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a b s t r a c t

The central limit theorem is considered with respect to the transport distance W2. We
discuss an alternative approach to a result of E. Rio, based on a Berry–Esseen-type bound
for the entropic distance to the normal distribution.
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Let X and Z be random variables with distributions F and G, having finite second moments. The Kantorovich distance
W2(F ,G) between F and G, also called the quadratic Wasserstein distance, is defined by

W 2
2 (F ,G) = W 2

2 (X, Z) = inf

E (X ′

− Z ′)2 : X ′
∼ F , Z ′

∼ G

, (1)

where the infimum is taken over all random variables X ′ and Z ′ with distributions F and G, respectively. More precisely,

W 2
2 (F ,G) = inf

π


∞

−∞


∞

−∞

(x − z)2 dπ(x, z)

with infimum taken over all probability measures π on the plane R2 having F and G as marginal projections.
Under mild moment constraints, this distance metrizes the weak topology in the space of probability measures on the

real line. So, it is of a certain interest to know how to boundW2 in various limit theorems. Herewe consider the usual central
limit theorem and the related problem of the normal approximation with respect toW2.

Thus, let Sn = X1 + · · · + Xn be the sum of n independent random variables such that EXk = 0,


k EX
2
k = 1. The

closeness of the distribution of Sn to the standard normal law may be quantified under higher order moment assumptions
in terms of the Lyapunov coefficients

Ls =

n
k=1

E |Xk|
s, s ≥ 2.

For example, the Berry–Esseen theorem indicates that, up to a numerical constant C ,

sup
x

|P{Sn ≤ x} − P{Z ≤ x}| ≤ CL3,

where Z is a standard normal random variable (in which case we write Z ∼ N(0, 1)). This inequality quantifies the Kol-
mogorov (uniform) distance between the corresponding distribution functions. In part concerning theW2-distance, princi-
pal results in this direction are due to E. Rio, whomade in particular the following remarkable observation (cf. also Rio, 2011).
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Theorem 1 (Rio, 2009). We have

W 2
2 (Sn, Z) ≤ CL4, (2)

where Z ∼ N(0, 1) and C is an absolute constant.

Restricting (2) to the i.i.d. case and writing the sum in a more convenient way as Sn = (ξ1 + · · · + ξn)/
√
n with

Eξ1 = 0, Eξ 2
1 = 1 and Eξ 4

1 < ∞, Theorem 1 provides a typical expected rate of the normal approximation with respect to
n, namely,

W 2
2 (Sn, Z) ≤

CEξ 4
1

n
. (3)

In contrast with the Berry–Esseen theorem, this bound relies upon the finiteness of the 4-th moment. However, as was
also shown in Rio (2009), the distancesW2(Sn, Z) may decay to zero at a lower rate under the weaker moment assumption
E |ξ1|

s < ∞, 2 < s < 4.
Being somewhat non-trivial, the proof of Theorem 1 given in Rio (2009) is based on the study of the relationship between

W2 and Zolotarev’s ideal metrics ζs, as well as on Poisson-type approximations. In this note we describe an alternative
approach to this result which involves an entropic distance to normality and uses the property that W2(F ,G) does not
change considerably under slight smoothing operations.

First let us introduce basic notations. If a random variable X has density p, and a random variable Z has density q, the
Kullback–Leibler distance from the distribution of X to the distribution of Z (also called an informational divergence or the
relative entropy of X with respect to Z) is defined by

D(X ∥ Z) =


∞

−∞

p(x) log
p(x)
q(x)

dx.

This quantity is not symmetric in coordinates (X, Z), but is always non-negative and vanishes, if and only if p = q a.e.
Moreover, it majorizes (a function of) the total variation distance between the distributions. What will be more relevant is
that, when Z is standard normal, we have M. Talagrand’s entropy-transport inequality

W 2
2 (X, Z) ≤ 2D(X ∥ Z), (4)

cf. Talagrand (1996), or Bobkov andGötze (1999) for a different proof. Such a relation could be used in the proof of Theorem1,
once we are able to bound the relative entropy. And this turns out indeed possible under proper ‘‘smoothing’’ assumptions.

For the sum Sn as before, introduce its characteristic function fn(t) = E eitSn .

Theorem 2. If fn(t) is vanishing outside the interval |t| ≤
1

4
√
L4
, then

D(Sn ∥ Z) ≤ CL4, (5)

where Z ∼ N(0, 1) and C is an absolute constant.

Combining (4) and (5), we are led to the desired estimate W 2
2 (Sn, Z) ≤ CL4, which holds however under an additional

support hypothesis on fn(t). The latter may be removed when applying (5) to the smoothed distributions, namely — to the
random variables of the form

Sn(τ ) =


1 − τ 2 Sn + τ ξ, 0 ≤ τ ≤ 1,

where ξ is independent of Sn, with Eξ = 0 and Eξ 2
= 1.

Proof of Theorem 1 (On the Basis of Theorem 2). By the definition (1),

W2(Sn(τ ), Sn) ≤

E (Sn(τ ) − Sn)2

1/2
≤ 2τ . (6)

To meet the requirements of Theorem 2, let ξ have finite 4-th moment and a characteristic function v(t) = E eitξ vanishing
outside an interval [−T , T ] of length of order 1. For example, one may take the 4-th convolution power of the characteristic
function h(t) = (1− |t|)+ and then normalize and rescale it, so that v(t) = a (h ∗ h ∗ h ∗ h)(bt) would satisfy v(0) = 1 and
Eξ 2

= −v′′(0) = 1. By the construction, v is 4 times differentiable, so Eξ 4 < ∞.
To derive (2), we may assume that L4 is small enough. Let L4 ≤ 1/(16T 2) and take τ = 4

√
L4 T . Then we may apply

Theorem 2 to the sequence
√
1 − τ 2 X1, . . . ,

√
1 − τ 2 Xn, τξ , in which case for the corresponding Lyapunov coefficient we

have

L4(τ ) = (1 − τ 2)2L4 + τ 4Eξ 4
≤ AL4, A = 1 + 16 T 2 Eξ 4.

By (4)–(5), this gives

W 2
2 (Sn(τ ), Z) ≤ 2D(Sn(τ ) ∥ Z) ≤ 2CL4(τ ) ≤ 2CAL4.

Hence, by (6), and using the triangle inequality for W2, we get W2(Sn, Z) ≤ Cξ

√
L4, where the constant Cξ depends on the

distribution of ξ , only. �
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As we see from the proof, a good point of this approach is that, avoiding the use of the special one dimensional formula

W 2
2 (F ,G) =

 1

0
(F−1(p) − G−1(p))2 dp,

it can be adapted to cover the multidimensional case (of independent random vectors in Rd). Such extension deserves a
separate consideration, and we do not discuss it here. Let us only mention that for the dimensions d higher than 4, the rate
1/n like in (3) requires the finiteness of the 5-th absolute moment (as noticed in Bobkov et al. (in press-a) for the entropic
central limit theorem in Rd).

As a main argument leading to Theorem 2, we use an Edgeworth-type approximation of fn by the corrected normal
‘‘characteristic function’’

gα(t) =


1 + α

(it)3

3!


e−t2/2

with α =
n

k=1 EX
3
k . First let us recall a routine but rather standard fact, which is based on Taylor’s expansion for the

characteristic functions of Xk near zero up to order 4, cf. e.g. Statulevičius (1965), Bhattacharya and Ranga Rao (1976).

Lemma 3. If L4 < ∞, then in the interval |t| max(L1/44 , L1/64 ) ≤ 1, dpdtp
(fn(t) − gα(t))

 ≤ CL4

|t|4−p

+ |t|6+p e−t2/2, p = 0, 1, 2, 3, 4,

where C is an absolute constant.

Lemma 4. Let Ls < ∞, for some integer s ≥ 3. Then, in the interval |t| ≤
1

4L3
, dpdtp

fn(t)
 ≤ Cp (Lp∗ + 1) e−t2/4, p = 0, . . . , s,

where p∗
= max(p, 2), and where the constants Cp depend on p, only.

Here, in the cases p = 0, 1, 2 the term Lp∗ = 1 may be removed. This bound is also known, but is usually stated for the
particular value p = 0, only.We could not find a reference for the case p ≥ 1 and therefore will include a standard argument
at the end of this note.

In the next auxiliary assertion, we use the notation ∥u∥2 =


∞

−∞
|u(t)|2 dt

1/2.
Lemma 5. Let X be a random variable with E |X |

3 < ∞. For any α ∈ R,

D(X ∥ Z) ≤ α2
+ 4


∥f − gα∥2 + ∥f ′′′

− g ′′′

α ∥2

,

where Z ∼ N(0, 1), and f is the characteristic function of X.

Note that the finiteness of ∥f ∥2 guarantees the existence of a density of X , while the finiteness of the 3-rd absolute
moment of X insures that f has continuous derivatives up to order 3. The proof of Lemma 5 can be found in a recent paper
by Bobkov et al. (in press-b), where Berry–Esseen-type bounds are treated under entropic assumptions.

Proof of Theorem 2. By Lemma 5,

D(Sn ∥ Z) ≤ α2
+ 4


∥fn − gα∥2 + ∥f ′′′

n − g ′′′

α ∥2

, α =

n
k=1

EX3
k . (7)

Using Lemmas 3 and 4with s = 4, and the general relation L23 ≤ L4, onemaywrite down amore unified bound for fn −gα

(at the expense of a non-essential constant in the exponent) dpdtp
(fn(t) − gα(t))

 ≤ CL4 e−t2/4, |t| ≤ (16L4)−1/2, p = 0, 1, 2, 3, 4, (8)

where C is an absolute constant. Due to the assumption that fn(t) = 0 in |t| ≥ (16L4)−1/2, the inequalities (7) and (8) with
p = 0 and p = 3 yield

D(Sn ∥ Z) ≤ α2
+ 4


|t|≤(16L4)−1/2


CL4 e−t2/4

2
dt +


|t|≥(16L4)−1/2

|gα(t)|2 dt
1/2

+ 4


|t|≤(16L4)−1/2


CL4 e−t2/4

2
dt +


|t|≥(16L4)−1/2

|g ′′′

α (t)|2 dt
1/2

.

But |α| ≤ L3 ≤
√
L4, so all these integrals do not exceed L24, up to a numerical constant. �
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Proof of Lemma 4. Put βp,k = E |Xk|
p and denote by vk the characteristic function of Xk. First let us recall why one may

bound |fn(t)| on a large interval (cf. e.g. Petrov, 1975, par. 2, Chapter V). Let X ′

k be an independent copy of Xk. Then,
E (Xk − X ′

k)
2

= 2σ 2
k and, by Jensen’s inequality, E |Xk − X ′

k|
3

≤ 4β3,k. Hence, by Taylor’s expansion, for any t real,

|vk(t)|2 = E eit(Xk−X ′
k) = 1 − σ 2

k t
2
+

4θk
3!

β3,k|t|3 ≤ exp

−σ 2

k t
2
+

4θk
3!

β3,k|t|3


with some θk = θk(t) such that |θk| ≤ 1. Multiplying these inequalities, we get

|fn(t)|2 ≤ exp

−t2 +

2
3
L3|t|3


,

so,

|fn(t)| ≤ e−t2/3, for |t| ≤
1
2L3

. (9)

Next, to estimate the absolute value of the p-th derivative of fn, one may use the polynomial formula

f (p)
n (t) =


p!

q1! . . . qn!


v

(q1)
1 (t) · · · v(qn)

n (t), (10)

where the summation runs over all integers qk ≥ 0 such that q1 + · · · + qn = p.
We first assume that

σ 2
= max

k
σ 2
k ≤ σ 2(p) =

1
p


1 −

1
41/3


.

To bound the derivatives of vk in (10), one may use |v
(q)
k (t)| ≤ βq,k which is good in the case q ≥ 2. For q = 1, we have

v′

k(0) = 0 and |v′′

k (t)| ≤ σ 2
k , so, |v

′

k(t)| ≤ σ 2
k |t|. Therefore, in all cases

|v
(qk)
k (t)| ≤ βq∗

k ,k (1 + |t|), qk ≥ 1, q∗

k = max(qk, 2). (11)

On the other hand, by the assumption on σ ,

c2 = Var

 
k: qk=0

Xk


= 1 −


k: qk≥1

σ 2
k ≥ 1 − pσ 2

≥
1

41/3
.

Hence, the 3-rd Lyapunov coefficient for the collection
 1
c Xk

qk=0 does not exceed 2L3. Applying the inequality (9) to the sum

1
c


k: qk=0 Xk, we obtain that

k: qk=0

|vk(t)| ≤ e−t2/3, for |t| ≤
1
4L3

. (12)

Now, write (q1, . . . , qn) = (1, . . . , k1, . . . , kl, . . . , 1), i.e., specifying the indices k for which qk ≥ 1, and let l = card{k ≤

n : qk ≥ 1}. Put p1 = qk1 , . . . , pl = qkl and combine (11) with (12), so as to write in the same interval

n
k=0

|v
(qk)
k (t)| ≤ (1 + |t|)l e−t2/3 βp∗

1,k1 . . . βp∗
l ,kl .

Using this estimate in (10) and performing summation over all kj’s, we get

|f (p)
n (t)| ≤ p!Lp (1 + |t|)p e−t2/3 (13)

with constantLp =


Lp∗

1
. . . Lp∗

l
,

where the summation is running over all integers l = 1, . . . , p and p1, . . . , pl ≥ 1 such that p1 + · · · + pl = p.
Clearly,L1 = 1 andL2 = 2. If p ≥ 3, using the property that the function q → L1/(q−2)

q is not decreasing in q > 2 (due to
Markov’s inequality), we get

Lp∗
1
. . . Lp∗

l
=


j: pj≥2

Lpj ≤


j: pj≥2

L
(pj−2)/(p−2)
p = Lν

p . (14)
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Here

(p − 2)ν =

l
j=1

(pj − 2) 1{pj≥2} = p − 2l +

j: pj=1

1 ≤ p − 2

with the last inequality holding for l ≥ 2. It also holds for l = 1, since then


j: pj=1 1 = 0 due to the assumption p ≥ 3.
Hence ν ≤ 1, so Lν

p ≤ Lp + 1, which implies

Lp ≤ (Lp + 1)
p

l=1


p1+···+pl=p

1 = Ap(Lp + 1) (p ≥ 3).

Thus,Lp ≤ Ap(Lp∗ + 1) in all cases with a constant Ap depending p, only. Using also (1 + |t|)p e−t2/3
≤ Bp e−t2/4, we get

from (13) the desired inequality

|f (p)
n (t)| ≤ Cp(Lp∗ + 1) e−t2/4, |t| ≤

1
4L3

, (15)

with some p-depending constant Cp.
Finally, for the remaining values σ > σ(p), necessarily L3 > σ 3(p) and 1

4L3
< 1

4σ 3(p)
, so, it suffices to consider the interval

|t| < 1
4σ 3(p)

. Applying Rosenthal’s inequality E |Sn|p ≤ Dp(Lp∗ + 1), in which Dp depends only on p, we get

|f (p)
n (t)| ≤ E |Sn|p ≤ Dp(Lp∗ + 1) ≤ D′

p(Lp∗ + 1) e−t2/4, |t| <
1

4σ 3(p)
.

Here one may take D′
p = Dp e1/(64 σ 6(p)). Thus, (15) holds without any constraint on σ . �
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