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BOUNDS ON THE MAXIMUM OF THE DENSITY FOR SUMS OF INDEPENDENT
RANDOM VARIABLES

S. G. Bobkov∗ and G. P. Chistyakov† UDC 519.2

Sublinear bounds on the maximum of the density for sums of independent random variables are given in terms of
the maxima of the densities of summands. Bibliography: 18 titles.

Given a random vector X in Euclidean space Rd with density p, let

M(X) = M(p) = ess supx p(x).

In other cases, when the distribution X is not absolutely continuous with respect to the Lebesgue measure on Rd,
put M(X) = ∞.

The aim of this paper is to attract reader’s attention to a general property of the functional M which regulates
its possible behavior on sums of independent variables or vectors. From our point of view, this property is useful
even in the one-dimensional case.

Theorem 1. For any independent random vectors X1, . . . , Xn in Rd,

M− 2
d (X1 + · · ·+Xn) ≥ 1

e

n∑

k=1

M− 2
d (Xk). (1)

Therefore, for increasing sums, the value M− 2
d grows linearly or faster than linearly with respect to M− 2

d (Xk).
We can draw an obvious analogy between (1) and a variety of other famous inequalities for sums of independent

random vectors, usually having the form

L(X1 + · · ·+Xn) ≥
n∑

k=1

L(Xk). (2)

For example, (2) is true for

L(X) = exp
[
2
d
h(X)

]
, (3)

where h(X) = − ∫
p(x) log p(x) dx is the Shannon entropy. In this case, we come to the so-called “entropy power

inequality,” an informational variant of the Brunn–Minkowski inequality from convex geometry, which has the
same form (see [1–3]). As another example, we point out the work of Stam [4], who obtained inequality (2) for
the functional L(X) = 1/I(X), where I(X) is the Fischer information. In both cases, (2) turns into equality
on Gaussian distributions with proportional covariance matrices. Regarding the functional L = 1/M2 (for
d = 1), our main reason for its study were questions of densities behavior in the Erdős–Kac limit theorem for the
maximum of increasing sums of independent variables. It is interesting that no assumptions on moments should
be made in these inequalities.

The following two statements directly follow from Theorem 1. Since the functional M− 2
d is homogeneous of

degree 2, i.e.,

M− 2
d (λX) = λ2M− 2

d (X), λ ∈ R,

we get the following result.

Corollary 2. Assume that independent vectors Xk in Rd satisfy the estimate M(Xk) ≤ M, 1 ≤ k ≤ n. Then

M(a1X1 + · · ·+ anXn) ≤ ed/2 M (4)

for any ak ∈ R such that a21 + · · ·+ a2n = 1.
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An example of two independent random variables X1 and X2 with the uniform distribution on the interval
(0, 1) shows that the constant 1

e in inequality (1) and, respectively, ed/2 in (4) cannot be entirely taken away. It
would be interesting to find the best constant in these inequalities or to describe extremal distributions. As we
show below, for n = 2, the best constant in (1) is 1

2 .

Corollary 3. Assume that the series
∑

n Xn comprised of independent random vectors in Rd converges in
probability. Then ∑

n

M− 2
d (Xn) < ∞.

For d = 1, the necessary condition is
∞∑

n=1

1
M2(Xn)

< ∞. (5)

Necessary and sufficient conditions for convergence of a series of independent random variables are well known
(e.g., see [5, 6]). For uniformly bounded random variables Xn (|Xn| ≤ C a.s. for all n with a constant C)
with zero expectation such a condition is

∑
n Var(Xn) < ∞. In this case, (5) obviously follows from the known

lower-bound estimate:

M2(X)Var(X) ≥ 1
12

(where equality is attained at the uniform distribution on any finite interval; e.g., see [7]). However, the general
case is not so obvious.

Now we pass to a variant of Theorem 1 for any (not necessarily bounded) densities. Since the convolution
of unbounded densities can be unbounded, it is natural to approximate it with some bounded density, e.g.,
measuring distances in L1 metric (i.e., by full variation for the corresponding distributions). We cannot use
maximums of the original densities for estimation of the maximum of the approximating density. It turns out
that other functionals can be used, such as density quantiles, if the density is considered as a random variable
in Rd with a measure that has the same density. Here is a statement of this kind.

Corollary 4. Assume that independent random vectors Xk in Rd, k = 1, . . . , n, have densities pk and let mk be
the medians of the random variables pk(Xk). Then the density p of the sum X1 + · · ·+Xn can be approximated
by a bounded density p̃ so that ∫

Rd

|p̃(x)− p(x)| dx =
1

2n−1
(6)

and

M(p̃) ≤ Cd

n
d
2+1

n∑

k=1

mk

with some constant Cd depending only on d.

An equivalent statement is the following: The density p of the normalized sum (X1 + · · · +Xn)/
√
n can be

approximated by p̃ so that condition (6) holds, and also

M(p̃) ≤ Cd

n

n∑

k=1

mk.

In the case of identically distributed summands, the right-hand side expression equals Cd m, where m is the
median of the random variable p1(X1); hence, this estimate does not depend on n.

The density p̃ in Corollary 4 can be constructed canonically in some sense, as is shown below. Furthermore,
instead of the medians of the random variables pk(Xk) we can take their quantiles of any given degree with some
changes in formulation.

Now we proceed to proofs. Inequality (1) can be obtained using the Young (or Hausdorff–Young) inequality,
written with exact constants. Lieb [8] used such an approach to derive (2) for the entropy functional (3).
However, in contrast to (2), inequality (1) can hardly be reduced to the case of two summands using induction
on n, because it leads to fastly decreasing constants depending on n. For this reason, our departure point is the
exact Young inequality for a set of more than two functions.
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Let Lν be the space of all functions u on Rd with the finite norm

‖u‖ν =
( ∫

Rd

|u(x)|ν dx
)1/ν

, 1 ≤ ν ≤ ∞.

In particular, ‖u‖∞ = ess supx |u(x)|. Let ν′ = ν
ν−1 be the adjacent exponent, so that 1

ν + 1
ν′ = 1. The next

important result belongs to Beckner [9] and Brascamp and Lieb [10], see also [11]. We state it below as a lemma,
according to [10, Theorem 4]. Let

Aν = ν1/ν(ν′)−1/ν′
and A1 = A∞ = 1.

Lemma 5. Assume that functions uk ∈ Lνk , 1 ≤ k ≤ n, are given and that
n∑

k=1

1
ν′k

=
1
ν′
, 1 ≤ νk, ν ≤ ∞.

Then the convolution u = u1 ∗ · · · ∗ un belongs to Lν and has the norm

‖u‖ν ≤ A ‖u1‖ν1 . . . ‖un‖νn
,

where
A = (Aν1 . . . Aνn

Aν′)d/2.

Proof of Theorem 1. Without loss of generality, assume that all the Xk have bounded densities pk. Let Mk =
M(Xk). Due to the homogeneity of inequality (1), we may assume that

n∑

k=1

M
− 2

d

k = 1. (7)

Let tk > 0 be arbitrary numbers such that t1 + · · · + tn = 1. We apply Lemma 5 to the functions uk = pk
choosing νk such that

1
ν′k

= tk, 1 ≤ k ≤ n, ν′ = 1, and ν = ∞.

All the conditions of Lemma 5 hold true, and for the density p of an arbitrary vector Sn = X1 + · · ·+Xn we get
the inequality

‖p‖∞ ≤ A ‖p1‖ν1 . . . ‖pn‖νn
(8)

with constant A = (Aν1 . . . Aνn
)d/2. To estimate the right-hand side of this inequality, we notice that

‖pk‖νk
=

( ∫

Rd

pk(x) · pk(x)νk−1 dx

)1/νk

≤
( ∫

Rd

pk(x) ·Mνk−1
k dx

)1/νk

= M
νk−1
νk

k = M tk
k .

Setting sk = 1− tk, we write the definition of the constants Aν for ν = νk in the form

Aνk
=

( 1
ν′
k
)1/ν

′
k

( 1
νk
)1/νk

=
ttkk
sskk

.

Therefore, from (8) we derive the inequality

M(Sn) ≤
( n∏

k=1

ttkk
sskk

)d/2

M t1
1 · · ·M tn

n ,

or, what is the same,

log
(
M(Sn)−

2
d

) ≥
n∑

k=1

tk log
(
M

− 2
d

k

)
+

n∑

k=1

sk log sk −
n∑

k=1

tk log tk. (9)

In the next step, we optimize this inequality over the values tk within the simplex

Δn = { t = (t1, . . . , tn) : tk ≥ 0, t1 + · · ·+ tn = 1}.
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We can apply (9) with tk = M
− 2

d

k without a big loss, which is justified by assumption (7). In this case, inequality
(9) is essentially simpler:

log
(
M(Sn)−

2
d

) ≥ ψn(t) ≡
n∑

k=1

sk log sk. (10)

Therefore, it is sufficient to estimate the lower bound of the right-hand side of (10) uniformly over all t ∈ Δn for
n ≥ 2.

The function ψn is obviously convex, and it turns into ψn−1 on the boundary of the simplex. Thus, we
consider ψn as a function of n− 1 variables t1, . . . , tn−1 in the domain tk > 0, t1 + · · ·+ tn−1 < 1, assuming that
tn = 1− (t1 + · · ·+ tn−1). We have

∂ψn(t)
∂tk

= − log sk + log sn = 0, 1 ≤ k ≤ n− 1,

at the minimum point, which is possible if and only if all tk are equal for k ≤ n− 1. Since ψn is invariant under
permutations of coordinates, tk = 1

n at the minimum point, i.e., sk = 1− 1
n . Therefore, from (10) we obtain the

estimate
log

(
M− 2

d (Sn)
) ≥ inf

n≥2
inf

t∈Δn

ψn(t) = inf
n≥2

(n− 1) log
(
1− 1

n

)
.

It remains to notice that (1− 1
n )

n−1 > 1
e . Theorem 1 is proved. �

Remark. For n = 2 we have inft∈Δn
ψn(t) = ψ2( 12 ,

1
2 ) = − log 2; hence, Theorem 1 can be specified in the case

of two summands: For any independent random vectors X and Y in Rd,

M− 2
d (X + Y ) ≥ 1

2
(
M− 2

d (X) +M− 2
d (Y )

)
.

This inequality is optimal in the sense that equality is attained, in fact, when X and Y are uniformly distributed
in the cube [0, 1]d. However, this case is obvious since we have a stronger elementary estimate:

M− 2
d (X + Y ) ≥ max

{
M− 2

d (X),M− 2
d (Y )

}
.

Proof of Corollary 3. We assume that a random vector Xn0 has bounded density for some n0; otherwise,
M(Xn) = ∞ for all n and there is nothing to prove.

Let S =
∑∞

n=1 Xn, where the series converges in probability (hence, with probability one). Consider the
partial sums Sn =

∑n
k=1 Xk and let Rn =

∑∞
k=n+1 Xk, so that S = Sn + Rn. For n ≥ n0, the random vectors

Sn (and so S) have absolutely continuous distributions. In addition, 0 < M(S) ≤ M(Sn) because the density
maximum cannot increase due to convolution multiplication. Applying Theorem 1, we obtain the estimates

M− 2
d (S) ≥ M− 2

d (Sn) ≥ 1
e

n∑

k=1

M− 2
d (Xk),

and, therefore, reach the required conclusion. �
Proof of Corollary 4. Quantile generalization. Fix a value 0 < δ < 1. Let mk be quantiles of the random
variables pk(Xk) of degree δ, i.e., any numbers that satisfy the inequalities

∫

pk(x)<mk

pk(x) dx ≤ δ ≤
∫

pk(x)≤mk

pk(x) dx.

For any k we divide Rd into two measurable parts Ak ⊂ {x : pk(x) ≤ mk} and Bk ⊂ {x : pk(x) ≥ mk} so that
∫

Ak

pk(x) dx = δ and
∫

Bk

pk(x) dx = 1− δ.

We get the representation
pk(x) = δpk0(x) + (1− δ)pk1(x),

where pk0 and pk1 are defined as normalized restrictions of the density pk on the sets Ak and Bk, respectively,
with M(pk0) ≤ mk. Assuming that

qε =
(
pε110 ∗ p1−ε1

11

) ∗ · · · ∗ (
pεnn0 ∗ p1−εn

n1

)
, εk ∈ {0, 1},
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we obtain a representation for the convolution:

p = p1 ∗ · · · ∗ pn =
∑

ε

δn(ε)(1− δ)n−n(ε) qε, (11)

where the summation is performed over all possible sequences ε = (ε1, . . . , εn) of zeros and ones, using the
notation

n(ε) = ε1 + · · ·+ εn

for the number of ones in a sequence ε.
We remove from expression (11) the summand (1−δ)n p11∗· · ·∗pn1 corresponding to the sequence ε = (0, . . . , 0).

Notice that convolution can be an unbounded function only in the case of this sequence. Thus, we can take the
density

p̃ =
1

1− (1− δ)n
∑

n(ε)≥1

qε (12)

as a canonical approximation for p, where the normalizing constant satisfies the condition
∫
p̃(x) dx = 1. By

construction, ∫

Rd

|p̃(x)− p(x)| dx = 2 (1− δ)n,

which corresponds to condition (6) in the case of δ = 1
2 .

To estimate the maximum of the density p̃, we divide the sum in (12) into two parts. To begin with, notice
that the density maximum can only increase due to removing convolution factors p1−εk

k1 from the density qε.
Moreover, applying Theorem 1 to pk0, we get the estimates

M(qε) ≤ M
(
pε110 ∗ · · · ∗ pεnn0

) ≤
( n∑

k=1

εkm
− 2

d

k

)− d
2
= n(ε)−

d
2

( 1
n(ε)

n∑

k=1

εkm
− 2

d

k

)− d
2
.

There are n(ε) summands in the last sum. Using the monotonicity of the functions α → (E ξα)1/α, the right-hand
side expression can be estimated by the value

n(ε)−
d
2

1
n(ε)

n∑

k=1

εkmk ≤
( 2
δn

) d
2+1 n∑

k=1

mk

under the assumption that n(ε) ≥ δn
2 . For the values 1 ≤ n(ε) < δn

2 we use the rough estimate

M(qε) ≤ min
k: εk=1

M(pk0) ≤ min
k: εk=1

mk ≤
n∑

k=1

mk.

Combining both estimates, we obtain the inequality

M(p̃) ≤ 1
1− (1− δ)n

(( 2
δn

) d
2+1

+
∑

1≤n(ε)< δn
2

δn(ε)(1− δ)n−n(ε)

) n∑

k=1

mk.

Now we apply a well-known inequality for probabilities of deviations of sums of Bernoulli random variables
ξk taking values 0 and 1 with probabilities P{ξk = 0} = δ and P{ξk = 1} = 1− δ. Specifically (e.g., see [12]),

P
{

1√
n

n∑

k=1

(ξk − δ) ≤ −r

}
≤ e−2r2 , r ≥ 0.

In particular,
∑

n(ε)≤ δn
2

δn(ε)(1− δ)n−n(ε) = P
{ n∑

k=1

ξk ≤ δn

2

}
≤ e−nδ2/2.

Since 1− (1− δ)n ≥ δ, it follows that

M(p̃) ≤ 1
δ

(( 2
δn

) d
2+1

+ e−nδ2/2

) n∑

k=1

mk.
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It remains to estimate the factor at
∑n

k=1 mk. Making the substitution n = 2x
δ2 and considering as x an arbitrary

positive number, we see that

sup
n

(δn

2

) d
2+1

e−nδ2/2 ≤ δ−( d
2+1) sup

x>0
x

d
2+1e−x =

(d+ 2
2eδ

) d
2+1

.

Therefore,

M(p̃) ≤ 1
δ

( 2
δn

) d
2+1

(
1 +

(d+ 2
2eδ

) d
2+1

)

≤ 1
δ

( 1
δ2n

) d
2+1

(
2

d
2+1 +

(d+ 2
e

) d
2+1

)
<

1
δ

( 4d
δ2n

) d
2+1

,

and we obtain an extended variant of Corollary 4. �

Corollary 6. Assume that independent random vectors Xk in Rd, k = 1, . . . , n, have densities pk, and mk are
the quantiles of the random variables pk(Xk) of degree 0 < δ < 1. Then the density p of the sum X1 + · · ·+Xn

can be approximated by a bounded density p̃ so that
∫

Rd

|p̃(x)− p(x)| dx = 2 (1− δ)n,

and also

M(p̃) ≤ Cd(δ)

n
d
2+1

n∑

k=1

mk

with the constant Cd(δ) = 1
δ

(
4d
δ2

) d
2+1.

In particular, for δ ≥ 1
2 we obtain the estimate Cd(δ) ≤ 2 (16 d)

d
2+1, independent of δ. The case where the

value δ is sufficiently close to 1 is, in fact, specified by some applications. Finally, we notice that letting δ → 1,
p̃ = p in the limit, and Corollary 6 brings us back to a weaker case of Theorem 1.

Remark. After delivering this paper to press, we found out a work of B. A. Rogozin [13], where the following
delicate theorem is proved (as an extension and development of results obtained in [14]). Assume that Sn =
X1 + · · ·+Xn is a sum of independent random variables with fixed finite Mk = M(Xk). Then the value M(Sn)
is maximized in the case where every Xk is uniformly distributed on an interval of length 1/Mk. Therefore,

M(Sn) ≤ M(S′
n) = M(X ′

1 + · · ·+X ′
n),

where X ′
k are independent and uniformly distributed on (− 1

2Mk
, 1
2Mk

).
This result can be used for specifying Theorem 1 in the case of d = 1 after estimation of M(S′

n) by the
variance Var(S′

n). Due to the Hensley conjecture and Busemann–Petty problem, this problem was studied
by Ball in [15, 16], where he proved the following. Assume that independent random variables ξ1, . . . , ξn are
uniformly distributed on the interval (− 1

2 ,
1
2 ) and let S′

n = a1ξ1 + · · ·+ anξn with a21 + · · ·+ a2n = 1. Then

1 ≤ M(S′
n) ≤

√
2.

Combining the right-hand side inequality with the Rogozin theorem, we get the estimate

1
M2(Sn)

≥ 1
2

n∑

k=1

1
M2(Xk)

,

where the constant 1
2 appears to be the best.

Note that in dimension 1, inequality (1) up to an absolute factor also follows from some estimates for the
concentration function, see [17–18].

The first author’s work is supported by the NSF and Simons Foundation. The second author’s work is
supported by SFB-701 of the Bielefeld University.

Translated by K. S. Pilyugin.
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