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RATE OF CONVERGENCE AND EDGEWORTH-TYPE EXPANSION
IN THE ENTROPIC CENTRAL LIMIT THEOREM1

BY SERGEY G. BOBKOV, GENNADIY P. CHISTYAKOV

AND FRIEDRICH GÖTZE

University of Minnesota, University of Bielefeld and University of Bielefeld

An Edgeworth-type expansion is established for the entropy distance to
the class of normal distributions of sums of i.i.d. random variables or vectors,
satisfying minimal moment conditions.

1. Introduction. Let (Xn)n≥1 be independent, identically distributed random
variables with mean EX1 = 0 and variance Var(X1) = 1. According to the central
limit theorem, the normalized sums

Zn = X1 + · · · + Xn√
n

are weakly convergent in distribution to the standard normal law Zn ⇒ Z, where
Z ∼ N(0,1) with density ϕ(x) = 1√

2π
e−x2/2. A much stronger statement (when

applicable)—the entropic central limit theorem—states that, if for some n0, or
equivalently, for all n ≥ n0, the random variables Zn have absolutely continuous
distributions with finite entropies h(Zn), then these entropies converge,

h(Zn) → h(Z) as n → ∞.(1.1)

This theorem is due to Barron [3]. Some weaker variants of the theorem in case
of regularized distributions were known before; they go back to the work of Lin-
nik [16], initiating an information-theoretic approach to the central limit theorem.

To clarify in which sense (1.1) is strong, recall that, if a random variable X with
finite second moment has a density p(x), its entropy

h(X) = −
∫ +∞
−∞

p(x) logp(x)dx

is well defined and is bounded from above by the entropy of the normal random
variable Z, having the same mean a and the same variance σ 2 as X. Note that the
value h(X) = −∞ is possible. The relative entropy

D(X) = D(X‖Z) = h(Z) − h(X) =
∫ +∞
−∞

p(x) log
p(x)

ϕa,σ (x)
dx,
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where ϕa,σ stands for the density of Z, is nonnegative and serves as kind of a dis-
tance to the class of normal laws, or to Gaussianity. This quantity does not depend
on the mean or the variance of X, and can be related to the total variation dis-
tance between the distributions of X and Z by virtue of the Pinsker-type inequality
D(X) ≥ 1

2‖FX − FZ‖2
TV. This already shows that the entropic convergence (1.1)

is stronger than convergence in the total variation norm.
Thus, the entropic central limit theorem may be reformulated as D(Zn) → 0, as

long as D(Zn0) < +∞ for some n0. This property itself gives rise to a number of
intriguing questions, such as to the type and the rate of convergence. In particular,
it has been proved only recently that the sequence h(Zn) is nondecreasing, so
that D(Zn) ↓ 0; cf. [1, 17]. This leads to the question as to the precise rate of
D(Zn) tending to zero; however, not much seems to be known about this problem.
The best results in this direction are due to Artstein et al. [2] and to Barron and
Johnson [15]. In the i.i.d. case as above, these authors have obtained an expected
asymptotic bound D(Zn) = O(1/n) under the hypothesis that the distribution of
X1 admits an analytic inequality of Poincaré-type (in [15], a restricted Poincaré
inequality is used). These inequalities involve a large variety of “nice” probability
distributions which necessarily have a finite exponential moment.

The aim of this paper is to study the rate of D(Zn), using moment conditions
E|X1|s < +∞ with fixed values s ≥ 2, which are comparable to those required for
classical Edgeworth-type approximations in the Kolmogorov distance. The cumu-
lants

γr = i−r dr

dtr
log EeitX1

∣∣∣∣
t=0

are then well defined for all r ≤ [s] (the integer part of s), and one may introduce
the functions

qk(x) = ϕ(x)
∑

Hk+2j (x)
1

r1! · · · rk!
(

γ3

3!
)r1

· · ·
(

γk+2

(k + 2)!
)rk

(1.2)

involving the Chebyshev–Hermite polynomials Hk . The summation in (1.2) runs
over all nonnegative integer solutions (r1, . . . , rk) to the equation r1 + 2r2 + · · · +
krk = k, and one uses the notation j = r1 + · · · + rk .

The functions qk are defined for k = 1, . . . , [s] − 2. They appear in Edgeworth-
type expansions including the local limit theorem, where qk are used to construct
the approximation of the densities of Zn. These results can be applied to obtain
an expansion in powers of 1/n for the distance D(Zn). For a multidimensional
version of the following Theorem 1.1 for moments of integer order s ≥ 2, see
Theorem 6.1 below.

THEOREM 1.1. Let E|X1|s < +∞ (s ≥ 2), and assume D(Zn0) < +∞, for
some n0. Then

D(Zn) = c1

n
+ c2

n2 + · · · + c[(s−2)/2]
n[(s−2)/2] + o

(
(n logn)−(s−2)/2)

.(1.3)
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Here

cj =
2j∑

k=2

(−1)k

k(k − 1)

∑∫ +∞
−∞

qr1(x) · · ·qrk (x)
dx

ϕ(x)k−1 ,(1.4)

where the summation runs over all positive integers (r1, . . . , rk) such that r1 +
· · · + rk = 2j .

Each coefficient cj in (1.3) represents a certain polynomial in the cumulants
γ3, . . . , γ2j+1. For example, c1 = 1

12γ 2
3 , and in the case s = 4, (1.3) gives

D(Zn) = 1

12n

(
EX3

1
)2 + o

(
1

n logn

) (
EX4

1 < +∞)
.(1.5)

Thus, under the 4th moment condition, we have D(Zn) ≤ C
n

, where the constant
depends on the underlying distribution. This has been conjectured by Johnson [14],
page 49. Actually, the constant C may be expressed in terms of EX4

1 and D(X1),
only.

When s varies in the range 4 ≤ s ≤ 6, the leading linear term in (1.5) will be
unchanged, while the remainder term improves and satisfies O( 1

n2 ) in case EX6
1 <

+∞. But for s = 6, the result involves the subsequent coefficient c2 which depends
on γ3, γ4 and γ5. In particular, if γ3 = 0, we have c2 = 1

48γ 2
4 , thus

D(Zn) = 1

48n2

(
EX4

1 − 3
)2 + o

(
1

(n logn)2

) (
EX3

1 = 0,EX6
1 < +∞)

.

More generally, representation (1.3) simplifies if the first k − 1 moments of X1
coincide with the corresponding moments of Z ∼ N(0,1).

COROLLARY 1.2. Let E|X1|s < +∞ (s ≥ 4), and assume that D(Zn0) <

+∞, for some n0. Given k = 3,4, . . . , [s], assume that γj = 0 for all 3 ≤ j < k.
Then

D(Zn) = γ 2
k

2k! · 1

nk−2 + O

(
1

nk−1

)
+ o

(
1

(n logn)(s−2)/2

)
.(1.6)

Johnson had noticed (though in terms of the standardized Fisher information,
see [14], Lemma 2.12) that if γk �= 0, D(Zn) cannot be of smaller order than
n−(k−2).

Note that when EX2k
1 < +∞, the o-term may be removed in the representa-

tion (1.6). On the other hand, when k > s+2
2 , the o-term will dominate the n−(k−2)-

term, and we can only conclude that D(Zn) = o((n logn)−(s−2)/2).
As for the missing range 2 ≤ s < 4, here there are no coefficients cj appearing

in the sum (1.3), and Theorem 1.1 just tells us that

D(Zn) = o

(
1

(n logn)(s−2)/2

)
.(1.7)
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This bound is worse than the rate 1/n. In particular, it only gives D(Zn) = o(1) for
s = 2, which is the statement of Barron’s theorem. In fact, in this case the entropic
distance to normality may decay to zero at an arbitrarily slow rate. In case of a
finite 3rd absolute moment, D(Zn) = o( 1√

n logn
). To see that this and that the more

general relation (1.7) cannot be improved with respect to the powers of 1/n, we
prove:

THEOREM 1.3. Let η > 1. Given 2 < s < 4, there exists a sequence of in-
dependent, identically distributed random variables (Xn)n≥1 with E|X1|s < +∞,
such that D(X1) < +∞ and

D(Zn) ≥ c

(n logn)(s−2)/2(logn)η
, n ≥ n1(X1),

with a constant c = c(η, s) > 0, depending on η and s, only.

Known bounds on the entropy are commonly based on Bruijn’s identity which
may be used to represent the entropic distance to normality as an integral of the
Fisher information for regularized distributions; cf. [3]. However, it is not clear
how to reach exact asymptotics with this approach. The proofs of Theorems 1.1
and 1.3 stated above rely upon classical tools and results in the theory of sums of
independent summands including Edgeworth-type expansions for convolution of
densities formulated as local limit theorems with nonuniform remainder bounds.
For noninteger values of s, the authors had to complete the otherwise extensive lit-
erature by recent, technically rather involved results based on fractional differential
calculus; see [6, 7]. Our approach applies to random variables in higher dimension
as well and to nonidentical distributions for summands with uniformly bounded
sth moments.

We start with the description of a truncation-of-density argument, which al-
lows us to reduce many questions about bounding the entropic distance to the case
of bounded densities (Section 2). In Section 3 we discuss known results about
Edgeworth-type expansions that will be used in the proof of Theorem 1.1. Main
steps of the proofs are based on it in Sections 4 and 5. All auxiliary results cover
the scheme of i.i.d. random vectors in Rd as well (however, with integer values
of s) and are finalized in Section 6 to obtain multidimensional variants of Theo-
rem 1.1 and Corollary 1.2. Sections 7 and 8 are devoted to lower bounds on the
entropic distance to normality for a special class of probability distributions on the
real line that are used in the proof Theorem 1.3.

2. Binomial decomposition of convolutions. First let us comment on the as-
sumptions in Theorem 1.1. It may happen that X1 has a singular distribution, but
the distribution of X1 + X2 and of all next sums Sn = X1 + · · · + Xn (n ≥ 2) are
absolutely continuous; cf. [25].
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If it exists, the density p of X1 may or may not be bounded. In the first case, all
the entropies h(Sn) are finite. If p is unbounded, it may happen that all h(Sn) are
infinite, even if p is compactly supported. But if h(Sn) is finite for some n = n0
then, for all n ≥ n0, entropies are finite; see [3] for specific examples.

Denote by pn(x) the density of Zn = Sn/
√

n (when it exists). Since it is desir-
able to work with bounded densities, we will slightly modify pn at the expense of
a small change in the entropy. Variants of the next construction are well known;
see, for example, [13, 23], where the central limit theorem was studied with re-
spect to the total variation distance. Without any extra efforts, we may assume that
Xn take values in Rd which we equip with the usual inner product 〈·, ·〉 and the
Euclidean norm | · |. For simplicity, we describe the construction in the situation,
where X1 has a density p(x); cf. Remark 2.5 on appropriate modifications in the
general case.

Let m0 ≥ 0 be a fixed integer. (For the purposes of Theorem 1.1, one may take
m0 = [s] + 1.)

If p is bounded, we put p̃n(x) = pn(x) for all n ≥ 1. Otherwise, the integral

b =
∫
p(x)>M

p(x)dx(2.1)

is positive for all M > 0. Choose M to be sufficiently large to satisfy, for exam-
ple, 0 < b < 1

2 ; cf. Remark 2.4. In this case (when p is unbounded), consider the
decomposition

p(x) = (1 − b)ρ1(x) + bρ2(x),(2.2)

where ρ1, ρ2 are the normalized restrictions of p to the sets {p(x) ≤ M} and
{p(x) > M}, respectively. Hence, for the convolutions we have a binomial decom-
position

p∗n =
n∑

k=0

Ck
n(1 − b)kbn−kρ∗k

1 ∗ ρ
∗(n−k)
2 .

For n ≥ m0 + 1, we split the above sum into the two parts, so that p∗n = ρn1 +ρn2
with

ρn1 =
n∑

k=m0+1

Ck
n(1 − b)kbn−kρ∗k

1 ∗ ρ
∗(n−k)
2 ,

ρn2 =
m0∑
k=0

Ck
n(1 − b)kbn−kρ∗k

1 ∗ ρ
∗(n−k)
2 .

Note that, whenever b < b1 < 1
2 ,

εn ≡
∫

ρn2(x) dx =
m0∑
k=0

Ck
n(1 − b)kbn−k

(2.3)
≤ nm0bn−m0 = o

(
bn

1
)

as n → ∞.



2484 S. G. BOBKOV, G. P. CHISTYAKOV AND F. GÖTZE

Finally define

p̃n(x) = pn1(x) = 1

1 − εn

nd/2ρn1(x
√

n)(2.4)

and similarly pn2(x) = 1
εn

nd/2ρn2(x
√

n). Thus, we have the desired decomposi-
tion

pn(x) = (1 − εn)pn1(x) + εnpn2(x).(2.5)

The probability densities pn1(x) are bounded and provide an approximation for
pn(x) = nd/2p∗n(x

√
n) in total variation. In particular, from (2.3)–(2.5) it follows

that ∫ ∣∣pn1(x) − pn(x)
∣∣dx < 2−n

for all n large enough. One of the immediate consequences of this estimate is the
bound ∣∣vn1(t) − vn(t)

∣∣ < 2−n (
t ∈ Rd)

(2.6)

for the characteristic functions vn(t) = ∫
ei〈t,x〉pn(x) dx and vn1(t) = ∫

ei〈t,x〉 ×
pn1(x) dx, corresponding to the densities pn and pn1.

This property may be sharpened in case of finite moments.

LEMMA 2.1. If E|X1|s < +∞ (s ≥ 0), then for all n large enough,∫ (
1 + |x|s)∣∣p̃n(x) − pn(x)

∣∣dx < 2−n.

In particular, (2.6) also holds for all partial derivatives of vn1 and vn up to order
m = [s].

PROOF. By definition (2.5), |pn1(x) − pn(x)| ≤ εn(pn1(x) + pn2(x)), hence∫
|x|s ∣∣pn1(x) − pn(x)

∣∣dx ≤ εn

1 − εn

n−s/2
∫

|x|sρn1(x) dx

+ n−s/2
∫

|x|sρn2(x) dx.

Let U1,U2, . . . be independent copies of U and V1,V2, . . . be independent
copies of V (that are also independent of Un’s), where U and V are random vectors
with densities ρ1 and ρ2, respectively. From (2.2)

βs ≡ E|X1|s = (1 − b)E|U |s + bE|V |s,
so E|U |s ≤ βs/b and E|V |s ≤ βs/b (using b < 1

2 ). Therefore, for the normalized
sums

Rk,n = 1√
n
(U1 + · · · + Uk + V1 + · · · + Vn−k), 0 ≤ k ≤ n,
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we have E|Rk,n|s ≤ βs

b
ns/2, if s ≥ 1, and E|Rk,n|s ≤ βs

b
n1−(s/2), if 0 ≤ s ≤ 1.

Hence, by the definition of ρn1 and ρn2,∫
|x|sρn1(x) dx = ns/2

n∑
k=m0+1

Ck
n(1 − b)kbn−kE|Rk,n|s ≤ βs

b
ns+1,

∫
|x|sρn2(x) dx = ns/2

m0∑
k=0

Ck
n(1 − b)kbn−kE|Rk,n|s ≤ βs

b
ns+1εn.

It remains to apply estimate (2.3) on εn, and Lemma 2.1 follows. �

We need to extend the assertion of Lemma 2.1 to the relative entropies
with respect to the standard normal distribution on Rd with density ϕ(x) =
(2π)−d/2e−|x|2/2. Thus put

Dn =
∫

pn(x) log
pn(x)

ϕ(x)
dx, D̃n =

∫
p̃n(x) log

p̃n(x)

ϕ(x)
dx.

LEMMA 2.2. If X1 has a finite second moment and finite entropy, then |D̃n −
Dn| < 2−n, for all n large enough.

First, we collect a few elementary properties of the convex function L(u) =
u logu (u ≥ 0).

LEMMA 2.3. For all u, v ≥ 0 and 0 ≤ ε ≤ 1:

(a) L((1 − ε)u + εv) ≤ (1 − ε)L(u) + εL(v);
(b) L((1 − ε)u + εv) ≥ (1 − ε)L(u) + εL(v) + uL(1 − ε) + vL(ε);
(c) L((1 − ε)u + εv) ≥ (1 − ε)L(u) − 1

e
u − 1

e
.

The first assertion is just Jensen’s inequality applied to L. By the convexity
of L, for each y ≥ 0, the function L(x + y) − L(x) is increasing in x ≥ 0. Hence,
L(x + y) − L(x) ≥ L(y), which is (b) for x = (1 − ε)u and y = εv. Similarly,
using L ≥ −1

e
, we obtain (c).

PROOF OF LEMMA 2.2. Assuming that p is (essentially) unbounded, define

Dnj =
∫

pnj (x) log
pnj (x)

ϕ(x)
dx (j = 1,2),

so that D̃n = Dn,1. By Lemma 2.3(a), Dn ≤ (1 − εn)Dn1 + εnDn2. On the other
hand, by (b),

Dn ≥ (
(1 − εn)Dn1 + εnDn2

) + εn log εn + (1 − εn) log(1 − εn).
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In view of (2.3), the two estimates give

|Dn1 − Dn| < C(n + Dn1 + Dn2)b
n
1 ,(2.7)

which holds for all n ≥ 1 with some constant C. In addition, by the inequality in
(c) with ε = b, from (2.2) it follows that

D(X1‖Z) =
∫

L

(
p(x)

ϕ(x)

)
ϕ(x)dx ≥ (1 − b)

∫
ρ1(x) log

ρ1(x)

ϕ(x)
dx − 2

e
,(2.8)

where Z denotes a standard normal random vector in Rd . By the same reasoning,

D(X1‖Z) ≥ b

∫
ρ2(x) log

ρ2(x)

ϕ(x)
dx − 2

e
.(2.9)

Now, by the convexity of the function L(u) = u logu,

Dn1 ≤ 1

1 − εn

n∑
k=m0+1

Ck
n(1 − b)kbn−k

∫
rk,n(x) log

rk,n(x)

ϕ(x)
dx,

Dn2 ≤ 1

εn

m0∑
k=0

Ck
n(1 − b)kbn−k

∫
rk,n(x) log

rk,n(x)

ϕ(x)
dx,

where rk,n are densities of the normalized sums Rk,n from the proof of Lemma 2.1.
Here each integral may also be written as∫

rk,n(x) log
rk,n(x)

ϕ(x)
dx =

∫
L

(
rk,n(x)

)
dx + d

2
log(2π) + 1

2
E|Rk,n|2.(2.10)

We have E|Rk,n|2 ≤ β2

b
n, as noticed in the proof of Lemma 2.1. In addition, by the

convexity of L, there is a general inequality∫
L

(
(f ∗ g)(x)

)
dx ≤

∫
L

(
f (x)

)
dx

valid for the convolution of any two probability densities f and g on Rd (if the
integrals exist). In particular,∫

L
(
rk,n(x)

)
dx ≤ d

2
logn + max

{∫
L

(
ρ1(x)

)
dx,

∫
L

(
ρ2(x)

)
dx

}
,

which may actually be sharpened in case 1 < k < n by replacing max with min.
By (2.8) and (2.9), the integrals on the right-hand side are finite, thus the integrals
on the left-hand side of (2.10) are bounded by Cn with some constant C. Hence,
a similar bound also holds for Dnj , and it remains to apply (2.7). Lemma 2.2 is
proved. �
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REMARK 2.4. If X1 has a finite second moment and D(X1) < +∞, the trun-
cation level M in (2.1) can be chosen explicitly in terms of b using the entropic
distance D(X1) and σ 2 = det(
), where 
 is the covariance matrix of X1.

Indeed, putting a = EX1 and using an elementary inequality t log(1 + t) ≤
t log t + 1 (t ≥ 0), we have an upper estimate∫

p log
(

1 + p

ϕa,


)
dx =

∫
p

ϕa,


log
(

1 + p

ϕa,


)
ϕa,
 dx

≤
∫

p log
p

ϕa,


dx + 1 = D(X1) + 1.

On the other hand, the original expression majorizes∫
{p(x)>M}

p(x) log
M

ϕa,
(x)
dx ≥ b log

(
Mσ(2π)d/2)

,

hence

M ≤ 1

σ(2π)d/2 e(D(X1)+1)/b.

REMARK 2.5. If Zn have absolutely continuous distributions with finite en-
tropies for n ≥ n0 > 1, the above construction should be properly modified.

Namely, one may put p̃n = pn, if pn are bounded, and otherwise apply the same
decomposition (2.2) to pn0 in place of p. As a result, for any n = An0 +B (A ≥ 1,
0 ≤ B ≤ n0 − 1), the partial sum Sn will have the density

rn(x) =
A∑

k=0

Ck
A(1 − b)kbA−k

∫ (
ρ∗k

1 ∗ ρ
∗(A−k)
2

)
(x − y)dFB(y),

where FB is the distribution of SB . For A ≥ m0 + 1, split the above sum into the
two parts with summation over m0 + 1 ≤ k ≤ A and 0 ≤ k ≤ m0, respectively, so
that rn = ρn1 + ρn2. Then, like in (2.4) and for the same sequence εn described
in (2.3), define

p̃n(x) = 1

1 − εn

nd/2ρn1(x
√

n).

Clearly, these densities are bounded and approximate pn(x) in total variation. In
particular, for all sufficiently large n, they satisfy the estimates that are similar to
the estimates in Lemmas 2.1 and 2.2.

3. Edgeworth-type expansions. Let (Xn)n≥1 be independent, identically dis-
tributed random variables with mean EX1 = 0 and variance Var(X1) = 1. In this
section we collect some auxiliary results about Edgeworth-type expansions both
for the distribution functions Fn(x) = P{Zn ≤ x} and the densities pn(x) of the
normalized sums Zn = Sn/

√
n, where Sn = X1 + · · · + Xn.
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If the absolute moment E|X1|s is finite for a given s ≥ 2 and m = [s], define

ϕm(x) = ϕ(x) +
m−2∑
k=1

qk(x)n−k/2(3.1)

with the functions qk described in (1.2). Introduce as well

�m(x) =
∫ x

−∞
ϕm(y) dy = �(x) +

m−2∑
k=1

Qk(x)n−k/2.(3.2)

Similar to (1.2), the functions Qk have an explicit description involving the cumu-
lants γ3, . . . , γk+2 of X1. Namely,

Qk(x) = −ϕ(x)
∑

Hk+2j−1(x)
1

r1! · · · rk!
(

γ3

3!
)r1

· · ·
(

γk+2

(k + 2)!
)rk

,

where the summation is carried out over all nonnegative integer solutions
(r1, . . . , rk) to the equation r1 + 2r2 + · · ·+ krk = k with j = r1 + · · ·+ rk ; cf., for
example, [4] or [21] for details.

THEOREM 3.1. Assume that lim sup|t |→+∞ |EeitX1 | < 1. If E|X1|s < +∞
(s ≥ 2), then as n → ∞, uniformly for all x,(

1 + |x|s)(Fn(x) − �m(x)
) = o

(
n−(s−2)/2)

.(3.3)

For 2 ≤ s < 3 and m = 2, there are no expansion terms in the sum (3.2), and
hence �2(x) = �(x) is the distribution function of the standard normal law. In
this case, (3.3) becomes(

1 + |x|s)(Fn(x) − �(x)
) = o

(
n−(s−2)/2)

.(3.4)

In fact, in this case Cramer’s condition on the characteristic function of X1 is not
used. The result was obtained by Osipov and Petrov [19]; cf. also [5] where (3.4)
is established with O .

In the case s ≥ 3 Theorem 3.1 can be found in [21] (Theorem 2, Chapter VI,
page 168). Note that when s = m is integer, relation (3.3) without the factor 1 +
|x|m represents the classical Edgeworth expansion. It is essentially due to Cramér
and is described in many papers and textbooks; cf. [9, 10]. However, the case
of fractional values of s is more delicate, especially in the following local limit
theorem.

THEOREM 3.2. Let E|X1|s < +∞ (s ≥ 2). Suppose Zn0 has a bounded den-
sity for some n0. Then for all sufficiently large n, the random variables Zn have
continuous bounded densities pn satisfying, as n → ∞,(

1 + |x|m)(
pn(x) − ϕm(x)

) = o
(
n−(s−2)/2)

(3.5)
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uniformly for all x. Moreover,(
1 + |x|s)(pn(x) − ϕm(x)

)
(3.6)

= o
(
n−(s−2)/2) + (

1 + |x|s−m)(
O

(
n−(m−1)/2) + o

(
n−(s−2))).

If s = m is integer and m ≥ 3, Theorem 3.2 is well known; then (3.5) and (3.6)
simplify to (

1 + |x|m)(
pn(x) − ϕm(x)

) = o
(
n−(m−2)/2)

.(3.7)

In this formulation the result is due to Petrov [20]; cf. [21], page 211, or [4], pa-
ge 192. Without the term 1+|x|m, relation (3.7) goes back to the results of Cramér
and Gnedenko (cf. [11]).

In the general (fractional) case, Theorem 3.2 has recently been obtained in [6, 7]
by using the technique of Liouville fractional integrals and derivatives. Assertion
(3.6) gives an improvement over (3.5) on relatively large intervals of the real axis,
and this is essential in the case of noninteger s.

An obvious weak point in Theorem 3.2 is that it requires the boundedness of
the densities pn, which is, however, necessary for conclusions, such as (3.5) or
(3.7). Nevertheless, this condition may be removed, if we replace pn by slightly
modified densities p̃n.

THEOREM 3.3. Let E|X1|s < +∞ (s ≥ 2). Suppose that, for all for all suf-
ficiently large n, Zn have absolutely continuous distributions with densities pn.
Then there exist some bounded continuous densities p̃n such that:

(a) the relations (3.5) and (3.6) hold true for p̃n instead of pn;
(b)

∫ +∞
−∞ (1 + |x|s)|p̃n(x) − pn(x)|dx < 2−n, for all sufficiently large n;

(c) p̃n(x) = pn(x) almost everywhere, if pn is bounded (a.e.).

Here, property (c) is added to include Theorem 3.2 in Theorem 3.3 as a particu-
lar case. Moreover, one can use the densities p̃n constructed in the previous section
with m0 = [s] + 1. We refer to [6, 7] for detailed proofs.

This extended result allows us to immediately recover, for example, the central
limit theorem with respect to the total variation distance (without the assumption
of boundedness of pn). Namely, we have

‖Fn − �m‖TV =
∫ +∞
−∞

∣∣pn(x) − ϕm(x)
∣∣dx = o

(
n−(s−2)/2)

.(3.8)

For s = 2 and ϕ2(x) = ϕ(x), this statement corresponds to a theorem of

Prokhorov [22], while for s = 3 and ϕ3(x) = ϕ(x)(1 + γ3
x3−3x
6
√

n
)—to the result

of Sirazhdinov and Mamatov [23].
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The multidimensional case. Similar results are also available in the multi-
dimensional case for integer values s = m. In the remaining part of this section,
let (Xn)n≥1 denote independent identically distributed random vectors in the Eu-
clidean space Rd with mean zero and identity covariance matrix.

Assuming E|X1|m < +∞ for some integer m ≥ 2 (where now | · | denotes the
Euclidean norm), introduce the cumulants γν of X1 and the associated cumulant
polynomials γk(it) up to order m by using the equality

1

k!
dk

duk
log Eeiu〈t,X1〉

∣∣∣∣
u=0

= 1

k!γk(it) = ∑
|ν|=k

γν

(it)ν

ν!
(
k = 1, . . . ,m, t ∈ Rd)

.

Here the summation runs over all d-tuples ν = (ν1, . . . , νd) with integer compo-
nents νj ≥ 0 such that |ν| = ν1 + · · · + νd = k. We also write ν! = ν1! · · ·νd ! and
use a standard notation for the generalized powers zν = z

ν1
1 · · · zνd

d of real or com-
plex vectors z = (z1, . . . , zd), which are treated as polynomials in z of degree |ν|.

For 1 ≤ k ≤ m − 2, define the polynomials

Pk(it) = ∑
r1+2r2+···+krk=k

1

r1! · · · rk!
(

γ3(it)

3!
)r1

· · ·
(

γk+2(it)

(k + 2)!
)rk

,(3.9)

where the summation is performed over all nonnegative integer solutions
(r1, . . . , rk) to the equation r1 + 2r2 + · · · + krk = k.

Furthermore, like in dimension one, define the approximating functions ϕm(x)

on Rd by virtue of the equality (3.1), where every qk is determined by its Fourier
transform ∫

ei〈t,x〉qk(x) dx = Pk(it)e
−|t |2/2.(3.10)

If Zn0 has a bounded density for some n0, then for all sufficiently large n, Zn

have continuous bounded densities pn satisfying (3.7); see [4], Theorem 19.2. We
need an extension of this theorem to the case of unbounded densities, as well as
integral variants such as (3.8). The first assertion (3.11) in the next theorem is
similar to the one-dimensional Theorem 3.3 in the case where s = m is integer; cf.
(3.5). For the proof (which we omit), one may apply Lemma 2.1 and follow the
standard arguments from [4], Chapter 4.

THEOREM 3.4. Suppose that E|X1|m < +∞ with some integer m ≥ 2. If, for
all sufficiently large n, Zn have densities pn, then the densities p̃n introduced in
Section 2 with m0 = m + 1 satisfy(

1 + |x|m)(
p̃n(x) − ϕm(x)

) = o
(
n−(m−2)/2)

(3.11)

uniformly for all x. In addition,∫ (
1 + |x|m)∣∣p̃n(x) − ϕm(x)

∣∣dx = o
(
n−(m−2)/2)

.(3.12)
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The second assertion is Theorem 19.5 in [4], where it is stated for m ≥ 3 under
a slightly weaker hypothesis that X1 has a nonzero absolutely continuous compo-
nent. Note that, by Lemma 2.1, it does not matter whether p̃n or pn are used in
(3.12).

4. Entropic distance to normality and moderate deviations. Let X1,

X2, . . . be independent, identically distributed random vectors in Rd with mean
zero, identity covariance matrix and such that D(Zn) < +∞, for all n large
enough.

According to Lemma 2.2 and Remark 2.5, up to an error at most 2−n for suf-
ficiently large n, the entropic distance to normality, Dn = D(Zn), is equal to the
relative entropy

D̃n =
∫

p̃n(x) log
p̃n(x)

ϕ(x)
dx,

where ϕ is the density of a standard normal random vector Z in Rd .
Given T ≥ 1, split the integral into two parts by writing

D̃n =
∫
|x|≤T

p̃n(x) log
p̃n(x)

ϕ(x)
dx +

∫
|x|>T

p̃n(x) log
p̃n(x)

ϕ(x)
dx.(4.1)

By Theorems 3.3 and 3.4, p̃n are uniformly bounded, that is, p̃n(x) ≤ M , for
all x ∈ Rd and n ≥ 1 with some constant M . Hence, the second integral in (4.1)
may be treated by virtue of moderate deviations results (when T is not too large).
Indeed, since T ≥ 1,∫

|x|>T
p̃n(x) log

p̃n(x)

ϕ(x)
dx ≤

∫
|x|>T

p̃n(x) log
M

ϕ(x)
dx ≤ C

∫
|x|>T

|x|2p̃n(x) dx,

where C = 1
2 + log(1 +M(2π)d/2). One the other hand, using u logu ≥ u− 1, we

have a lower bound∫
|x|>T

p̃n(x) log
p̃n(x)

ϕ(x)
dx ≥

∫
|x|>T

(
p̃n(x) − ϕ(x)

)
dx ≥ −P

{|Z| > T
}
.

The two estimates give∣∣∣∣
∫
|x|>T

p̃n(x) log
p̃n(x)

ϕ(x)
dx

∣∣∣∣ ≤ P
{|Z| > T

} + C

∫
|x|>T

|x|2p̃n(x) dx.(4.2)

This is a very general upper bound, valid for any probability density p̃n on Rd ,
bounded by a constant M (with C as above).

Following (4.1), we are faced with two analytic problems. The first one is to
give a sharp estimate of p̃n(x) − ϕ(x) on a relatively large Euclidean ball |x| ≤ T .
Clearly, T has to be small enough, so that results like local limit theorems, such
as Theorems 3.2–3.4 may be applied. The second problem is to give a sharp up-
per bound of the last integral in (4.2). To this aim, we need moderate deviations
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inequalities, so that Theorems 3.1 and 3.4 are applicable. Anyway, in order to use
both types of results we are forced to choose T from a very narrow window only.
This value turns out to be approximately

Tn =
√

(s − 2) logn + s log logn + ρn (s > 2),(4.3)

where ρn → +∞ is a sufficiently slowly growing sequence (whose growth will be
restricted by the decay of the n-dependent constants in o-expressions of Theorems
3.2–3.4). In the case s = 2, one may put Tn = √

ρn such that Tn → +∞ is a
sufficiently slowly growing sequence.

LEMMA 4.1 (The case d = 1 and s real). If EX1 = 0, EX2
1 = 1, E|X1|s < +∞

(s ≥ 2), then ∫
|x|>Tn

x2p̃n(x) dx = o
(
(n logn)−(s−2)/2)

.(4.4)

LEMMA 4.2 (The case d ≥ 2 and s integer). If X1 has mean zero and identity
covariance matrix, and E|X1|m < +∞, then∫

|x|>Tn

x2p̃n(x) dx = o
(
n−(m−2)/2(logn)−(m−d)/2)

(m ≥ 3)(4.5)

and
∫
|x|>Tn

x2p̃n(x) dx = o(1) in the case m = 2.

Note that plenty of results and techniques concerning moderate deviations have
been developed by now. Useful estimates can be found, for example, in [12]. Re-
stricting ourselves to integer values of s = m, one may argue as follows.

PROOF OF LEMMA 4.2. Given T ≥ 1, write∫
|x|>T

|x|2p̃n(x) dx ≤ 1

T m−2

∫
|x|mp̃n(x) dx

≤ 1

T m−2

∫
|x|m∣∣p̃n(x) − ϕm(x)

∣∣dx(4.6)

+ 1

T m−2

∫
|x|>T

|x|mϕm(x) dx.

By Theorem 3.4 [cf. (3.12)] the first integral in (4.6) is bounded by o(n−(m−2)/2).
From the definition of qk it follows that qk(x) = N(x)ϕ(x) with some polyno-

mial N of degree at most 3(m − 2); cf. Section 6 for details. Hence, from (3.1),
ϕm(x) ≤ 2ϕ(x) on the balls of large radii |x| < nδ with sufficiently large n (where
0 < δ < 1

2 ). On the other hand, with some constants Cd,C′
d depending on the di-

mension only,∫
|x|>T

|x|mϕ(x)dx = Cd

∫ +∞
T

rm+d−1e−r2/2 dr ≤ C′
dT m+d−2e−T 2/2.(4.7)
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But for T = Tn and s = m ≥ 3, we have e−T 2/2 = T −mo(n−(m−2)/2), so by (4.6)
and (4.7), ∫

|x|>Tn

|x|2p̃n(x) dx ≤ C

(
1

T m−2 + 1

T m−d

)
o
(
n−(m−2)/2)

.

Since Tn is of order
√

logn, (4.5) follows. Furthermore, in the case m = 2, (4.6)
gives the desired relation∫

|x|>Tn

|x|2p̃n(x) dx ≤ o(1) +
∫
|x|>Tn

|x|2ϕ(x)dx → 0 (n → ∞). �

PROOF OF LEMMA 4.1. The above argument also works for d = 1, but it can
be refined applying Theorem 3.1 for real s. The case s = 2 is already covered, so
let s > 2.

In view of decomposition (2.5), integrating by parts, we have, for any T ≥ 0,

(1 − εn)

∫
|x|>T

x2p̃n(x) dx

(4.8)
≤

∫
|x|>T

x2pn(x) dx =
∫
|x|>T

x2 dFn(x)

= T 2(
1 − Fn(T ) + Fn(−T )

) + 2
∫ +∞
T

x
(
1 − Fn(x) + Fn(−x)

)
dx,(4.9)

where Fn denotes the distribution function of Zn. [Note that the first inequality in
(4.8) should be just ignored in the case, where p is bounded.]

By (3.3),

Fn(x) = �m(x) + rn(x)

n(s−2)/2

1

1 + |x|s , rn = sup
x

∣∣rn(x)
∣∣ → 0 (n → ∞).

Hence, the first term in (4.9) can be replaced with

T 2(
1 − �m(T ) + �m(−T )

)
(4.10)

at the expense of an error not exceeding (for the values T ∼ √
logn)

2rn

n(s−2)/2

T 2

1 + T s
= o

(
(n logn)−(s−2)/2)

.(4.11)

Similarly, the integral in (4.9) can be replaced with∫ +∞
T

x
(
1 − �m(x) + �m(−x)

)
dx(4.12)

at the expense of an error not exceeding

2rn

n(s−2)/2

∫ +∞
T

x dx

1 + xs
= o

(
(n logn)−(s−2)/2)

.(4.13)
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To explore the behavior of expressions (4.10) and (4.12) for T = Tn using pre-
cise asymptotics as in (4.3), recall that, by (3.2),

1 − �m(x) = 1 − �(x) −
m−2∑
k=1

Qk(x)n−k/2.

Moreover, we note that Qk(x) = N3k−1(x)ϕ(x), where N3k−1 is a polyno-
mial of degree at most 3k − 1. Thus these functions admit a bound |Qk(x)| ≤
Cm(1 + |x|3m)ϕ(x) with some constants Cm (depending on m and the cumulants
γ3, . . . , γm of X1), which implies with some other constants

∣∣1 − �m(x)
∣∣ ≤ (

1 − �(x)
) + Cm(1 + |x|3m)√

n
ϕ(x).(4.14)

Hence, using 1 − �(x) <
ϕ(x)

x
(x > 0), we get

T 2
n

∣∣1 − �m(Tn)
∣∣ ≤ CT 2

n

(
1 − �(Tn)

) ≤ CTne
−T 2

n /2

(4.15)
= o

(
(n logn)−(s−2)/2)

.

A similar bound also holds for T 2
n |�m(−Tn)|.

Now, we use (4.14) to estimate (4.12) with T = Tn up to a constant by∫ ∞
T

x
(
1 − �(x)

)
dx < 1 − �(T ) = o

(
(n logn)−(s−2)/2)

.

It remains to combine the last relation with (4.11), (4.13) and (4.15). Since
εn → 0 in (4.8), Lemma 4.1 follows. �

REMARK 4.3. Note that the probabilities P{|Z| > T } appearing in (4.2) yield
a smaller contribution for T = Tn in comparison with the right-hand sides of (4.4)
and (4.5). Indeed, we have P{|Z| > T } ≤ CdT d−2e−T 2/2 (T ≥ 1). Hence, relations
(4.4) and (4.5) may be extended to the integrals∫

|x|>Tn

p̃n(x) log
p̃n(x)

ϕ(x)
dx.

5. Taylor-type expansion for the entropic distance. In this section we pro-
vide the last auxiliary step toward the proof of Theorem 1.1. In order to describe
the multidimensional case, let X1,X2, . . . be independent identically distributed
random vectors in Rd with mean zero, identity covariance matrix, and such that
D(Zn0) < +∞ for some n0.

If pn0 is bounded, then the densities pn of Zn (n ≥ n0) are uniformly bounded,
and we put p̃n = pn. Otherwise, we use the modified densities p̃n according to the
construction of Section 2. In particular, if Z̃n has density p̃n, then |D(Z̃n‖Z) −
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D(Zn)| < 2−n for all n large enough (where Z is a standard normal random vector;
cf. Lemma 2.2 and Remark 2.5). Moreover, by Lemmas 4.1, 4.2 and Remark 4.3,∣∣∣∣D(Zn) −

∫
|x|≤Tn

p̃n(x) log
p̃n(x)

ϕ(x)
dx

∣∣∣∣ = o(�n),(5.1)

where Tn are defined in (4.3) and

�n = n−(s−2)/2(logn)−(s−max(d,2))/2(5.2)

(with the convention that �n = 1 for the critical case s = 2).
Thus, all information about the asymptotics of D(Zn) is contained in the inte-

gral in (5.1). More precisely, writing a Taylor expansion for p̃n using the approx-
imating functions ϕm in Theorems 3.2–3.4 leads to the following representation
(which is more convenient in applications such as Corollary 1.2).

THEOREM 5.1. Let E|X1|s < +∞ (s ≥ 2), assuming that s is integer in case
d ≥ 2. Then

D(Zn) =
m−2∑
k=2

(−1)k

k(k − 1)

∫ (
ϕm(x) − ϕ(x)

)k dx

ϕ(x)k−1

(5.3)
+ o(�n)

(
m = [s]).

Note that in the case 2 ≤ s < 4 there are no expansion terms in the sum of (5.3)
which then simplifies to D(Zn) = o(�n).

PROOF OF THEOREM 5.1. In terms of L(u) = u logu, rewrite the integral in
(5.1) as

D̃n,1 =
∫
|x|≤Tn

L

(
p̃n(x)

ϕ(x)

)
ϕ(x)dx

(5.4)
=

∫
|x|≤Tn

L
(
1 + um(x) + vn(x)

)
ϕ(x)dx,

where

um(x) = ϕm(x) − ϕ(x)

ϕ(x)
, vn(x) = p̃n(x) − ϕm(x)

ϕ(x)
.

By Theorems 3.3 and 3.4, more precisely, by (3.6) for d = 1, and by (3.11) for
d ≥ 2 and s = m integer, in the region |x| = O(nδ) with an appropriate δ > 0, we
have

∣∣p̃n(x) − ϕm(x)
∣∣ ≤ rn

n(s−2)/2

1

1 + |x|s , rn → 0.(5.5)
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Since ϕ(x)(1 + |x|s) is decreasing as a function of |x| for large |x|, we obtain, for
all |x| ≤ Tn,

∣∣vn(x)
∣∣ ≤ C

rn

n(s−2)/2

eT 2
n /2

T s
n

≤ C′rneρn/2.

The last expression tends to zero by a suitable choice of ρn → ∞ which we will
assume from now on. In particular, for n large enough, |vn(x)| < 1

4 in |x| ≤ Tn.
From the definitions of qk and ϕm [cf. (1.2), (3.1) and (3.10)], it follows that

∣∣um(x)
∣∣ ≤ Cm

1 + |x|3(m−2)

√
n

(5.6)

with some constants depending on m and the cumulants, only. Thus, we also have
|um(x)| < 1

4 for |x| ≤ Tn with sufficiently large n.
Now, by Taylor’s formula, for |u| ≤ 1

4 , |v| ≤ 1
4 ,

L(1 + u + v) = L(1 + u) + v + 2θ1uv + θ2v
2

with some |θj | ≤ 1 depending on (u, v). Applying this approximation with u =
um(x) and v = vn(x), we see that vn(x) can be removed from the right-hand side
of (5.4) at the expense of an error not exceeding |J1| + J2 + J3, where

J1 =
∫
|x|≤Tn

(
p̃n(x) − ϕm(x)

)
dx, J2 =

∫
|x|≤Tn

∣∣um(x)
∣∣∣∣p̃n(x) − ϕm(x)

∣∣dx

and

J3 =
∫
|x|≤Tn

(p̃n(x) − ϕm(x))2

ϕ(x)
dx.

But

|J1| =
∣∣∣∣
∫
|x|>Tn

(
p̃n(x) − ϕm(x)

)
dx

∣∣∣∣
(5.7)

≤
∫
|x|>Tn

p̃n(x) dx +
∫
|x|>Tn

∣∣ϕm(x)
∣∣dx.

By Lemmas 4.1 and 4.2, the first integral on the right-hand side is T 2
n -times smaller

than o(�n). Also, by (5.6), the last integral in (5.7) is bounded by∫
|x|>Tn

∣∣ϕm(x) − ϕ(x)
∣∣dx +

∫
|x|>Tn

ϕ(x) dx

≤ Cm√
n

∫
|x|>Tn

(
1 + |x|3(m−2))ϕ(x)dx + P

{|Z| > Tn

} = o(�n).

As a result, J1 = o(�n).
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Applying (5.6) once more and then relation (3.12), we may also conclude that

J2 ≤ Cm

1 + T
3(m−2)
n√
n

∫
|x|≤Tn

∣∣p̃n(x) − ϕm(x)
∣∣dx = o(�n).

Finally, using (5.5) with s > 2, we get, up to some constants,

J3 ≤ C
r2
n

ns−2

∫
|x|≤Tn

e|x|2/2

1 + |x|2s
dx ≤ Cd

r2
n

ns−2

∫ Tn

1
rd−2s−1er2/2 dr

≤ C′
d

r2
n

ns−2

1

T 2s−d+2
n

eT 2
n /2 = o

(
1

n(s−2)/2(logn)(s−d+2)/2

)
= o(�n).

If s = 2, all these steps are valid as well and give

J3 ≤ C′
d

r2
n

ns−2

1

T 2s−d+2
n

eT 2
n /2 → 0

for a suitably chosen Tn → +∞.
Thus, at the expense of an error not exceeding o(�n) one may remove vn(x)

from (5.4), and we obtain the relation

D̃n,1 =
∫
|x|≤Tn

L
(
1 + um(x)

)
ϕ(x)dx + o(�n),(5.8)

which contains specified expansion terms, only.
Moreover, um(x) = u2(x) = 0 for 2 ≤ s < 3, and then the theorem is proved.
Next, we consider the case s ≥ 3. By Taylor’s expansion around zero, we get,

whenever |u| < 1
4 , for some positive constants θm,

L(1 + u) = u +
m−2∑
k=2

(−1)k

k(k − 1)
uk + θum−1, |θ | ≤ θm,

assuming that the sum has no terms in the case m = 3. Hence, with some |θ | ≤ θm,∫
|x|≤Tn

L
(
1 + um(x)

)
ϕ(x)dx

(5.9)
=

∫
|x|≤Tn

(
ϕm(x) − ϕ(x)

)
dx

+
m−2∑
k=2

(−1)k

k(k − 1)

∫
|x|≤Tn

um(x)kϕ(x) dx

(5.10)
+ θ

∫
Rd

∣∣um(x)
∣∣m−1

ϕ(x)dx.

For n large enough, by (5.6), the second integral in (5.9) has an absolute value∣∣∣∣
∫
|x|>Tn

(
ϕm(x) − ϕ(x)

)
dx

∣∣∣∣ ≤ C√
n

∫
|x|>Tn

(
1 + |x|3(m−2))ϕ(x)dx = o(�n).
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This proves the theorem in the case 3 ≤ s < 4 (when m = 3).
Now, let s ≥ 4. The last integral in (5.10) can be estimated again by virtue of

(5.6) by

C

n(m−1)/2

∫
Rd

(
1 + |x|3(m−1)(m−2))ϕ(x)dx = o(�n).

In addition, the first integral in (5.10) can be extended to the whole space at the
expense of an error not exceeding (for all n large enough)∫

|x|>Tn

∣∣um(x)
∣∣kϕ(x) dx ≤ C

nk/2

∫
|x|>Tn

(
1 + |x|3k(m−2))ϕ(x)dx

≤ C′T 3k(m−2)
n√

n
e−T 2

n /2 = o(�n).

Collecting these estimates in (5.9) and (5.10) and applying them in (5.8), we
arrive at

D̃n,1 =
m−2∑
k=2

(−1)k

k(k − 1)

∫
um(x)kϕ(x) dx + o(�n).

It remains to apply (5.1). Thus, Theorem 5.1 is proved. �

6. Theorem 1.1 and its multidimensional extension. The desired represen-
tation (1.3) of Theorem 1.1 can be deduced from Theorem 5.1. Note that the latter
covers the multidimensional case as well, although under somewhat stronger mo-
ment assumptions.

Thus, let (Xn)n≥1 be independent identically distributed random vectors in Rd

with finite second moment. If the normalized sum Zn = (X1 + · · · + Xn)/
√

n has
density pn(x), the entropic distance to Gaussianity is defined as in dimension one
to be the relative entropy

D(Zn) =
∫

pn(x) log
p(x)

ϕa,
(x)
dx

with respect to the normal law on Rd with the same mean a = EX1 and covariance
matrix 
 = Var(X1). This quantity is affine invariant, and in this sense it does not
depend on (a,
).

THEOREM 6.1. If D(Zn0) < +∞ for some n0, then D(Zn) → 0, as n → ∞.
Moreover, given that E|X1|s < +∞ (s ≥ 2), and that X1 has mean zero and iden-
tity covariance matrix, we have

D(Zn) = c1

n
+ c2

n2 + · · · + c[(m−2)/2]
n[(m−2)/2] + o(�n)

(
m = [s]),(6.1)

where �n are defined in (5.2), and where we assume that s is integer in case d ≥ 2.
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Here, as in Theorem 1.1, each coefficient cj is defined according to (1.4) again.
It may be represented as a certain polynomial in the cumulants γν , 3 ≤ |ν| ≤
2j + 1.

PROOF OF THEOREM 6.1. We shall start from the representation (5.3) of The-
orem 5.1, so let us return to definition (3.1),

ϕm(x) − ϕ(x) =
m−2∑
r=1

qr(x)n−r/2.

In the case 2 ≤ s < 3 (i.e., for m = 2), the right-hand side contains no terms and is
therefore vanishing. Anyhow, raising this sum to the power k ≥ 2 leads to(

ϕm(x) − ϕ(x)
)k = ∑

j

n−j/2
∑

qr1(x) · · ·qrk (x),

where the inner sum is carried out over all positive integers r1, . . . , rk ≤ m − 2
such that r1 + · · · + rk = j . Respectively, the kth integral in (5.3) is equal to

∑
j

n−j/2
∑∫

qr1(x) · · ·qrk (x)
dx

ϕ(x)k−1 .(6.2)

Here the integrals are vanishing for odd j . In dimension one, this follows di-
rectly from definition (1.2) of qr and the following property of the Chebyshev–
Hermite polynomials [24]∫ +∞

−∞
Hr1(x) · · ·Hrk(x)ϕ(x) dx = 0 (r1 + · · · + rk is odd).(6.3)

As for the general case, let us look at the structure of the functions qr . Given a
multi-index ν = (ν1, . . . , νd) with integers ν1, . . . , νd ≥ 1, define Hν(x1, . . . , xd) =
Hν1(x1) · · ·Hνd

(xd), so that∫
ei〈t,x〉Hν(x)ϕ(x) dx = (it)νe−|t |2/2, t ∈ Rd .

Hence, by definition (3.10),

qr(x) = ϕ(x)
∑
ν

aνHν(x),(6.4)

where the coefficients aν emerge from the expansion Pr(it) = ∑
ν aν(it)

ν . Using
(3.9), write these polynomials as

Pr(it) = ∑ 1

l1! · · · lr !
( ∑

|ν|=3

γν

(it)ν

ν!
)l1

· · ·
( ∑

|ν|=r+2

γν

(it)ν

ν!
)lr

,(6.5)

where the outer summation is performed over all nonnegative integer solutions
(l1, . . . , lr ) to the equation l1 + 2l2 + · · · + rlr = r . Removing the brackets of the
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inner sums, we obtain a linear combination of the power polynomials (it)ν with
exponents of order

|ν| = 3l1 + · · · + (r + 2)lr = r + 2bl, bl = l1 + · · · + lr .(6.6)

In particular, r + 2 ≤ |ν| ≤ 3r , so that Pr(it) is a polynomial of degree at most 3r ,
and thus ϕm(x) = N(x)ϕ(x), where N(x) is a polynomial of degree at most
3(m − 2).

Moreover, from (6.4) and (6.6) it follows that

qr1(x) · · ·qrk (x)

ϕ(x)k−1 = ϕ(x)
∑

aν(1) · · ·aν(k)Hν(1) (x) · · ·Hν(k)(x),(6.7)

where |ν(1)| + · · · + |ν(k)| = r1 + · · · + rk(mod 2). Hence, if r1 + · · · + rk is odd,
the sum

∣∣ν(1)
∣∣ + · · · + ∣∣ν(k)

∣∣ =
d∑

i=1

(∣∣ν(1)
i

∣∣ + · · · + ∣∣ν(k)
i

∣∣)
is odd as well. But then at least one of the inner sums, say with coordinate i, must
be odd as well. Hence in this case, the integral of (6.7) over xi will vanish by
property (6.3).

Thus, in expression (6.2), only even values of j should be taken into account.
Moreover, since the terms containing n−j/2 with j > s − 2 will be absorbed

into the remainder �n in relation (6.1), we get from (5.3) and (6.2),

D(Zn) =
m−2∑
k=2

(−1)k

k(k − 1)

m−2∑
evenj=2

n−j/2
∑∫

qr1(x) · · ·qrk (x)
dx

ϕ(x)k−1 + o(�n).

Replace now j with 2j and rearrange the summation. Then

D(Zn) = ∑
2j≤m−2

cj

nj
+ o(�n)

with

cj =
m−2∑
k=2

(−1)k

k(k − 1)

∑∫
qr1(x) · · ·qrk (x)

dx

ϕ(x)k−1 .

Here the inner summation is carried out over all positive integers r1, . . . , rk ≤ m−2
such that r1 + · · · + rk = 2j . This implies k ≤ 2j . Furthermore, 2j ≤ m − 2 is
equivalent to j ≤ [ s−2

2 ]. As a result, we arrive at the required relation (6.1) with

cj =
2j∑

k=2

(−1)k

k(k − 1)

∑
r1+···+rk=2j

∫
qr1(x) · · ·qrk (x)

dx

ϕ(x)k−1 .(6.8)

Thus, Theorem 6.1 and therefore Theorem 1.1 are proved. �
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REMARK. In order to show that cj is a polynomial in the cumulants γν , 3 ≤
|ν| ≤ 2j +1, first note that r1 +· · ·+ rk = 2j , r1, . . . , rk ≥ 1 imply 2j ≥ maxi ri +
(k − 1), so maxi ri ≤ 2j − 1. Thus, the maximal index for the functions qri in (6.8)
does not exceed 2j − 1. On the other hand, it follows from (6.4) and (6.5) that Pr

and qr are polynomials in the same set of the cumulants; more precisely, Pr is a
polynomial in γν with 3 ≤ |ν| ≤ r + 2.

PROOF OF COROLLARY 1.2. By Theorem 5.1 [cf. (5.3)],

D(Zn) =
m−2∑
k=2

(−1)k

k(k − 1)

∫ (
ϕm(x) − ϕ(x)

)k dx

ϕ(x)k−1 + o(�n).(6.9)

Assume that m ≥ 4 and γ3 = · · · = γk−1 = 0 for a given integer 3 ≤ k ≤ m. (This is
no restriction, when k = 3.) Then, by (1.2), q1 = · · · = qk−3 = 0, while qk−2(x) =
γk

k! Hk(x)ϕ(x). Hence, according to definition (3.1),

ϕm(x) − ϕ(x) = γk

k! Hk(x)ϕ(x)
1

n(k−2)/2 +
m−2∑

j=k−1

qj (x)

nj/2 ,

where the sum is empty in the case m = 3. Therefore, the sum in (1.3) will con-
tain powers of 1/n starting from 1/nk−2, and the leading coefficient is due to the
quadratic term in (6.9) when k = 2. More precisely, if k − 2 ≤ m−2

2 , we get that
c1 = · · · = ck−3 = 0, and

ck−2 = γ 2
k

2k!2
∫ +∞
−∞

Hk(x)2ϕ(x)dx = γ 2
k

2k! .(6.10)

Hence, if k ≤ m
2 , (6.9) yields D(Zn) = γ 2

k

2k!
1

nk−2 + O(n−(k−1)). Otherwise, the O-

term should be replaced by o((n logn)−(s−2)/2). Thus Corollary 1.2 is proved. �

By a similar argument, the conclusion may be extended to the multidimensional
case. Indeed, if γν = 0, for all 3 ≤ |ν| < k, then by (6.5), P1 = · · · = Pk−3 = 0,
while

Pk−2(it) = ∑
|ν|=k

γν

(it)ν

ν! .

Correspondingly, in (6.4) we have q1 = · · · = qk−3 = 0 and qk−2(x) = ϕ(x) ×∑
|ν|=k

γν

ν! Hν(x). Therefore,

ϕm(x) − ϕ(x) = ϕ(x)
∑

|ν|=k

γν

ν! Hν(x)
1

n(k−2)/2 +
m−2∑

j=k−1

qj (x)

nj/2 .
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Applying this relation in (6.9), we arrive at (6.1) with c1 = · · · = ck−3 = 0 and, by
orthogonality of the polynomials Hν ,

ck−2 = 1

2

∫ ( ∑
|ν|=k

γν

ν! Hν(x)

)2

ϕ(x)dx = 1

2

∑
|ν|=k

γ 2
ν

ν! .

We may summarize our findings as follows.

COROLLARY 6.2. Let (Xn)n≥1 be i.i.d. random vectors in Rd (d ≥ 2) with
mean zero and identity covariance matrix. Suppose that E|X1|m < +∞, for some
integer m ≥ 4, and D(Zn0) < +∞, for some n0. Given k = 3,4, . . . ,m, if γν = 0
for all 3 ≤ |ν| < k, we have

D(Zn) = 1

2nk−2

∑
|ν|=k

γ 2
ν

ν! + O

(
1

nk−1

)
+ o

(
1

n(m−2)/2(logn)(m−d)/2

)
.(6.11)

The conclusion corresponds to Corollary 1.2, if we replace d with 2 in the re-
mainder on the right-hand side.

As in dimension one, when EX2k
1 < +∞, the o-term may be removed from this

representation, while for k > m
2 , the o-term dominates. Moreover, if m+2

2 < k ≤ m,
we are left with this term, only, that is,

D(Zn) = o

(
1

n(m−2)/2(logn)(m−d)/2

)
.

When k = 3, there is no restriction on the cumulants in Corollary 6.2, and (6.11)
becomes

D(Zn) = 1

2n

∑
|ν|=3

γ 2
ν

ν! + O

(
1

n2

)
+ o

(
1

n(m−2)/2(logn)(m−d)/2

)
.

If E|X1|4 < +∞, we get D(Zn) = O(1/n) for d ≤ 4, and the weaker bound
D(Zn) = o((logn)(d−4)/2/n) for d ≥ 5. However, if E|X1|5 < +∞, we always
have D(Zn) = O(1/n) regardless of the dimension d .

Technically, this slight difference between conclusions for different dimensions
is due to the dimension-dependent asymptotic

∫
|x|>T |x|2ϕ(x)dx ∼ CdT de−T 2/2.

REMARK. In case of discrete distributions when X1 takes integer values,
asymptotics for D(Sn) were studied by Vilenkin and D’yachkov [26], who used
an Edgeworth-type expansion for probabilities P{Sn = k} in the corresponding lo-
cal limit theorem.
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7. Convolutions of mixtures of normal laws. Is the asymptotic description
of D(Zn) in Theorem 1.1 still optimal, if no expansion terms of order n−j are
present? This is exactly the case for 2 ≤ s < 4.

In order to answer the question, we examine a special class of probability dis-
tributions that can be described as mixtures of normal laws on the real line with
mean zero. They have densities of the form

p(x) =
∫ +∞

0
ϕσ (x) dP (σ) (x ∈ R),(7.1)

where P is a (mixing) probability measure on the positive half-axis (0,+∞), and
where

ϕσ (x) = 1

σ
√

2π
e−x2/(2σ 2)

is the density of the normal law with mean zero and variance σ 2 [as usual, we
write ϕ(x) in the standard normal case with σ = 1].

Equivalently, let p(x) denote the density of the random variable X1 = ρZ,
where the factors Z ∼ N(0,1) and ρ > 0 (with the distribution P ) are indepen-
dent. Such distributions appear naturally, for example, as limit laws of sums with
randomized length; cf., for example, [8].

For densities such as (7.1), we need a refinement of the local limit theorem for
convolutions, described in the expansions (3.5) and (3.6). More precisely, our aim
is to find a representation with an essentially smaller remainder term compared to
o(n−(s−2)/2).

Thus, let X1,X2, . . . be independent random variables, having a common den-
sity p(x) as in (7.1), and let pn(x) denote the density of the normalized sum
Zn = (X1 + · · · + Xn)/

√
n. If X1 = ρZ, where Z ∼ N(0,1) and ρ > 0 are in-

dependent, then EX2
1 = Eρ2 and more generally,

E|X1|s = βsEρs = βs

∫ +∞
0

σ s dP (σ),

where βs denotes the sth absolute moment of Z.
Note that p(x) is unimodal with mode at the origin, and p(0) = E 1

ρ
√

2π
. If

ρ ≥ σ0 > 0, the density is bounded, and therefore the entropy h(X1) is finite.

PROPOSITION 7.1. Assume that Eρ2 = 1, Eρs < +∞ (2 < s ≤ 4). If P{ρ ≥
σ0} = 1 with some constant σ0 > 0, then uniformly over all x,

pn(x) = ϕ(x) + n

∫ +∞
0

(
ϕσn(x) − ϕ(x)

)
dP (σ) + O

(
1

ns−2

)
,(7.2)

where σn =
√

1 + σ 2−1
n

.
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Of course, when Eρs < +∞ for s > 4, the proposition may be still applied,
but with s = 4. In this case (7.2) has a remainder term of order O( 1

n2 ). Note that

necessarily σ0 ≤ 1 under the condition Eρ2 = 1.

The function pn may also be described as the density of Zn =
√

ρ2
1+···+ρ2

n

n
Z,

where ρk are independent copies of ρ (independent of Z as well). This represention
already indicates the closeness of pn and ϕ and suggests to appeal to the law
of large numbers. However, we shall choose a different approach based on the
characteristic functions of Zn.

Obviously, the characteristic function of X1 is given by

v(t) = EeitX1 = Ee−ρ2t2/2 (t ∈ R).

Using Jensen’s inequality and the assumption ρ ≥ σ0 > 0, we get a two-sided
estimate

e−t2/2 ≤ v(t) ≤ e−σ 2
0 t2/2.(7.3)

In particular, the function ψ(t) = et2/2v(t) − 1 is nonnegative for all t real.

LEMMA 7.2. If Eρ2 = 1, Ms = Eρs < +∞ (2 ≤ s ≤ 4), then for all |t | ≤ 1,

0 ≤ ψ(t) ≤ Ms |t |s .

PROOF. We may assume 0 < t ≤ 1. Write ψ(t) = E(e−(ρ2−1)t2/2 − 1). The
expression under the expectation sign is nonpositive for ρt > 1, hence

ψ(t) ≤ E
(
e−(ρ2−1)t2/2 − 1

)
1{ρ≤1/t}.

Let x = −(ρ2 −1)t2. Clearly, |x| ≤ 1 for ρ ≤ 1/t . Using ex ≤ 1+x +x2 (|x| ≤ 1)
and Eρ2 = 1, we get

ψ(t) ≤ − t2

2
E

(
ρ2 − 1

)
1{ρ≤1/t} + t4

4
E

(
ρ2 − 1

)21{ρ≤1/t}
(7.4)

= t2

2
E

(
ρ2 − 1

)
1{ρ>1/t} + t4

4
E

(
ρ2 − 1

)21{ρ≤1/t}.

The last expectation is equal to

Eρ41{ρ≤1/t} + 2E
(
ρ2 − 1

)
1{ρ>1/t} − P{ρ ≤ 1/t}

≤ Eρ41{ρ≤1/t} + 2Eρ21{ρ>1/t} − 1

≤ Eρ41{ρ≤1/t} + Eρ21{ρ>1/t}.
Together with (7.4), this gives

ψ(t) ≤ 3t2

4
Eρ21{ρ>1/t} + t4

4
Eρ41{ρ≤1/t}.(7.5)
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Finally, Eρ21{ρ>1/t} ≤ Eρsts−21{ρ>1/t} ≤ Mst
s−2 and Eρ41{ρ≤1/t} ≤ Eρsts−4 ×

1{ρ≤1/t} ≤ Mst
s−4. It remains to use these estimates in (7.5), and Lemma 7.2 is

proved. �

PROOF OF PROPOSITION 7.1. The characteristic functions vn(t) = v( t√
n
)n of

Zn are real-valued and admit, by (7.3), similar bounds

e−t2/2 ≤ vn(t) ≤ e−σ 2
0 t2/2.(7.6)

In particular, one may apply the inverse Fourier transform to represent the density
of Zn as

pn(x) = 1

2π

∫ +∞
−∞

e−itxvn(t) dt = 1

2π

∫ +∞
−∞

e−itx−t2/2(
1 + ψ(t/

√
n)

)n
dt.

Letting Tn = 4
σ0

logn, we split the integral into the two regions, defined by

I1 =
∫
|t |≤Tn

e−itxvn(t) dt, I2 =
∫
|t |>Tn

e−itxvn(t) dt.

By the upper bound in (7.6),

|I2| ≤
∫
|t |>Tn

e−σ 2
0 t2/2 dt ≤

√
2π

σ0
e−σ 2

0 T 2
n /2 =

√
2π

σ0n8 .(7.7)

In the interval |t | ≤ Tn, by Lemma 7.2, ψ( t√
n
) ≤ Ms |t |s

ns/2 ≤ 1
n

, for all n ≥ n0. But

for 0 ≤ ε ≤ 1
n

, there is the simple estimate 0 ≤ (1 + ε)n − 1 −nε ≤ 2(nε)2. Hence,
once more by Lemma 7.2,

0 ≤ (
1 + ψ(t/

√
n)

)n − 1 − nψ(t/
√

n)

≤ 2
(
nψ(t/

√
n)

)2 ≤ 2M2
s

|t |2s

ns−2 (n ≥ n0).

This gives∣∣∣∣I1 −
∫
|t |≤Tn

e−itx−t2/2(
1 + nψ(t/

√
n)

)
dt

∣∣∣∣ ≤ 2M2
s

ns−2

∫ +∞
−∞

|t |2se−t2/2 dt.(7.8)

In addition, ∣∣∣∣
∫
|t |>Tn

e−itx−t2/2(
1 + nψ(t/

√
n)

)
dt

∣∣∣∣
≤

∫
|t |>Tn

e−t2/2 dt + n

∫
|t |>Tn

e−t2/2ψ(t/
√

n)dt.

Here, the first integral on the right-hand side is of order O(n−8). To estimate
the second one, recall that, by (7.3), ψ(t) = et2/2v(t) − 1 ≤ e(1−σ 2

0 )t2/2. Hence,
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ψ(t/
√

n) ≤ e(1−σ 2
0 )t2/2 and

∫
|t |>Tn

e−t2/2ψ(t/
√

n)dt ≤
∫
|t |>Tn

e−σ 2
0 t2/2 dt ≤

√
2π

σ0n8 .

Together with (7.7) and (7.8) these bounds imply that

pn(x) = 1

2π

∫ +∞
−∞

e−itx−t2/2(
1 + nψ(t/

√
n)

)
dt + O

(
1

ns−2

)

uniformly over all x. It remains to note that

1

2π

∫ +∞
−∞

e−itx−t2/2ψ(t/
√

n)dt = 1

2π

∫ +∞
−∞

e−itx−t2/2(
et2/2nv(t/

√
n) − 1

)
dt

=
∫ +∞

0

(
ϕσn(x) − ϕ(x)

)
dP (σ).

Proposition 7.1 is proved. �

REMARK 7.3. An inspection of (7.5) shows that, in the case 2 < s < 4,
Lemma 7.2 may slightly be sharpened to ψ(t) = o(|t |s). Correspondingly, the O-
relation in Proposition 7.1 can be replaced with an o-relation. This improvement
is convenient, but not crucial for the proof of Theorem 1.3.

8. Lower bounds. Proof of Theorem 1.3. Let X1,X2, . . . be independent
random variables with a common density of the form

p(x) =
∫ +∞

0
ϕσ (x) dP (σ), x ∈ R.

Equivalently, let X1 = ρZ with independent random variables Z ∼ N(0,1) and
ρ > 0 having distribution P .

A basic tool for proving Theorem 1.3 will be the following lower bound on the
entropic distance to Gaussianity for the partial sums Sn = X1 + · · · + Xn.

PROPOSITION 8.1. Let Eρ2 = 1, Eρs < +∞ (2 < s < 4) and P{ρ ≥ σ0} = 1
with σ0 > 0. Assume that, for some γ > 0,

lim inf
n→∞ ns−1/2

∫ +∞
n1/2+γ

1

σ
dP (σ) > 0.(8.1)

Then with some absolute constant c > 0 and some constant δ > 0,

D(Sn) ≥ cn lognP{ρ ≥
√

n logn} + o

(
1

n(s−2)/2+δ

)
.(8.2)
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In fact, in (8.2) one may take any positive number δ < min{γ s, s−2
2 }.

PROOF OF PROPOSITION 8.1. By Proposition 7.1 and Remark 7.3, uniformly
over all x,

pn(x) = ϕ(x) + n

∫ +∞
0

(
ϕσn(x) − ϕ(x)

)
dP (σ) + o

(
1

ns−2

)
,(8.3)

where pn is the density of Sn/
√

n and σn =
√

1 + σ 2−1
n

.
Define the sequence

Nn = n1/2+γ

5
√

logn

for n large enough (so that Nn ≥ 1). By Chebyshev’s inequality,

P{ρ ≥ Nn} ≤ 5sMs

log2 n

n(1/2+γ )s
= o

(
1

ns/2+δ

)
, 0 < δ < γ s.(8.4)

Using u logu ≥ u − 1 (u ≥ 0) and applying (8.3), we may write

In ≡
∫
|x|≤4

√
logn

pn(x) log
pn(x)

ϕ(x)
dx

≥
∫
|x|≤4

√
logn

(
pn(x) − ϕ(x)

)
dx(8.5)

≥ n

∫ +∞
0

∫
|x|≤4

√
logn

(
ϕσn(x) − ϕ(x)

)
dx dP (σ) − C

√
logn

ns−2

with some constant C.
Note that σn < 1 for σ < 1, and thus, for any T > 0,∫

|x|≤T

(
ϕσn(x) − ϕ(x)

)
dx = 2

(
�(T/σn) − �(T )

)
> 0,

where � denotes the distribution function of the standard normal law. Hence, the
outer integral in (8.5) may be restricted to the range σ ≥ 1. Moreover, by (8.4),
one may also restrict this integral, even to the range σ ≥ Nn. More precisely, (8.4)
gives

n

∣∣∣∣
∫ +∞
Nn

∫
|x|≤4

√
logn

(
ϕσn(x) − ϕ(x)

)
dx dP (σ)

∣∣∣∣ ≤ nP{ρ ≥ Nn} = o

(
1

n(s−2)/2+δ

)
.

Comparing this relation with (8.5) and imposing the additional requirement δ <
s−2

2 , we get

In ≥ n

∫ Nn

1

∫
|x|≤4

√
logn

(
ϕσn(x) − ϕ(x)

)
dx dP (σ) + o

(
1

n(s−2)/2+δ

)
(8.6)

= −2n

∫ Nn

1

∫ 4
√

logn

4
√

logn/σn

ϕ(x) dx dP (σ) + o

(
1

n(s−2)/2+δ

)
.



2508 S. G. BOBKOV, G. P. CHISTYAKOV AND F. GÖTZE

Now, let us estimate pn(x) from below in the region 4
√

logn ≤ |x| ≤ nγ . If
|x| ≥ 4

√
logn, it follows from (8.3) that

pn(x) = n

∫ +∞
0

ϕσn(x) dP (σ) + o

(
1

ns−2

)
.(8.7)

Consider the function

gn(x) =
∫ +∞

0

ϕσn(x)

ϕ(x)
dP (σ).

Note that 1 ≤ σn ≤ σ for σ ≥ 1. In this case, the ratio ϕσn(x)

ϕ(x)
is nonincreasing in

x ≥ 0. Moreover, for σ ≥ √
3n + 1, we have σ 2

n = 1 + σ 2−1
n

≥ 4, so 1 − 1
σ 2

n
≥ 3

4 .

Hence, for |x| ≥ 4
√

logn,

ϕσn(x)

ϕ(x)
= 1

σn

ex2(1−1/σ 2
n )/2 ≥ n6

σ
.

Therefore,

gn(x) ≥ n6
∫ +∞
√

3n+1

1

σ
dP (σ).

But by assumption (8.1), the last expression tends to infinity with n, so for all n

large enough, gn(x) ≥ 2 in the interval |x| ≥ 4
√

logn.

Furthermore, if σ ≥ |x|√n, then σ 2
n = 1 + σ 2−1

n
≥ x2, so x2

2σ 2
n

≤ 1
2 . On the other

hand,

σ 2
n < 1 + σ 2

n
= n + σ 2

n
≤ σ 2/x2 + σ 2

n
≤ 2σ 2

n
,

since |x| ≥ 4
√

logn > 1 for n ≥ 2. The two estimates give

ϕσn(x) = 1

σn

√
2π

e−x2/2σ 2
n ≥

√
n

6σ
.

Therefore, whenever 4
√

logn ≤ |x| ≤ nγ ,

n

∫ +∞
0

ϕσn(x) dP (σ) ≥ n3/2

6

∫ +∞
|x|√n

1

σ
dP (σ) ≥ n3/2

6

∫ +∞
n1/2+γ

1

σ
dP (σ).

By assumption (8.1), the last expression and therefore the left integral are larger
than c

ns−2 with some constant c > 0. Consequently, the remainder term in (8.7) is
indeed smaller, so that for all n large enough, we may write, for example,

pn(x) ≥ 0.8n

∫ +∞
0

ϕσn(x) dP (σ) = 0.8ngn(x)ϕ(x)
(
4
√

logn ≤ |x| ≤ nγ )
.
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Since gn(x) ≥ 2 for |x| ≥ 4
√

logn with large n, we have in this region pn(x)
ϕ(x)

≥
1.6n > n, thus

pn(x) log
pn(x)

ϕ(x)
≥ pn(x) logn ≥ 0.8n logn

∫ +∞
0

ϕσn(x) dx dP (σ).

Hence, ∫
4
√

logn≤|x|≤nγ
pn(x) log

pn(x)

ϕ(x)
dx

≥ 0.8n logn

∫ +∞
0

∫
4
√

logn≤|x|≤nγ
ϕσn(x) dx dP (σ)(8.8)

= 1.6n logn

∫ +∞
0

∫ nγ /σn

4
√

logn/σn

ϕ(x) dx dP (σ).

At this point, it is useful to note that nγ

σn
≥ 4

√
logn, as long as σ ≤ Nn with n large

enough. Indeed, in this case σ 2
n ≤ (1 − 1

n
) + N2

n

n
< 1 + n2γ

25 logn
, so

(4σn

√
logn)2 ≤ 16 logn

(
1 + n2γ

25 logn

)
< n2γ

for all n large enough. Hence, from (8.8),∫
4
√

logn≤|x|≤nγ
pn(x) log

pn(x)

ϕ(x)
dx ≥ 1.6n logn

∫ Nn

0

∫ 4
√

logn

4
√

logn/σn

ϕ(x) dx dP (σ).

But the last expression dominates the double integral in (8.6) with a factor of 2n.
Therefore, combining the above estimate with (8.6), we get∫

|x|≤nγ
pn(x) log

pn(x)

ϕ(x)
dx ≥ 1.4n logn

∫ Nn

0

∫ 4
√

logn

4
√

logn/σn

ϕ(x) dx dP (σ)

+ o

(
1

n(s−2)/2+δ

)
.

Finally, we may extend the outer integral on the right-hand side to all values
σ > 0 by noting that, by (8.4),

n logn

∫ +∞
Nn

∫ 4
√

logn

4
√

logn/σn

ϕ(x) dx dP (σ) ≤ n lognP{ρ > Nn} = o

(
1

n(s−2)/2+δ

)
.

Hence,∫
|x|≤nγ

pn(x) log
pn(x)

ϕ(x)
dx ≥ 1.4n logn

∫ +∞
0

∫ 4
√

logn

4
√

logn/σn

ϕ(x) dx dP (σ)

(8.9)

+ o

(
1

n(s−2)/2+δ

)
.
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For the remaining values |x| ≥ nγ , one can just use the property u logu ≥ −1
e

to get a simple lower bound∫
|x|>nγ

pn(x) log
pn(x)

ϕ(x)
dx ≥

∫
|x|>nγ ,pn(x)≤ϕ(x)

pn(x) log
pn(x)

ϕ(x)
dx

≥ −1

e

∫
|x|>nγ ,pn(x)≤ϕ(x)

ϕ(x) dx ≥ −e−n2γ /2.

Together with (8.9) this yields∫ +∞
−∞

pn(x) log
pn(x)

ϕ(x)
dx ≥ 1.4n logn

∫ +∞
0

∫ 4
√

logn

4
√

logn/σn

ϕ(x) dx dP (σ)

+ o

(
1

n(s−2)/2+δ

)
.

To simplify, finally note that 4
σn

√
logn ≤ 4 for σ ≥ √

n logn. In this case the
last integral is separated from zero (for large n), hence with some absolute constant
c > 0∫ +∞

−∞
pn(x) log

pn(x)

ϕ(x)
dx ≥ cn lognP{ρ ≥

√
n logn} + o

(
1

n(s−2)/2+δ

)
.

This is exactly the required inequality (8.2) and Proposition 8.1 is proved. �

PROOF OF THEOREM 1.3. Given η > 0, one may apply Proposition 8.1 to the
probability measure P with density

dP (σ)

dσ
= c

σ s+1(logσ)η
, σ > 2,

and extending it to an interval [σ0,2] to meet the requirement
∫ +∞
σ0

σ 2 dP (σ) = 1
(with some 0 < σ0 < 1 and a positive normalizing constant c = cη,s ). It is easy to
see that in this case condition (8.1) is fulfilled for 0 < γ < s−2

2(s+1)
. In addition, if ρ

has the distribution P , we have

P{ρ ≥ σ } ≥ const
1

σ s(logσ)η

for all σ large enough. Hence, by taking σ = √
n logn, (8.2) provides the desired

lower bound. �

REMARK. In case s = 2 (i.e., with minimal moment assumptions), the
mixtures of the normal laws with discrete mixing measures P were used by
Matskyavichyus [18] in the central limit theorem in terms of the Kolmogorov
distance. Namely, it is shown that, for any prescribed sequence εn → 0, one may
choose P such that �n = supx |Fn(x) − �(x)| ≥ εn for all n large enough (where
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Fn is the distribution function of Zn). In view of the Pinsker-type inequality, one
may conclude that

D(Zn) ≥ 1
2�2

n ≥ 1
2ε2

n.

Therefore, D(Zn) may decay at an arbitrarily slow rate.
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