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Abstract

We develop a reverse entropy power inequality for convex measures, which may be seen as an affine-
geometric inverse of the entropy power inequality of Shannon and Stam. The specialization of this
inequality to log-concave measures may be seen as a version of Milman’s reverse Brunn-Minkowski
inequality. The proof relies on a demonstration of new relationships between the entropy of high
dimensional random vectors and the volume of convex bodies, and on a study of effective supports of
convex measures, both of which are of independent interest, as well as on Milman’s deep technology
of M -ellipsoids and on certain information-theoretic inequalities. As a by-product, we also give a
continuous analogue of some Plünnecke-Ruzsa inequalities from additive combinatorics.
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1. Introduction

The reverse Brunn-Minkowski inequality is a deep result in Convex Geometry discovered by
V. D. Milman in the mid 1980s (cf. [35, 36, 37, 40]). It states that, given two convex bodies A
and B in Rn, one can find linear volume preserving maps ui : Rn → Rn (i = 1, 2) such that with some
absolute constant C ∣∣Ã+ B̃

∣∣1/n ≤ C (|A|1/n + |B|1/n
)
, (1.1)

where Ã = u1(A), B̃ = u2(B), Ã + B̃ =
{
x + y : x ∈ Ã, y ∈ B̃

}
is the Minkowski sum, and

where |A| stands for the n-dimensional volume. (Of course, one of these maps may be taken to be
the identity operator.) A similar inequality continues to hold for finitely many convex bodies with
constants depending on the number of sets involved.

Note that the reverse inequality to (1.1),∣∣Ã+ B̃
∣∣1/n ≥ |A|1/n + |B|1/n, (1.2)

holds true for any such ui by the usual Brunn-Minkowski inequality. Without loss of generality both
relations may be written for convex bodies with volume one, when (1.1)–(1.2) take a simpler form

2 ≤ |A+ B̃|1/n ≤ 2C. (1.3)

Milman’s inverse Brunn-Minkowski inequality has connections with high dimensional phenomena
in Convex Geometry. For instance, it is known that proving Milman’s inequality for convex bodies
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in isotropic position is equivalent to the hyperplane conjecture ([18]). It has also found a number of
interesting extensions and applications (cf. [31], [30], [2]).

Our primary goal in this note is to develop an entropic generalization of the reverse Brunn-
Minkowski inequality (1.1), which would involve arbitrary log-concave probability distributions rather
than just uniform measures on compact convex sets. More generally, we consider convex (also called
hyperbolic) measures, i.e., having densities of the form

f(x) = V (x)−β , x ∈ Rn, (1.4)

where V are positive convex functions on Rn and β > n is a given parameter. (To be precise, these
are the densities of the so-called κ-concave measures for κ = (n − β)−1; see Section 2 for details.)
A secondary goal of this note is to develop a technology for going from entropy estimates to volume
estimates in convex geometry; this is developed in Section 3, and underlies the claim that our main
result, stated purely in terms of entropies, is a generalization of Milman’s inverse Brunn-Minkowski
inequality.

The afore-mentioned entropic generalization may be stated as an inverse of the entropy power
inequality, in the same sense that Milman’s inequality is an inverse of the Brunn-Minkowski inequality.
Given a random vector X in Rn with density f(x), introduce the entropy functional (or the differential
entropy, or the Boltzmann–Shannon entropy),

h(X) = −
∫
Rn

f(x) log f(x) dx,

together with the entropy power
H(X) = e2h(X)/n,

provided that the integral exists in the Lebesgue sense. In particular, if X is uniformly distributed in
a convex body A ⊂ Rn, we have

h(X) = log |A|, H(X) = |A|2/n.

These identities themselves suggest reviewing a number of results on volume relations in terms of the
entropy, and also inspire one to find analogues of such relations for different classes of multidimensional
probability distributions in the language of information theory.

The entropy power inequality, due to Shannon and Stam ([47], [48], cf. also [21], [23], [53] for a
refinement when one of the random vectors is normal, and [1], [33] for other refinements), asserts that

H(X + Y ) ≥ H(X) +H(Y ), (1.5)

for any two independent random vectors X and Y in Rn, for which the entropy is defined. Although it
is not directly equivalent to the Brunn-Minkowski inequality, it is very similar to it [22]. For example,
being restricted to normal random vectors X,Y with covariance matrices R,S, the inequality (1.5)
becomes Minkowski’s inequality for determinants of positive definite matrices,

det1/n(R+ S) ≥ det1/n(R) + det1/n(S).

It includes the Brunn-Minkowski inequality for parallepipeds and therefore extends, by a simple
bisection argument of Hadwiger-Ohmann (or in view of the infinitesimal character of the Brunn-
Minkowski inequality), to the class of all Borel measurable subsets of the Euclidean space. Conversely,
one may deduce the entropy power inequality as a consequence of a Brunn-Minkowski inequality
for restricted sums of sets [49, 50]. Moreover, both the Brunn-Minkowski and the entropy power
inequalities can be given similar proofs as limiting cases of Young’s inequality for convolution with
sharp constant [24].

In order to judge the sharpness of the entropy power inequality (1.5), we need to keep in mind that
the entropy is invariant under linear volume preserving transformation of the space, i.e., H(u(X)) =
H(X) whenever |det(u)| = 1. On the other hand, the left side of (1.5) essentially depends on “po-
sitions” of the distributions of X and Y , in the sense that it is sensitive to linear volume preserving
transformation of either X or Y . Therefore, to reverse this inequality, some transformation of these
random vectors is needed. Specifically, we have:
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Theorem 1.1. Fix β0 > 2. Let X and Y be independent random vectors in Rn with densities of the
form (1.4) with β ≥ max{β0n, 2n+ 1}. There exist linear volume preserving maps ui : Rn → Rn such
that

H
(
X̃ + Ỹ

)
≤ Cβ0

(H(X) +H(Y )), (1.6)

where X̃ = u1(X), Ỹ = u2(Y ), and where Cβ0
is a constant depending only on β0.

For growing β, the families (1.4) shrink, and we arrive in the limit as β → +∞ at the class of log-
concave densities (which correspond to the class of log-concave measures). Recall that log-concavity
of a non-negative function f on Rn is also defined through the inequality

f(tx+ sy) ≥ f(x)tg(y)s, x, y ∈ Rn, t, s > 0, t+ s = 1.

Such functions are supported and positive on some open convex sets in Rn, where log f are concave
(and we define them to be zero outside supporting sets).

Thus, by Theorem 1.1, if X and Y are independent and have log-concave densities, then for some
linear volume preserving maps ui : Rn → Rn,

H
(
X̃ + Ỹ

)
≤ C (H(X) +H(Y )), (1.7)

where C is an absolute constant. This statement for the log-concave case was announced by the
authors in [6].

As for the general case, it can be shown that there does not exist a finite universal constant such
that a reverse entropy power inequality holds for the entire class of convex measures, so that some
restriction on the range of convexity parameter β as in Theorem 1.1 is necessary (see Proposition 9.2).
Nevertheless, it would be interesting to explore how the constants in the inequality (1.6) may depend
on the remaining values β > n.

Let us state an equivalent variant of Theorem 1.1 by involving maximum of the density,

‖f‖ = ess supx f(x),

and keeping the same notations.

Theorem 1.2. Fix β0 > 2. Let X and Y be independent random vectors in Rn with densities f and
g of the form (1.4), such that ‖f‖ = ‖g‖ = 1. If β ≥ max{β0n, 2n + 1}, there exist linear volume
preserving maps ui : Rn → Rn such that

c0n ≤ h
(
X̃ + Ỹ

)
≤ cβ0

n (1.8)

with some absolute constant c0 > 0, and some constant cβ0
depending only on β0.

Equivalently, with some Cβ0
> C0 > 1, we have

C0 ≤ H
(
X̃ + Ỹ

)
≤ Cβ0

. (1.9)

Being restricted to random vectors X and Y that are uniformly distributed in convex bodies A
and B, the reverse entropy power inequality (1.6) is equivalent to Milman’s theorem (1.1) modulo an
absolute factor, while the right inequality in (1.9) is equivalent to the right inequality in (1.3) in a
similar sense (under the assumption |A| = |B| = 1).

This generalization is however not immediate and has to be clarified, because the distribution of
X + Y is not uniform in A + B. Nevertheless, it is “almost” uniform, so that H(X + Y ) is of the
same order as |A + B|2/n. As will be explained later on, if X and Y are independent and uniformly
distributed in A and B, we have

1

4
|A+B|2/n ≤ H(X + Y ) ≤ |A+B|2/n. (1.10)

These bounds allow one to freely translate many volume relations into statements about entropy.
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As for the left inequality in (1.8), it immediately follows from the entropy power inequality (1.5),
which implies “concavity” of the entropy functional:

h

(
X̃ + Ỹ√

2

)
≥ h(X̃) + h(Ỹ )

2
=
h(X) + h(Y )

2
≥ 0,

where on the last step the assumption f, g ≤ 1 is used. Hence, one may take c0 = log
√

2 in (1.8) and
C0 = 2 in (1.9), similarly to the left inequality in (1.3).

It should be noted that there are other (non-entropic) formulations of the reverse Brunn-Minkowski
inequality. In their study of the geometry of log-concave functions B. Klartag and V. D. Milman have
recently proposed a natural functional generalization of (1.1) in terms of the Asplund product

f ? g(x) = sup
y

[
f(x− y)g(y)

]
, x ∈ Rn.

They prove (cf. [30, Theorem 1.3]) that, given symmetric log-concave functions f and g on Rn,
satisfying f(0) = g(0) = 1, there exist linear volume preserving maps ui : Rn → Rn such that with
some absolute constant C,(∫

f̃ ? g̃(x) dx

)1/n

≤ C

[(∫
f(x) dx

)1/n

+

(∫
g(x) dx

)1/n ]
, (1.11)

where f̃(x) = f((u1(x)) and g̃(x) = g(u2(x)). Indeed, on the indicator functions f = 1A, g = 1B , we
have f̃ ? g̃ = 1Ã+B̃ , so (1.11) reduces exactly to (1.1).

The inequality (1.11) is related to the log-concave variant (1.7) in Theorem 1.1. However, the
Asplund product behaves differently than the usual convolution, especially for densities that are not
log-concave. Anyhow, in the proof of Theorems 1.1–1.2 themselves, the convex body case as in (1.1)
or (1.3), that is, Milman’s theorem, will be a basic ingredient in our argument, together with a
general “submodularity” property of the entropy functional (cf. [32]), which has recently appeared in
information theory.

The paper is organized as follows. In Section 2 we recall Borell’s hierarchy and characterization of
convex measures and discuss convexity properties of convolutions, which are prerequisites for the rest
of the paper.

Section 3 introduces a new tool for going from entropy estimates to volume estimates in convex
geometry. The key idea here is that for sufficiently “convex” probability measures (i.e., κ-concave
probability measures for positive κ, which necessarily have compact support), the entropy can be
approximated in some sense by the logarithm of the volume of the support set. While the fact that
the entropy of a probability measure on a compact set is bounded from above by the logarithm of
the volume of the support is simple and classical, the corresponding lower bound under convexity
assumptions is new. In Section 4, the entropy of convex measures is related to the maximum of their
densities (which is of course related to the volume of the support in the special case of the uniform
distribution on a set), and some corollaries are discussed.

The case of negative κ is considered in Section 5. In this case, although the support set of a
κ-concave probability measure may not be bounded, it is nonetheless possible to define in some sense
an “effective support”, which is bounded and whose volume is related to the entropy of the measure.
In this sense, the relation between entropy and volume can be extended to general convex measures,
and moreover, this may be thought of as providing a reverse technology to go from volume estimates
to entropy estimates in convex geometry by using the notion of effective supports. Some refinements
of these ideas, related to an asymptotic equipartition property for log-concave measures, are described
in [13].

Next, in Section 6, we turn to the notion of M -positions of convex bodies, first developed by
V. Milman, and show using the afore-mentioned effective support idea that such a notion can be
defined for convex measures. Section 7 introduces into convex geometry a submodularity result for
the entropy of sums, first developed in [32], and discusses some corollaries, including the connection of
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M -positions of convex bodies with the reverse Brunn-Minkowski inequality, and continuous analogues
for volumes of convex bodies of the Plünnecke-Ruzsa inequalities that are well known in the discrete
world of additive combinatorics.

Section 8 and 9 are devoted to completing the proof of Theorem 1.1– the former for the log-concave
case, and the latter for the general convex measure case. Finally, in Section 10, we comment on the
reverse entropy power inequality (1.7) for log-concave measures in the case where the distributions of
X and Y are isotropic.

Acknowledgments. We are grateful to an anonymous referee for several useful suggestions to im-
prove clarity of the paper, and to both him/her and K. Ball for fleshing out our understanding of the
history of Corollary 4.2 (discussed in Section 4).

2. Convex measures

Here we recall basic definitions and the characterization of the so-called convex measures.
Given −∞ ≤ κ ≤ 1, a probability measure µ on Rn is called κ-concave, if it satisfies the Brunn-

Minkowski-type inequality

µ
(
tA+ (1− t)B

)
≥
[
tµ(A)κ + (1− t)µ(B)κ

]1/κ
(2.1)

for all t ∈ (0, 1) and for all Borel measurable sets A,B ⊂ Rn with positive measure. When κ = 0,
(2.1) describes the class of log-concave measures which thus satisfy

µ
(
tA+ (1− t)B

)
≥ µ(A)tµ(B)1−t.

In the absolutely continuous case, the log-concavity of a measure is equivalent to the log-concavity of
its density (Prékopa’s theorem [42]). When κ = −∞, the right side is understood as min{µ(A), µ(B)}.
The inequality (2.1) is getting stronger as the parameter κ is increasing, so in the case κ = −∞ we
obtain the largest class, whose members are called convex or hyperbolic probability measures.

For general κ’s, the family of κ-concave measures was introduced and studied by C. Borell [16, 17]
who gave the following characterization, which we state below in the absolutely-continuous case. In
this case necessarily κ ≤ 1/n. See also [19].

Proposition 2.1. An absolutely continuous probability measure µ on Rn is κ-concave, where −∞ ≤
κ ≤ 1/n, if and only if µ is supported on an open convex set Ω ⊂ Rn, where it has a positive κ̃-concave
density f , that is, satisfying

f(tx+ (1− t)y) ≥
[
tf(x)κ̃ + (1− t)f(y)κ̃

]1/κ̃
(2.2)

for all t ∈ (0, 1) and x, y ∈ Ω.

Here and below we put

κ̃ =
κ

1− nκ
, β =

1

|κ̃|
.

Thus, µ is κ-concave if and only if f is κ̃-concave.
If κ ∈ (0, 1/n), then κ̃ > 0 and β > 0, and the supporting set Ω has to be bounded (so, its closure

is a convex body). In this case, one may represent the density in the form f = ϕβ , where ϕ is an
arbitrary positive concave function on Ω, satisfying the normalization condition

∫
Ω
ϕβ dx = 1.

If κ < 0, then κ̃ < 0 and f = V −β (like in formula (1.4)), where V is an arbitrary positive convex
function on Ω, satisfying

∫
Ω
V −β dx = 1. Since β = n− (1/κ) in this case, we must have β > n.

The following statement has been also well-known since the works of C. Borell, cf. e.g. [17,
Theorem 4.5]. (There it is assumed additionally that 0 < κ′, κ′′ < 1/n, while we will also need to
consider the case when one of κ′ or κ′′ is negative. Nevertheless, Borell’s result [17, Theorem 4.2]
about κ-concavity of product measures covers the general case.)
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Proposition 2.2. Assume a probability measure µ is κ′-concave on Rn and a probability measure ν
is κ′′-concave on Rn. If κ′, κ′′ ∈ [−1, 1] satisfy

κ′ + κ′′ > 0,
1

κ
=

1

κ′
+

1

κ′′
, (2.3)

then their convolution µ ∗ ν is κ-concave.

Taking the limit κ′, κ′′ → 0, one also obtains the log-concavity of the convolution of any two
log-concave probability measures.

The argument is based on the following elementary property of the Mκ-mean functions defined by

M (t)
κ (a, b) = (taκ + sbκ)1/κ, a, b ≥ 0, 0 < t < 1, s = 1− t,

with the usual meaning in the cases κ = −∞, κ = +∞ and κ = 0, as min{a, b}, max{a, b} and atbs,
respectively. (Note these functions appear on the right sides of (2.1) and (2.2).) Namely, under the
condition (2.3), for all real positive numbers a′, a′′, b′, b′′ and any t ∈ (0, 1),

M
(t)
κ′ (a′, b′)M

(t)
κ′′ (a

′′, b′′) ≥ M (t)
κ (a′a′′, b′b′′).

Consequently, if A = A′ ⊗A′′ and B = B′ ⊗B′′ with standard parallelotopes A′, B′ in Rn of positive
µ-measure, and with standard parallelotopes A′′, B′′ in Rn of positive ν-measure, then

tA+ sB = (tA′ + sB′)× (tA′′ + sB′′),

and, using the definition (2.1), for the product measure λ = µ⊗ ν we have:

λ(tA+ sB) = µ(tA′ + sB′) ν(tA′′ + sB′′)

≥ M
(t)
κ′ (µ(A′), µ(B′))M

(t)
κ′′ (ν(A′′), ν(B′′))

≥ M (t)
κ (µ(A′)ν(A′′), µ(B′)ν(B′′))

= M (t)
κ (λ(A), λ(B)).

That is, the Brunn-Minkowski-type inequality (2.1) is fulfilled for the measure λ on R2n in the class
of all standard parallelotopes (of positive measure). By virtue of the standard bisection argument of
Hadwiger-Ohmann [28], described, for example, in [16, 17, 20], one can extend (2.1) from the class of
standard parallelopipeds to arbitrary Borel sets A and B, which means the κ-concavity of λ on R2n.
Finally, since µ ∗ ν represents the image of λ under the linear map (x, y)→ x+ y, the convolution is
also κ-concave.

One particular case of Proposition 2.2 is the following well-known corollary:

Corollary 2.3. If random vectors X1, . . . , Xm are independent and uniformly distributed in convex
bodies A1, . . . , Am in Rn, then the sum

X1 + · · ·+Xm

has a 1
mn–concave distribution supported on the convex body A1 + · · ·+Am.

3. Entropy and volume of the support

In this Section we bound the entropy of a κ-concave probability measure on Rn with a positive
parameter of convexity κ in terms of the volume of its supporting set. Note that, for any random
vector X with values in A, there is a general upper bound

h(X) ≤ log |A|. (3.1)

So our concern is how to estimate the entropy from below to get

h(X) ≥ −Cn+ log |A| (3.2)
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with constants C ≥ 0 depending only on the “strength” of convexity of the density f of X.
To proceed, we need some preparations. Given a measurable function ϕ on a measurable set

A ⊂ Rn and p > 0, write

‖ϕ‖p =

(∫
A

|ϕ|p dx
)1/p

.

The following Khinchin-type (or reverse Hölder) inequality for the class of concave functions is due to
Berwald [5] (cf. [15]).

Lemma 3.1. Given a concave function ϕ ≥ 0 on a convex body A in Rn,(
Cnn+q |A|−1

)1/q ‖ϕ‖q ≤ (Cnn+p |A|−1
)1/p ‖ϕ‖p, 0 < p < q. (3.3)

Here and below we use the standard binomial coefficients

Cnq =
q(q − 1) . . . (q − n+ 1)

n!
. (3.4)

As easy to verify, the equality in (3.3) is achieved for the linear function f(x) = x1 + · · ·+ xn on the
convex body

A = {x ∈ Rn : xi > 0, x1 + · · ·+ xn < 1}. (3.5)

Berwald’s inequality may equivalently be stated for the class of κ̃-concave probability density
functions f on A with κ̃ > 0, since then f = ϕ1/κ̃ with concave ϕ. Inserting ϕ = f κ̃ into (3.3), we get(

Cnn+q |A|−1
)1/q ‖f‖κ̃qκ̃ ≤ (Cnn+p |A|−1

)1/p ‖f‖κ̃pκ̃.
Choose p = β = 1/κ̃ so that ‖f‖pκ̃ = ‖f‖1 = 1. The inequality is simplified (but does not lose
generality): (

Cnn+q |A|−1
)1/q ‖f‖κ̃qκ̃ ≤ (Cnn+1/κ̃ |A|

−1
)κ̃
.

Raising to the power q and then substituting qκ̃ with q, we obtain another equivalent form

Cnn+qβ |A|−1

∫
A

f(x)q dx ≤
(
Cnn+β |A|−1

)q
,

which holds true for any q > 1. There is equality at q = 1, so one may compare the derivatives. First
let us take logarithms of both the sides:

logCnn+qβ + log |A|−1 + log

∫
A

f(x)q dx ≤ q log
(
Cnn+β |A|−1

)
. (3.6)

By the definition (3.4),

d

dr
logCnn+r =

n∑
i=1

1

r + i
.

Hence, differentiating (3.6) at q = 1, we get

n∑
i=1

1

1 + i/β
+

∫
A

f(x) log f(x) dx ≤ log
(
Cnn+β |A|−1

)
,

or equivalently

h(X) ≥ log |A|+
n∑
i=1

1

1 + i/β
− logCnn+β , (3.7)

assuming that X has density f .
Now, let us rewrite (3.7) in terms of the convexity parameter of the distribution of X by applying

the Borell characterization given in Proposition 2.1. Recall that if X has an absolutely continuous
κ-concave distribution supported on A with 0 < κ ≤ 1/n, then it has a κ̃-concave density f , where
κ̃ = κ

1−κn .
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Proposition 3.2. Let X be a random vector in Rn having an absolutely continuous κ-concave distri-
bution supported on a convex body A with 0 < κ ≤ 1/n. Then

h(X) ≥ log |A|+
n∑
i=1

1

1 + κ̃i
− logCn1/κ, (3.8)

where κ̃ = κ
1−κn .

For each κ, equality in (3.8) is attained for a special distribution supported on the set A defined
in (3.5), with density f(x) proportional to (x1 + · · ·+xn)1/κ̃. For example, if κ = 1/n, then κ̃ = +∞,
and X is to be uniformly distributed in A. In this case, (3.8) becomes just h(X) ≥ log |A|.

To simplify the bound (3.8), using again the notation β = 1/κ̃, we need to estimate from above
the quantity

logCnn+β −
n∑
i=1

β

β + i
=

n∑
i=1

[
log

β + i

i
− β

β + i

]
. (3.9)

In terms of t = β/i, the general term in the sum on the right side may be written as

log
β + i

i
− β

β + i
= log(1 + t)− t

1 + t
,

which is increasing in t ≥ 0. Hence, the function s → log β+s
s −

β
β+s is non-increasing. For any

non-increasing continuous function u = u(s) ≥ 0 in s ≥ 1, one may use a general elementary bound

n∑
i=1

u(i) ≤ u(1) +

∫ n

1

u(s) ds.

In case of u(s) = log β+s
s −

β
β+s , we then get that the sum on the right side of (3.9) is bounded by[

log(β + 1)− β
β+1

]
+
∫ n

1

[
log β+s

s −
β
β+s

]
ds

= n log(β + n)− n log n− β
β+1 ≤ n log β+n

n .

Now, since β = 1
κ̃ = 1

κ − n, we have β + n = 1
κ and therefore arrive at:

Corollary 3.3. Let X be a random vector in Rn having an absolutely continuous κ-concave distribu-
tion supported on a convex body A with 0 < κ ≤ 1/n. Then

h(X) ≥ log |A|+ n log(κn).

Note when κ = 1/n, this bound is still sharp.
Now we can combine Corollaries 2.3 and 3.3 to obtain immediately:

Proposition 3.4. If random vectors X1, . . . , Xm are independent and uniformly distributed in convex
bodies A1, . . . , Am in Rn, then their sum Sm = X1 + · · ·+Xm has entropy, satisfying

log |A1 + · · ·+Am| − n logm ≤ h(Sm) ≤ log |A1 + · · ·+Am|.

Or, equivalently,

log

∣∣∣∣A1 + · · ·+Am
m

∣∣∣∣ ≤ h(Sm) ≤ log |A1 + · · ·+Am|.

In particular, for independent random vectors X and Y in Rn uniformly distributed in convex
bodies A and B, respectively, we always have

log

∣∣∣∣A+B

2

∣∣∣∣ ≤ h(X + Y ) ≤ log |A+B|.

These are exactly the inequalities in (1.10), announced in the introductory section.
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4. Entropy and maximum of density

Any convex probability measure has a bounded density, i.e., the L∞-norm ‖f‖ = supx f(x) of the
density f is finite (cf. [9]). For sufficiently convex probability measures, the entropy may be related
to ‖f‖ via the following proposition, proved in [14].

Proposition 4.1. Fix β0 > 1. Assume a random vector X in Rn has a density f = V −β, where V
is a positive convex function on the supporting set. If β ≥ n+ 1 and β ≥ β0n, then

log ‖f‖−1/n ≤ 1

n
h(X) ≤ Cβ0 + log ‖f‖−1/n

with some constant Cβ0
depending only on β0.

The left inequality is general: It trivially holds without any convexity assumption. The right
inequality is an asymptotic version of a result from [14] about extremal role of the multidimensional
Pareto distributions.

Let us mention three immediate consequences of Proposition 4.1. The first is the specialization to
log-concave measures.

Corollary 4.2. If a random vector X in Rn has an absolutely continuous log-concave distribution
with density f , then

log ‖f‖−1/n ≤ 1

n
h(X) ≤ 1 + log ‖f‖−1/n.

The right inequality is attained for the n-dimensional exponential distribution (with any param-
eter λ > 0). This measure is concentrated on the positive orthant and has there density f(x) =
λne−λ(x1+···+xn), xi > 0.

Corollary 4.2 was observed by the first-named author around the year 2000 (motivated by relating
the maximum of the density to the subgaussian norm). This observation was discussed with a few
scholars but not published and consequently was not widely known. Independently, K. Ball observed
this connection between ‖f‖ and the entropy of f for centrally symmetric, log-concave densities,
and publicized it in various lectures in 2003–06. He also proposed a program for approaching the
hyperplane conjecture using this connection. Corollary 4.2 seems to have become well known (to
experts) soon after– for example, it is implicit in the last part of the proof of Theorem 7 of Fradelizi
and Meyer [26], who showed the non-symmetric extension using work of Fradelizi [25]. Unaware of
parts of this history, the authors in [14] first explicitly wrote down Corollary 4.2 in the form given
above.

It was observed in [14] that Corollary 4.2 can be written as a Gaussian comparison inequality.
Specifically, for any log-concave density f , we have

− 1

2
≤ 1

n
h(Z)− 1

n
h(X) ≤ 1

2
, (4.1)

where Z is any Gaussian random vector in Rn with the same maximal value of the density as f . On
the other hand, if we replace the assumption about the maximum with the requirement that Z has
the same covariance matrix as X, one may consider a different inequality of a similar form

0 ≤ 1

n
h(Z)− 1

n
h(X) ≤ C.

Whether or not it is possible to choose here an absolute constant C (to serve the class of all log-
concave densities) represents a question equivalent to the hyperplane conjecture (cf. [14] for discussion,
although the idea of such an equivalence should be credited to K. Ball as mentioned above). Let us
also note that the dimension-free Gaussian comparison inequality (4.1) is similar in spirit to the main
result of Section 3. Specifically, if for κ > 0, f is a density of a κ-concave random vector X taking
values in the convex body A, and if UA is the uniform distribution on A, (3.1)–(3.2) are equivalent to
the statement

0 ≤ 1

n
h(UA)− 1

n
h(X) ≤ C.

We proceed to describe two further consequences of Proposition 4.1.

9



Corollary 4.3. If random vectors X and Y in Rn are independent and have symmetric log-concave
densities f and g, respectively, then(∫

f(x)g(x) dx

)−2/n

≤ H(X + Y ) ≤ e2

(∫
f(x)g(x) dx

)−2/n

.

Note that, by the symmetry assumption, the convolution f ∗ g(x) =
∫
f(x − y)g(y) dy represents

a symmetric log-concave density. Hence, it attains maximum at the origin, so that

‖f ∗ g‖ = f ∗ g(0) =

∫
f(x)g(x) dx.

Now, returning to the convex body case, let us combine Proposition 3.4 with Corollary 4.2 applied
to X = Sm.

Corollary 4.4. Let X1, . . . , Xm be independent and uniformly distributed in convex bodies A1, . . . , Am
in Rn, and let fm be the density of the sum Sm = X1 + · · ·+Xm. Then

1 ≤ ‖fm‖ · |A1 + · · ·+Am| ≤ (me)n. (4.2)

To illustrate possible implications, again assume we have two convex bodies A and B in Rn, and
let X,Y be independent and uniformly distributed in A and −B, respectively, that is, with densities
f(x) = 1

|A| 1A(x), g(x) = 1
|B| 1B(−x). Their convolution

f ∗ g(x) =
1

|A| |B|

∫
1A(x− y) 1B(−y) dy =

|(A− x) ∩B|
|A| |B|

is supported on Ω = A−B, and (4.2) yields

sup
x
|(A− x) ∩B| · |A−B| ≤ (2e)n |A| |B|.

In fact, by a more careful application of Berwald’s inequality (see [12] for details), the constant here
may be slightly improved to get

sup
x
|(A− x) ∩B| · |A−B| ≤ Cn2n |A| |B|. (4.3)

This inequality is known as the Rogers-Shephard inequality [44, Equation 14]. When A = B, and
taking x = 0, it yields the Rogers-Shephard difference body inequality |A − A| ≤ Cn2n |A|, with the
sharp dimensional constant [43].

Note also that, since Cn2n < 4n, both the sides of (4.3) are of a similar order in the sense that

|A|1/n |B|1/n ≤ sup
x
|(A− x) ∩B|1/n |A−B|1/n ≤ 4 |A|1/n |B|1/n. (4.4)

Here the left inequality is just the bound ‖f ∗ g‖ ≥ |Ω|−1
∫
f ∗ g(x) dx = |A−B|−1.

In particular, for all symmetric convex bodies A and B in Rn,

|A|1/n |B|1/n ≤ |A ∩B|1/n |A+B|1/n ≤ 4 |A|1/n |B|1/n. (4.5)

5. Essential support of convex measures

Although log-concave and more general convex measures on Rn do not have bounded supports,
it is important to find a suitable form of Proposition 3.2 and its Corollary 3.3 which give bounds on
the entropy for compactly supported convex measures. As it turns out, an “essential” part of any
convex measure is supported on a certain convex body, and moreover its volume may be related to
the entropy of the measure. For the class of log-concave probability measures an observation of this
concentration type was first made by B. Klartag and V. D. Milman in [30], who proved the following
statement (cf. [30, Corollary 2.4] or [29, Corollary 5.1]).
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Proposition 5.1. For any log-concave probability measure µ on Rn with density f ,

µ
{
f ≥ cn0 ‖f‖

}
≥ 1− cn1

with some universal constants c0, c1 ∈ (0, 1).

In fact, at the expense of c0 one may choose c1 to be as small as we wish. See also [13] for
refinements.

Our next step is to prove the following analogue of Proposition 5.1 for the class of convex measures.

Proposition 5.2. Let µ be a probability measure on Rn with density f = V −β, where V is a convex
function on the supporting set. If β ≥ n+ 1 and β ≥ β0n with β0 > 1, then

µ
{
f ≥ cn0 ‖f‖

}
≥ 1

2
, (5.1)

for some c0 ∈ (0, 1) depending on β0, only.

At the expense of the constant c0 the bound 1/2 on the right side of (5.1) can be replaced with
any prescribed number p ∈ (0, 1). The convex body

Kf =
{
x ∈ Rn : f(x) ≥ cn0 ‖f‖

}
may be viewed as the “1

2–support” or “essential support” of the measure µ. (The latter interpretation
can be better justified by taking p to be some fixed number that is close to 1, but this is not needed
for our purposes.)

Proof. By the Borell characterization theorem (Proposition 2.1), µ is supported on an open convex
set Ω, where V is positive and convex. Without loss of generality, assume V attains minimum at some
point x0 ∈ Ω, and moreover

V (x0) = min
x∈Ω

V (x) = 1,

which corresponds to ‖f‖ = 1. Introduce sublevel convex sets

A(λ) = {x ∈ Ω : f(x) > λ}, 0 < λ < 1,

and similarly
A′(t) = {x ∈ Ω : V (x) < 1 + t}, t > 0.

Thus A(λ) = A′(λ−1/β − 1). By the Brunn-Minkowski inequality, the function ϕ(t) = |A′(t)| is 1
n–

concave in t > 0, that is, ϕ(t) = ψ(t)n for some concave function ψ, which is also non-negative and
non-decreasing. We may assume that ϕ(0+) = 0 and similarly for ψ. Integrating by parts, we have∫

V (x)−β dx =

∫ +∞

0

(1 + t)−βdϕ(t) = β

∫ +∞

0

(1 + t)−β−1ϕ(t) dt,

that is,

β

∫ +∞

0

(1 + t)−β−1 ψ(t)n dt = 1. (5.2)

Fix t0 > 0 and write similarly

1− µ(A′(t0)) =

∫
{V≥1+t0}

V (x)−β dx =

∫ +∞

t0

(1 + t)−βdϕ(t)

= β

∫ +∞

t0

(1 + t)−β−1 ϕ(t) dt− (1 + t0)−βϕ(t0),

so,

1− µ(A′(t0)) ≤ β

∫ +∞

t0

(1 + t)−β−1 ψ(t)n dt. (5.3)

11



Now, we need to estimate from above the integral (5.3) subject to (5.2). By concavity and mono-
tonicity of ψ,

ψ(t) ≥

{
ct, for 0 < t < t0

ct0, for t ≥ t0
where c = ψ(t0)/t0. Hence, integrating just over the interval (0, t0), we get∫ +∞

0

(1 + t)−β−1 ψ(t)n dt ≥ cn
∫ t0

0

tn

(1 + t)β+1
dt = cn

∫ 1

s0

sβ−n−1(1− s)n ds,

where s0 = 1/(1 + t0) and where we used the substitution s = 1/(1 + t). Hence, by (5.2),

cn ≤ 1

β
∫ 1

s0
sβ−n−1(1− s)n ds

. (5.4)

On the other hand, using ψ(t) ≤ ct, which holds for all t > t0, we obtain that∫ +∞

t0

(1 + t)−β−1 ψ(t)n dt ≤ cn
∫ +∞

t0

tn

(1 + t)β+1
dt = cn

∫ s0

0

sβ−n−1(1− s)n ds.

Combining (5.3) and (5.4), we get

1− µ(A′(t0)) ≤ P{ξ < s0}
P{ξ > s0}

, s0 =
1

1 + t0
, (5.5)

where ξ is a random variable having the beta-distribution with parameters (β−n, n+1), that is, with
density

p(s) =
1

B(β − n, n+ 1)
sβ−n−1(1− s)n, 0 < s < 1.

Now, to better understand the expression in (5.5), it is useful to relate the beta distribution to the
gamma distribution. It is a well-known fact in probability that in the sense of distributions

ξ =
Γβ−n

Γβ−n + Γn+1
,

where Γβ−n and Γn+1 are independent random variables, having the gamma distribution with shape
parameters β−n and n+1 respectively (and with the scale parameter 1). In particular, one may write
Γn+1 = ζ1 + · · ·+ ζn+1, where the ζi’s are independent and have a standard exponential distribution.

Note that the inequality ξ < s0 is solved as Γn+1 > t0 Γβ−n. Consequently, (5.5) takes the form

1− µ(A′(t0)) ≤ P{Γn+1 > t0 Γβ−n}
P{Γn+1 < t0 Γβ−n}

. (5.6)

Using Chebyshev’s inequality, for any α > 1 and s ∈ (0, 1), and actually with optimal s = 1−1/α,
one may write

P{Γn+1 > α(n+ 1)} ≤ (Eesζ1)n+1 e−αs(n+1) =

(
e−αs

1− s

)n+1

=
(
e · αe−α

)n+1
.

Take, for example, α = 4, in which case the above gives

P{Γn+1 > 4(n+ 1)} ≤
(

4

e3

)n+1

<

(
1

5

)n+1

. (5.7)

Hence,

P{Γn+1 > t0 Γβ−n} = P{Γn+1 > t0 Γβ−n, Γn+1 > 4(n+ 1)}
+P{Γn+1 > t0 Γβ−n, Γn+1 < 4(n+ 1)}

< 5−(n+1) + P
{

Γβ−n <
4(n+ 1)

t0

}
.
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In terms of t0 = 4(n+1)
T , where T > 0 will be choosen later on, we thus obtain that

P{Γn+1 > t0 Γβ−n} < 5−(n+1) + P{Γβ−n < T}. (5.8)

Now,

P{Γβ−n < T} =
1

Γ(β − n)

∫ T

0

xβ−n−1 e−x dx

<
1

Γ(β − n)

∫ T

0

xβ−n−1 dx =
T β−n

Γ(β − n+ 1)
=

Tα

Γ(α+ 1)
,

where we put α = β − n (which is positive). Take T = 1
4 EΓβ−n = α

4 , so that

P{Γβ−n < T} ≤
(α4 )α

Γ(α+ 1)
. (5.9)

We claim that the right side of (5.9) does not exceed 1/4 for any α ≥ 1. Here we use the following
observation. If ζ is a random variable with the standard exponential distribution, then Eζα = Γ(α+1)
and the claim takes the form

h(α) ≡ logE

(
ζ

α

)α
≥ log 4− α log 4. (5.10)

But as shown in [8], the function h is always concave on the positive half-axis α > 0, whenever ζ > 0
has a log-concave distribution. Hence, it is enough to verify (5.10) for α = 1 and α = +∞. In our
particular case, at the left endpoint there is equality, while Stirling’s formula shows that (5.10) also
holds at infinity.

Thus, P{Γβ−n < β−n
4 } ≤

1
4 whenever β − n ≥ 1, and for t0 = 4(n+1)

T = 16(n+1)
β−n the inequality

(5.8) yields

P{Γn+1 > t0 Γβ−n} < 5−(n+1) +
1

4
<

1

3
,

so that by (5.6),

1− µ (A′(t0)) ≤
1
3

1− 1
3

=
1

2
. (5.11)

Finally, recall that A(λ) = A′(λ−1/β − 1) or

A′(t0) = A(λ) with λ =

(
1 + 16

n+ 1

β − n

)−β
.

By (5.11), for this value we have µ(A(λ)) = µ{f > λ} ≥ 1
2 . We need an estimate of the form λ ≥ cn,

with some c > 0 depending on β. The latter is equivalent to

β log

(
1 + 16

n+ 1

β − n

)
≤ n logC (C = 1/c) (5.12)

which is indeed fulfilled in the range β ≥ β0n with β0 > 1 and C = C(β0). However, it is not true for
β = n+O(1).

To simplify (5.12), one may just use the elementary bound log(1 + x) ≤ x, so that (5.12) would
follow from

16β
n+ 1

β − n
≤ n logC

which holds for all β ≥ β0n with C = exp{32β0/(β0 − 1)}. Thus, Proposition 5.2 is proved with

c0 = exp{−32β0/(β0 − 1)}. (5.13)
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Remark 5.3. A slight modification of the above argument leads to Proposition 5.1. Indeed, let f be
a log-concave density such that ‖f‖ = 1. Write once more the inequality (5.6) with t0 = t/β, t > 0,
and recall the relation A(λ) = A′(λ−1/β − 1). Hence, (5.6) takes the form

1− µ
(
A
((

1 + t/β
)−β )) ≤ P{Γn+1 > tΓβ−n/β}

P{Γn+1 < tΓβ−n/β}
.

Letting β → +∞ and using Γβ−n/β → 1 in probability (according to the weak law of large numbers),
we arrive in the limit at

1− µ
(
A(e−t)

)
≤ P{Γn+1 > t}

P{Γn+1 < t}
, t > 0.

Choose, for example, t = 8n ≥ 4(n+ 1). Then, by (5.7),

1− µ
(
A(e−8n)

)
<

5−(n+1)

1− 5−(n+1)
<

1

5n
.

Hence, Proposition 5.1 holds with c0 = e−8 and c1 = 1/5.

Remark 5.4. By homogeneity, Propositions 5.1–5.2 may be stated for finite convex measures. In
particular, if f = V −β is Lebesgue integrable, where V is a positive convex function, and β ≥ n + 1
and β ≥ β0n with β0 > 1, then∫

f(x) dx ≤ 2

∫
Kf

f(x) dx ≤ 2 ‖f‖ |Kf |. (5.14)

Recall that
Kf = {x ∈ Ω : f(x) ≥ cn0 ‖f‖}

is the essential support of µ with c0 depending on β0, only. (One may choose the constant (5.13)).

To illustrate how Proposition 5.2 may be applied, note that 2 ‖f‖ |Kf | ≥ 1, according to (5.14).
On the other hand, since 1 ≥

∫
Kf

f(x) dx ≥ cn0‖f‖ |Kf |, we have that ‖f‖ |Kf | ≤ c−n0 . Thus,

1

2
‖f‖−1/n ≤ |Kf |1/n ≤ c−1

0 ‖f‖−1/n. (5.15)

But by Proposition 4.1 , if a random vector X has distribution µ,

1 ≤ H(X) ‖f‖2/n ≤ C

with constants C, depending on β, only (in case of the range as in Proposition 5.2). Hence, we arrive
at:

Corollary 5.5. Let a random vector X in Rn have a density f = V −β, where V is a positive convex
function on the supporting set. If β ≥ n+ 1 and β ≥ β0n with β0 > 1, then

C ′β0
|Kf |2/n ≤ H(X) ≤ C ′′β0

|Kf |2/n,

where Kf is the essential support of the distribution of X, and where C ′′β0
> C ′β0

> 0 depend on β0,
only.

6. M-position for convex bodies and measures

The so-called M -position of convex bodies was introduced by V. D. Milman in connection with
reverse forms of the Brunn-Minkowski inequality, cf. [35]. By now several equivalent definitions of
this important concept are known, and for our purposes we choose one of them. We refer an interested
reader to the subsequent works [37], [36] and the book by G. Pisier [40], which also contains historical
remarks; cf. also [11] for the relationship between M -position and isotropicity.
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For any convex body A in Rn, define

M(A) = sup
|E|=|A|

|A ∩ E|1/n

|A|1/n
,

where the supremum is over all ellipsoids E with volume |E| = |A|. The main result of V. D. Milman
may be stated as follows:

Proposition 6.1. If A is a symmetric convex body in Rn, then with some universal constant c > 0

M(A) ≥ c. (6.1)

By the Brunn-Minkowski and Rogers-Shephard difference body inequalities, for any convex body
A in Rn, we have M(A) ≥ 1

2 M(A− A). Hence, the symmetry assumption in (6.1) may be removed.
(That this may be done was first noticed by V. Milman and A. Pajor in [39], using a different but
equivalent definition of M -ellipsoids.)

If |A∩E|1/n ≥ c |A|1/n with a universal constant c > 0, then E is called an M -ellipsoid, or Milman’s
ellipsoid. It can be shown with the help of the reverse Santalo inequality due to Bourgain and Milman
and using a bound such as (4.5) that, if E is a (symmetric) M -ellipsoid for a symmetric convex body
A, then the dual ellipsoid Eo is an M -ellipsoid for the dual body Ao (although with different absolute
constants).

It follows from the definition that, for any convex body A in Rn, one can find an affine volume
preserving map u : Rn → Rn such that u(A) has a multiple of the unit centered Euclidean ball as an
M -ellipsoid. In that case, one says that u(A) is in M -position. Or equivalently, A is in M -position, if

|A ∩D|1/n ≥ c |A|1/n, (6.2)

where D is a Euclidean ball with center at the origin, such that |D| = |A|, and where c > 0 is universal.
The definition of an M -position may naturally be extended to the class of convex measures. Let

µ be a convex probability measure on Rn with density f such that ‖f‖ = 1. Then we say that µ is in
M -position (with constant c > 0), if

µ(D)1/n ≥ c, (6.3)

where D is a Euclidean ball with center at the origin of volume |D| = 1. Correspondingly, Proposi-
tion 6.1 can be generalized to a class of convex measures.

Proposition 6.2. Let µ be a probability measure on Rn with density f = V −β such that ‖f‖ ≥ 1,
where V is a convex function on the supporting set. If β ≥ n + 1 and β ≥ β0n with β0 > 1, then µ
may be put in a position where

µ(D)1/n ≥ c0
for some c0 ∈ (0, 1) depending on β0 (where D is the Euclidean ball of volume one).

By saying “put” we mean that, for some affine volume preserving map u : Rn → Rn, the image
u(µ) = µu−1 of the measure µ under the map u is in M -position.

In particular, any log-concave probability measure µ on Rn with density f such that ‖f‖ = 1 may
be put in M -position with a universal constant.

Proof. We may assume that ‖f‖ = 1. By Proposition 5.2, for some constant c0 > 0, which only
depends on β0, the essential support of µ, i.e., the set Kf = {f(x) ≥ cn0} has measure µ(Kf ) ≥ 1/2.
Hence, as was already noted in Remark 5.4, we have

1

2
≤ |Kf |1/n ≤ c−1

0 .

Put K ′f = 1
|Kf |1/n

Kf , which is a convex body with volume |K ′f | = 1.

One may assume that K ′f contains the origin and is already in M -position (otherwise, apply to
K ′f a linear, volume preserving map u to put it in M -position and consider the image u(µ) in place
of µ). We claim that if K ′f is in M -position, then µ is also in M -position.
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Indeed, if D is the Euclidean ball with center at the origin of volume |D| = 1, then (6.2) is satisfied
for the set A = K ′f with a universal constant c > 0. Since K ′f ⊂ 2Kf , we have |K ′f ∩D| ≤ |2Kf ∩D| ≤
2n|Kf ∩D|. Therefore,

µ(D) ≥
∫
Kf∩D

f(x) dx ≥ cn0 |Kf ∩D| ≥ cn0 · 2−n|K ′f ∩D| ≥
(
c0c

2

)n
.

Proposition 6.2 is proved.

7. Submodularity of entropy and implications

In the proof of Theorem 1.1 we apply a general submodularity property of the entropy functional,
recently obtained in [32]. We state it below in the particular case of three random vectors.

Proposition 7.1. Given independent random vectors X, Y , Z in Rn with absolutely continuous
distributions, we have

h(X + Y + Z) + h(Z) ≤ h(X + Z) + h(Y + Z)

provided that all entropies are well-defined.

In particular, let X,Y, Z be uniformly distributed in arbitrary convex bodies A,B,D, respectively.
By Proposition 3.4 with m = 3, we then obtain that

|A+B +D|1/n |D|1/n ≤ 3 |A+D|1/n |B +D|1/n.

Let us comment on the relationship between Proposition 6.1 and the reverse Brunn-Minkowski
inequality from our point of view. The fact that the former implies the latter is contained in V. Mil-
man’s original papers [35, 36, 37] (cf. Pisier [40, Corollary 7.3]) and is based on arguments involving
metric entropy rather than measure-theoretic entropy.

Corollary 7.2. The existence of M -ellipsoids for symmetric, convex bodies is equivalent to the reverse
Brunn-Minkowski inequality.

Proof. Using the monotonicity of entropy, i.e., h(X+Y +Z) ≥ h(X+Y ), we also have another variant
with a somewhat better constant

|A+B|1/n |D|1/n ≤ 2 |A+D|1/n |B +D|1/n. (7.1)

If, furthermore, all these convex bodies are symmetric and have volume one, by (4.5) applied to the
couples (A,D) and (B,D), we get from (7.1) that

1

|A ∩B|1/n
≤ |A+B|1/n ≤ 32

|A ∩D|1/n |B ∩D|1/n
. (7.2)

Therefore, if A and B are in M -position and have volume one, and D is the Euclidean ball of
volume one, the right inequality in (7.2) together with the definition (6.2) of M -position leads to the
reverse Brunn-Minkowski inequality in the form (1.3) with an identity linear operator,

|A+B|1/n ≤ C.

Note that the symmetry assumption in this conclusion can be removed by applying the above to
the sets A′ = 1

|A−A|1/n (A − A) and B′ = 1
|B−B|1/n (B − B) and making use of the Rogers-Shephard

difference body inequality.
The converse statement that the reverse Brunn-Minkowski inequality implies Proposition 6.1 can

be based on the left side of (7.2). Indeed, let A be a symmetric convex body in Rn with volume one.
Our hypothesis includes, in particular, that for some linear volume preserving map u : Rn → Rn, the
set Ã = u(A) satisfies

|Ã+D|1/n ≤ C,

where D is the Euclidean ball of volume one, as before. But then the left inequality in (7.2) being

written for the couple (Ã,D) indicates that Ã is in M -position with constant c = 1/C.
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The following property of convex bodies in M -position is well-known. (It can be obtained, for
instance, by comparing the left and right sides of inequality (7.2)). If A and B are symmetric convex
bodies in M -position of volume one, then

|A ∩B|1/n ≥ c1,

where c1 = c2/32 and c is Milman’s constant in (6.1). If we drop the volume assumption, the above
may be applied to the sets 1

|A|1/n A and 1
|B|1/n B, which leads to the following corollary.

Corollary 7.3. Let A and B be symmetric convex bodies in Rn that are in M -position. Then

|A ∩B|1/n ≥ c1 min{|A|1/n, |B|1/n}.

Without the symmetry assumption, we still have a similar property

sup
x
|(A− x) ∩B|1/n ≥ c1 min{|A|1/n, |B|1/n}. (7.3)

Indeed, by (4.4) and (7.1), the inequality (7.2) may be generalized as

1

supx |(A− x) ∩B|1/n
≤ |A−B|1/n ≤ 32

|A ∩D|1/n |B ∩D|1/n
,

where A,B,D are convex bodies of volume one and such that D is symmetric.
It was mentioned in Section 1 that we provide a technology for going from entropy to volume

estimates. Let us illustrate this in the context of the submodularity phenomenon discussed here.
Indeed, as described in [32, Theorem III], one consequence of submodularity is the following inequality.

Lemma 7.4. Let X and Y1, . . . , Ym be independent Rn-valued random vectors with finite entropies.
Let Ck denote the collection of all subsets of [m] = {1, . . . ,m} that are of cardinality k. Then

h

(
X +

∑
i∈[m]

Yi

)
− h(X) ≤ 1(

m−1
k−1

) ∑
s∈Ck

[
h

(
X +

∑
i∈s

Yi

)
− h(X)

]
.

Suppose A and B1, . . . , Bm are compact, convex sets in Rn with nonempty interior, and that X
is uniformly distributed on A while each Yi is uniformly distributed on Bi. Applying Proposition 3.4,
we have that

log

[ |A+
∑
i∈[m]Bi|
|A|

]
− n log(1 +m) ≤ h

(
X +

∑
i∈[m]

Yi

)
− h(X)

≤ 1(
m−1
k−1

) ∑
s∈Ck

[
h

(
X +

∑
i∈s

Yi

)
− h(X)

]

≤ 1(
m−1
k−1

) ∑
s∈Ck

log

[ |A+
∑
i∈sBi|
|A|

]
.

Thus we obtain the following corollary.

Corollary 7.5. Let Ck denote the collection of all subsets of [m] = {1, . . . ,m} that are of cardinality
k. Let A and B1, . . . , Bm be convex bodies in Rn, and suppose∣∣∣∣A+

∑
i∈s

Bi

∣∣∣∣ 1n ≤ cs|A| 1n
for each s ∈ Ck, with given numbers cs. Then∣∣∣∣A+

∑
i∈[m]

Bi

∣∣∣∣ 1n ≤ (1 +m)

[ ∏
s∈Ck

cs

] 1

(m−1
k−1) |A| 1n .
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In particular, by choosing k = 1, one already obtains an interesting inequality for volumes of
Minkowski sums: for convex bodies, if |A+Bi|

1
n ≤ ci|A|

1
n for each i = 1, . . . ,m, then∣∣∣∣A+

∑
i∈[m]

Bi

∣∣∣∣ 1n ≤ (1 +m)

[ ∏
i∈[m]

ci

]
|A| 1n .

Inequalities of this type are well known for set cardinalities in the context of finite subsets of
groups. In fact, they are important inequalities in the field of additive combinatorics, where they
are called Plünnecke-Ruzsa inequalities (see, e.g., the book of T. Tao and V. Vu [52]). These were
introduced by H. Plünnecke [41] and generalized with a simpler proof by I. Ruzsa [45]; a more recent
generalization is proved in [27], and entropic versions are developed in [34]. For illustration, the form
of Plünnecke’s inequality developed in [45] states that if A,B1, . . . , Bk are finite sets in a commutative
group and |A| = M, |A+Bi| = αiM , for 1 ≤ i ≤ k, then there exists an X ⊂ A,X 6= φ such that

|X +B1 + . . .+Bk| ≤ α1 . . . αk|X|.

Thus one may think of Corollary 7.5 as providing continuous analogues of the Plünnecke-Ruzsa in-
equalities in the context of volumes of convex bodies in Euclidean spaces, where one does not need to
bother with taking subsets of the set A. It may appear that there is an extra factor of (1 +m) in the
continuous setting, but in fact one can get rid of this by using the so-called “tensorization trick” (we
thank Van Vu for suggesting the use of this).

Let us note that T. Tao [51] has previously developed a continuous analogue of Freiman’s theorem,
which is related to the Plünnecke-Ruzsa inequalities. Specifically, [51, Proposition 7.1] asserts that
if A is an open bounded non-empty subset of Rn such that |A + A| ≤ K|A| for some K ≥ 2n, then
there exists an ε > 0 and a set P which is the sum of OK(1) arithmetic progressions in Rn such that
A ⊂ P + B(0, ε) and |P + B(0, ε)| ≈K |A|. However, this kind of continuous analogue is different
in nature from the one we propose above, since it focuses on algebraic rather than convex structure.
Another notable continuous analogue of Freiman’s theorem is developed in the more general context
of locally compact, abelian groups by T. Sanders [46].

8. The log-concave case

In the log-concave case Theorems 1.1–1.2 are somewhat simpler due to the property that the class
of log-concave probability densities is closed under the convolution operation.

Let us describe the argument, assuming that X and Y have log-concave densities, say, f and
g, respectively. First consider the case, where both f and g are even functions in the sense that
f(x) = f(−x) and g(x) = g(−x).

Proof. (of Theorem 1.1 in the symmetric log-concave case.) In this case, the essential supports

Kf = {f(x) ≥ cn0 ‖f‖} and Kg = {g(x) ≥ cn0 ‖g‖},

where c0 ∈ (0, 1) is a universal constant, are symmetric convex sets. By Corollary 4.3 , one may bound
the entropy power as follows:

H(X + Y ) ≤ e2

(∫
f(x)g(x) dx

)−2/n

≤ e2c−4
0 ‖f‖−2/n‖g‖−2/n |Kf ∩Kg|−2/n.

Moreover, if both Kf and Kg are in M -position, which may be assumed, then we have by deploying
Corollary 7.3 and relation (5.15) that

|Kf ∩Kg|1/n ≥ c1 min{|Kf |1/n, |Kg|1/n} ≥
c1
2

min
{
‖f‖−1/n, ‖g‖−1/n

}
.
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Hence, with some numerical constant C > 0

H(X + Y ) ≤ C max
{
‖f‖−2/n, ‖g‖−2/n

}
≤ C max{H(X), H(Y )},

where on the last step we made use of the general relation H(X) ≥ ‖f‖−2/n. This proves Theorem 1.1
(and therefore Theorem 1.2) in the symmetric log-concave case.

In the general non-symmetric case one may use the inequality (7.3) for non-symmetric sets in
M -position. There is also another argument based on the following elementary observation.

Lemma 8.1. For any log-concave probability density f on Rn,

2−n ‖f‖ ≤
∫
f(x)2 dx ≤ ‖f‖. (8.1)

The right inequality is trivial and holds without any assumption on the density. To derive the left
inequality, write the definition of the log-concavity,

f(tx+ sy) ≥ f(x)t f(y)s, x, y ∈ Rn, t, s > 0, t+ s = 1.

It may also be applied to f1/t, so f(tx + sy)1/t ≥ f(x) f(y)s/t. Integrating with respect to x and
using the assumption that

∫
f = 1, we get

t−n
∫
f(x)1/t dx ≥ f(y)s/t.

It remains to optimize over y’s, so that
∫
f(x)1/t dx ≥ tn ‖f‖s/t, and then take the values t = s = 1/2.

Proof. (of Theorem 1.1 in the general log-concave case.) One may use symmetrization. Let
X be a random vector in Rn with a log-concave density f . Let X ′ be an independent copy of X,
thus with density f̃(x) = f(−x). Then the random vector X ′′ = X −X ′ has a symmetric log-concave
distribution with density

f ∗ f̃(x) =

∫
f(x+ y)f(y) dy,

whose norm satisfies, by (8.1),

‖f‖ ≥ ‖f ∗ f̃‖ = f ∗ f̃(0) ≥ 2−n ‖f‖. (8.2)

Now, let’s do the same symmetrization with another log-concave random vector Y in Rn with
density g, assuming that it is independent of X. Then we are in position to apply to (X ′′, Y ′′) the
symmetric part of Theorem 1.1, which gives

H(u1(X ′′) + u2(Y ′′)) ≤ C (H(X ′′) +H(Y ′′)), (8.3)

for some linear volume preserving map ui : Rn → Rn and some universal constant C.
But since the entropy power may only increase when adding to a given random vector an inde-

pendent summand, the left side of (8.3) is greater than or equal to H(u1(X) + u2(Y )). On the other
hand, by Corollary 4.2 and applying (8.2), we have

H(X ′′) ≤ e2
∥∥f ∗ f̃∥∥−2/n ≤ 2e2 ‖f‖−2/n ≤ 2e2H(X).

With a similar bound for the random vector Y , we arrive at

H(u1(X) + u2(Y )) ≤ 2e2C (H(X) +H(Y )).
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9. Proof of Theorem 1.1

In order to involve in Theorem 1.1 more general convex measures, we need to apply the more
delicate Propositions 4.1, 5.2 and 6.2. Moreover, since the previous argument based on the log-
concavity of the convolution of two log-concave densities has no extension to the class of convex
measures (with negative convexity parameter κ), we have to appeal to the submodularity property of
the entropy functional.

Throughout this section let Z denote a random vector in Rn uniformly distributed in the Euclidean
ball D with center at the origin and volume one. In particular, h(Z) = 0, and by Proposition 7.1,

h(X + Y ) ≤ h(X + Z) + h(Y + Z), (9.1)

for all random vectors X and Y in Rn that are independent of each other and of Z (provided that all
entropy powers are well-defined).

Let X and Y have densities of the form (1.4). In view of the homogeneity of the inequality (1.6) of
Theorem 1.1, we may assume that ‖f‖ ≥ 1 and ‖g‖ ≥ 1. Then, by (9.1), our task reduces to showing
that both h(X + Z) and h(Y + Z) can be bounded from above by quantities, depending on β0, only
(under further assumption on β0). This can be achieved by putting the distributions of X and Y in
M -position.

Thus, what we need is:

Lemma 9.1. Let X be a random vector in Rn independent of Z with density f = V −β such that
‖f‖ ≥ 1, where V is a convex function, and where β is in the range

β ≥ max{2n+ 1, β0n} (β0 > 2). (9.2)

Then for some linear volume preserving map u : Rn → Rn, we have H(u(X)+Z) ≤ Cβ0 with constants
depending on β0, only.

Proof. By Proposition 6.2, for some affine volume preserving map u : Rn → Rn, the distribution µ̃ of
X̃ = u(X) satisfies

µ̃(D)1/n ≥ c0
with a numerical constant c0 > 0 (which does not depend on β0, since β0 is well separated from 1).

Let f̃ denote the density of X̃ = u(X). Then the density p of S = X̃ + Z, given by

p(x) =

∫
D

f̃(x− z) dz = µ̃(D − x),

satisfies
‖p‖ ≥ p(0) ≥ cn0 . (9.3)

Hence, in order to bound the entropy power H(S), it will be sufficient to know the convexity parameter
of the distribution of S. (Here is the place where the conditions (9.2) arise).

As we know from the Borell characterization, the distribution µ̃ of X̃ is κ′-concave with the
convexity parameter

κ′ = − 1

β − n
.

Also, recall that Z has the uniform distribution in D with the parameter κ′′ = 1
n . In order to judge

about convexity properties of the convolution p = f̃ ∗ g, where g = 1D is the density of Z, one may
apply Proposition 2.2. Then we need to check the condition

κ′ + κ′′ > 0,

which in our case is equivalent to β > 2n. By (9.2), this requirement is met, so S has a κ-concave
distribution with parameter κ given by

1

κ
=

1

κ′
+

1

κ′′
= −(β − 2n),
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that is, with κ = − 1
β−2n . Equivalently, S has a density of the form p = W−βS for some convex

function W and with the β-parameter

βS = n− 1

κ
= n+ (β − 2n) = β − n.

We can now apply Proposition 4.1 to the random vector S. Together with (9.3) it gives

H(S) ≤ C ‖p‖−2/n ≤ C · c−2
0 ,

provided that βS ≥ n+ 1, βS ≥ β′0 n, β′0 > 1, and with constants depending on β′0. With β′0 = β0− 1,
these conditions are equivalent to (9.2).

Lemma 9.1 and therefore Theorem 1.1 are proved.

It would be interesting to explore the range of β, such that the inequality of Theorem 1.1 holds
true with β-dependent constants. On the other hand, the following statement (proved in [7]) is true:

Proposition 9.2. For any constant C, there is a convex probability measure µ on the real line with
the following property. If X and Y are independent random variables distributed according to µ, then
min(H(X + Y ), H(X − Y )) ≥ CH(X).

In other words, Theorem 1.1 does not hold with an absolute constant to serve for the entire class
of convex measures (already in dimension one).

10. Discussion

One may wonder how to find specific positions (that is, the linear maps u1 and u2) for the distri-
butions of the random vectors X and Y in Theorem 1.1. Natural candidates are the so-called isotropic
positions.

Let us recall the well-known and elementary fact that, in the class of all (absolutely continuous)
probability distributions on Rn with a fixed covariance matrix, the entropy h(X) is maximized when
X has a normal distribution. Equivalently, for any affine volume preserving map T of the space Rn,

1

2πe
H(X) ≤

∫
|Tx|2

n
f(x) dx, (10.1)

where f is density of X. If the right side of (10.1) is minimized for the identity map T (x) = x, then
one says that the distribution of X is isotropic or in isotropic position (cf. [38]). This is equivalent to
the property that X has mean at the origin and, for any unit vector θ,

L2
f = ‖f‖2/n

∫
〈x, θ〉2 f(x) dx,

for some number Lf > 0, called the isotropic constant of f . If X is uniformly distributed in a convex
body K, the number Lf = LK is called the isotropic constant of K.

Thus, for any random vector X in Rn with density f regardless of whether its distribution is
isotropic or not, (10.1) may be rewritten as

1

2πe
H(X) ≤ L2

f ‖f‖−2/n. (10.2)

In view of the general bound H(X) ≥ ‖f‖−2/n, the above estimate implies, in particular, that L2
f ≥

1
2πe , so the isotropic constants are separated from zero.

Restricting ourselves to (isotropic) log-concave probability distributions, the question of whether
the isotropic constants are bounded from above by a dimension-free constant is equivalent to the (still
open) hyperplane problem raised by J. Bourgain in the mid 1980’s. As was shown by K. Ball [4], it does
not matter whether this problem is stated for the class of (all) convex bodies or for the class of (all) log-
concave distributions; see also [10] for an extension to the class of convex measures. An affirmative
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solution of the hyperplane problem is known for some subclasses of log-concave distributions. For
example, Lf is bounded by a universal constant, if the distribution of X is log-concave and symmetric
about the coordinates axes.

Anyhow, the inequalities (10.1)–(10.2) suggest the following variant of the reverse Brunn-Minkowski
inequality. Let X and Y be independent random vectors with log-concave densities f and g, respec-
tively. Applying (10.1) to X + Y with Tx = x− x0, where x0 = E (X + Y ), we obtain that

1

2πe
H(X + Y ) ≤ 1

n

∫
|x|2 f(x) dx+

1

n

∫
|x|2 g(x)dx. (10.3)

Here the right side is sharpened, when the distributions of X and Y are put in the isotropic position,
and then we arrive at

1

2πe
H(X̃ + Ỹ ) ≤ L2

f H(X) + L2
gH(Y ), (10.4)

where X̃ = u1(X), Ỹ = u2(Y ), and where affine volume preserving maps ui’s are chosen so that both

X̃ and Ỹ are isotropic. (Such maps are easily described in terms of the covariance matrices of X and
Y ).

In particular, if X and Y are uniformly distributed in convex bodies A and B, respectively, the
inequalities (10.3)–(10.4) together with the lower bound in (1.10) yield

1

8πe
|A+B|2/n ≤ 1

n|A|

∫
A

|x|2 dx+
1

n|B|

∫
B

|x|2 dx.

In particular, one obtains the following corollary.

Corollary 10.1. Suppose A and B are convex bodies, and Ã = u1(A) and B̃ = u2(B) are the bodies
after being put in isotropic position. Then

1

8πe

∣∣Ã+ B̃
∣∣2/n ≤ L2

A |A|2/n + L2
B |B|2/n.

Therefore, if the isotropic constants LA and LB are known to be bounded by a constant, say C0,
then Corollary 10.1 provides a reverse Brunn-Minkowski inequality (1.1) with C = C0

√
8πe.

A result such as Corollary 10.1 was first obtained, using a different argument, by K. Ball in his
thesis [3].
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