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This paper is a continuation of [1]. We continue the numeration of equations and theorems (as well
as propositions and lemmas) and keep all definitions and notations as in the first part. Let us recall some
of them.

We say that a complex-valued function v on the real line is s-times differentiable (s ≥ 2), if it has
continuous derivatives up to order m = [s], and for any point t0, as t → t0,

v(m)(t) = v(m)(t0) + o(|t − t0|s−m).

In the sequel, we will always assume that v(0) = 1, v′(0) = 0, and v′′(0) = −1.
Define the cumulants of v by

γk =
dk

ik dtk
log v(t)

∣∣
t=0

, k = 1, . . . ,m.

In particular, γ1 = 0, γ2 = 1.
The associated polynomials Pk are defined in case m ≥ 3 for integers 1 ≤ k ≤ m − 2 by

Pk(t) =
∑

p1+2p2+···+kpk=k

1
p1! . . . pk!

(
γ3

3!

)p1

. . .

(
γk+2

(k + 2)!

)pk

tk+2(p1+···+pk),

where the summation is extended over all non-negative integer solutions (p1, . . . , pk) to the equation
p1 + 2p2 + · · · + kpk = k.
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270 BOBKOV et al.

10. PROOF OF THEOREM 1.3

Let v(t) be s-times differentiable, s ≥ 2, such that v(0) = 1, v′(0) = 0, v′′(0) = −1. Note that v is
not vanishing in some interval containing the origin.

Let us consider the family of the functions

um(t, z) = e−t2/2

(
1 +

m−2∑
k=1

Pk(it)zk

)
,

where m = [s], and the polynomials Pk are based on the cumulants γ3, . . . , γm of v. In order to
approximate the powers vn(t) = v(t/

√
n)n, one uses the values z = 1/

√
n, leading to the approximating

functions

um(t) = um(t, n−1/2) = e−t2/2

(
1 +

m−2∑
k=1

Pk(it)n−k/2

)
.

On the other hand, when z = 1, we deal with the projection operators Tm, i.e., with the functions

em(t) = um(t, 1) = e−t2/2

(
1 +

m−2∑
k=1

Pk(it)
)

.

Theorem 1.3 is a particular case of the following more general proposition.

Proposition 10.1. For all p = 0, 1 . . . ,m, and all |t| ≤ cn1/6,

dp

dtp
(vn(t) − um(t)) = n

dp

dtp

[(
v
( t√

n

)
− em

( t√
n

))
e−t2/2

]
+ rn (10.1)

with

|rn| ≤
(
1 + |t|4m2)

e−t2/2

(
C

n(m−1)/2
+

εn

ns−2

)
. (10.2)

Here C, c and εn are some positive constants such that εn → 0 as n → ∞.

It is worthwhile noting that Proposition 9.1 and thus relation (1.8) can be obtained on the basis
of (10.1)–(10.2) as well using the property that v(t) and em(t) have equal derivatives up to order m
and both are s-times differentiable. However, we have chosen a different road of proof and will derive
Proposition 10.1 by virtue of Proposition 9.1 (its second part).

In order to show how it applies, apply the binomial formula to obtain that

vn(t) − um(t) = σn1 + σn2 + σn3 =em

( t√
n

)n
− um(t)

+ n

[
v
( t√

n

)
− em

( t√
n

)]
em

( t√
n

)n−1

+
n∑

k=2

Ck
n

[
v
( t√

n

)
− em

( t√
n

)]k

em

( t√
n

)n−k
.

Thus, σn2 is almost the term which appears on the right-hand side of (10.1), provided that em( t√
n
)n−1

is replaced with the characteristic function of the standard normal law.
The first term σn1 = em( t√

n
)n − um(t) is of the same nature as vn(t) − um(t), assuming that em

plays the role of v. At this point, let us recall that, by Proposition 7.4, Tmem = em, and moreover, that
em generates the same polynomials Pk as v. Hence Proposition 9.1, being applied to em in place of v with
z = 1/

√
n, provides the bound on the derivatives of em( t√

n
)n − um(t). Since em is analytic, the second

assertion (9.2) of Proposition 9.1 is more accurate. Namely, if em(t) is not vanishing in the interval |t| ≤ c
(which is true with some constant c > 0 depending on the cumulants only), it gives:
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NON-UNIFORM BOUNDS IN LOCAL LIMIT THEOREMS 271

Lemma 10.2. For all p = 0, 1, . . . ,m and all |t| ≤ cn1/6,∣∣σ(p)
n1 (t)

∣∣ ≤ A
(
1 + |t|2m2)

e−t2/2 n−(m−1)/2, (10.3)

where c and A are some positive constants, depending on the cumulants γ3, . . . , γm.

Moreover, using a similar argument one can estimate the derivatives of the functions em(t)k, which
appear both in σn2 and σn3. Apply (9.2) with v = em and z = 1/

√
k to get

dp

dtp
em

( t√
k

)k
=

dp

dtp
e−t2/2

(
1 +

m−2∑
j=1

Pj(it)
kj/2

)
+ A

(
1 + |t|2m2)

e−t2/2 k−(m−1)/2, (10.4)

where A = Ak(t) is a bounded quantity in the interval |t| ≤ ck1/6. Putting α =
√

k
n and replacing the

variable t with αt, we obtain

dp

dtp
em

( t√
n

)k
=

dp

dtp
e−α2t2/2

(
1 +

m−2∑
j=1

Pj(iαt)
kj/2

)
+ B

(
1 + |t|2m2)

e−α2t2/2, (10.5)

where now B = Bk(t) is bounded in |t| ≤ cn1/6. Every Pj is a polynomial of degree at most 3j ≤ 3m, so
all its derivatives of order up to m can be bounded by C(1 + |t|)3m on the whole real line. Hence, using
α ≤ 1 and k ≥ 1, the same is true for the polynomial in the large bracket of (10.5). Using the Leibnitz
rule, it then follows from (10.5) that:

Lemma 10.3. For all p = 0, 1, . . . ,m, k = 0, 1, . . . , n, in the interval |t| ≤ cn1/6∣∣∣∣ dp

dtp
em

( t√
n

)k
∣∣∣∣ ≤ C

(
1 + |t|2m2)

e−kt2/(2n)

with some positive constants c and C.

The particular case k = n − 1 in (10.4) should be investigated in more detail by replacing (10.5) with
a more accurate relation, namely

dp

dtp
em

( t√
n

)n−1
=

dp

dtp
e−α2t2/2

(
1 +

1√
n − 1

m−2∑
j=1

Pj(iαt)
(n − 1)(j−1)/2

)
+

B
(
1 + |t|2m2)
√

n − 1
e−α2t2/2

(assuming n ≥ 2). Repeating the same argument concerning the growth of the polynomials Pj and their

derivatives, and noting that, for α =
√

n−1
n , we have∣∣∣∣ dp

dtp
e−α2t2/2 − dp

dtp
e−t2/2

∣∣∣∣ ≤ C

n

(
1 + |t|p+2

)
e−t2/2, |t| ≤

√
n,

we arrive at the following bound (which also holds in the missing case n = 1):

Lemma 10.4. For all p = 0, 1, . . . ,m, in the interval |t| ≤ cn1/6∣∣∣∣ dp

dtp
em

( t√
n

)n−1
− dp

dtp
e−t2/2

∣∣∣∣ ≤ C√
n

(
1 + |t|2m2)

e−t2/2

with some positive constants c and C.

Finally, let us bound the derivatives of y(t) = v(t) − em(t) and of its powers, which appear both in
σn2 and σn3 as well. To this aim, one may appeal to Corollary 7.5, giving, as t → 0,

y(r)(t) = o
(
|t|s−r

)
for any r = 0, . . . ,m. (10.6)
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In particular, y(t)k = o(|t|sk) for any k ≥ 1. If p ≥ 1, by the chain rule (cf. (2.3)), the pth derivative
of y(t)k represents a linear combination of the terms

b(t) = y(t)k−(k1+···+kp) (y′(t))k1 . . . (y(p)(t))kp

over all integer tuples (k1, . . . , kp) such that k1 + 2k2 + · · · + pkp = p and k1 + · · · + kp ≤ k (kj ≥ 0).
By (10.6), we have b(t) = o(|t|S), where

S = s
(
k − (k1 + · · · + kp)

)
+

p∑
r=1

(s − r)kr = sk − p.

Hence dp

dtp

(
v(t) − em(t)

)k = o
(
|t|sk−p

)
. Since sk − p ≤ sm for 1 ≤ k ≤ m, we obtain:

Lemma 10.5. Let 0 < α < 1
2 and c > 0 be given. For some εn → 0, for all p = 0, 1, . . . ,m and

k = 1, . . . ,m, we have, uniformly in the interval |t| ≤ cnα,∣∣∣∣ dp

dtp

(
v
( t√

n

)
− em

( t√
n

))k∣∣∣∣ ≤ εn

(
1 + |t|sm

)
n−sk/2.

Proof of Proposition 10.1. Using Lemmas 10.4 and 10.5 (with k = 1), we see that in σn2 one may
replace the term em( t√

n
)n−1 with e−t2/2 at the expense of an error not exceeding

n · εn

(
1 + |t|sm

)
n−s/2 · C√

n

(
1 + |t|2m2)

e−t2/2 ≤ ε′n
n(s−1)/2

(
1 + |t|4m2)

e−t2/2, (10.7)

where ε′n → 0. The same is true for the first m derivatives of σn2.

Now consider the products yk(t) =
(
v( t√

n
) − em( t√

n
)
)k

em

(
t√
n

)n−k
appearing in σn3 with 2 ≤

k ≤ n. Writing

y
(p)
k (t) =

p∑
j=0

Cj
p

dj

dtj

(
v
( t√

n

)
− em

( t√
n

))k dp−j

dtp−j
em

( t√
n

)n−k

and combining Lemmas 10.3 and 10.5 (which give estimates that are independent of j), we get∣∣y(p)
k (t)

∣∣ ≤ 2p · εn

(
1 + |t|sm

)
n−sk/2 · C

(
1 + |t|2m2)

e−(n−k)t2/(2n)

≤ ε′′n
nsk/2

(
1 + |t|4m2)

e−(n−k)t2/(2n),

where ε′′n → 0. Therefore,

|σ(p)
n3 (t)| ≤

n∑
k=2

Ck
n

∣∣y(p)
k (t)

∣∣ ≤ ε′′n
(
1 + |t|4m2) n∑

k=2

Ck
n

1
nsk/2

e−(n−k)t2/(2n)

= ε′′n
(
1 + |t|4m2)

e−t2/2
((

1 + n−s/2 et2/2n
)n − 1 − n−(s−2)/2 et2/2n

)
. (10.8)

For s > 2, we have δn = n−s/2 et2/2n = o(1/n) uniformly in the interval |t| ≤ cn1/6. So,

(1 + δn)n = en log(1+δn) = en(δn+O(δ2
n)) = 1 + nδn +

1
2

(nδn)2 + nO
(
δ2
n

)
.

Hence, for all n large enough, the expression in the large brackets in (10.8) does not exceed

1
2

(nδn)2 + O
(
δ2
n

)
≤ 1

ns−2
+ O

( 1
ns−1

)
.

It remains to compare this bound with (10.7) and (10.3), and then we arrive at (10.2).
Finally, in the case s = 2, the expression in the large brackets in (10.8) is uniformly bounded in

|t| ≤ cn1/6. Thus Proposition 10.1 is proved.
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11. LIOUVILLE FRACTIONAL INTEGRALS AND DERIVATIVES

In this section we recall basic definitions and some results on Liouville fractional integrals and
derivatives, and refer to [4], [3] for proofs and a more detailed exposition. At the end of the section we
also formulate some special estimates for such operators. The proof of Proposition 11.3 below is rather
routine and is therefore postponed to the next section.

Let α denote a real number with 0 < α < 1, and let y = y(t) denote a (measurable) function defined
for t > 0. The Liouville left- and right-sided fractional integrals on the positive half-axis R+ = (0,+∞)
of order α are defined by

(Iα
0+y)(x) =

1
Γ(α)

x∫
0

y(t) dt

(x − t)1−α
, (Iα

−y)(x) =
1

Γ(α)

+∞∫
x

y(t) dt

(t − x)1−α
(x > 0).

The equalities are understood in the usual way (as Lebesgue integrals), if y is sufficiently "nice".
According to a theorem by Hardy and Littlewood, Iα

0+ and Iα
− are extended and act as bounded

linear operators from Lp(R+) to Lq(R+), where 1 ≤ p, q ≤ +∞, if and only if p < 1
α and q = p

1−αp .
They represent particular cases of the so-called Liouville (or Riemann–Liouville) fractional calculus
operators.

The Liouville left- and right-sided fractional derivatives on the positive half-axis are defined by

(Dα
0+y)(x) =

d

dx
(I1−α

0+ y)(x), (Dα
−y)(x) =

d

dx
(I1−α

− y)(x) (x > 0).

The equalities are valid for sufficiently "nice" functions, including the class C∞
0 (R+) of all infinitely

differentiable functions on R+ with a compact support (which can be used to approximate functions
from larger spaces).

For example, for any complex number λ such that Re(λ) > 0,

(Iα
−e−λt)(x) = λ−α e−λx, (Dα

−e−λt)(x) = λα e−λx, (11.1)

where the principal value of the power functions is used.

We cite two standard facts about these operators (see [3], p. 75 and p. 83).

Proposition 11.1. For all sufficiently “good” functions y on R+,

(Dα
0+Iα

0+y)(x) = y(x), (Dα
−Iα

−y)(x) = y(x).

The equalities are extended to the space L1(R+). Moreover, if additionally y(x) = o(xα) for
x → 0, then

(Iα
0+Dα

0+y)(x) = y(x).

Define the linear spaces Iα
0+(Lp(R+)) and Iα

−(Lp(R+)) as the images of Lp(R+) under the operators
Iα
0+ and Iα

−, respectively.

Proposition 11.2. For all sufficiently “good” functions f and g on R+,

+∞∫
0

f(x) (Dα
0+g)(x) dx =

+∞∫
0

g(x) (Dα
−f)(x) dx. (11.2)

The equality may be extended to all f ∈ Iα
−(Lp(R+)) and g ∈ Iα

0+(Lq(R+)) with p, q > 1, such that
1
p + 1

q = 1 + α.
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This is a formula for fractional integration by parts.
Now, let V be a function of bounded variation on the real line, also viewed as a finite measure, and

denote by |V | its variation (as a measure). Define the Fourier–Stieltjes transform

V̂ (x) =

+∞∫
−∞

eitx dV (t), x ∈ R.

For our purposes, the following proposition will play a crucial role in the study of the local limit
theorem with fractional moments.

Proposition 11.3. Let g(x) = V̂ (x)h(x), where h(x) is a continuously differentiable function on
the real line such that, for a given integer m ≥ 0 and 0 < α < 1, as |x| → ∞,

|h(x)| + |h′(x)| = O
(
|x|−(2+m+α)

)
.

If
∫ +∞
−∞ |t|m+α d|V |(t) < +∞ and V̂ (k)(0) = 0 for all k = 0, . . . ,m, then (Dα

0+g)(x) exists for all
x > 0 and satisfies with some constant C, independent of x,

∣∣(Dα
0+g)(x)

∣∣ ≤ C

(1 + x)1+α

+∞∫
−∞

min
{
|u|, |u|α′} |u|m |V |(du). (11.3)

Here α′ = α in case m = 0, and α′ = 0 in case m ≥ 1. In addition, for all t real,
+∞∫
0

eitx (Dα
0+g)(x) dx = (−it)α

+∞∫
0

eitx g(x) dx. (11.4)

More precisely, the Gaussian function h(x) = e−x2/2 and its derivatives will only be needed in this
proposition to obtain the desired decay for the inverse Fourier–Stieltjes transform.

Proposition 11.4. For all functions V and h as in Proposition 11.3, for all t real,∣∣∣∣
+∞∫

−∞

eitx V̂ (zx)h(x) dx

∣∣∣∣ ≤ |z|m+α

(1 + |t|)α ε(z), (11.5)

where ε(z) is bounded in |z| ≤ 1 and satisfies ε(z) → 0 as z → 0.

Proof. Let 0 < z ≤ 1. We apply Proposition 11.3 with the function Vz(u) = V (u/z) in place of V

in which case V̂z(x) = V̂ (zx). Then, for the function gz(x) = V̂ (zx)h(x), the fractional derivative
(Dα

0+gz)(x) exists for all x > 0 and satisfies (11.3).

In order to unite both cases, use |u|α′ ≤ |u|α for |u| ≥ 1 and write (11.3) in a slightly weaker form∣∣(Dα
0+gz)(x)

∣∣ ≤ Czm

(1 + x)1+α
δ(z), (11.6)

where

δ(z) =

+∞∫
−∞

min
{
|zu|, |zu|α

}
|u|m |V |(du).

This integral is finite and behaves like o(zα) as z → 0. Indeed, split it into the two integrals in terms of
the (finite positive) measure W (du) = |u|m |V |(du) as

δ(z) = zαI0(z) + zαI1(z) = zα

∫
|u|≤1/z

z1−α|u| dW (u) + zα

∫
|u|>1/z

|u|α dW (u). (11.7)
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By the moment assumption on V , we have
∫
|u|α dW (u) < +∞, so I1(z) → 0 as z → 0. As for

the first integral, note that z1−α|u| ≤ |u|α in the region |u| ≤ 1/z. Hence the functions fz(u) =
z1−α|u| 1{|u|≤1/z} have an integrable majorant f(u) = |u|α with respect to W . Since also fz(u) → 0
as z → 0, one may apply the Lebesgue dominated convergence theorem, which gives I0(z) =∫

fz dW → 0. Thus, from (11.6)–(11.7),

∣∣(Dα
0+gz)(x)

∣∣ ≤ Czm+α

(1 + x)1+α
ε(z), (11.8)

where ε(z) = δ(z)
zα → 0 as z → 0 and sup0<z≤1 ε(z) < +∞.

Now, using the bound (11.8) in (11.4), we get |
∫ +∞
0 eitx gz(x) dx| ≤ Czm+α

α|t|α ε(z). Obviously, a similar
inequality will hold as well when integrating over the negative half-axis. Therefore,

∣∣∣∣
+∞∫

−∞

eitx gz(x) dx

∣∣∣∣ ≤ 2Czm+α

α|t|α ε(z).

This estimate implies (11.5) in case of large values of |t|, say, when |t| ≥ 1. The remaining range |t| ≤ 1
can be treated by straightforward arguments.

By the assumption on the decay of h, its Fourier transform ĥ(t) =
∫ +∞
−∞ eitx h(x) dx is well defined,

bounded, and has bounded continuous derivatives up to order m + 1. Introduce Taylor’s approximation
for ĥ up to order m at a given point t, i.e., the function

(Smĥ)(t, u) =
m∑

k=0

ĥ(k)(t)
k!

uk, u ∈ R.

From Taylor’s theorem it follows that∣∣ĥ(t + u) − (Smĥ)(t, u)
∣∣ ≤ M min

{
|u|m, |u|m+1

}
(11.9)

with some constant M independent of t. Now write

ĝz(t) ≡
+∞∫

−∞

eitx gz(x) dx =

+∞∫
−∞

eitx V̂ (zx)h(x) dx =

+∞∫
−∞

ĥ(t + zu) dV (u).

The assumption V̂ (0) = · · · = V̂ (m)(0) = 0 implies that
∫ +∞
−∞ (Smĥ)(t, u) dV (u) = 0 for all t. Therefore,

using (11.9), we finally get

|ĝz(t)| =
∣∣∣∣

+∞∫
−∞

(
ĥ(t + zu) − (Smĥ)(t, zu)

)
dV (u)

∣∣∣∣
≤ M

+∞∫
−∞

min
{
|zu|m, |zu|m+1

}
d|V |(u) = o(zm+α).

Note that the last relation has been already discussed in the previous step.
Thus Proposition 11.4 is proved.

Remark 11.5. The second part of the above proof also covers the limit case α = 0 of the inequality
(11.5), which may be written as

∣∣∣∣
+∞∫

−∞

eitx V̂ (zx)h(x) dx

∣∣∣∣ ≤ |z|m ε(z). (11.10)
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More precisely, for this assertion we only need the assumptions
∫ +∞
−∞ |u|m |V |(du) < +∞, V̂ (0) = · · · =

V̂ (m)(0) = 0, and
∫ +∞
−∞ |x|m+1 |h(x)| dx < +∞. Proposition 11.3 is irrelevant in this case.

12. FOURIER TRANSFORMS AND FRACTIONAL DERIVATIVES

In this section we give the proof of Proposition 11.3. By its very definition,

Γ(α) (Dα
0+g)(x) =

d

dx

x∫
0

h(t)
(x − t)α

V̂ (t) dt, (12.1)

provided that the derivative exists (where 0 < α < 1).
Given m ≥ 0 integer, introduce the function of the real variable

ηm(t) = eit −
m∑

k=0

(it)k

k!
.

The assumptions on V imply that the first m moments of the measure V are vanishing, i.e.,∫ ∞
−∞ uk dV (u) = 0 for k = 0, . . . ,m. Hence

V̂ (t) =

∞∫
−∞

ηm(tu) dV (u).

Respectively, changing the variable in (12.1) and applying Fubini’s theorem, one may write

Γ(α) (Dα
0+g)(x) =

d

dx

x∫
0

h(t)
(x − t)α

[ +∞∫
−∞

ηm(tu) dV (u)
]

dt

=
d

dx

+∞∫
−∞

[ x∫
0

h(x − t) ηm

(
(x − t)u

) dt

tα

]
dV (u).

We intend to move the differentiation inside the outer integral. To justify this step, consider the
derivative with respect to the inner integral,

I(x, u) =
d

dx

x∫
0

h(x − t) ηm

(
(x − t)u

) dt

tα
.

Lemma 12.1. Let h(x) denote a continuously differentiable function on the real line such that
|h(x)| + |h′(x)| = O(x−(2+m+α)) as |x| → ∞. Then, for all u ∈ R and x > 0,

|I(x, u)| ≤ C(1 + x)−(1+α) min{|u|, |u|α} (m = 0),

|I(x, u)| ≤ C(1 + x)−(1+α) min{|u|m, |u|m+1} (m ≥ 1)

with some constant C depending on h and α only.

Proof. Put ξu(t) = h(t)ηm(ut), so that

I(x, u) =
d

dx

x∫
0

ξu(x − t)
dt

tα
.

In this case we may interchange differentiation and integration. Thus, using

d

dx
ξu(x − t) = − d

dt
ξu(x − t)
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together with ηm(0) = 0, we can write

I(x, u) = −
x∫

0

ξ′u(x − t)
dt

tα
.

Assume that x ≥ 1 and split the integration domain into two regions such that

I(x, u) = I0(x, u) + I1(x, u) = −
1∫

0

ξ′u(x − t)
dt

tα
−

x∫
1

ξ′u(x − t)
dt

tα
.

The integral I1.
Integrating by parts, we have

I1(x, u) = α

x∫
1

ξu(x − t)
dt

t1+α
− ξu(x − 1). (12.2)

To analyze this integral, we use the elementary bound

|ηm(t)| ≤ 4min
{
|t|m, |t|m+1

}
, t ∈ R. (12.3)

Indeed, from Taylor’s formula it follows that |ηm(t)| ≤ |t|m+1

(m+1)! . This settles (12.3) in case |t| ≤ 1. In the

other case |t| ≥ 1, just write

|ηm(t)| ≤ 1 +
m∑

k=0

|t|k
k!

≤ |t|m
(

1 +
m∑

k=0

1
k!

)
< (1 + e) |t|m,

thus proving (12.3).
This bound implies that

|ξu(x − t)| ≤ 4 |h(x − t)|min
{
|(x − t)u|m, |(x − t)u|m+1

}
. (12.4)

By the assumption on h, we have |h(x − 1)| ≤ Cx−(2+m+α), so, by (12.4),

|ξu(x − 1)| ≤ Cx−(1+α) min
{
|u|m, |u|m+1

}
(12.5)

with some constant C.
In the region 1 ≤ t ≤ x1 = 1+x

2 , we use the bound |h(x − t)| ≤ Cx−(2+m+α) with a constant inde-
pendent of t and x. Hence, by (12.4), in this region

|ξu(x − t)| ≤ Cx−(1+α) min
{
|u|m, |u|m+1

}
and

x1∫
1

|ξu(x − t)| dt

t1+α
≤ Cx−(1+α) min

{
|u|m, |u|m+1

}
.

In the second region x1 ≤ t ≤ x, just use 1
t1+α ≤ Cx−(1+α). Then, by (12.4),

x∫
x1

|ξu(x − t)| dt

t1+α
≤ 4Cx−(1+α) |u|m

x∫
x1

|h(x − t)| (x − t)m dt

= 4Cx−(1+α) |u|m
(x−1)/2∫

0

|h(t)| tm dt ≤ C ′x−(1+α) |u|m,
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since the last integral is uniformly bounded. Similarly, again by (12.4),
x∫

x1

|ξu(x − t)| dt

t1+α
≤ 4Cx−(1+α) |u|m+1

x∫
x1

|h(x − t)| (x − t)m+1 dt

≤ C ′x−(1+α) |u|m+1.

Collecting the bounds for the two regions, we get
x∫

1

|ξu(x − t)| dt

t1+α
≤ Cx−(1+α) min

{
|u|m, |u|m+1

}
with some constant C. Applying it together with (12.5) in (12.2) we arrive at

I1(x, u) ≤ Cx−(1+α) min
{
|u|m, |u|m+1

}
. (12.6)

The integral I0.

Now, let us turn to the integral I0(x, u) = −
1∫
0

ξ′u(x− t) dt
tα . After differentiation and using the identity

η′m = iηm−1 (with the convention that η−1(t) = eit) one may represent it as I0 = I0,1 + I0,2, where

I0,1(x, u) = −iu

1∫
0

ηm−1((x − t)u)h(x − t)
dt

tα
,

I0,2(x, u) = −
1∫

0

ηm((x − t)u)h′(x − t)
dt

tα
.

By (12.3), since x − t ≤ x,

|I0,2(x, u)| ≤ 4

1∫
0

|h′(x − t)| min
{
|xu|m, |xu|m+1

} dt

tα
.

Using the assumption h′(x) = O
(
x−(2+m+α)

)
, we get

|I0,2(x, u)| ≤ Cx−(1+α) min
{
|u|m, |u|m+1

}
(12.7)

with some constant C.

As for the integral I0,1, first rewrite it as I0,1(x, u) = −iu
1∫
0

h(x − t) dζm−1(t), where

ζm−1(t) =

t∫
0

ηm−1((x − w)u)
wα

dw.

Integrating by parts one may represent it as I0,1 = I0,1,1 + I0,1,2, where

I0,1,1(x, u) = −iu h(x − 1) ζm−1(1),

I0,1,2(x, u) = −iu

1∫
0

h′(x − t) ζm−1(t)dt.

Claim. For all x ≥ 1, t ∈ [0, 1], we have |ζ−1(t)| ≤ C min{1, |u|α−1} with some constant C, while in
case m ≥ 1,

|ζm−1(t)| ≤ Cxm min
{
|u|m−1, |u|m

}
.
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Proof. If m = 0, whenever u 	= 0,

|ζ−1(t)| =
∣∣∣∣

t∫
0

e−iwu dw

wα

∣∣∣∣ = |u|α−1

∣∣∣∣
tu∫

0

e−iw dw

wα

∣∣∣∣ ≤ C |u|α−1.

On the other hand, |ζ−1(t)| ≤
∫ 1
0

dw
wα , so |ζ−1(t)| ≤ C min{1, |u|α−1}.

If m ≥ 1, we just appeal to the estimate (12.4), which, for all w ∈ (0, 1) and x ≥ 1, yields

|ηm−1((x − w)u)| ≤ 4min
{
(x − w)m−1 |u|m−1, (x − w)m |u|m

}
≤ 4xm min

{
|u|m−1, |u|m

}
.

It immediately implies the desired estimate.

Continuation of the proof of Lemma 12.1. Now, by the assumption on h and using the claim in case
m = 0, we obtain

|I0,1(x, u)| ≤ |I0,1,1(x, u)| + |I0,1,2(x, u)| ≤ C x−(1+α) min
{
|u|, |u|α

}
.

Similarly, in case m ≥ 1,

|I0,1,1(x, u)| + |I0,1,2(x, u)| ≤ C|u|
(
|h(x − 1)| + |h′(x − 1)|

)
· xm min

{
|u|m−1, |u|m

}
≤ C x−(1+α) min

{
|u|m, |u|m+1

}
.

Thus

|I0,1(x, u)| ≤ Cx−(1+α) min
{
|u|, |u|α

}
(m = 0),

|I0,1(x, u)| ≤ Cx−(1+α) min{|u|m, |u|m+1} (m ≥ 1).

Taking into account (12.7) and (12.6), we arrive at similar bounds for I0(x, u) and I(x, u), which are
equivalent forms of the desired bounds in the lemma in case x ≥ 1.

Finally, let us only note that the case 0 < x < 1 may be treated in a similar manner (with simpler
estimates). Thus Lemma 12.1 is proved.

Proof of Proposition 11.3. Finally, we are prepared to justify the differentiation step. Define

ψ(x) =

+∞∫
−∞

[ x∫
0

ξu(x − t)
dt

tα

]
dV (u),

where, as before, ξu(t) = h(t)ηm(tu). Given x > 0 and εn → 0 (with εn 	= 0, x + εn > 0), write

ψ(x + εn) − ψ(x)
εn

=

+∞∫
−∞

[
1
εn

x+εn∫
x

I(y, u) dy

]
dV (u).

By Lemma 12.1 in case m = 0, the expression in the square brackets is bounded in absolute value by

C min{|u|, |u|α}
∣∣∣∣ 1
εn

x+εn∫
x

(1 + y)−(1+α) dy

∣∣∣∣ ≤ C min{|u|, |u|α}.

On the right-hand side the function is integrable with respect to the measure |V | according to the
moment condition on the function V . A similar conclusion holds in case m ≥ 1 (with appropriate
modifications in the estimate). Therefore, one may apply the Lebesgue dominated convergence theorem,
which gives

ψ′(x) = lim
n→∞

ψ(x + εn) − ψ(x)
εn

=

+∞∫
−∞

I(x, u) dV (u).
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Thus, the fractional derivative

(Dα
0+g)(x) =

1
Γ(α)

ψ′(x) =
1

Γ(α)

+∞∫
−∞

I(x, u) dV (u)

is well defined for all x > 0. Moreover, from Lemma 12.1 we also obtain that

|(Dα
0+g)(x)| ≤ C (1 + x)−(1+α)

+∞∫
−∞

min{|u|m1 , |u|m2} d|V |(u),

where m1 = 1, m2 = α in case m = 0, and m1 = m, m2 = m + 1 in case m ≥ 1.
This proves the first assertion and the inequality (11.3) in Proposition 11.3. For the second assertion,

apply Proposition 11.1 and the formula (11.2) for the fractional integration by parts with the functions
f(x) = e−(ε−it) x (ε > 0) and use the second formula in (11.1) with λ = ε − it for the fractional
derivatives of f . Then we obtain

+∞∫
0

e−(ε−it) x (Dα
0+g)(x) dx = (ε − it)α

+∞∫
0

e−(ε−it) x g(x) dx.

Letting ε → 0 and using the integrability of both g and Dα
0+g (due to (11.3)), we arrive in the limit at the

required equality (11.4). Thus Proposition 11.3 is proved.

13. BINOMIAL DECOMPOSITION OF CONVOLUTIONS
We shall now treat the probability densities ρ̃n in Theorem 1.2. The following procedure is known; a

related approach has been used, e.g., in [5], [2] to study the central limit theorem with respect to the total
variation distance.

Let 0 < c < 1 be a prescribed number, m = [s], and n ≥ m + 2.
Without loss of generality, one may assume that n0 = 1, that is, S1 = X1 has a density, say, ρ, which

may or may not be bounded. For definiteness, assume it is (essentially) unbounded, so that the integral

b =
∫

{ρ(x)>M}

ρ(x) dx

is positive for all M > 0. We choose M to be sufficiently large to satisfy, e.g., 0 < b < c
2 , which implies

2nm+1 bn−m−1 < cn for all n ≥ n1 large enough.
Consider the decomposition

ρ(x) = ap(x) + bq(x),

where a = 1 − b and p(x), q(x) are the normalized restrictions of ρ to the sets {ρ(x) ≤ M} and
{ρ(x) > M}, respectively. Hence for the convolutions we have a binomial decomposition

ρ∗n =
n∑

k=0

Ck
n akbn−k p∗k ∗ q∗(n−k).

Then split the above sum into two parts to get ρ∗n(x) = pn(x) + qn(x), where

pn =
n∑

k=m+2

Ck
n akbn−k p∗k ∗ q∗(n−k), qn =

m+1∑
k=0

Ck
n akbn−k p∗k ∗ q∗(n−k).

Note that

βn ≡
+∞∫

−∞

qn(x) dx =
m+1∑
k=0

Ck
n akbn−k ≤ nm+1 bn−m−1 <

cn

2
(n ≥ n1).
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Finally define

ρ̃n(x) =
√

n

1 − βn
pn

(
x
√

n
)
, ṽn(t) =

+∞∫
−∞

eitxρ̃n(x) dx.

Let us recall that ρn(x) =
√

n ρ∗n
(
x
√

n
)

has the characteristic function vn(t) = v( t√
n
)n, where v is

the characteristic function of X1. By construction, the densities ρ̃n are bounded and provide a strong
approximation for ρn. Namely, we immediately obtain:

Lemma 13.1. For all n ≥ n1,
∫ +∞
−∞ |ρ̃n(x) − ρn(x)| dx < cn. In particular, for all t ∈ R,

|ṽn(t) − vn(t)| < cn.

A similar inequality also holds for the first m derivatives of ṽn and vn with n large enough.

The last assertion of the lemma needs a more detailed explanation, which we postpone to the end of
the section.

We will also need some integrability properties for ṽn and their first m derivatives that are due to the
boundedness of the probability density p(x) and the finiteness of the mth absolute moment of X1.

Lemma 13.2. Let E |X1|m < +∞, m ≥ 2. There exist positive constants A and σ, depending on X1

and m, such that, for all 0 ≤ T ≤ √
n,∫

{|t|≥T}

|ṽn(t)| dt < Ae−σ2T 2
. (13.1)

A similar bound is also true for the first m derivatives of ṽn (with arbitrary n ≥ m + 2).

Proof. Let p̂, q̂ denote the Fourier transforms of p and q, respectively. Then

ṽn(t) =
1

1 − βn

n∑
k=m+2

Ck
n akbn−k p̂

( t√
n

)k
q̂
( t√

n

)n−k
. (13.2)

By the Riemann–Lebesgue theorem,

sup
|t|≥1

|p̂(t)| < γ, sup
|t|≥1

|q̂(t)| < γ (0 ≤ γ < 1). (13.3)

Hence, from (13.2), for all |t| ≥ √
n,

|ṽn(t)| <
γn−2

1 − βn

∣∣∣p̂( t√
n

)∣∣∣2 n∑
k=m+2

Ck
n akbn−k ≤ γn−2

∣∣∣p̂( t√
n

)∣∣∣2. (13.4)

In addition, by the Plancherel theorem and using p(x) ≤ M/a we have

+∞∫
−∞

∣∣∣p̂( t√
n

)∣∣∣2 dt = 2π
√

n

+∞∫
−∞

p(x)2 dt ≤ 2πM

a

√
n. (13.5)

Therefore integrating the inequality (13.4) we get∫
{|t|≥√

n }

|ṽn(t)| dt <
2πM

a
γn−2√n. (13.6)

On the other hand, since both p and q represent the densities of probability distributions with finite
second moments, their characteristic functions near zero satisfy

|p̂(t)| ≤ e−σ2t2 , |q̂(t)| ≤ e−σ2t2 (|t| ≤ 1) (13.7)
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with some constant σ > 0. Hence, for |t| ≤
√

n, (13.2) gives the estimate |ṽn(t)| ≤ e−σ2t2 and∫
{T≤|t|≤

√
n }

|ṽn(t)| dt ≤
∫

T≤|t|≤
√

n

e−σ2t2 dt <
1
σ

e−σ2T 2
.

Together with (13.6) the latter yields∫
{|t|≥T }

|ṽn(t)| dt <
1
σ

e−σ2T 2
+

2πM

a
γn−2√n.

Finally, since for the values 0 ≤ T ≤ √
n one always has γn−2√n ≤ A1 e−σ2

1T 2
with some constants A1

and σ1 > 0, the desired bound (13.1) easily follows.

As for the derivatives, a bound of this type can be proved by similar arguments, so let us restrict
ourselves to the basic case of the mth derivative (needed for the proof of Theorem 1.2).

The condition E|X1|m =
∫
|x|m ρ(x) dx < +∞ implies a similar property for the densities p(x) and

q(x). Hence p̂(t) and q̂(t) have continuous derivatives up to order m, bounded in absolute value by some
common constant.

In view of (13.2), ṽ
(m)
n (t) represents a linear combination of the terms

dm

dtm

[
p̂
( t√

n

)k
q̂
( t√

n

)n−k
]

=
m∑

r=0

Cr
m

dr

dtr

[
p̂
( t√

n

)k
]

dm−r

dtm−r

[
q̂
( t√

n

)n−k
]

(13.8)

with integers m + 2 ≤ k ≤ n. Given 0 ≤ r ≤ m, by the chain rule (2.3), the rth derivative of the function
p̂( t√

n
)k represents a linear combination of the terms

n−r/2 p̂
( t√

n

)k−(k1+···+kr)
p̂′

( t√
n

)k1

. . . p̂(r)
( t√

n

)kr

(13.9)

over all integer tuples (k1, . . . , kr) such that k1 + 2k2 + · · · + rkr = r and k1 + · · · + kr ≤ k (kj ≥ 0).
Moreover, the coefficients in that linear combination do not depend on n, and the total number of such
terms is bounded by a quantity that depends on m only.

Using k1 + · · · + kr ≤ r ≤ m and the boundedness of the derivatives, the absolute value of the
expression (13.9) as well as the sum of all such terms are bounded by |p̂( t√

n
)|k−m up to a constant

factor.
Similarly, the (m − r)th derivative of the function q̂( t√

n
)n−k represents a linear combination of the

terms

n−(m−r)/2 q̂
( t√

n

)(n−k)−(k1+···+km−r)
q̂′

( t√
n

)k1

. . . q̂(m−r)
( t√

n

)km−r

(13.10)

over all integer tuples (k1, . . . , km−r) such that k1 + 2k2 + · · · + (m − r)km−r = m − r and k1 + · · · +
km−r ≤ n − k (kj ≥ 0). Again, the coefficients in the linear combination do not depend on n, and the
total number of such terms is bounded by a quantity depending on m only. Since k1 + · · · + km−r ≤
min(n − k,m − r) ≤ min(n − k,m), the absolute value of the expression (13.10) and the sum of all
such terms are bounded by |q̂( t√

n
)|(n−k)−min(n−k,m) up to a constant factor.

Thus (13.8) is bounded in absolute value by

C
∣∣∣p̂( t√

n

)∣∣∣k−m ∣∣∣q̂( t√
n

)∣∣∣(n−k)−min(n−k,m)
(13.11)

with some constant C depending on X1 and m only. It then follows from (13.2) that

∣∣ṽ(m)
n (t)

∣∣ ≤ C

1 − βn

n∑
k=m+2

Ck
n akbn−k

∣∣∣p̂( t√
n

)∣∣∣k−m ∣∣∣q̂( t√
n

)∣∣∣(n−k)−min(n−k,m)
. (13.12)
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Now, like in the previous step, using (13.3), for all |t| ≥
√

n, we get

∣∣ṽ(m)
n (t)

∣∣ ≤ C

1 − βn

∣∣∣p̂( t√
n

)∣∣∣2 n∑
k=m+2

Ck
n akbn−k γ(n−m−2)−min(n−k,m) ≤ C γn−2m−2

∣∣∣p̂( t√
n

)∣∣∣2.
Integrating this inequality with the help of (13.5), we obtain that∫

{|t|≥
√

n }

|ṽ(m)
n (t)| dt <

2πMC

a
γn−2m−2√n. (13.13)

In addition, using (13.7) for |t| ≤ √
n, the product (13.11) is bounded by C e−dσ2t2 , where

d =
1
n

(
(n − m) − min(n − k,m)

)
≥ d′ =

1
n

(
(n − m) − min(n − m − 2,m)

)
.

If n ≥ 2m + 2, then d′ = n−2m
n ≥ 1

m+1 . In the other case m + 2 ≤ n < 2m + 2, we also have d′ = 2
n ≥

1
m+1 . Hence (13.11) is bounded by C e−σ2t2/(m+1), and we derive from (13.12)

∣∣ṽ(m)
n (t)

∣∣ ≤ C

1 − βn

n∑
k=m+2

Ck
n akbn−k e−σ2t2/(m+1) ≤ C e−σ2t2/(m+1).

It remains to integrate this inequality to get∫
{T≤|t|≤

√
n }

|ṽ(m)
n (t)| dt < C

∫
T≤|t|≤

√
n

e−σ2t2/(m+1) dt <
C
√

m + 1
σ

e−σ2T 2/(m+1).

Together with (13.13), it yields the desired estimate (13.1). Thus Lemma 13.2 is proved.

Remark 13.3. If the density ρ is bounded, the decomposition procedure is not needed, and then
Lemma 13.2 should read as follows. Let E |X|m < +∞, m ≥ 2, for a random variable having a bounded
density. There exist constants A and σ > 0 such that for all n ≥ 2∫

{|t|≥T}

∣∣∣v( t√
n

)∣∣∣n dt < Ae−σ2T 2
, 0 ≤ T ≤

√
n, (13.14)

where v is the characteristic function of X. A similar bound holds as well for the first m derivatives of
v( t√

n
)n with arbitrary n ≥ m + 2.

Proof of Lemma 13.1. By the construction, for all n ≥ n1,

+∞∫
−∞

∣∣ρ̃n(x) − ρn(x)
∣∣ dx ≤ 2βn < cn,

so |ṽn(t) − vn(t)| < cn as well. In order to extend this inequality to the derivatives, recall the represen-
tation (13.2) to write

ṽn(t) − vn(t) =
βn

1 − βn
Σ1 − Σ2, (13.15)

where

Σ1 =
n∑

k=m+2

Ck
n akbn−k p̂

( t√
n

)k
q̂
( t√

n

)n−k
, Σ2 =

m+1∑
k=0

Ck
n akbn−k p̂

( t√
n

)k
q̂
( t√

n

)n−k
.

As before, we will only consider the case of the mth derivative.
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It was shown in the proof of Lemma 13.2 that, given m + 2 ≤ k ≤ m, the function p̂( t√
n
)k q̂

(
t√
n
)n−k

has the mth derivative bounded in absolute value by the expression (13.11). So, it is bounded by a
constant C depending on X1 and m only. In the general case including the values 0 ≤ k ≤ m + 1 (13.11)
should be replaced with

C
∣∣∣p̂( t√

n

)∣∣∣max(k−m,0) ∣∣∣q̂( t√
n

)∣∣∣(n−k)−min(n−k,m)
,

which is also bounded by C. Therefore, from (13.15),

∣∣ṽ(m)
n (t) − v(m)

n (t)
∣∣ ≤ Cβn

1 − βn

n∑
k=m+2

Ck
n akbn−k + C

m+1∑
k=0

Ck
n akbn−k = 2Cβn < cn,

where the last inequality holds true for all n starting with a certain n1.
Thus, Lemma 13.1 is proved.

14. PROOF OF THEOREMS 1.1 AND 1.2

We are prepared to make the last step in the proof of Theorems 1.1 and 1.2. Recall that s ≥ 2, m = [s],
and put α = s − m.

Let v(t) be the characteristic function of X1 and vn(t) = v( t√
n
)n be the characteristic function of Sn.

We will assume that all Sn have densities ρn (since only minor modifications have to be done in the more
general case, where Sn have densities for all n large enough).

If ρn0 and therefore all ρn with n ≥ n0 are (essentially) bounded for some n0, then there is no need to
use the binomial decomposition of the previous section, and we put ρ̃n = ρn. This case corresponds to
Theorem 1.1. Otherwise, if ρn are unbounded for all n ≥ 1, then the binomial decomposition is applied
to ρ = ρ1, and we obtain the modified densities ρ̃n together with the associated characteristic functions
ṽn, which we considered in the previous section. Thus, the requirement c) in Theorem 1.2 is met.

The inversion formula.
The characteristic functions ṽn have continuous bounded derivatives up to order m, which are

integrable according to inequality (13.1) of Lemma 13.2 or (13.14) of Remark 13.3. Hence, by the
inversion formula,

(ix)p ρ̃n(x) =
1
2π

+∞∫
−∞

e−itx ṽ(p)
n (t) dt, p = 0, 1, . . . ,m.

By the construction, the approximating functions ϕm(x) = ϕ(x) +
∑m−2

k=1 qk(x)n−k/2, which appear
in the relation (1.3), have the integrable Fourier transform

um(t) = e−t2/2
(
1 +

m−2∑
k=1

Pk(it)n−k/2
)
.

Consequently, for all p = 0, 1, . . . ,m,

(ix)p
(
ρ̃n(x) − ϕm(x)

)
=

1
2π

+∞∫
−∞

e−itx
(
ṽ(p)
n (t) − u(p)

m (t)
)
dt. (14.1)

Our task is thus to give proper upper bounds on the absolute value of these integrals in the particular
cases p = 0 and p = m.

What is rather standard, one should split the integration into two regions. Given Tn → +∞, 0 ≤
Tn ≤

√
n (to be specified later on), let

In,p =
∫

|t|≤Tn

e−itx
(
ṽ(p)
n (t) − u(p)

m (t)
)
dt, Jn,p =

∫
|t|≥Tn

e−itx
(
ṽ(p)
n (t) − u(p)

m (t)
)
dt.
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It should be clear that ∫
|t|≥Tn

∣∣u(p)
m (t)

∣∣ dt ≤ Ae−σ2T 2
n

with some positive constants A and σ depending on m. By Lemma 13.2 and Remark 13.3, we have a

similar bound for ṽ
(p)
n (t) whenever n ≥ m + 2, so

|Jn,p| ≤ Ae−σ2T 2
n . (14.2)

The integral In,p.

To treat this integral, we subtract and add v
(p)
n (t) inside the integrand and apply Lemma 13.1 (the

second part). Then it gives (using Tn ≤ √
n)

|In,p| ≤ |I ′n,p| + cn√n,

where 0 < c < 1 is the prescribed parameter in Theorem 1.2 and

I ′n,p =
∫

|t|≤Tn

e−itx
(
v(p)
n (t) − u(p)

m (t)
)
dt.

Using (14.1)–(14.2), we obtain that, for all x,

|x|p
∣∣ρ̃n(x) − ϕm(x)

∣∣ ≤ 1
2π

|I ′n,p| + Ae−σ2T 2
n + cn√n, (14.3)

up to some positive constants A and σ.

Proof of (1.4) in case |x| ≥ 1. Note that for |x| ≤ 1, the relation (1.4) follows from (1.3). As for the
values |x| ≥ 1, only the value p = m is of interest in (14.3).

The integral I ′n,p can be treated with the help of Theorem 1.3. It gives that in the interval |t| ≤ c1n
1/6

with some constant 0 < c1 ≤ 1 we have

v(p)
n (t) − u(p)

m (t) = n
dp

dtp

[(
v
( t√

n

)
− em

( t√
n

))
e−t2/2

]
+ rn,

where the remainder satisfies

|rn| ≤ e−t2/4

(
C

n(m−1)/2
+

εn

ns−2

)
.

Here C and εn are some positive constants such that εn → 0 as n → ∞. Hence assuming that Tn ≤
c1n

1/6 and noting that cn√n will be absorbed by other remainder terms we get that

|x|p
∣∣ρ̃n(x) − ϕm(x)

∣∣ ≤ n

2π
|I ′′n,p| + Ae−σ2T 2

n +
C

n(m−1)/2
+

εn

ns−2
, (14.4)

where

I ′′n,p =
∫

|t|≤Tn

e−itx dp

dtp

[(
v
( t√

n

)
− em

( t√
n

))
e−t2/2

]
dt. (14.5)

Now, one can differentiate inside the last integral, which will lead to the terms containing e−t2/2 up to
polynomial factors (due to the property that v has m bounded derivatives). Hence integration in (14.5)
may be extended to the whole real line at the expense of an error not exceeding Ce−T 2

n/4. Hence (14.4)
may be replaced with

|x|p
∣∣ρ̃n(x) − ϕm(x)

∣∣ ≤ n

2π
|I ′′′n,p| + Ae−σ2T 2

n +
C

n(m−1)/2
+

εn

ns−2
, (14.6)
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where

I ′′′n,p =

+∞∫
−∞

e−itx dp

dtp

[(
v
( t√

n

)
− em

( t√
n

))
e−t2/2

]
dt.

Letting p = m and w(t) = v(t) − em(t) and performing differentiation, rewrite the above integral as

I ′′′n,m =
m∑

k=0

Ck
m

nk/2

+∞∫
−∞

e−itx w(k)
( t√

n

)
hm−k(t) dt, (14.7)

where hm−k(t) = (e−t2/2)(m−k) = (−1)m−kHm−k(t) e−t2/2.

Recall that w(t) = V̂ (t) represents the Fourier transform of a finite signed measure, V , such
that

∫ +∞
−∞ |u|m+α |V |(du) < +∞ (where |V | denotes the variation of V , treated as a positive finite

measure). In addition, the first m derivatives of w are vanishing (cf. Section 7 and Proposition 7.4).
Hence w(k)(t) = V̂k(t) represents the Fourier transform of a finite signed measure Vk such that∫ +∞
−∞ |u|(m−k)+α |Vk|(du) < +∞ and the first m − k derivatives of wk are vanishing. Therefore, we are

in a position to apply Proposition 11.4 to the functions V̂k(t) in place of V̂ , hm−k in place of h, and
with m − k in place of the parameter m. Choosing z = 1/

√
n, the inequalities (11.5) and (11.10) (cf.

Remark 11.5) give ∣∣∣∣
+∞∫

−∞

e−itx w(k)
( t√

n

)
hm−k(t) dt

∣∣∣∣ ≤ εn

n(m−k+α)/2
(1 + |x|)−α

with some sequence εn → 0 as n → ∞. Applying this bound in (14.7) we obtain

|I ′′′n,m| ≤ εn

ns/2
(1 + |x|)−α,

and then (14.6) with p = m yields

|x|s
∣∣ρ̃n(x) − ϕn(x)

∣∣ ≤ εn

n(s−2)/2
+ |x|α

(
Ae−σ2T 2

n +
C

n(m−1)/2
+

εn

ns−2

)
. (14.8)

It remains to invoke information about the possible growth of Tn. But, as we have seen, one
could choose Tn to be of order n1/6 regardless of s. With this choice (14.8) leads to the announced
inequality (1.4) of Theorem 1.2.

Proof of (1.3). Let us return to (14.3). The integral I ′n,p can also be estimated by virtue of
Proposition 9.1 and Propositions 5.1–5.2 (cf. Corollary 9.2). Namely, they give that

v(p)
n (t) − u(p)

m (t) = o(n−(s−2)/2) e−t2/4, p = 0, 1 . . . ,m, (14.9)

uniformly over all t in the intervals |t| ≤ Tn, where Tn are of order n1/6 in case s ≥ 3 and of order
n(s−2)/(2s) in case 2 < s < 3. If s = 2, we may only have Tn → +∞. Clearly, in all cases I ′n,p =
o(n−(s−2)/2), and (14.3) yields

|x|p |ρ̃n(x) − ϕm(x)| ≤ o
(
n−(s−2)/2

)
+ Ae−σ2T 2

n . (14.10)

It remains to apply this inequality with p = 0 and p = m.
Theorems 1.1–1.2 are thus proved.

Remark. If E |X1|m+1 < +∞, m ≥ 2, but ϕm are constructed with the help of the same cumulants
γ3, . . . , γm (like in the case m ≤ s < m + 1), relation (1.3) for both Theorems 1.1 and 1.2 may be
sharpened. Indeed, by Proposition 9.1 (second part), (14.9) should be replaced with a stronger relation

v(p)
n (t) − u(p)

m (t) = O(n−(m−1)/2) e−t2/4, p = 0, 1 . . . ,m,
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which holds uniformly in the intervals |t| ≤ c1n
1/6. Respectively, it provides a stronger version of (14.10),

namely,

(1 + |x|m) |ρ̃n(x) − ϕm(x)| = O
(
n−(m−1)/2

)
.
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