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1. Introduction

Let (Xn)n≥1 be independent identically distributed random variables. Define the normalized
sums

Zn = X1 + · · · + Xn

bn

− an

for given (non-random) normalizing sequences an ∈ R and bn > 0. Assuming that Zn converges
weakly in distribution to a random variable Z with a non-degenerate stable law, we consider the
Fisher information distance

I (Zn‖Z) =
∫ ∞

−∞

(
p′

n(x)

pn(x)
− ψ ′(x)

ψ(x)

)2

pn(x)dx,

where pn and ψ denote the densities of Zn and Z, respectively. The definition makes sense, if pn

is absolutely continuous and is supported on the support interval of ψ , with a Radon–Nikodym
derivative p′

n(x). Otherwise, put I (Zn‖Z) = ∞.
If X1 has finite second moment with mean zero and variance one, the classical central limit

theorem is valid, that is, Zn ⇒ Z weakly in distribution, with an = 0, bn = √
n, where Z is stan-

dard normal. In this case a striking result of Barron and Johnson [8] indicates that I (Zn‖Z) → 0,
as n → ∞, as long as I (Zn‖Z) < ∞, for some n, that is, if for some n, Zn has finite Fisher in-
formation

I (Zn) =
∫ ∞

−∞
p′

n(x)2

pn(x)
dx.

This observation considerably strengthens a number of results on the central limit theorem for
strong distances involving the total variation and the relative entropy. It raises at the same time
the question about possible extensions to non-normal limit stable laws (as mentioned, e.g., in [7],
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page 104). The question turns out to be rather tricky, and it is not that evident that I (Zn) needs
to be even bounded for large n (a property which is guaranteed by Stam’s inequality in case of a
finite second moment).

The present note gives an affirmative solution of the problem in case of the so-called non-
extremal stable laws, cf. Definition 1.2 below. In the sequel, we shall consider non-degenerate
distributions, only.

Theorem 1.1. Assume that the sequence of normalized sums Zn defined above converges weakly
in distribution to a random variable Z with a non-extremal stable limit law. Then I (Zn‖Z) → 0,
as n → ∞, if and only if I (Zn‖Z) < ∞ for some n.

The normal case is included in this assertion. Note, however, that if X1 has an infinite second
moment, but still belongs to the domain of normal attraction, we have I (Zn‖Z) = ∞ for all n.
Hence, in this special case there is no convergence in relative Fisher information.

In the remaining cases, Z has a stable distribution with some parameters 0 < α < 2,
−1 ≤ β ≤ 1, with characteristic function f (t) = EeitZ described by

f (t) = exp
{
iat − c|t |α(

1 + iβ sign(t)ω(t, α)
)}

, (1.1)

where a ∈ R, c > 0, and ω(t,α) = tan(πα
2 ) in case α �= 1, and ω(t,α) = 2

π log |t | for α = 1. In
particular, |f (t)| = e−c|t |α which implies that Z has a smooth density ψ(x).

Definition 1.2. A stable distribution is called non-extremal, if it is normal or, if 0 < α < 2 and
−1 < β < 1 in (1.1).

In the latter case, the density ψ of Z is known to satisfy asymptotic relations

ψ(x) ∼ c0|x|−(1+α) (x → −∞), ψ(x) ∼ c1x
−(1+α) (x → ∞) (1.2)

with some constants c0, c1 > 0. Since any stable distribution is also unimodal (cf. [14]), ψ has
to be positive on the whole real line, as follows from (1.2).

The property that X1 belongs to the domain of attraction of a stable law of index 0 < α < 2
may be expressed explicitly in terms of the distribution function F1(x) = P{X1 ≤ x}. Namely,
we have Zn ⇒ Z with some bn > 0 and an ∈ R, if and only if

F1(x) = (
c0 + o(1)

)|x|−αB
(|x|) (x → −∞), (1.3)

1 − F1(x) = (
c1 + o(1)

)
x−αB(x) (x → ∞) (1.4)

for some constants c0, c1 ≥ 0 that are not both zero, and where B(x) is a slowly varying func-
tion in the sense of Karamata. This description reflects a certain behaviour of the characteristic
function f1(t) = EeitX1 near the origin (cf. [6,15]).

In connection with Theorem 1.1, let us note that a similar assertion has recently been proved
in [4] for the relative entropy

D(Zn‖Z) =
∫ ∞

−∞
pn(x) log

pn(x)

ψ(x)
dx,
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called also the Kullback–Leibler distance form the distribution of Zn to the distribution of Z.
It is shown that D(Zn‖Z) → 0, if and only if Zn ⇒ Z and D(Zn‖Z) < ∞ for some n. In the
normal case this result is due to Barron [1], which in turn goes back to the work by Linnik [10],
initiating an information-theoretic approach to the central limit theorem.

To compare with other strong types of convergence, in the normal case it is known that, if
EX1 = EZ and Var(X1) = Var(Z) = σ 2, then

σ 2

2
I (Zn‖Z) ≥ D(Zn‖Z) ≥ 1

2
‖Fn − �‖2

TV, (1.5)

where ‖Fn − �‖TV is the distance in total variation norm between the distributions of Zn and Z

(denoted here by Fn and �, resp.). The first relation in (1.5), due to Stam [13], may be viewed
as an information theoretic variant of Gross’ logarithmic Sobolev inequality for the Gaussian
measure. The second one is a particular case of the Pinsker-type inequality in which normality of
Z has no special role [5,9,11]. Hence, the convergence to the normal law in Fisher information
distance is a stronger property than in total variation and even than in relative entropy. The
question of how the Fisher information and entropic distances are related to each other with
respect to other stable laws does not seem to have been addressed in the literature. Apparently it
is a question about the existence of certain weak logarithmic Sobolev inequalities for probability
distributions with heavy tails, and we do not touch it here. However, it is natural to conjecture
that the situation is similar as in the normal case via a suitable analogue of (1.5).

Another obvious question concerns the description of distributions satisfying the conditions
of Theorem 1.1. In the non-normal case, the property I (Zn‖Z) < ∞ may be simplified to
I (Zn) < ∞. Taking, for example, n = 1, we obtain I (X1) < ∞ as a sufficient condition, which
is however rather strong and may be considerably weakened by choosing larger values of n. One
may wonder therefore what assumptions need to be added to (1.3)–(1.4) in terms of F1 or f1 to
obtain the convergence of Zn to Z in relative Fisher information. As shown in [3], for some n,
we have I (Zn) < ∞, if and only if, for some n, Zn has a continuously differentiable density pn

such that ∫ ∞

−∞
∣∣p′

n(x)
∣∣dx < ∞.

Still equivalently, for some n, pn has to be a function of bounded variation. Moreover, if X1 has a
finite first absolute moment, this property may be formulated explicitly in terms of the behaviour
of f1 at infinity, as any of the following two equivalent assertions:

(a) For some ε > 0, |f1(t)| = O(t−ε), as t → ∞;
(b) For some ν > 0, ∫ ∞

−∞
∣∣f1(t)

∣∣ν t2 dt < ∞. (1.6)

This characterization may be used in Theorem 1.1 in case 1 < α ≤ 2, since then, by (1.3)–(1.4),
we have E|X1|δ < ∞, for all 0 < δ < α.

Corollary 1.3. Assume that the sequence Zn as above converges weakly in distribution to a
random variable Z with a non-extremal stable limit law with index 1 < α ≤ 2. Then I (Zn‖Z) →
0, as n → ∞, if and only if (1.6) holds for some ν > 0.
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In particular, this description is applicable to the usual central limit theorem, that is, when
X1 has finite second moment. In this case (cf. [3]), (1.6) is equivalent to the formally weaker
condition ∫ ∞

−∞
∣∣f1(t)

∣∣ν |t |dt < ∞ for some ν > 0.

However, removing the weight |t | from the above integral, we obtain an essentially weaker (so-
called “smoothness”) property∫ ∞

−∞
∣∣f1(t)

∣∣ν dt < ∞ for some ν > 0. (1.7)

Once it is known that Zn ⇒ Z weakly in distribution with a stable limit law (for the i.i.d.
summands as above), the condition (1.7) allows one to strengthen the weak convergence in
the following sense. It is equivalent to the property that, for some and consequently for any
sufficiently large n, Zn has an absolutely continuous distribution with a bounded continu-
ous density pn. Moreover, in that and only that case, the uniform local limit theorem holds:
supx |pn(x) − ψ(x)| → 0, as n → ∞ (cf. [6]).

The paper is organized as follows. First, we state some general bounds on Fisher information
and some properties of densities which can be represented as convolutions of densities with finite
Fisher information (Sections 2–4). A main result used here has been already proved in recent
work [3]. In Section 5, we turn to the stable case and discuss a number of auxiliary results such
as local limit theorems, as well as questions about the behaviour of characteristic functions of
Zn near zero. In Section 6, we reduce Theorem 1.1 to showing that the Fisher information I (Zn)

is bounded in n. The subsequent sections are therefore focused on this boundedness problem.
Section 7 introduces a special decomposition of convolutions, and the final steps of the proof of
Theorem 1.1 can be found in Section 8. We shall complement the proofs by comments explaining
why the condition (1.6) is sufficient for the validity of Theorem 1.1.

2. General results about Fisher information

Definition 2.1. If a random variable X has an absolutely continuous density p with Radon–
Nikodym derivative p′, its Fisher information is defined by

I (X) = I (p) =
∫

{p(x)>0}
p′(x)2

p(x)
dx. (2.1)

In this case, if p̃(x) = p(x) for almost all x (a.e.), put I (p̃) = I (p). In any other case,
I (X) = ∞.

The equality (2.1) appears as a particular case of the Fisher information

J (θ) =
∫ ∞

−∞

(
∂pθ (x)

∂θ

)2

pθ(x)dx
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for the family of densities pθ(x) = p(x − θ) with respect to the location parameter θ ∈ R.
If I (X) as defined in (2.1) is finite, then necessarily the distribution of X has to be absolutely

continuous with density p(x) such that the derivative p′(x) exists and is finite on a set of full
Lebesgue measure (and then p will always be chosen to be a.e. differentiable). Furthermore, one
can show that, if I (X) < ∞, then p′(x) = 0 at any point, where p(x) = 0 (cf. [3]). With this in
mind, the integration in (2.1) may be extended to the whole real line.

It follows immediately from the definition that the I -functional is translation invariant and
homogeneous of order −2, that is, I (a + bX) = 1

b2 I (X), for all a ∈ R and b �= 0.

Since the function u2/v is convex in the upper half-plane u ∈ R, v > 0, this functional is
convex. That is, for all densities p1, . . . , pn, we have Jensen’s inequality

I (α1p1 + · · · + αnpn) ≤
n∑

k=1

αkI (pk)

(
αk > 0,

n∑
k=1

αk = 1

)
.

The inequality may be generalized to arbitrary “continuous” mixtures of densities. In particular,
for the convolution

p ∗ q(x) =
∫ ∞

−∞
p(x − y)q(y)dx

of any two densities p and q , we have

I (p ∗ q) ≤ min
{
I (p), I (q)

}
. (2.2)

In other words, if X and Y are independent random variables with these densities, then

I (X + Y) ≤ min
{
I (X), I (Y )

}
.

This property may be viewed as monotonicity of the Fisher information: this functional decreases
when adding an independent summand. In fact, a much stronger inequality is available.

Proposition 2.2 (Stam [13]). If X and Y are independent random variables, then

1

I (X + Y)
≥ 1

I (X)
+ 1

I (Y )
. (2.3)

Let us also introduce the Fisher information distance

I (X‖Z) =
∫ +∞

−∞

(
p′(x)

p(x)
− ψ ′(x)

ψ(x)

)2

p(x)dx

with respect to a random variable Z having a stable law. We need the following elementary
observation, which shows that the question of boundedness of the Fisher information I (Zn)

and of the Fisher information distance I (Zn‖Z) for the normalized sums Zn as introduced in
Theorem 1.1 are in fact equivalent.
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Proposition 2.3. If Z has a non-extremal stable law of some index 0 < α < 2, then for any
random variable X,

I (X‖Z) ≤ 2I (X) + c(Z), (2.4)

I (X) ≤ 2I (X‖Z) + c(Z), (2.5)

where c(Z) depends on the distribution of Z, only. In particular, I (X‖Z) < ∞, if and only if
I (X) < ∞.

Proof. The assertion is based on the fact that any non-extremal non-normal stable distribution
has a smooth positive density ψ such that, for all k = 1,2, . . . ,

∣∣(logψ(x)
)(k)∣∣ ∼ (k − 1)!

|x|k
(|x| → ∞)

(cf. [6,15]). In particular, |ψ ′(x)|
ψ(x)

∼ 1
|x| , so

|ψ ′(x)|
ψ(x)

≤ c

1 + |x| (x ∈ R) (2.6)

with some positive constant c (and the converse inequality is also true with positive constant for
all large |x|). Hence, assuming that I (X) < ∞, then writing(

p′(x)

p(x)
− ψ ′(x)

ψ(x)

)2

≤ 2

(
p′(x)

p(x)

)2

+ 2

(
ψ ′(x)

ψ(x)

)2

≤ 2

(
p′(x)

p(x)

)2

+ 2c2

and integrating this inequality with weight p(x), we obtain (2.4). Similarly,(
p′(x)

p(x)

)2

≤ 2

(
p′(x)

p(x)
− ψ ′(x)

ψ(x)

)2

+ 2c2,

which leads to (2.5). �

Similar arguments for the normal case (α = 2) however lead to a different conclusion. Indeed,
if Z ∼ N(a,σ 2), we have ψ ′(x)

ψ(x)
= − x−a

σ 2 , and we get the following proposition.

Proposition 2.4. If Z is normal, then I (X‖Z) < ∞, if and only if I (X) < ∞ and EX2 < ∞.

Note that in case where X and Z have equal means and variances, we have I (X‖Z) = I (X)−
I (Z).

3. Connection with functions of bounded variation

Applying Cauchy’s inequality and using the remark that p(x) = 0 ⇒ p′(x) = 0 a.e., one imme-
diately obtains from Definition 2.1 the following elementary lower bound on the Fisher informa-
tion.
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Proposition 3.1. If X has an absolutely continuous density p with Radon–Nikodym deriva-
tive p′, then ∫ ∞

−∞
∣∣p′(x)

∣∣dx ≤ √
I (X). (3.1)

Here, the integral represents the total variation norm of the function p as used in Real Analysis,

‖p‖TV = sup
n∑

k=1

∣∣p(xk) − p(xk−1)
∣∣,

where the supremum runs over all finite collections x0 < x1 < · · · < xn.
The densities p with finite total variation are vanishing at infinity and are uniformly bounded

by ‖p‖TV. Moreover, their characteristic functions

f (t) =
∫ ∞

−∞
eitxp(x)dx (t ∈ R)

admit, by integration by parts, a simple upper bound

∣∣f (t)
∣∣ ≤ ‖p‖TV

|t | (t �= 0). (3.2)

Hence, by Proposition 3.1, if a random variable X has finite Fisher information, its density p and
characteristic function f (t) = EeitX satisfy similar bounds

sup
x

p(x) ≤ √
I (X),

∣∣f (t)
∣∣ ≤

√
I (X)

|t | (t �= 0). (3.3)

In general, the inequality (3.1) cannot be reversed, though this is possible for convolutions of
three densities of bounded variation. The following statement may be found in [3].

Proposition 3.2. If independent random variables Xj (j = 1,2,3) have densities pj of bounded
variation, then S = X1 + X2 + X3 has finite Fisher information, and moreover,

I (S) ≤ 1
2

[‖p1‖TV‖p2‖TV + ‖p1‖TV‖p3‖TV + ‖p2‖TV‖p3‖TV
]
. (3.4)

Note that the convolution of two densities of bounded variation may have an infinite Fisher
information. For example, the convolution of the uniform distribution on (− 1

2 , 1
2 ) with itself has

the triangle density p(x) = max(1 − |x|,0), in which case I (p) = ∞.

Remark 3.3. A similar bound on the Fisher information may also be given in terms of charac-
teristic functions. In view of (3.4), it suffices to bound the total variation norm, and this can be
done by applying the inverse Fourier formula, at least in case of finite first absolute moment.
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One can show that, if the characteristic function f (t) of a random variable X is continuously
differentiable for t > 0, and ∫ ∞

−∞
t2(∣∣f (t)

∣∣2 + ∣∣f ′(t)
∣∣2)

dt < ∞, (3.5)

then X must have an absolutely continuous distribution with density p of bounded total variation
satisfying

‖p‖TV ≤
(∫ ∞

−∞
∣∣tf (t)

∣∣2 dt

∫ ∞

−∞
∣∣(tf (t)

)′∣∣2 dt

)1/4

. (3.6)

We refer to [3] for details.

4. Classes of densities representable as convolutions

General bounds like (3.3) may considerably be sharpened in the case where p is representable as
convolution of several densities with finite Fisher information. Here, we consider the collection
P2(I ) of all functions on the real line which can be represented as convolution of two probability
densities with Fisher information at most I . Correspondingly, let P2 = ⋃

I P2(I ) denote the
collection of all functions representable as convolution of two probability densities with finite
Fisher information. Note that, by (2.3), I (p) ≤ 1

2I , for any p ∈P2(I ).
Thus, a random variable X = X1 + X2 has density p in P2, if it may be written as

p(x) =
∫ ∞

−∞
p1(x − y)p2(y)dx (4.1)

in terms of absolutely continuous densities p1,p2 of the independent summands X1,X2 having
finite Fisher information. Differentiating under the integral sign, we obtain a Radon–Nikodym
derivative of the function p,

p′(x) =
∫ ∞

−∞
p′

1(x − y)p2(y)dy =
∫ ∞

−∞
p′

1(y)p2(x − y)dy. (4.2)

The latter expression shows that p′ is an absolutely continuous function and has the Radon–
Nikodym derivative

p′′(x) =
∫ ∞

−∞
p′

1(y)p′
2(x − y)dy. (4.3)

In other words, p′′ appears as the convolution of the functions p′
1 and p′

2 which are integrable,
according to Proposition 3.1.

Note that equality (4.3) defines p′′(x) at every individual point x, not just almost everywhere
(which is typical for a Radon–Nikodym derivative). Using the property pj (x) = 0 ⇒ p′

j (x) = 0
in case of finite Fisher information, we obtain a similar implication p(x) = 0 ⇒ p′′(x) = 0,
which holds for any x.
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Moreover, since by (4.3),

∣∣p′′(x)
∣∣ ≤

∫ ∞

−∞
∣∣p′

1(y)
∣∣∣∣p′

2(x − y)
∣∣dy,

a direct application of the inequality (3.1) together with Fubini’s theorem shows that p′ has finite
total variation ∥∥p′∥∥

TV =
∫ ∞

−∞
∣∣p′′(x)

∣∣dx ≤ I.

These formulas may be used to derive various pointwise and integral relations within the class
P2 such as the following statement (which also summarizes the previous remarks).

Proposition 4.1. Any density p in P2(I ) has an absolutely continuous derivative p′ of bounded
variation satisfying, for all x ∈ R, ∣∣p′(x)

∣∣ ≤ I 3/4
√

p(x) ≤ I. (4.4)

In addition, ∫ ∞

−∞
p′′(x)2

p(x)
dx ≤ I 2. (4.5)

To be more precise, integration in (4.5) is restricted to the set {p(x) > 0}. This proposition can
be found in [3]; since the proof is short, we shall include it here for completeness.

Proof of Proposition 4.1. Starting with the representations (4.1)–(4.2), in which I (pj ) ≤ I ,

define the functions uj (x) = p′
j (x)√
pj (x)

1{pj (x)>0} (j = 1,2). Applying Cauchy’s inequality, we get

p′(x)2 =
(∫ ∞

−∞
u1(x − y) · √p1(x − y)p2(y)dy

)2

≤ I (X1)

∫ ∞

−∞
p1(x − y)p2(y)2 dy

≤ I (X1)
√

I (X2)

∫ ∞

−∞
p1(x − y)p2(y)dy = I (X1)

√
I (X2)p(x),

where we used p2(y) ≤ √
I (X2), according to (3.3). Hence, we obtain the first inequality in

(4.4), and the second follows from p(x) ≤ √
I . Similarly, rewrite (4.3) as

p′′(x) =
∫ ∞

−∞
(
u1(x − y)u2(y)

)√
p1(x − y)p2(y)dy

to get

p′′(x)2 ≤
∫ ∞

−∞
u1(x − y)2u2(y)2 dy

∫ ∞

−∞
p1(x − y)p2(y)dy = u(x)2p(x),
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where we define u ≥ 0 by

u(x)2 =
∫ ∞

−∞
u1(x − y)2u2(y)2 dy.

It follows that ∫ ∞

−∞
u(x)2 dx = I (X1)I (X2) ≤ I 2,

which implies (4.5). �

The analytic properties of densities in P2 allow us to make use of different formulas for the
Fisher information (by using integration by parts). For example,

I (X) = −
∫ ∞

−∞
p′′(x) logp(x)dx,

provided that the integrand is Lebesgue integrable.
We will need the following “tail-type” estimate for the Fisher information.

Corollary 4.2. If p is in P2(I ), then for any T real,

∫ ∞

T

p′(x)2

p(x)
dx ≤ I 3/4

√
p(T )

∣∣logp(T )
∣∣ + I

(∫ ∞

T

p(x) log2 p(x)dx

)1/2

. (4.6)

Proof. Assuming that the last integral is finite, let us decompose the open set G = {x > T :
p(x) > 0} into the union of at most countably many disjoint intervals (an, bn), T ≤ an < bn ≤ ∞.

If an > T , we have p(an) = 0, so p′(x) logp(x) → 0, as x ↓ an, by Proposition 4.1. Similarly,
p(bn) = 0, if bn < ∞, and in addition p(∞) = 0.

Let an < T1 < T2 < bn. Since p′ is an absolutely continuous function of bounded variation,
integration by parts is justified and yields

∫ T2

T1

p′(x)2

p(x)
dx =

∫ T2

T1

p′(x)d logp(x) = p′(x) logp(x)

∣∣∣∣
T2

x=T1

−
∫ T2

T1

p′′(x) logp(x)dx.

Letting T1 → an and T2 → bn, we get in case an > T

∫ bn

an

p′(x)2

p(x)
dx = −

∫ bn

an

p′′(x) logp(x)dx

and ∫ bn

an

p′(x)2

p(x)
dx = −p′(T ) logp(T ) −

∫ bn

an

p′′(x) logp(x)dx
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in case an = T (if such n exists). Anyhow, the summation over n gives

∫
G

p′(x)2

p(x)
dx ≤ ∣∣p′(T ) logp(T )

∣∣ +
∫

G

∣∣p′′(x) logp(x)
∣∣dx. (4.7)

Here the first term on the right-hand side can be estimated by virtue of (4.4), which leads to the
first term on the right-hand side of (4.6). Using (4.5) together with Cauchy’s inequality, for the
last integral we also have

(∫
G

|p′′(x)|√
p(x)

√
p(x)

∣∣logp(x)
∣∣dx

)2

≤ I 2
∫ ∞

T

p(x) log2 p(x)dx,

thus proving Corollary 4.2. �

5. Stable laws and uniform local limit theorems

Let us return to the normalized sums

Zn = 1

bn

(X1 + · · · + Xn) − an (an ∈ R, bn > 0),

associated with independent identically distributed random variables (Xn)n≥1. In this section,
we discuss uniform limit theorems for densities pn of Zn and behaviour of their characteristic
functions near the origin. As before, if Zn ⇒ Z, the density and the characteristic function of the
stable limit Z are denoted by ψ and f , respectively.

Introduce the characteristic functions of X1 and Zn,

f1(t) = EeitX1, fn(t) = EeitZn = e−itanf1(t/bn)
n (t ∈ R).

To avoid confusion, we make the convention that Z1 = X1, that is, a1 = 0 and b1 = 1.

Proposition 5.1. Assume that Zn ⇒ Z weakly in distribution. If∫ ∞

−∞
∣∣f1(t)

∣∣ν dt < ∞ for some ν > 0, (5.1)

then for all n large enough, Zn have bounded continuous densities pn such that

lim
n→∞ sup

x

∣∣pn(x) − ψ(x)
∣∣ = 0. (5.2)

Proposition 5.2. Assume that Zn ⇒ Z weakly in distribution. If∫ ∞

−∞
∣∣f1(t)

∣∣ν |t |dt < ∞ for some ν > 0, (5.3)
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then for all n large enough, Zn have continuously differentiable densities pn with bounded
derivatives, and moreover

lim
n→∞ sup

x

∣∣p′
n(x) − ψ ′(x)

∣∣ = 0. (5.4)

The first assertion is well known, cf. [6], page 126. The condition (5.1) is actually equivalent
to the property that for all sufficiently large n, say n ≥ n0, Zn have bounded continuous densities
pn. In that case, the characteristic functions fn are integrable whenever n ≥ 2n0. Conversely,
under (5.1), these densities for n ≥ ν are given by the inversion formula

pn(x) = 1

2π

∫ ∞

−∞
e−itxfn(t)dt. (5.5)

Under the stronger assumption (5.3), the above equality may be differentiated, and we get a
similar representation for the derivative

p′
n(x) = 1

2π

∫ ∞

−∞
(−it)e−itxfn(t)dt. (5.6)

Although Proposition 5.2 is not stated in [6], its proof is similar to the proof of Proposition 5.1.
An important ingredient in the argument is the fact that the weak convergence Zn ⇒ Z forces f1
to be regularly behaving near the origin. This fact can also be used in the study of the boundedness
of the Fisher information distance I (Zn‖Z), so let us state it separately.

Proposition 5.3. Let Zn ⇒ Z weakly in distribution, where Z has a stable law of index
0 < α < 2. Then ∣∣f1(t)

∣∣ = exp
{−c|t |αh

(
1/|t |)}, (5.7)

where c > 0 and h(x) is a slowly varying function for x → ∞ such that

lim
n→∞

nh(bn)

bα
n

= 1. (5.8)

Moreover, there is a constant c > 0 such that, as n → ∞,

P
{|X1| > bn

} ∼ c

n
. (5.9)

In comparison with (5.7) a more precise statement is obtained in [6], cf. Theorem 2.6.5,
page 85. Namely, if Zn ⇒ Z, where Z has a stable distribution of index 0 < α < 2, then for
all t small enough,

f1(t) = exp
{
iγ t − c|t |αh

(
1/|t |)(1 + iβ sign(t)ω(t, α)

)}
,

where γ is real, c > 0, and the parameter β ∈ [−1,1] and the function ω(t,α) are the same as in
the representation (1.1) for the characteristic function f (t) of Z. By lengthy computations in the
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proof of Theorem 2.6.5 in [6], it was shown that the function B(x) appearing in the asymptotic
relations (1.3)–(1.4) and the function h(x) are connected via

h(x) = (
1 + o(1)

)
B(x) as x → ∞.

Taking into account (5.8), this yields (5.9).

Remark. As shown in [6], the representation (5.7) together with the relation (5.8) remain to
hold for α = 2, that is, when Z is normal. Note that, if EX2

1 < ∞, one may take h(x) = 1 and
bn ∼ √

n. In that case, P{|X1| > bn} = o( 1
n
), as n → ∞, so (5.9) is no longer true.

Let us return to the local limit theorems.

Proof of Proposition 5.2. From (5.6), we obtain the representation

p′
n(x) − ψ ′(x) = 1

2π

∫ ∞

−∞
(−it)e−itx(fn(t) − f (t)

)
dt.

As is standard, we split the last integral into the three parts L1, L2, L3 corresponding to integra-
tion over the regions |t | ≤ Tn, Tn < |t | < T ′

n and |t | ≥ T ′
n, respectively.

By the weak convergence, fn(t) → f (t) uniformly on all intervals, and moreover,

δn = max|t |≤Tn

∣∣fn(t) − f (t)
∣∣ → 0 as n → ∞

for some Tn → ∞. Hence,

|L1| =
∣∣∣∣
∫

|t |≤Tn

(−it)e−itx(fn(t) − f (t)
)

dt

∣∣∣∣ ≤ δnT
2
n → 0,

provided that Tn grows to infinity sufficiently slowly (which may be assumed).
Now, one of the consequences of (5.7), using the above remark about the normal case, is that,

given 0 < δ < α, the characteristic functions fn admit on a relatively large interval the bound

∣∣fn(t)
∣∣ ≤ e−c(δ)|t |δ (|t | ≤ εbn

)
(5.10)

with some positive constants ε and c(δ) which are independent of n, cf. [6], page 123. A similar
bound holds for f (t) itself, which is also seen from the representation (1.1). Hence, choosing
T ′

n = εbn, we have

|L2| =
∣∣∣∣
∫

Tn<|t |<T ′
n

(−it)e−itx(fn(t) − f (t)
)

dt

∣∣∣∣
≤ 2

∫
|t |>Tn

|t |e−c(δ)|t |δ dt → 0.
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Finally, put c = sup|t |≥ε |f1(t)|. The condition (5.3) ensures that f1(t) → 0, as t → ∞, so
c < 1. Hence, for all n ≥ ν,∫

|t |≥T ′
n

|t |∣∣fn(t)
∣∣dt = b2

n

∫
|t |≥ε

|t |∣∣f1(t)
∣∣n dt

≤ b2
nc

n−ν

∫
|t |≥ε

|t |∣∣f1(t)
∣∣ν dt → 0.

Thus, L3 → 0, as well. �

From (5.2) and (5.4), we immediately obtain the convergence of a “truncated” Fisher informa-
tion distance.

Corollary 5.4. Assume that Zn ⇒ Z weakly in distribution, where Z has a non-extremal stable
law. If I (Zn0) < ∞ for some n0, then for all n large enough, the random variables Zn admit
continuously differentiable densities pn, and for every fixed T > 0,

∫ T

−T

(
p′

n(x)

pn(x)
− ψ ′(x)

ψ(x)

)2

pn(x)dx = o(1), n → ∞. (5.11)

Recall that the densities ψ of non-extremal stable laws are everywhere positive, which is the
only additional property needed to show (5.11) on the basis of (5.2) and (5.4).

Indeed, by the assumption, we have I (Zn) < ∞, for all n ≥ n0, and by (3.3),

∣∣fn0(t)
∣∣ ≤ c

|t | (t �= 0)

with c = √
I (Zn0). Hence, the condition (5.3) is fulfilled with ν = 3n0. Therefore, we get both

(5.2) and (5.4), and in particular, pn(x) ≥ ε > 0 in |x| ≤ T , for all n large enough. As a result,
the integrand in (5.11) is uniformly bounded from above by a sequence tending to zero.

6. Moderate deviations

As before, for independent identically distributed random variables (Xn)n≥1, put

Zn = X1 + · · · + Xn

bn

− an (an ∈ R, bn > 0). (6.1)

It is well known that if Zn ⇒ Z, where Z has a stable law of some index 0 < α ≤ 2, then
necessarily

bn = n1/αh(n), (6.2)

where h is a slowly varying function in the sense of Karamata.
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To study the behaviour of I (Zn‖Z) in the non-extremal non-normal case, it is worthwhile not-
ing that this Fisher information distance is finite, if and only if I (Zn) is finite (Proposition 2.3).
In the normal case, I (Zn‖Z) < ∞, if and only if I (Zn) < ∞ and EZ2

n < ∞ (Proposition 2.4).
The latter is equivalent to EX2

1 < ∞, and then for the weak convergence Zn ⇒ Z with a standard
normal limit one may take bn = √

nVarX1 and an = EX1
√

n/
√

VarX1.
In any case, the requirement that I (Zn0) < ∞ implies that for all n ≥ n0, Zn have absolutely

continuous bounded densities which we denote in the sequel by pn. Moreover, pn ∈P2 whenever
n ≥ 2n0, and then, by Proposition 4.1, pn have continuous derivatives p′

n of bounded variation.
As the next step towards Theorem 1.1, we prove the following lemma.

Lemma 6.1. Assume that Zn ⇒ Z weakly in distribution, where Z has a non-extremal stable
law. If lim supn→∞ I (Zn) < ∞, then

lim
n→∞ I (Zn‖Z) = 0. (6.3)

Proof. As before, denote by ψ the density of Z, and put Sn = X1 + · · · + Xn.
By the assumptions, I ′ = supn≥n0

I (Zn) < ∞ for some n0, so

I (Sn) ≤ I ′b2
n, n ≥ n0.

If n ≥ 2n0, write n = n1 + n2 with n1 = [n
2 ], n2 = n − n1. Then n1 ≥ n0 and n2 ≥ n0, and hence

I (Sn1) ≤ I ′b2
n1

≤ Ib2
n, I (Sn − Sn1) ≤ I ′b2

n2
≤ Ib2

n

with some constant I in view of the almost polynomial behaviour of bn as described in (6.2).
Thus,

Zn =
(

Sn1

bn

− an

)
+ Sn − Sn1

bn

represents the sum of two independent random variables with Fisher information at most I .
Therefore, pn ∈P2(I ), for all n ≥ 2n0, and we may invoke Corollary 4.2.

In view of Corollary 5.4 we only need to show that, given ε > 0, one may choose T > 0 such
that the integral

J =
∫

|x|>T

(
p′

n(x)

pn(x)
− ψ ′(x)

ψ(x)

)2

pn(x)dx

is smaller than ε, for all n large enough.
Clearly, J ≤ 2J1 + 2J2, where

J1 =
∫

|x|>T

p′
n(x)2

pn(x)
dx, J2 =

∫
|x|>T

(
ψ ′(x)

ψ(x)

)2

pn(x)dx.
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Recall that in case 0 < α < 2, we have |ψ ′(x)|
ψ(x)

≤ c
1+|x| with a constant c depending on ψ , only

(cf. (2.6)). Hence,

J2 ≤
(

c

1 + T

)2

,

which thus can be made as small, as we wish.
If α = 2 and EX2

1 < ∞, assume without loss of generality that EX1 = 0, EX2
1 = 1, so that ψ

is a standard normal density, and

J2 =
∫

|x|>T

x2pn(x)dx.

To bound these integrals, we appeal to the well-known large deviation relation

P
{|ξ | ≥ T

} ≤ T

∫ 2/T

0

(
1 − Ref (t)

)
dt,

holding true for any random variable ξ with characteristic function f (t). If Eξ2 = 1, and F is the
distribution function of ξ , one may apply the same bound to the probability measure x2 dF(x)

on the real line, and then it yields

∫
|x|≥T

x2 dF(x) ≤ T

∫ 2/T

0

(
1 + Ref ′′(t)

)
dt.

Hence,

J2 ≤ T

∫ 2/T

0

(
1 + Ref ′′

n (t)
)

dt,

where fn denote the characteristic functions of Zn. But, letting g(t) = e−t2/2, as a variant of
the central limit theorem, for any c > 0, one has sup|t |≤c |f ′′

n (t) − g′′(t)| → 0, as n → ∞, while
1 + g′′(t) → 0, as t → 0. This shows that, for T and n large enough, J2 will be smaller than any
prescribed positive number.

It remains to estimate J1. We now apply (4.6) giving

J1 ≤ I 3/4(√pn(T )
∣∣logpn(T )

∣∣ + √
pn(−T )

∣∣logpn(−T )
∣∣)

(6.4)

+ 2I

(∫
|x|≥T

pn(x) log2 pn(x)dx

)1/2

.

Using the uniform local limit theorem in the form (5.2) together with the asymptotic relation
(1.2) for ψ(x) at infinity, we easily get

√
pn(±T )

∣∣logpn(±T )
∣∣ ≤ c

logT√
T

+ εn, (6.5)
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which holds for all sufficiently large n and all T ≥ T0 with εn → 0 (as n → ∞) and with con-
stants c > 0 and T0 large enough (depending on ψ , only).

To bound the integral in (6.4), we partition {x: |x| ≥ T } into the set

A = {
x: |x| ≥ T ,pn(x) ≤ |x|−4}

and its complement B . By the definition,∫
A

pn(x) log2 pn(x)dx ≤ 16
∫

|x|≥T

|x|−4 log2 |x|dx ≤ 32

T
. (6.6)

On the other hand, pn are uniformly bounded, namely, suppn(x) ≤ √
I , for all n ≥ 2n0 (cf.

(3.3)). Hence, on the set B ,

∣∣logpn(x)
∣∣ ≤ log

√
I

pn(x)
+ |log

√
I | ≤ 4 log |x| + |log I |

and therefore ∫
B

pn(x) log2 pn(x)dx ≤ c

∫
|x|≥T

pn(x) log2 |x|dx, (6.7)

where the constant depends on I .
Finally, we use the property that the moments E|Zn|δ are uniformly bounded in n, when-

ever 0 < δ < α (cf. [6], page 142). Choosing δ = α/2 and using an elementary bound |x|α/4 ≥
cα log2 |x| for |x| ≥ T0, we obtain with some constant K that

K ≥ E|Zn|α/2 ≥ T α/4E|Zn|α/41{|Zn|≥T }

= T α/4
∫

|x|≥T

|x|α/4pn(x)dx

≥ cαT α/4
∫

|x|≥T

pn(x) log2 |x|dx.

Thus, the second integral in (6.7) may be bounded by cT −α/4 with some constant c indepen-
dent of n. Combining this with (6.6), we obtain a similar bound for the integral in (6.4), and
taking into account (6.5), we get J1 ≤ cT −α/8 + εn. This completes the proof of Lemma 6.1. �

7. Binomial decomposition of convolutions

To show that the assumption lim supn→∞ I (Zn) < ∞ in Lemma 6.1 holds as long as I (Zn0) < ∞
for some n0, we introduce a special decomposition of densities of Zn. It is needed for the case
0 < α < 2, so this will be assumed below. Moreover, let Zn ⇒ Z weakly in distribution, where
Z has a non-extremal stable law with index α.
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To simplify the argument, assume n0 = 1, so that I (p) = I (X1) < ∞, where p denotes the
density of X1. In fact, we only consider the shifted normalized sums

Z̃n = Zn + an = X1 + · · · + Xn

bn

,

and for the notational convenience, denote their densities by pn. Note that, by the translation
invariance, I (Zn) = I (Z̃n).

Keeping the same notations as in the previous sections, we use a suitable truncation (which is
actually not needed in case α > 1). Introduce the probability densities

p̃n(x) = bn

1 − δn

p(bnx)1{|x|≤1}, q̃n(x) = bn

δn

p(bnx)1{|x|>1}

together with their characteristic functions

f̃n(t) = 1

1 − δn

∫ bn

−bn

eitx/bnp(x)dx, g̃n(t) = 1

δn

∫
|x|>bn

eitx/bnp(x)dx,

where δn = ∫
|x|>bn

p(x)dx. Recall that δn ∼ c
n

with some constant c > 0, as emphasized in
Proposition 5.3, cf. (5.9).

Then we have a binomial decomposition for convolutions

pn = (
(1 − δn)p̃n + δnq̃n

)n∗ =
n∑

k=0

(
n

k

)
(1 − δn)

kδn−k
n p̃k∗

n ∗ q̃(n−k)∗
n . (7.1)

Note that each convolution p̃k∗
n ∗ q̃

(n−k)∗
n appearing in this weighted sum represents a probability

density with characteristic function f̃n(t)
kg̃n(t)

n−k .
In this section, we establish some properties of f̃n, which will be needed in the proof of

Theorem 1.1. The corresponding density p̃n is supported on [−1,1], however, it does not need
to have mean zero. So, put

dn =
∫ 1

−1
xp̃n(x)dx = 1

bn(1 − δn)

∫ bn

−bn

xp(x)dx

and define

ψn(t) = e−itdn f̃n(t),

which is the characteristic function of the centered random variable ξ − dn, when ξ has den-
sity p̃n. Thus, ψn corresponds to the density rn(x) = p̃n(x + dn), with ψ ′

n(0) = 0.
The next two lemmas do not use the assumption I (p) < ∞ and may be stated for general

distributions from the domain of attraction of these stable laws.

Lemma 7.1. For all real t , with some constant C depending only on p,

∣∣ψ ′
n(t)

∣∣ ≤ C

n
|t |. (7.2)



1638 S.G. Bobkov, G.P. Chistyakov and F. Götze

Proof. The characteristic function ψn corresponds to the density p̃n(x +dn). Using the property
ψ ′

n(0) = 0, one may write

ψ ′
n(t) =

∫ 1

−1
i(x − dn)

(
eit (x−dn) − 1

)
p̃n(x)dx

= ibn

1 − δn

∫ 1

−1
(x − dn)

(
eit (x−dn) − 1

)
p(bnx)dx

= i

1 − δn

∫ bn

−bn

(
x

bn

− dn

)(
eit (x/bn−dn) − 1

)
dF1(x),

where F1 is the distribution function of X1. Using |eis − 1| ≤ |s| (s ∈ R), we deduce obvious
upper bounds

∣∣ψ ′
n(t)

∣∣ ≤ |t |
1 − δn

∫ bn

−bn

(
x

bn

− dn

)2

dF1(x)

≤ 2|t |
b2
n(1 − δn)

∫ bn

−bn

x2 dF1(x) + 2|t |
1 − δn

d2
n.

Integrating by parts, we have

∫ bn

−bn

x2 dF1(x) = −b2
n

(
1 − F1(bn) + F1(−bn)

) + 2
∫ bn

0
x
(
1 − F1(x) + F1(−x)

)
dx

≤ 2
∫ bn

0
x
(
1 − F1(x) + F1(−x)

)
dx

and similarly

∫ bn

−bn

|x|dF1(x) = −bn

(
1 − F1(bn) + F1(−bn)

) +
∫ bn

0

(
1 − F1(x) + F1(−x)

)
dx

≤
∫ bn

0

(
1 − F1(x) + F1(−x)

)
dx.

Since 1 − δn → 1, we get

∣∣ψ ′
n(t)

∣∣ ≤ C|t |
b2
n

∫ bn

0
x
(
1 − F1(x) + F1(−x)

)
dx

(7.3)

+ C|t |
b2
n

(∫ bn

0

(
1 − F1(x) + F1(−x)

)
dx

)2

with some constant C depending on p.
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Recall that in the asymptotical formulas (1.3)–(1.4) for F1, the function B is equivalent to
the slowly varying function h associated with the characteristic function of X1. Thus, with some
c0 ≥ 0, c1 ≥ 0 (c0 + c1 > 0), we have

F1(x) = c0 + o(1)

(−x)α
h(−x), x < 0; F1(x) = 1 − c1 + o(1)

xα
h(x), x > 0.

Hence, up to a constant, the first integral in (7.3) does not exceed

∫ bn

0

h(x)

xα−1
dx = b2−α

n h(bn)

∫ 1

0

h(sbn)

h(bn)

ds

sα−1
.

But, by the well-known result on slowly varying functions ([12], pages 66–67),

∫ 1

0

h(sbn)

h(bn)

ds

sα−1
→

∫ 1

0

ds

sα−1
= 1

2 − α
as n → ∞.

Therefore, with some constants C1, C2,

1

b2
n

∫ bn

0
x
(
1 − F1(x) + F1(−x)

)
dx ≤ C1b

−α
n h(bn) ≤ C2

n
,

where we have applied equation (5.8) of Proposition 5.3, telling us that h(bn) ∼ bα
n/n.

Now, consider the second integral in (7.3). In case α < 1, again by [12], applied to the value
α + 1, ∫ 1

0

h(sbn)

h(bn)

ds

sα
−→

∫ 1

0

ds

sα
= 1

1 − α
as n → ∞.

Hence, using the asymptotic for F1, the second integral in (7.3) does not exceed, up to a constant,

∫ bn

0

h(x)

xα
dx = b1−α

n h(bn)

∫ 1

0

h(sbn)

h(bn)

ds

sα
∼ bn

(1 − α)n
.

As a result,

1

b2
n

(∫ bn

0

(
1 − F1(x) + F1(−x)

)
dx

)2

≤ C3

n2

with some constant C3, depending on p and α.
The case 1 < α < 2 is simpler, since then∫ ∞

0

(
1 − F1(x) + F1(−x)

)
dx < ∞,

while the factor 1
b2
n

behaves like n−2/α (up to a slowly growing sequence), so it decays faster than

1/n.
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Finally, in case α = 1, using the bound h(x) ≤ Cεx
ε , x ≥ 1 (where ε > 0 is any prescribed

number), we see that, for large n the second integral in (7.3) does not exceed, up to a constant,

1 +
∫ bn

1

h(x)

x
dx ≤ Cb

1/4
n .

This yields

1

b2
n

(∫ bn

0

(
1 − F1(x) + F1(−x)

)
dx

)2

≤ C

b
3/2
n

with some constant C depending on the density p. But the ratio C

b
3/2
n

behaves like n−3/2 up to a

slowly growing sequence, so it decays faster than 1
n

, as well. Thus, in all cases

1

b2
n

(∫ bn

0

(
1 − F1(x) + F1(−x)

)
dx

)2

= O

(
1

n

)
.

Lemma 7.1 is proved. �

Lemma 7.2. Let δ ∈ (0, α) and η ∈ (0,1) be fixed. There exist positive constants ε, c, C, de-
pending on p, δ, η, with the following property: if k ≥ ηn, then

∣∣ψn(t)
∣∣k = ∣∣f̃n(t)

∣∣k ≤ Ce−c|t |δ for |t | ≤ εbn. (7.4)

Proof. This is an analogue of the bound (5.10) for the characteristic functions of Zn. In order to
prove this upper bound, assume |t | ≥ 1 and note that

f̃n(t) = 1

1 − δn

(
f1(t/bn) − δng̃n(t)

)
, t ∈ R. (7.5)

To proceed, we apply Proposition 5.3. First recall that, according to Karamata’s theorem, any
positive slowly varying function h(x) defined in x ≥ 0 has a representation

h(x) = c(x) exp

{∫ x

x0

w(y)

y
dy

}
, x ≥ x0,

where x0 > 0, c(x) → 1, and w(x) → 0, as x → ∞. For x0 = minn≥1 bn, 1 ≤ |t | ≤ εbn, where
0 < ε ≤ 1 is fixed, this representation implies that with some constant c0 > 0

h(bn/|t |)
h(bn)

≥ c0|t |−γ with γ = γ (ε) = sup
y≥1/ε

∣∣w(y)
∣∣.

Hence, from (5.7)–(5.8)∣∣f1(t/bn)
∣∣ = exp

{−c|t |αb−α
n h

(
bn/|t |

)} ≤ exp
{−c1|t |α−γ /n

}



Fisher information and stable laws 1641

with some constant c1 > 0.
We choose ε > 0 to be small enough so that γ < α − δ. Now, applying the above estimate in

(7.5), we get in the region 1 ≤ |t | ≤ εbn

∣∣f̃n(t)
∣∣ ≤ 1

1 − δn

(∣∣f1(t/bn)
∣∣ + δn

)

≤ 1

1 − δn

(
exp

{−c1|t |α−γ /n
} + δn

)
.

One can simplify the right-hand side by noting that c1|t |α−γ

n
≤ c1b

α−γ
n

n
< K with some constant K .

Using logx ≤ x − 1 (x > 0) and e−x ≤ 1 − 1
K

(1 − e−K)x, for 0 ≤ x ≤ K , we then have

log
(
exp

{−c1|t |α−γ /n
} + δn

) ≤ exp
{−c1|t |α−γ /n

} + δn − 1

≤ −1 − e−K

K

c1|t |α−γ

n
+ δn

≤ c2

n
− c3|t |α−γ

n

with positive constants cj . As a result,

∣∣f̃n(t)
∣∣ ≤ exp

{
1

n

(
c4 − c5|t |α−γ

)}

with some other positive constants c4 and c5 (independent of n). It remains to raise this inequality
to the power k, and (7.4) follows. �

We will now develop a few applications of Lemmas 7.1 and 7.2 using the assumption
I (p) < ∞. The latter forces p to have bounded variation and vanish at infinity. Hence,

‖rn‖TV = ‖p̃n‖TV = bn(1 − δn)
−1‖p1{|x|≤bn}‖TV ≤ bn(1 − δn)

−1
√

I (p). (7.6)

Using the inequality (3.2), we see that the characteristic functions of p̃n and of the centered
density rn(x) = p̃n(x + dn) satisfy

∣∣ψn(t)
∣∣ = ∣∣f̃n(t)

∣∣ ≤ cbn

|t | (t �= 0) (7.7)

with some constant c = c(p), depending on p, only.

Corollary 7.3. If I (p) < ∞, then under the assumptions of Lemma 7.2 with k ≥ 4, we have with
some constant C depending on p, δ, η, only,∫ ∞

−∞
(
1 + |t |)∣∣ψk

n(t)
∣∣dt ≤ C, (7.8)

∫ ∞

−∞
t2

∣∣(ψk
n

)′
(t)

∣∣2 dt ≤ C. (7.9)
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Proof. We have (ψk
n)′(t) = kψ ′

n(t)ψn(t)
k−1, while by (7.2),

∫ ∞

−∞
t2

∣∣ψ ′
n(t)

∣∣2∣∣ψn(t)
∣∣2(k−1) dt ≤ C2

n2

∫ ∞

−∞
t4

∣∣ψn(t)
∣∣2(k−1) dt.

To estimate the last integral, first we use (7.4) which gives∫
|t |≤εbn

t4
∣∣ψn(t)

∣∣2(k−1) dt ≤ C.

For the complementary region |t | > εbn, note that

f̃n(bnt) = 1

1 − δn

∫ bn

−bn

eitxp(x)dx,

which shows that these functions are separated from 1 uniformly in n in |t | ≥ ε. (This can eas-
ily be seen by using general separation bounds for characteristic functions which are discussed
in [2].) Thus,

sup
|t |≥ε

∣∣ψn(bnt)
∣∣ = sup

|t |≥ε

∣∣f̃n(bnt)
∣∣ ≤ e−c

for some constant c > 0 independent of n. In addition, by (7.7),

t4
∣∣ψn(bnt)

∣∣6 ≤ c

t2

with some other constant. Hence,∫
|t |≥εbn

t4
∣∣ψn(t)

∣∣2(k−1) dt ≤ b5
ne−2c(k−4)

∫
|t |≥ε

t4
∣∣ψn(bnt)

∣∣6 dt ≤ Cb5
ne−2ck.

The last expression is exponentially small with respect to n by the constraint on k, and we arrive
at (7.9). The first inequality (7.8), which is simpler, is proved similarly. �

8. Boundedness of Fisher information. Proof of Theorem 1.1

In this section, we complete the last step in the proof of Theorem 1.1. Keeping the same notations
as in the previous sections and recalling Lemma 6.1, we only need the following lemma.

Lemma 8.1. Assume that Zn ⇒ Z weakly in distribution, where Z has a non-extremal stable
law. If I (Zn0) < ∞ for some n0, then supn≥n0

I (Zn) < ∞.

In the normal case, when X1 has a finite second moment, the assertion immediately follows
from Stam’s inequality (2.3). In view of Lemma 6.1, we therefore obtain Barron–Johnson theo-
rem, that is, I (Zn‖Z) → 0. Thus, we may focus on the case 0 < α < 2.
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To simplify the argument and the notations, we assume n0 = 1 (otherwise, mild modifications
connected with the binomial decomposition are only needed). Thus, let I (p) < ∞, where p is
the density of X1. As in the previous section, we denote by pn the density of Z̃n = Zn + an and
assume that Zn ⇒ Z weakly in distribution, where Z has a non-extremal stable law.

By Stam’s inequality (2.3),

I (Zn) ≤ b2
n

n
I (p).

Although the right-hand side tends to infinity, as n → ∞, this inequality may be used for small
values of n, and here it will be sufficient to show that supn≥n0

I (Zn) < ∞ for some n0.
Our basic tool is the binomial decomposition (7.1) of the previous section. Note that, by the

convexity of the I -functional,

I (pn) ≤
n∑

k=0

(
n

k

)
(1 − δn)

kδn−k
n I

(
p̃k∗

n ∗ q̃(n−k)∗
n

)
, (8.1)

so it will be sufficient to properly estimate the terms in this sum. To this aim, we fix a number
η ∈ (0,1) and distinguish two cases.

Lemma 8.2. If k ≤ n − 3, then

I
(
p̃k∗

n ∗ q̃(n−k)∗
n

) ≤ C(nbn)
2I (p) (8.2)

with some constant C depending on p, only.

Proof. By the monotonicity property (2.2), I (p̃k∗
n ∗ q̃

(n−k)∗
n ) ≤ I (q̃

(n−k)∗
n ). On the other hand,

by Proposition 3.2, if n − k ≥ 3,

I
(
q̃(n−k)∗
n

) ≤ 1
2

(∥∥q̃
[(n−k)/3]∗
n

∥∥2
TV + 2

∥∥q̃
[(n−k)/3]∗
n

∥∥
TV · ∥∥q̃

n−k−2[(n−k)/3]∗
n

∥∥
TV

)
.

But the total variation norm decreases when taking convolutions, so that ‖q̃s∗
n ‖TV ≤ ‖q̃n‖TV

(s = 1,2, . . .). Hence,

I
(
q̃(n−k)∗
n

) ≤ 3
2‖q̃n‖2

TV.

In turn, by means of the inequality ‖p‖TV ≤ √
I (p) (Proposition 3.1), we have

‖q̃n‖TV = bnδ
−1
n ‖p1{|x|>bn}‖TV ≤ bnδ

−1
n ‖p‖TV ≤ bnδ

−1
n

√
I (p),

where we used the property p(−∞) = p(∞) = 0 for the first inequality. Thus

I
(
p̃k∗

n ∗ q̃(n−k)∗
n

) ≤ 3
2

(√
I (p)bnδ

−1
n

)2
.

Recalling that δn ∼ c
n

, Lemma 8.2 is proved. �



1644 S.G. Bobkov, G.P. Chistyakov and F. Götze

Lemma 8.3. If 15 ≤ ηn ≤ k ≤ n, then

I
(
p̃k∗

n ∗ q̃(n−k)∗
n

) ≤ C (8.3)

with some constant C depending on p and η, only.

Proof. Again appealing to the monotonicity of the Fisher information, we will use the bound

I
(
p̃k∗

n ∗ q̃(n−k)∗
n

) ≤ I
(
p̃k∗

n

)
.

Thus, involving the centered density rn(x) = p̃n(x + dn) with the characteristic function ψn (as
in the previous section), it suffices to show that

I
(
rk∗
n

) = I
(
p̃k∗

n

) ≤ C. (8.4)

Assume first that η0n ≤ k ≤ n, where 0 < η0 < η. Since ‖rn‖TV ≤ Cbn

√
I (p) < ∞ (see (7.6)

and Proposition 3.2), the convolution powers rk∗
n have finite Fisher information, whenever k ≥ 3.

In view of the bound (7.7) on the characteristic functions, we may invoke inversion formulas like
in (5.5)–(5.7) to write, for any x ∈ R,

rk∗
n (x) = 1

2π

∫ ∞

−∞
e−itxψn(t)

k dt, (8.5)

(
rk∗
n

)′
(x) = 1

2π

∫ ∞

−∞
e−itx(−it)ψn(t)

k dt, (8.6)

rk∗
n (x) + x

(
rk∗
n

)′
(x) = − 1

2π

∫ ∞

−∞
e−itx tkψn(t)

k−1ψ ′
n(t)dt, (8.7)

where for reasons of integrability it is safer to assume that k ≥ 5.
Corollary 7.3 tells us that the Fourier transforms in (8.5) and (8.7) are well defined for square

integrable functions whose L2-norms are bounded by a constant independent of k and n. Hence,
the same is true for

x
(
rk∗
n

)′
(x) = − 1

2π

∫ ∞

−∞
e−itx(ψn(t)

k + tkψn(t)
k−1ψ ′

n(t)
)

dt,

and we may write ∣∣(rk∗
n

)′
(x)

∣∣ ≤ unk(x)

|x| (8.8)

with

‖unk‖2
2 =

∫ ∞

−∞
unk(x)2 dt ≤ C. (8.9)

Moreover, according to (7.8), L1-norms of the functions (−it)ψn(t)
k in (8.6) are also bounded

by a constant independent of k and n. Hence,

sup
x

∣∣(rk∗
n

)′
(x)

∣∣ ≤ C
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for all n and η0n ≤ k ≤ n. As a result, (8.8) may be sharpened to

∣∣(rk∗
n

)′
(x)

∣∣ ≤ unk(x)

1 + |x|
with some functions unk satisfying (8.9). By applying Cauchy’s inequality, the latter immediately
implies that ∥∥rk∗

n

∥∥
TV =

∫ ∞

−∞
∣∣(rk∗

n

)′
(x)

∣∣dx ≤ C′‖unk‖2 ≤ C, (8.10)

where the resulting constant C may depend on p and η0 (by choosing, e.g., δ = α/2 in the
previous auxiliary lemmas of the previous section).

We now apply Proposition 3.2 to convolutions of any three densities rk∗
n , as above. That is, if

η0n ≤ kj ≤ n and kj ≥ 5 (j = 1,2,3), we obtain by (3.4) and (8.10) that

I
(
r(k1+k2+k3)∗
n

) ≤ 3
2C2. (8.11)

Starting with k ≥ 15, put k1 = k2 = [ k
3 ], k3 = k − (k1 + k2), so that kj ≥ 5. Also, if k ≥ ηn,

we have kj ≥ [ ηn
3 ] ≥ ηn

6 . Hence, we may choose η0 = η
6 , and thus (8.11) implies (8.3)–(8.4). �

Proof of Lemma 8.1. In the case 15 ≤ ηn ≤ n − 3, we may combine Lemmas 8.2 and 8.3 to get
from (8.1) the following. With some constant C = C(p,η), depending on η and the density p

via I (p) and the constant c in δn ∼ c
n

,

I (pn) ≤ C(nbn)
2

∑
0≤k<ηn

(
n

k

)
(1 − δn)

kδn−k
n + C

∑
ηn≤k≤n

(
n

k

)
(1 − δn)

kδn−k
n

≤ C(nbn)
2 · 2nδ(1−η)n

n + C ≤ C′,

where the last inequality holds for all sufficiently large n (by using δn ∼ c
n

) with, for example,
η = 1

2 . Lemma 8.1 and therefore Theorem 1.1 are now proved. �

Remark 8.4. Finally, let us comment on the conditions (a)–(b) from the Introduction. In view of
the general bound (3.3), (a) is always necessary for the finiteness of I (Zn) with some n. Since
(b) is weaker than (a), we need explain the opposite direction.

If 1 < α ≤ 2, then X1 has finite first absolute moment C = E|X1|. Hence, under (1.6), the
condition (3.5) is fulfilled and thus the bound (3.6) is applicable to all Zn with n ≥ (ν + 2)/2.
More precisely, denoting by gn(t) = f1(t)

n the characteristic function of Sn = X1 + · · · + Xn,
we have ∣∣(tgn(t)

)′∣∣ ≤ ∣∣gn(t)
∣∣ + |t |∣∣g′

n(t)
∣∣ ≤ (

1 + Cn|t |)∣∣f1(t)
∣∣n−1

,

thus Sn has a density ρn(x) whose total variation norm satisfies

‖ρn‖4
TV ≤

∫ ∞

−∞
t2

∣∣f1(t)
∣∣2n dt

∫ ∞

−∞
(
1 + Cn|t |)2∣∣f1(t)

∣∣2(n−1) dt < ∞.
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By Proposition 3.2, we get I (S3n) < ∞.
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