ρ.

Theorem 3.6. (Dual Steiner-type formula) Let f ∈ Qn
0 and let � be the mapping

defined in (3.7). For every ρ > 0,

�(ρ) =
n∑

j=0

(
n

j

)
ρ j+1

+∞∫

0

Wn− j ({ f ≥ t}) tρ−1 dt. (3.8)

In particular, setting K f := { f > 0}, it holds

M̃( f ) =

⎧
⎪⎪⎨

⎪⎪⎩

κn log(maxR
n ( f ))+ nWn−1(K f ), if K f ∈ Kn

+∞, otherwise.

(3.9)

For the proof of Theorem 3.6 the following elementary lemma is needed.

Lemma 3.7. Let m > 0. For every non-increasing function g : (0,m] → R+,

lim
ρ→0+ ρ

m∫

0

g(t)tρ−1 dt = lim
t→0+ g(t).

Proof. Set L := g(0+) = limt→0+ g(t). With a change of variable, we have

ρ

m∫

0

g(t)tρ−1 dt =
mρ∫

0

g(t1/ρ) dt.

If m ≥ 1, write

mρ∫

0

g(t1/ρ) dt =
mρ∫

1

g(t1/ρ) dt +
1∫

0

g(t1/ρ) dt. (3.10)
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We observe that the first integral in the r.h.s. of (3.10) is infinitesimal: since g is
non-increasing, it can be bounded from above by g(1)(mρ − 1). About the second
integral in the r.h.s. of (3.10), we observe that, as ρ → 0+, the functions g(t1/ρ) do
not decrease and converge pointwise to L on (0, 1). Hence,

∫ 1
0 g(t1/ρ) dt → +∞,

by monotone convergence. Thus, the proof is achieved for m ≥ 1.
If 0 < m < 1, for any prescribed ε > 0, we have mρ > 1 − ε, for all ρ small

enough. Then regardless of whether L = +∞ or L < +∞, we have

L ≥ Lmρ ≥
mρ∫

0

g(t1/ρ) dt ≥
1−ε∫

0

g(t1/ρ) dt → L(1 − ε), as ρ → 0+,

where we used again monotone convergence. The statement follows by the arbi-
trariness of ε > 0. ��
Proof of Theorem 3.6. Let us set for brevity f (ρ) := χB ⊕ ρ · f , which in explicit
form reads

f (ρ)(z) = sup{ f (y)ρ : x + ρy = z, ‖x‖ ≤ ρ}, ∀ z ∈ R
n .

The above definition yields

{ f (ρ) > t} =
{

x : f ρ
(

x

ρ

)
> t

}
+ B = ρ { f > t1/ρ} + B.

Therefore,

I ( f (ρ)) =
mρ∫

0

Hn(ρ { f > t1/ρ} + B) dt = ρ

m∫

0

Hn(ρ { f > t} + B)tρ−1 dt.

(3.11)

Letting t = { f > t} and K t = cl(t ), we have

Hn(ρt + B) = Hn(ρK t + B) =
n∑

j=0

ρ j
(

n

j

)
Wn− j (K

t ). (3.12)

Inserting (3.12) into (3.11), the equality (3.8) is proved.
Let us now prove (3.9). Set m = maxR

n f . We claim that all the terms cor-
responding to j ≥ 2 on the right-hand side of (3.8) are o(ρ), as ρ → 0. To see
this, recall that since the functions in Qn

0 are log-concave and are vanishing at
infinity, they must decay exponentially fast (at least). Hence, there exist constants
α > 0, β ∈ R, such that f (x) ≤ e−(α|x |+β) for every x ∈ R

n (see Lemma 2.5 in
[16]), which yields

K t ⊆ {x : e−(α|x |+β) ≥ t} =
{

x : |x | ≤ −β + log t

α

}
.
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Letting R(t) = max{0,−β+log t
α

}, we get

ρ j+1

m∫

0

Wn− j (cl{ f > t}) tρ−1 dt ≤ ρ j+1

m∫

0

R(t) j tρ−1 dt = ρ j

mρ∫

0

R(t1/ρ) j dt ≤ Cρ j ,

and the claim is proved. Next we observe that the terms with j = 0 and j = 1 in
(3.8) are given by

ρ

m∫

0

Wn(K
t ) tρ−1 dt = κn ρ

m∫

0

tρ−1 dt = κnmρ = κnmρ = I ( f0)mρ

(where in the first equality we have exploited the identity Wn(K t ) = κn), and by

nρ2

m∫

0

Wn−1(K
t ) tρ−1 dt.

Summarizing, we have

I ( f (ρ)) = I ( f0)mρ + nρ2

m∫

0

Wn−1(K
t )tρ−1 dt + o(ρ),

whence

I ( f (ρ))− I ( f0)

ρ
= κn

mρ − 1

ρ
+ nρ

m∫

0

Wn−1(K
t ) tρ−1 dt + o(ρ)

ρ
.

In the limit as ρ → 0+, the first addendum tends to κn log m, whereas the second
one tends to nWn−1(K f ) thanks to Lemma 3.7. ��

4. Generalized Prékopa–Leindler inequalities

This section is entirely devoted to the study of generalized versions of the Prékop-
a–Leindler inequality. More precisely: in Sect. 4.1 we prove some variants of such
inequality for functions of one variable; in Sects. 4.2–4.3 we extend Prékopa–Lein-
dler’s Theorem from the usual case of the volume functional to the general case
of arbitrary monotone concave functionals on Kn (including as special cases the
functional quermassintegrals); in Sect. 4.4 we show that this generalized concavity
fails to be true if one chooses to define the perimeter of quasi-concave functions in
a different, though apparently natural, way.

4.1. One dimensional Prékopa–Leindler-type inequalities

Let us return to Theorem 2.6, which we consider here in dimension one for non-neg-
ative functions defined on (0,+∞). In some situations it is desirable to replace the
arithmetic mean M (λ)

1 (x, y) on the left-hand side of (2.14) by more general means
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M (λ)
γ (x, y). In the (rather typical) case, when h is non-increasing (and if γ < 1),

this would give a strengthened one-dimensional variant of this theorem, since the
hypothesis would be weaker (due to the inequality M (λ)

γ (x, y) ≤ M (λ)
1 (x, y)). The

case γ = α = 0 (and hence β = 0) was considered by K. Ball [4], who showed
that the hypothesis

h(M (λ)
0 (x, y)) ≥ M (λ)

0 ( f (x), g(y)), ∀ x, y > 0, (4.1)

implies

+∞∫

0

h ≥ M (λ)
0

⎛

⎝
+∞∫

0

f,

+∞∫

0

g

⎞

⎠ . (4.2)

Actually, this assertion immediately follows from Prekopa–Leindler’s Theo-
rem 2.5, when it is applied in one dimension to the functions f (e−x )e−x , g(e−x )e−x

and h(e−x )e−x .
Below we propose an extension of Ball’s observation to general values γ ≤ 1.

Theorem 4.1. Let λ ∈ (0, 1), γ ∈ [−∞, 1] and α ∈ [−γ,+∞]. Let f, g, h be
non-negative measurable functions on (0,+∞). If

h(M (λ)
γ (x, y)) ≥ M (λ)

α ( f (x), g(y)), ∀ x, y > 0 such that f (x)g(y) > 0,

(4.3)

then

+∞∫

0

h ≥ M (λ)
β

⎛

⎝
+∞∫

0

f,

+∞∫

0

g

⎞

⎠ with β = αγ

α + γ
. (4.4)

In the extreme cases α = −γ and α = +∞, the definition of β in (4.4) is under-
stood respectively as β = −∞ and β = γ . In addition, we put β = −∞ in case
γ = −∞.

Before giving the proof of Theorem 4.1 let us recall that, as a consequence of
the generalized Hölder inequality, we have the following elementary inequality:
For all u1, u2, v1, v2 ≥ 0 and λ ∈ (0, 1), it holds

M (λ)
α1
(u1, v1)M

(λ)
α2
(u2, v2) ≥ M (λ)

α0
(u1u2, v1v2), (4.5)

whenever

α1 + α2 > 0,
1

α0
= 1

α1
+ 1

α2
. (4.6)

Inequality (4.5) also holds in the following cases:

• α0 = α1 = 0, 0 ≤ α2 ≤ +∞;
• α0 = α2 = 0, 0 ≤ α1 ≤ +∞;
• α0 = −∞, α1 + α2 ≥ 0.
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The latter includes the cases α1 = −∞, α2 = +∞ and α1 = +∞, α2 = −∞.
Clearly, α0 > 0 when α1 > 0 and α2 > 0; on the other hand if α1 < 0 < α2 or
α2 < 0 < α1, then necessarily α0 < 0.

Proof of Theorem 4.1. If γ = 1, we are reduced to Brascamp–Lieb’s Theorem 2.6
in dimension one.

If γ = 0, then β = 0 regardless of α ≥ 0. But the hypothesis (4.3) is weaker
for α = 0, and this case corresponds to Ball’s result (4.1) ⇒ (4.2). Hence, we may
assume that −∞ ≤ γ < 1, γ �= 0. Let −γ ≤ α ≤ +∞ with γ > −∞. In terms
of the functions

u(x) = f (x1/γ ), v(x) = g(x1/γ ), w(x) = h(x1/γ )

the hypothesis (4.3) may be rewritten as

w(z) ≥ M (λ)
α (u(x), v(y)), z = (1 − λ)x + λy, ∀ x, y > 0 such that u(x)v(y) > 0.

(4.7)

We apply the inequality (4.5) with α1 = α, α2 = γ ′ = γ
1−γ , in which case the

condition (4.6) becomes α + γ ′ > 0. Using (4.7), it gives

w(z)z1/γ ′ = w(z)M (λ)

γ ′ (x1/γ ′
, y1/γ ′

)

≥ M (λ)
α (u(x), v(y))M (λ)

γ ′ (x1/γ ′
, y1/γ ′

) ≥ M (λ)
α0
(u(x)x1/γ ′

, v(y)y1/γ ′
),

where α0 is defined by

1

α0
= 1

α
+ 1

γ ′ = 1

α
+ 1

γ
− 1.

Here, in case α = +∞, we have α0 = γ ′, and in case α = 0, one should put
α0 = 0 (with constraint γ > 0 in view of α + γ ′ > 0). Thus, the new three
functions u(x)x1/γ ′

, v(x)x1/γ ′
and w(x)x1/γ ′

satisfy the condition (2.14) in one-
dimensional Brascamp–Lieb’s Theorem with parameter α0. Hence, if α0 ≥ −1,
we obtain the inequality (2.15) for these functions, that is,

+∞∫

0

w(z)z1/γ ′
dz ≥ M (λ)

β

⎛

⎝
+∞∫

0

u(x)x1/γ ′
dx,

+∞∫

0

v(y)y1/γ ′
dy

⎞

⎠ (4.8)

with β = α0
1+α0

. But

+∞∫

0

u(x)x1/γ ′
dx =

+∞∫

0

f (x1/γ ) x1/γ−1 dx = |γ |
+∞∫

0

f (x) dx,

and similarly for the couples (v, g) and (w, h). In addition,

β = 1
1
α0

+ 1
= 1

1
α

+ 1
γ

= αγ

α + γ
.

Here, β = γ for α = +∞, and β = 0 for α = 0 and γ > 0, and β = −∞, for
α = −γ .

Thus, (4.8) yields the desired inequality (4.4) of Theorem 4.1, provided that:
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(a) α + γ ′ > 0;
(b) α0 ≥ −1.

Case 0 < γ < 1. Then γ ′ > 0. If α > 0, then α0 > 0, so both (a) and (b) are
fulfilled. If α = 0, then α0 = 0, so (a) and (b) are fulfilled, as well. If α < 0, then
necessarily α0 < 0 (as already noticed before). In this case,

α + γ ′ > 0 ⇔ −α < γ ′ ⇔ − 1

α
>

1

γ ′ ⇔ 1

α
+ 1

γ
< 1.

In addition, since (b) may be rewritten as − 1
α0

≥ 1, this condition is equivalent to

−( 1
α

+ 1
γ ′ ) ≥ 1 ⇔ 1

α
+ 1

γ
≤ 0 ⇔ γ ≥ −α, which was assumed.

Case −∞ < γ < 0. Then γ ′ < 0 and α > 0 to meet (a). Again α0 < 0, so (b)
may be written as − 1

α0
≥ 1. As before, we have

α + γ ′ > 0 ⇔ α > −γ ′ ⇔ 1

α
> − 1

γ ′ ⇔ 1

α
+ 1

γ
< 1.

In addition, (b) is equivalent to −( 1
α

+ 1
γ ′ ) ≥ 1 ⇔ 1

α
+ 1

γ
≤ 0 ⇔ γ ≥ −α.

Case γ = −∞. This case may be treated by a direct argument. Indeed, neces-
sarily α = +∞, and the hypothesis (4.3) takes the form

h(min(x, y)) ≥ max( f (x), g(y)) ∀ x, y such that f (x)g(y) > 0. (4.9)

We may assume that both f and g are not identically zero. Put

a = sup{x > 0 : f (x) > 0}, b = sup{y > 0 : g(y) > 0},

and let for definiteness a ≤ b ≤ +∞. If 0 < x < a and f (x) > 0, one may choose
y ≥ x such that g(y) > 0, and then (4.9) gives h(x) ≥ f (x). Hence,

+∞∫

0

h(x) dx ≥
∫

{0<x<a, f (x)>0}
h(x) dx

≥
∫

{0<x<a, f (x)>0}
f (x) dx =

+∞∫

0

f (x) dx .

As a result,

+∞∫

0

h(x) dx ≥ min

⎧
⎨

⎩

+∞∫

0

f (x) dx,

+∞∫

0

g(x) dx

⎫
⎬

⎭ ,

which is the desired inequality (4.4) with β = −∞. Theorem 4.1 is now proved.
��
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4.2. Prékopa–Leindler inequality for monotone γ -concave functionals

We are now ready to extend Theorem 2.6 by Brascamp and Lieb to general monotone
γ -concave set functionals �, mentioned in the Introduction. To be more precise, a
functional� defined on the class of all Borel subsets of R

n with values in [0,+∞]
will be said to be monotone, if

�(K0) ≤ �(K1), whenever K0 ⊆ K1,

and to be (γ, λ)-concave with parameters γ ∈ [−∞,+∞] and λ ∈ (0, 1), if

�((1 − λ)K0 + λK1) ≥ M (λ)
γ (�(K0),�(K1)), (4.10)

for all Borel sets K0, K1 such that�(K0) > 0 and�(K1) > 0. If (4.10) is fulfilled
for an arbitrary λ ∈ (0, 1), then we simply say that � is γ -concave. We always
assume that �(∅) = 0. In particular, the requirement �(K ) > 0 ensures that K is
non-empty.

If� is monotone, we extend it to the class of all Borel measurable non-negative
functions on R

n as

�( f ) =
+∞∫

0

�({ f ≥ r}) dr.

In case � is well-defined only on Kn , the above definition remains well-posed in
the class of all semi-continuous, quasi-concave non-negative functions on R

n .

Theorem 4.2. Let � be a monotone (γ, λ)-concave functional on Borel sets of
R

n (respectively, on Kn), with parameters γ ∈ [−∞, 1] and λ ∈ (0, 1). Let
α ∈ [−γ,+∞], and let f, g, h : R

n → [0,+∞) be Borel measurable (respec-
tively, semi-continuous quasi-concave) functions. If

h((1 − λ)x + λy) ≥ M (λ)
α ( f (x), g(y)), ∀ x, y ∈ R

n such that f (x)g(y) > 0,

(4.11)

then

�(h) ≥ M (λ)
β (�( f ),�(g)), where β := αγ

α + γ
. (4.12)

Before giving the proof, several comments on the above statement are in order.

Remark 4.3. (i) Theorem 2.6 by Brascamp–Lieb can be recast as a special case
from Theorem 4.2 by taking for the functional � the Lebesgue measure on
R

n , in which case γ = 1
n .

(ii) In the extreme cases the interpretation of the parameter β in Theorem 4.2, as
well as in the Corollaries hereafter, has to be the same as in Theorem 4.1.

(iii) In particular, β = γ for α = +∞. Thus, if f = χK0 , g = χK1 , and h =
χ(1−λ)K0+λK1 , the inequality (4.11) is fulfilled, and (4.12) gives back the def-
inition of γ -concavity of �. In other words, Theorem 4.2 does represent a
functional form for the geometric inequality (4.10).
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(iv) The proof of Theorem 4.2 given below is obtained without using an induc-
tion argument on the space dimension n, but just combining the γ -concavity
inequality satisfied by assumption by �, with the one-dimensional functional
result stated in Theorem 4.1.

(v) If a functional� is monotone and γ -concave on a given subclass of Borel sets
(possibly different than Kn), our proof of Theorem 4.2 shows that the impli-
cation (4.11) ⇒ (4.12) holds true for all Borel measurable functions whose
level sets belong to the class under consideration.

Proof of Theorem 4.2. Denote by K f (r) the superlevel sets { f ≥ r}, and similarly
for g and h. By the hypothesis (4.11), we have the set inclusion

(1 − λ)K f (r)+ λKg(s) ⊆ Kh(M
(λ)
α (r, s)), (4.13)

which makes sense and is valid for all r, s > 0 such that �(K f (r)) > 0 and
�(Kg(s)) > 0. Using (4.13), together with the monotonicity and (γ, λ)-concavity
assumption on �, we see that the functions

u(r) := �({ f ≥ r}), v(r) := �({g ≥ r}), w(r) := �({h ≥ r})

satisfy the relation

w(M (λ)
γ (r, s)) ≥ M (λ)

α (u(r), v(s)), whenever u(r)v(s) > 0.

Therefore, we are in position to apply Theorem 4.1 to the triple (u, v, w), which
yields

+∞∫

0

w(r) dr ≥ M (λ)
β

⎛

⎝
+∞∫

0

u(r) dr,

+∞∫

0

v(r) dr

⎞

⎠

with β = αγ
α+γ . This is exactly (4.12). ��

4.3. Hyperbolic functionals

Let us now specialize Theorem 4.2 to the following important family of geometric
functionals.

Definition 4.4. A monotone functional � defined on the class of all Borel subsets
of R

n with values in [0,+∞] is said to be hyperbolic, if

�((1 − λ)K0 + λK1) ≥ min{�(K0),�(K1)}, (4.14)

for all λ ∈ (0, 1) and for all Borel sets K0, K1 in R
n such that �(K0) > 0 and

�(K1) > 0.
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We adopt a similar definition also if� is defined on some sublass of Borel sets,
such as Kn . Thus, hyperbolic functionals are exactly (−∞)-concave functionals,
i.e., they satisfy (4.10) with γ = −∞.

Apparently, the application of Theorem 4.2 to hyperbolic functionals seems
to be not so interesting. Indeed, when γ = −∞, one has α = +∞, in which
case the hypothesis (4.11) considerably restricts the range of applicability of the
resulting inequality (4.12). Nevertheless, the situation is much more favorable if
the hyperbolicity condition (4.14) is combined with some homogeneity property.

Definition 4.5. A functional � defined on the class of all Borel subsets of R
n

(respectively on convex compact sets in R
n) is said to be homogeneous of order ρ

(with ρ ∈ R \ 0), if

�(λK ) = λρ �(K ), (4.15)

for all λ > 0 and for all Borel sets K in R
n (respectively, for all K ∈ Kn).

Combining (4.14) and (4.15) yields the following observation, which is well-
known, especially for the Lebesgue measure. However, due to its importance, we
state it separately and in a general setting:

Proposition 4.6. If a functional� is hyperbolic and homogeneous of order ρ, then
it is γ -concave for γ = 1/ρ.

Proof. Let �(K0) > 0 and �(K1) > 0. We have to show that

�(K0 + K1) ≥ (�(K0)
γ +�(K1)

γ )1/γ . (4.16)

If �(K0 + K1) = +∞, then (4.16) is immediate. Otherwise, 0 < �(K0) < +∞
and 0 < �(K1) < +∞, by the monotonicity of �. In this case, set

K ′
0 := 1

�(K0)γ
K0 and K ′

1 := 1

�(K1)γ
K1,

so that, by the homogeneity property (4.15),�(K ′
0) = �(K ′

1) = 1. Next, applying
the assumption (4.14) to K ′

0 and K ′
1, with

λ = �(K1)
γ

�(K0)γ +�(K1)γ
,

and using once more (4.15), we arrive exactly at the desired inequality (4.16).
Finally, being applied to the sets (1 − λ)K0 and λK1 with arbitrary λ ∈ (0, 1),

(4.16) turns into (4.10), expressing the γ -concavity property of the functional �.
��

As a consequence of Proposition 4.6, one may apply Theorem 4.2 to hyperbolic
functionals �, which are homogeneous of order ρ, as long as γ = 1

ρ
≤ 1, that

is, when ρ < 0 or ρ ≥ 1. In that case, if λ ∈ (0, 1), α ∈ [−γ,+∞], and if the
functions f, g, h ≥ 0 on R

n satisfy

h((1−λ)x+λy) ≥ M (λ)
α ( f (x), g(y)), ∀ x, y ∈ R

n such that f (x)g(y) > 0,

(4.17)
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we obtain

�(h) ≥ M (λ)
β (�( f ),�(g)) with β = αγ

α + γ
= α

1 + αρ
. (4.18)

Similarly as done for Theorem 2.7, one may develop a further generalization of this
statement, involving the means M (s,t)

α for arbitrary s and t > 0, not necessarily sat-
isfying s + t = 1, and taking in (4.17) the “optimal” function h = s · f ⊕ t ·g. Here,
the operations ⊕ and · are those in Cα for a fixed value α ≥ −γ . Arguing as before,
let for simplicity α be non-zero and finite. By its definition, for all x, y ∈ R

n , the
above function h satisfies

h(sx + t y) ≥ M (s,t)
α ( f (x), g(y))=(s + t)1/α

(
s

s + t
f (x)α+ t

s + t
g(y)α

)1/α

,

which means that the triple ( f, g, h̃), where h̃(z) := (s+t)−1/α h((s+t) z), satisfies
the hypothesis (4.17) with λ = t

s+t . Hence, we obtain (4.18), i.e.,

�(h̃) ≥
[

s

s + t
�( f )β + t

s + t
�(g)β

]1/β

. (4.19)

Changing the variable and using the homogeneity property (4.15), we find

�(h̃) =
+∞∫

0

�({z : h((s + t) z) ≥ (s + t)1/αr}) dr

= (s + t)−1/α

+∞∫

0

�({z : h((s + t) z) ≥ r}) dr

= (s + t)−ρ−1/α

+∞∫

0

�({z : h(z) ≥ r}) dr

= (s + t)−ρ−1/α�(h).

Taking into account that ρ = 1
α

+ 1
β

, the inequality (4.19) can be reformulated as
in the following statement, where we include the limit case α = +∞ as well.

Theorem 4.7. Let� be a hyperbolic functional defined on Borel sets of R
n (respec-

tively, on Kn), which is homogeneous of order ρ, with ρ < 0 or ρ ≥ 1. Let s, t > 0
andα ∈ [− 1

ρ
,+∞], assuming that s+t = 1 in caseα = 0. Then, for all measurable

(respectively, semi-continuous quasi-concave) functions f, g : R
n → [0,+∞],

�(s · f ⊕ t · g) ≥ M (s,t)
β (�( f ),�(g)), where β := α

1 + αρ
. (4.20)

In the extreme cases α = − 1
ρ

and α = +∞, the definition of β in (4.20) is

understood respectively as β = −∞ and β = 1
ρ

.
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Note that the space dimension n is not involved in (4.20). In particular, for
t = s = 1, we get

�( f ⊕ g) ≥
[
�( f )

α
1+αρ +�(g)

α
1+αρ

] 1+αρ
α
, where α �= 0, α ≥ − 1

ρ
.

In a similar way as already discussed in Sect. 2.5, this may be viewed as an exten-
sion to hyperbolic functionals in higher dimensions of the result of Henstock and
Macbeath, who considered the case of the Lebesgue measure in dimension n = 1.

As a basic example illustrating Theorem 4.7, we apply it to the quermassinte-
grals � = Wi , which are known to be hyperbolic and homogeneous of positive
(integer) orders ρ = n − i .

Corollary 4.8. Let i = 0, 1, . . . , n −1. Let s, t > 0 and α ∈ [− 1
n−i ,+∞], assum-

ing that s + t = 1 in case α = 0. Then for all functions f, g in Qn
α ,

Wi (s · f ⊕ t · g) ≥ M (s,t)
β (Wi ( f ),Wi (g)), β = α

1 + α(n − i)
. (4.21)

For i = 1, we recall that nW1(K ) represents the perimeter of a set K ∈ Kn ,
while according to the co-area formula (cf. Remark 3.5), the perimeter of any C1-
smooth function f , vanishing at infinity, can be expressed as the integral Per( f ) =∫ |∇ f (x)| dx . Hence, in this special case and for s + t = 1, Corollary 4.8 can be
rephrased as:

Corollary 4.9. Let λ ∈ (0, 1) and α ∈ [− 1
n−1 ,+∞], n ≥ 2. Let f, g, h : R

n →
[0,+∞) be C1-smooth quasi-concave functions, such that h(z) → 0 as |z| → ∞.
If

h((1 − λ)x + λy) ≥ M (λ)
α ( f (x), g(y)), ∀ x, y ∈ R

n such that f (x)g(y) > 0,

then
∫

|∇h(z)| dz ≥ M (λ)
β

(∫
|∇ f (x)| dx,

∫
|∇g(y)| dy

)
with β = α

1 + α(n − 1)
.

Here, the hypothesis that h vanishes at infinity guarantees that f and g vanish at
infinity, as well. Moreover, the C1-smoothness assumption may be relaxed to the
property of being locally Lipschitz.

4.4. Counterexamples

Below we show that choosing a different functional equivalent of the unit ball may
lead to a notion of perimeter which does not satisfy a concavity property like the
one stated in Corollary 4.9. To be more precise, let us restrict ourselves to the case
α = 0, namely to the class Qn

0 of log-concave functions, endowed with its corre-
sponding algebraic structure. Then, for a given function f ∈ Qn

0, the definition of
the perimeter given in Sect. 2 amounts to

Per( f ) = lim
ρ→0+

I ( f ⊕ ρ · χB)− I ( f )

ρ
.
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In this definition, one might want to replace χB by another log-concave function
in the role of the unit ball. A natural choice is the Gaussian function e−|x |2/2, or,
more generally, gq(x) = e−|x |q/q with q ≥ 1. Note that this function tends to χB

as q → +∞. In this case one could then define

Perq( f ) := lim
ρ→0+

I ( f ⊕ ρ · gq)− I ( f )

ρ
,

whenever this limit exists. It was proved in [16] that, under suitable assumptions
of smoothness, decay at infinity and strict convexity of f (see Theorem 4.5 in [16]
for the precise statement), the following representation formula holds:

Perq( f ) = 1

p

∫

R
n

|∇u(x)|p f (x) dx,

where p = q
q−1 is the conjugate Hölder exponent of q and f = e−u . The aim of

this section is to show that Perq( f ) does not have the same significant properties
shown in the previous sections for Per( f ), and in particular it does not verify a
generalized Prékopa–Leindler inequality.

More precisely, for f0, f1 ∈ Qn
0, t ∈ [0, 1], and ft := (1 − t) · f0 ⊕ t · f1, the

following inequality is in general false:

Perq( ft ) ≥ (Perq( f0))
1−t (Perq( f1))

t . (4.22)

We specialize to log-concave functions of the form

f (x) = e−hK (x), (4.23)

where K is a convex body in Rn containing the origin as interior point, with the
support function hK . Note that, since support functions are convex, all functions
of the form (4.23) are positive and log-concave.

The following result is probably well-known; we include the proof for the sake
of completeness.

Proposition 4.10. Given convex bodies K0, K1 in Rn, let f0 = e−hK0 , f1 =
e−hK1 (0 ≤ t ≤ 1), and let ft := (1 − t) · f0 ⊕ t · f1. Then ft = e−hK0∩K1 .

Proof. Setting ut := − log( ft ), we need to see that ut = hK0∩K1 . Setting hi = hKi

for i = 0, 1, we have, for every z ∈ Rn ,

ut (z) = inf{(1 − t)h0(x)+ th1(y) : (1 − t)x + t y = z}
= inf{h0(x)+ h1(y) : x + y = z}.

This means that ut is the infimal convolution of h0 and h1. By Theorem 16.4 in [31]
we have (ut )

∗ = (h0)
∗ + (h1)

∗, where u∗ denotes the usual conjugate of convex
functions: u∗(z) = supw[(z, w)−u(w)]. On the other hand, it is easy to verify that,
for every convex body K , (hK )

∗ = IK and (IK )
∗ = hK (recall that IK denotes the

indicatrix function of K ). Hence we have

(ut )
∗ = IK0 + IK1 = IK0∩K1 = (hK0∩K1)

∗.
The proof is concluded taking the conjugates of the first and the last functions in
the above line. ��
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For a convex body K with the origin in its interior (and for fixed p > 1), set

Fp(K ) :=
∫

Rn

|∇hK (x)|pe−hK (x) dx .

By Proposition 4.10, inequality (4.22) restricted to functions of the form (4.23)
becomes

Fp(K0 ∩ K1) ≥ Fp(K0)
t Fp(K1)

1−t , ∀ K0, K1, ∀ t ∈ [0, 1]. (4.24)

The above inequality is in turn equivalent to the the fact that the functional Fp is
decreasing with respect to set inclusion, in the class of convex bodies having the
origin as interior point:

Fp(K ) ≥ Fp(K
′), ∀K ⊂ K ′. (4.25)

Indeed, taking K0 = K , K1 = K ′ and t = 0 in (4.24) we get (4.25). On the other
hand, (4.25) implies that for every K0 and K1 and for every t ∈ [0, 1],

(Fp(K0 ∩ K1))
t ≥ Fp(K0)

t , (Fp(K0 ∩ K1))
1−t ≥ Fp(K1)

1−t .

Multiplying these inequalities term by term we have (4.24). In Proposition 4.11
below, we construct examples of convex bodies K and K ′ for which (4.25) is false,
under the assumptions p > 1. As an immediate consequence, we obtain that also
inequality (4.22) fails to be true for p > 1.

Proposition 4.11. For every n ≥ 2 and every p > 1, there exist two convex bodies
K and K ′ in Kn such that 0 ∈ int(K ∩ K ′) and Fp(K ) < Fp(K ′).

Corollary 4.12. For every n ≥ 2 and every p > 1, there exist f0, f1 ∈ Qn
0 and

t ∈ [0, 1] such that, if ft := (1 − t) · f0 ⊕ t · f1, then

∫
|∇ ft (z)|p dz <

(∫
|∇ f0(z)|p dx

)1−t (∫
|∇ f1(z)|p dy

)t

.

Proof of Proposition 4.11. We write an arbitrary point x = (x1, x2, . . . , xn) of Rn

in polar coordinates (r, θ) = (r, θ1, θ2, . . . , θn):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = x1(r, θ) = x1(r, θ1, . . . , θn−1) = r cos θ1

x2 = x2(r, θ) = x2(r, θ1, . . . , θn−1) = r sin θ1 cos θ2

...

xn−1 = xn−1(r, θ) = xn−1(r, θ1, . . . , θn−1) = r sin θ1 · · · sin θn−2 cos θn−1

xn = xn(r, θ) = xn(r, θ1, . . . , θn−1) = r sin θ1 · · · sin θn−2 sin θn−1.

Here (r, θ1, . . . , θn−1) ∈ [0,∞)× [0, π)n−2 × [0, 2π).
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The Jacobian of the mapping x = x(r, θ) is rn−1 sinn−2 θ1 sinn−3 θ2 · · · sin θn−2.
For brevity we set S = [0, π)n−2 × [0, 2π). Let us also set HK (θ) = hK (x(1, θ))
for any θ ∈ S. By the homogeneity of hK we have

hK (x(r, θ)) = r HK (θ), ∀r ≥ 0, θ ∈ S.

Since ∇hK is positively 0-homogeneous, |∇hK (x(r, θ))| does not depend on r .
Hence we put

NK (θ) = |∇hK (x(r, θ))|. (4.26)

The functional Fp(K ) can now be written in the following form

Fp(K ) =
∫

S

NK (θ)
p

⎛

⎝
∞∫

0

rn−1e−r HK (θ) dr

⎞

⎠φ(θ) dθ,

where φ(θ) = sinn−2 θ1 sinn−3 θ2 · · · sin θn−2. After integration with respect to r ,
we get

Fp(K ) = (n − 1)!
∫

S

NK (θ)
p

HK (θ)n
φ(θ) dθ. (4.27)

Using the above formula, we can immediately deduce counterexamples to (4.25)
for p > n. Indeed, from (4.27) we see that Fp is homogeneous of order (p − n)
with respect to homotheties. In particular, if α > 1 and K is such that Fp(K ) > 0
(for instance, if K is a ball centered at the origin), we have

Fp(αK ) = α p−n Fp(K ) > Fp(K ),

and since αK ⊃ K , this is in conflict with (4.25).
The construction for p ≤ n is still based on (4.27), but it is slightly more

involved. We set

K1 = B and K2 = conv(B ∪ l e1),

where conv denotes the convex hull, l ≥ 1 and e1 = (1, 0, . . . , 0). We will prove
that, for every p > 1, there is a suitable choice of l such that Fp(K1) < Fp(K2).
Since clearly K1 ⊂ K2, and the origin is interior to both K1 and K2, this will
provide a counterexample to (4.25). Note that the body K2 is rotationally invari-
ant with respect to the x1-axis, so that the function HK2 depends on θ1 only. With
abuse of notations we write HK2(θ1, θ2, . . . , θn−1) = HK2(θ1). More precisely, an
explicit expression for HK2 can be written down. Let φ ∈ [0, π/2] be such that
l = (cosφ)−1. Then

HK2(θ1) =

⎧
⎪⎪⎨

⎪⎪⎩

cosφ
cos θ1

, if θ1 ∈ [0, φ],

1, if θ1 ∈ [φ, π ].
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Next we have to compute the function NK2 . Due to the axial symmetry it is not
hard to see that

NK2(θ) = |∇hK2(x(r, θ))| =
√

H2
K2
(θ1)+

(
d HK2

dθ1
(θ1)

)2

.

Hence

NK2(θ1) =

⎧
⎪⎪⎨

⎪⎪⎩

1
cosφ , if θ1 ∈ [0, φ],

1, if θ1 ∈ [φ, π ].

Now we can compute Fp(K2). We have

Fp(K2) = (n − 1)!
∫

S

NK2(θ)
p

HK2(θ)
n
φ(θ) dθ

= 2π(n − 1)!
∫

[0,π)n−2

Nk2(θ1)
p

HK2(θ1)n
φ(θ1, θ2, . . . θn−2)dθ1dθ2 · · · dθn−2

= 2π(n − 1)! C(n)

π∫

0

Nk2(θ1)
p

HK2(θ1)n
sinn−2(θ1) dθ1,

where C(n) = ∏n−3
i=1

∫ π
0 sini t dt . Using the explicit expressions found for HK2

and NK2 we obtain

Fp(K2) = 2π(n − 1)! C(n)

⎡

⎢⎣(cosφ)n−p

φ∫

0

(sin θ1)
n−2

(cos θ1)n
dθ1 +

π∫

φ

sinn−2 θ1 dθ1

⎤

⎥⎦ .

If p > 1 the following equality holds

lim
φ→ π

2
−(cosφ)n−p

φ∫

0

(sin θ1)
n−2

(cos θ1)n
dθ1 = ∞

and consequently

lim
φ→ π

2
− Fp(K2) = ∞.

Thus, Fp(K2) can be made arbitrarily large for a suitable choice of φ, and in par-
ticular, it can be made strictly bigger that Fp(K1) which is independent of φ. ��
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5. Integral geometric formulae and the valuation property

In this section we show that the quantities introduced in Definition 3.1 verify inte-
gral geometric formulas and a valuation type property, suitably reformulated in the
functional case. In both cases, the proofs are straightforward consequences of the
definition of the Wi ’s and the validity of the corresponding properties for convex
bodies.

5.1. Integral geometric formulae

We begin by introducing a notion of projection for functions, which has already
been considered in the literature, see for instance [22]. As in Sect. 2, for 1 ≤ k ≤ n
we denote by Ln

k the set of linear subspaces of R
n of dimension k. Furthermore,

for L ∈ Ln
k , we denote by L⊥ ∈ Ln

n−k the orthogonal complement of L in R
n .

Definition 5.1. Let k ∈ {1, . . . , n}, L ∈ Ln
k and f ∈ Qn . We define the orthogonal

projection of f onto L as the function

f |L : L 
→ [0,+∞], f |L (x ′) = sup{ f (x ′ + y) | y ∈ L⊥}.
When f is the characteristic function of a convex body K ∈ Kn , for any L ∈ Ln

k ,
the projection f |L agrees with the characteristic function of the projection of K
onto L .

The following lemma, whose proof follows directly from Definition 5.1, shows
that the projection of a quasi-concave function is quasi-concave, as well. We recall
that for A ⊂ R

n and L ∈ Ln
k , A|L denotes the orthogonal projection of A onto L .

Lemma 5.2. Let f ∈ Qn, k ∈ {1, . . . , n} and L ∈ Ln
k . For every t ≥ 0,

{x ′ ∈ L : f |L(x ′) > t} = {x ∈ R
n : f (x) > t}|L .

As a consequence of the Cauchy–Kubota formulas for convex bodies, Defini-
tion 3.1, Lemma 5.2 and Fubini’s Theorem, we have the following result.

Theorem 5.3. (Cauchy–Kubota integral formula for quasi-concave functions)
Given f ∈ Qn, for all integers 1 ≤ i ≤ k ≤ n,

Wi ( f ) = c(i, k, n)
∫

Ln
k

Wi ( f |Lk) d Lk,

where the constant c(i, k, n) is the same as in in formula (2.2).

As a special case, we consider i = k = 1, which corresponds to the Cauchy
integral formula. For ξ ∈ Sn−1, let Hξ denote the hyperplane through the origin
orthogonal to ξ .

Proposition 5.4. (Cauchy integral formula for quasi-concave functions) For any
f ∈ Qn,

Per( f ) = c
∫

Sn−1

⎧
⎪⎨

⎪⎩

∫

Hξ

( f |Hξ )(x ′) dHn−1(x ′)

⎫
⎪⎬

⎪⎭
dHn−1(ξ). (5.1)
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5.2. Valuation property

The quermassintegrals of convex bodies are known to satisfy the following
restricted additivity property: For every i = 0, . . . , n,

Wi (K )+ Wi (L) = Wi (K ∪ L)+ Wi (K ∩ L), (5.2)

for all K , L ∈ Kn such that K ∪ L ∈ Kn . A real-valued functional defined on K for
which (5.2) holds is called a valuation. The notion of valuation can be transposed
into a functional setting, simply replacing union and intersection by maximum and
minimum. Note that if f and g are quasi-concave functions, then f ∨ g is quasi-
concave, as well. Here we prove that all quermassintegrals of functions in Qn are
valuations in the above sense.

Proposition 5.5. (Valuation property) Let f, g ∈ Qn be such that f ∧ g ∈ Qn.
Then, for every i = 0, 1, . . . , n − 1,

Wi ( f ∧ g)+ Wi ( f ∨ g) = Wi ( f )+ Wi (g).

Proof. We observe that, for every t > 0, { f ∧ g ≥ t} = { f ≥ t} ∩ {g ≥ t} and
{ f ∨ g ≥ t} = { f ≥ t} ∪ {g ≥ t}. Since f, g ∈ Qn , one can easily check that also
f ∨ g ∈ Qn , whereas f ∧ g ∈ Qn , by the assumption. Therefore all the superlevels
appearing in the above equalities belong to Kn , and the valuation property (5.2) for
the geometric quermassintegrals ensures that

Wi ({ f ∧ g ≥ t})+ Wi ({ f ∨ g ≥ t}) = Wi ({g ≥ t})+ Wi ({g ≥ t}).
Recalling Definition 3.1, the statement follows after integration over (0,+∞). ��

6. Functional inequalities

Having defined a notion of perimeter for quasi-concave functions, it is natural to ask
for related isoperimetric inequalities. Below, we propose two different inequalities
in this direction. Introduce the entropy functional

Ent( f ) =
∫

f (x) log f (x) dx − I ( f ) log I ( f ),

defined for non-negative integrable functions f on R
n .

Theorem 6.1. (Isoperimetric inequalities)

(i) For every f ∈ Qn,

Per( f ) ≥ nκ1/n
n ‖ f ‖ n

n−1
. (6.1)

(ii) For every f ∈ Qn
0 ,

Per( f ) ≥ [n + log κn] I ( f )+ Ent( f ). (6.2)
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Inequality (6.1) is nothing but the Sobolev inequality in R
n for functions of

bounded variation (for which the equality case is known to hold iff f equals a con-
stant multiple of χB , up to translations). Actually, it holds without the quasi-con-
cavity assumption. Inequality (6.2), together with the corresponding equality cases
(attainable for the characteristic functions of balls), can be obtained by applying
Theorem 5.1 in [16] with g = χB . The isoperimetric inequality (6.1) can naturally
be extended to other functional quermassintegrals.

Theorem 6.2. For every f ∈ Qn and for all integers 0 ≤ i < k ≤ n − 1,

Wk( f ) ≥ c W 1/p
i ( f p), where p = n − i

n − k
, c = κ

1−1/p
n . (6.3)

In particular,

Wk( f ) ≥ κ
k/n
n ‖ f ‖ n

n−k
. (6.4)

Assuming that Wi ( f p) < +∞ and that the sets { f ≥ t} for t < sup f have dimen-
sion at least n − k, equality in (6.3) is attained if and only if f is a multiple of the
characteristic function of a ball.

Note that inequality (6.4) corresponds to (6.3) in the particular case i = 0.
Correspondingly, if the norm ‖ f ‖ n

n−k
is finite, and all the superlevel sets have

dimension at least n − k, equality in (6.4) is attained only when f is a multiple of
the characteristic function of a ball. Furthermore, taking k = 1 in (6.4), gives back
the Sobolev inequality (6.1).

Proof. For the quermassintegrals of convex bodies, there holds

Wk(K ) ≥ c W 1/p
i (K ), (6.5)

with c and p as in (6.3), cf. [35, eq. (6.4.7)].
Concerning the equality case in (6.5), as discussed in [35, Sec. 6.4], if the

dimension of K is at least n − i , the equality is only possible when K is a ball;
furthermore we argue that, if the dimension of K is at least n −k but strictly smaller
than n − i , the equality is not possible since Wk(K ) > 0 while Wi (K ) = 0. We
conclude that, as soon as the dimension of K is at least n − k, equality in (6.5)
characterizes balls.

Now, applying (6.5) to the sets K f (t) = { f ≥ t} and integrating over t > 0,
we obtain that

Wk( f ) ≥ c

+∞∫

0

W 1/p
i (K f (t)) dt. (6.6)

To further bound from below the integral in (6.6), we use the following elementary
inequality which is commonly applied in the derivation of the Sobolev inequality
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(6.1), see for instance [14]: If u = u(t) is a non-negative, non-increasing function
on (0,+∞), then for all p ≥ 1,

+∞∫

0

u(t)1/p dt ≥
⎛

⎝
+∞∫

0

u(t) dt p

⎞

⎠
1/p

. (6.7)

Choosing u(t) = Wi (K f (t)) and p = n−i
n−k , we see that the p-th power of the

integral in (6.6) is greater than or equal to

+∞∫

0

Wi ({ f ≥ t}) dt p =
+∞∫

0

Wi ({ f p ≥ t p}) dt p =
+∞∫

0

Wi ({ f p ≥ t}) dt = Wi ( f p).

This proves the inequalities (6.3)–(6.4).
To study the cases of equalities, first let us present a simple argument leading

to the relation (6.7) and also showing when the equality is attained. In view of the
homegeneity of (6.7), one may assume that ‖u‖ ≡ ∫ +∞

0 u(t) dt p = 1 (provided
that this L1-norm is finite). Any non-increasing function u on (0,+∞) vanishing
at infinity admits a (unique) representation in the form of a convex mixture

u(t) =
+∞∫

0

ur (t) dπ(r), ur (t) = 1

r p
1(0,r)(t),

with some mixing measure π on (0,+∞) depending on p and u, and where the
equality may be understood as equality a.e. In addition, π needs to be a probability
measure, as long as ‖u‖ = 1. Note that ‖ur‖ = 1, for all r > 0, and both sides of
(6.7) are equal to 1 for such functions. Now, by Markov’s inequality,

u(t)1/p ≥
+∞∫

0

ur (t)
1/p dπ(r), (6.8)

which after integration over t leads to the desired inequality (6.7) for u.
Moreover, equality in (6.7) implies the equality in (6.8) for almost all t , which

in case p > 1 is only possible when the function r → ur (t) is π -almost every-
where constant. In other words, the measure π has to be a unit mass at some point
r > 0 and u = ur a.e. Thanks to the monotonicity of u, the latter is equivalent to
u = 1

r p 1(0,r) or u = 1
r p 1(0,r ].

Thus, (6.7) holds true for all non-increasing functions u ≥ 0 on (0,+∞), and
in case p > 1, the equality is only possible either when u is a multiple of functions
1(0,r) or 1(0,r ], or when

∫ +∞
0 u(t) dt p = +∞ in which case the left integral in (6.7)

is infinite, as well.
Finally, suppose that Wi ( f p) < +∞ and that the sets K f (t) have dimension

at least n − k, whenever t < sup f . In particular, Wk(K f (t)) > 0 for such values
of t . If there is equality in (6.3), one may use the description of equality cases in
(6.7) for the function u(t) = Wi (K f (t)). It gives that, for some constants a ≥ 0
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and r > 0, either Wi (K f (t)) = a · 1(0,r)(t), or Wi (K f (t)) = a · 1(0,r ](t), for all
t > 0. Moreover, we have equality in (6.6) for all sets K = K f (t), 0 < t < r ,
which implies that a > 0 and necessarily r = sup f . As discussed after (6.6), this
is is only possible when each K f (t) has dimension at least n − i , so it coincides
with some ball B(xt , ρt ). Since the sets K f (t) decrease, while Wi (K f (t)) is con-
stant, we obtain that B(xt , ρt ) = B(x, ρ), for some x ∈ R

n and ρ > 0, whenever
0 < t < r . ��
Remark 6.3. In the inequality (6.3), if Wi ( f p) = +∞, then necessarily Wk( f ) =
+∞, so there is equality, as well. Let us give a simple example, illustrating the role
of the dimensional assumption for the equality cases, when Wi ( f p) < +∞. Let
B = B(0, 1) be the unit ball in R

n , and for d = 1, . . . , n − 1, let C be the ball in
R

d ⊂ R
n with center at the origin and with a fixed radius 0 < r < 1, i.e.,

C = {(x1, . . . , xn) ∈ R
n : x2

1 + · · · + x2
d ≤ r2, xd+1 = · · · = xn = 0}.

Consider the quasi-concave function f = χB +χC , in which case the sets K f (t) =
{ f ≥ t} are just C for 1 < t ≤ 2, so they have dimension d. It is clear that, for all
ρ > 0, fρ = χBρ +χCρ (where we denote by Aρ = A + ρB the ρ-neighbourhood
of a set A), and ( f p)ρ = ( fρ)p. Therefore,

I ( fρ) = Hn(Bρ)+ Hn(Cρ) = κn(1 + ρ)n + Hn(Cρ),

I ( f p
ρ ) = Hn(Bρ)+ (2p − 1)Hn(Cρ).

Whenever i < n−d we have Wi (C) = 0, and, by the volume polynomial expansion
in powers of ρ, we find that W 1/p

i ( f p) = Wi (B) = κn . If, moreover, k < n − d,
then Wk( f ) = κn , as well. Hence, in this case both sides of (6.3) do coincide, while
f is not a characteristic function of the ball.

While we already noticed that the case k = 1 in (6.4) amounts to the isoperi-
metric inequality, the case k = n − 1 leads to the following functional version of
Urysohn inequality:

Corollary 6.4. For every f ∈ Qn,

M( f ) ≥ 2κ−1/n
n ‖ f ‖n . (6.9)

If ‖ f ‖n < +∞, equality in (6.9) is attained if and only if f is a constant multiple
of the characteristic function of a ball.

For the characteristic functions of convex bodies, (6.9) reduces to the classical
Urysohn inequality. We point out that, for log-concave functions, a different func-
tional version of the Urysohn inequality involving Gaussian densities, was earlier
proposed by Klartag and Milman in [22]. In fact, (6.4) and its special case (6.9)
admit a further refinement in terms of radial functions. Below, for a given K ∈ Kn ,
we denote by K ∗ the ball with the same mean width as K .
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Theorem 6.5. Given f ∈ Qn, denote by f ∗ the rearrangement of f obtained
by replacing each of the superlevel sets { f ≥ t} by { f ≥ t}∗. Then, for every
k = 0, 1, . . . , n − 1,

Wk( f ) ≥ Wk( f ∗).

Proof. We have

Wk( f ) =
+∞∫

0

Wk({ f ≥ t}) dt

≥
+∞∫

0

Wk({ f ≥ t})∗ dt =
+∞∫

0

Wk({ f ∗ ≥ t}) dt = Wk( f ∗).

��
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