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1. INTRODUCTION

Let (Xn)n≥1 be independent identically distributed random variables with EX1 = 0 and EX2
1 = 1.

If X1 has finite moments of all orders, and if the densities ρn of the normalized sums Sn = (X1 +
· · · + Xn)/

√
n exist, they admit a formal Edgeworth-type expansion in powers of 1/

√
n

ρn(x) = ϕ(x) +
∞∑

k=1

qk(x)n−k/2. (1.1)

Here, ϕ(x) = 1√
2π

e−x2/2 denotes the density of the standard normal law,

qk(x) = ϕ(x)
∑

Hk+2j(x)
1

p1! . . . pk!

(
γ3

3!

)p1

. . .

(
γk+2

(k + 2)!

)pk

, (1.2)

where Hk(x) are the Chebyshev–Hermite polynomials and

γk = i−k dk

dtk
log E eitX1

∣∣∣∣
t=0

denote the cumulants of the underlying distribution. The summation in (1.2) runs over all non-negative
integer solutions (p1, . . . , pk) to the equation p1 + 2p2 + · · · + kpk = k with j = p1 + · · · + pk.

A precise asymptotic statement about the formal series (1.1) requires that some moment E|X1|s of
order s ≥ 2 is finite (while the moments of higher orders may be infinite). In this case, the kth order
cumulants are well defined for the values k = 1, . . . ,m, and respectively, the functions qk are defined
for k ≤ m − 2, where m = [s] is the integer part of s. Therefore one needs to evaluate the error of the
approximation of ρn by the following partial sums of the series (1.1),

ϕm(x) = ϕ(x) +
m−2∑

k=1

qk(x)n−k/2, m = [s].

One of the aims of this paper is to prove the following:
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Theorem 1.1. Assume that E |X1|s < +∞ for some s ≥ 2. Suppose Sn0 has a bounded density ρn0

for some n0. Then for all n large enough, Sn have continuous densities ρn satisfying, as n → ∞,

(1 + |x|m)
(
ρn(x) − ϕm(x)

)
= o

(
n−(s−2)/2

)
(1.3)

uniformly for all x. Moreover,

(1 + |x|s)
(
ρn(x) − ϕm(x)

)
= o

(
n−(s−2)/2

)
+

(
1 + |x|s−m

) (
O(n−(m−1)/2) + o(n−(s−2))

)
. (1.4)

In fact, the implied sequence and constants in the error terms hold uniformly over the class of all
densities with precribed moment tail function t → E |X1|s 1{|X1|>t}, parameter n0 and a bound on the
density ρn0 .

For |x| of order 1, or when s = m is integer, both relations are equivalent. But for large values of |x|
and s > m, the assertion (1.4) gives an improvement over (1.3), which is essential in some applications.

If 2 ≤ s < 3, (1.4) becomes

(1 + |x|s)
(
ρn(x) − ϕ(x)

)
= o

(
n−(s−2)/2

)
+ (1 + |x|s−2) o

(
n−(s−2)

)
.

In particular, for the smallest value s = 2, this contains the Gnedenko local limit theorem supx |ρn(x) −
ϕ(x)| → 0 as n → ∞.

If s = m is integer and m ≥ 3, Theorem 1.1 is well known; (1.3)–(1.4) then simplify to

(1 + |x|m)
(
ρn(x) − ϕm(x)

)
= o

(
n−(m−2)/2

)
. (1.5)

In this formulation the result is due to Petrov [4] (cf. also Petrov [5], p. 211, or Bhattacharya and Ranga
Rao [1], p. 192). Without the term 1 + |x|m, (1.5) can be found in the classical book [3]; this weaker
variant goes back to the results by Gnedenko [2] and an earlier work by Cramér (who used, according
to [3], additional assumptions on the underlying density).

Thus, Theorem 1.1 extends these well-known results to the case, where s is not necessarily integer.
The range 2 ≤ s < 3 is of interest as well. Our interest in these somewhat technical extensions,
especially (1.4), was motivated by open questions as to the actual rate of convergence in the so-called
entropic central limit theorem. Here relation (1.4) led to an unexpected behavior of the error in the
approximation of the entropy of sums of independent summands when s increases from 2 to 4. (This
error stabilizes at s = 4, in contrast to the usual Berry–Esseen-type theorem for distribution functions,
where stabilization of errors starts at s = 3). In the entropic central limit theorem the classical non-
uniform bound (1.5) is not precise enough to derive upper bounds for errors.

Note that the assumption of boundedness of ρn in Theorem 1.1 (for some n or, equivalently, for
all large n) is necessary for conclusions such as (1.3)–(1.5). It is equivalent to the property that the
characteristic function v(t) = E eitX1 is integrable with some power ν ≥ 1, i.e.,

+∞∫

−∞

|v(t)|ν dt < +∞. (1.6)

In this case ρn are bounded for all n ≥ 2ν. The condition (1.6) is sometimes called "smoothness"; it
appears naturally in many problems of the asymptotic behaviour of the densities (see, e.g., [7] for detailed
discussion).

Nevertheless, this condition may be removed at all, if we require that (1.3)–(1.4) hold true for slightly
modified densities rather than for ρn.

Theorem 1.2. Let E |X1|s < +∞ for some s ≥ 2. Let c denote an arbitrary number with 0 < c < 1.
Suppose that for n large enough Sn have absolutely continuous distributions with densities ρn.
Then, for some probability densities ρ̃n,

(a) Relations (1.3)–(1.4) hold true for ρ̃n in place of ρn ;

(b)
+∞∫
−∞

|ρ̃n(x) − ρn(x)| dx < cn for all n large enough;

(c) ρ̃n(x) = ρn(x) almost everywhere, if ρn is bounded (a.e.).
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It seems that Theorem 1.2 has not been stated in the literature, even when s is integer. Here, the
property c) is added to include Theorem 1.1 in Theorem 1.2 as a particular case.

It turns out that the statement of Theorem 1.2 is more appropriate for a number of applications. For
example, it implies that ρn − ϕm → 0 in the mean, i.e., there is convergence in total variation norm for
the corresponding distributions with rate

+∞∫

−∞

|ρn(x) − ϕm(x)| dx = o
(
n−(s−2)/2

)
. (1.7)

For s = 2 and ϕ2(x) = ϕ(x), this statement corresponds to a theorem of Prokhorov [6], while for s = 3
and ϕ3(x) = ϕ(x)

(
1 + α3

x3−3x
6
√

n

)
, to the result of Sirazhdinov and Mamatov [8] (they also covered the

case 2 < s < 3 with O in place of o in (1.7)). If s ≥ 3 is integer, (1.7) is mentioned in [5] for a more
general Lp-convergence, however, under the assumption that the densities ρn are bounded.

Theorem 1.2 allows us to study non-uniform convergence in (1.3)–(1.4) as well when excluding
exceptional "small" sets (via additional assumptions of entropic type).

The proofs of Theorems 1.1 and 1.2, which are formally based on the application of the inverse Fourier
transforms, involve operators, namely, Liouville fractional integrals and derivatives. For this step, we
analyse the decay of the Fourier transform for special classes of finite measures with finite fractional
moments. (Apparently standard truncation methods are much to density-sensitive and do not provide
the required asymptotics.) An essential part of the argument is devoted to the routine analysis of powers
of the characteristic functions and more general Fourier transforms in Edgeworth-type expansions. For
this step the requirement (1.6) is irrelevant.

In order to describe one of the main intermediate results, which is, as we believe, of an independent
interest, let us start with a random variable X, such that EX = 0, EX2 = 1, and E |X|s < +∞, for
some s ≥ 2. Introduce the characteristic function v(t) = E eitX , t ∈ R.

If m = [s], the normalized powers vn(t) = v( t√
n
)n, that is, the characteristic functions of Sn, can be

approximated by the functions

um(t) = e−t2/2

(
1 +

m−2∑

k=1

Pk(it)n−k/2

)
.

Here we use the classical polynomials

Pk(t) =
∑

p1+2p2+···+kpk=k

1
p1! . . . pk!

(
γ3

3!

)p1

. . .

(
γk+2

(k + 2)!

)pk

tk+2(p1+···+pk)

of degree 3k, where the summation is performed as in (1.2). Another way to introduce these polynomials
is to require that every qk(x) has the Fourier transform e−t2/2Pk(it), so that um(t) appears as the Fourier
transform of ϕm(x).

The following statement is standard: in the interval |t| ≤ n1/6

|vn(t) − um(t)| ≤ εn

n(m−2)/2

(
|t|m′

+ |t|m′′)
e−t2/2,

where εn do not depend on t and satisfy εn → 0 as n → ∞ (with certain powers m′ and m′′). Similar
bounds also hold for the derivatives of orders p = 1, . . . ,m, namely

∣∣∣∣
dp

dtp
vn(t) − dp

dtp
um(t)

∣∣∣∣ ≤ εn

n(m−2)/2

(
|t|m′

+ |t|m′′)
e−t2/2.

This bound is proved in Petrov [4], cf. also [5], pp. 209–211 (for m ≥ 3 and |t| ≤ n1/7). We refine this
result with general values of s ≥ 2 by proving that

∣∣∣∣
dp

dtp
vn(t) − dp

dtp
um(t)

∣∣∣∣ ≤
εn

n(s−2)/2

(
|t|m′

+ |t|m′′)
e−t2/2. (1.8)
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However, the error term in this approximation is still not sufficiently small for our applications, and we
have to look for other related representations of vn. By analogy with um, introduce

em(t) = e−t2/2

(
1 +

m−2∑

k=1

Pk(it)
)

.

Theorem 1.3. Let E |X|s < +∞ (s ≥ 2). For all p = 0, 1 . . . ,m and all |t| ≤ cn1/6,

dp

dtp
(vn(t) − um(t)) = n

dp

dtp

[(
v
( t√

n

)
− em

( t√
n

))
e−t2/2

]
+ rn (1.9)

with

|rn| ≤
(
1 + |t|4m2)

e−t2/2

(
C

n(m−1)/2
+

εn

ns−2

)
. (1.10)

Here C, c and εn are positive constants depending on s and the distribution of X such that εn → 0
as n → ∞.

Thus, the closeness of em to v near zero determines the rate of approximation of vn’s by the
functions um’s (which have a different formal nature). This representation will be of use in the proof
of Theorems 1.1–1.2, since, as we will see, the Liouville integrals may be applied to give a pointwise
bound on the (inverse) Fourier transforms within the class of the functions of the form V̂ ( t√

n
) e−t2/2,

such as in (1.9).

Note that for s ≥ 3 the expression in the last brackets of (1.10) is dominated by Cn−(m−1)/2, while in
the range 2 ≤ s < 3 the second summand εnn−(s−2) dominates the first one. In any case, with respect
to the growing parameter n, the bound (1.9) is sharper than the one given in (1.8). This observation
explains the improvement of (1.4) compared with relation (1.3).

We also remark that Theorem 1.3 holds for a more general class of functions, including Fourier–
Stieltjes transforms v(t) of finite (signed) measures with finite sth moment, such that v(0) = 1, v′(0) =
0, v′′(0) = −1. For example, the approximating functions um and em are not positive definite, but belong
to this class.

The exposition of this paper, which is divided in two parts, is based on chapters of auxiliary results
organized in accordance with the following table.

Contents for Part I

1. Introduction.
2. Differentiability with improved remainder terms.
3. Differentiability of Fourier–Stieltjes transforms.
4. Cumulants. The functions ψz(t) = 1

2 t2 + 1
z2 log v(tz).

5. The case of moments of order 2 ≤ s < 3.
6 Definition of the expansion polynomials Pk.
7. Associated projection operators.
8. Bounds of Pk and their derivatives.

9. Edgeworth-type expansion for the functions v(tz)1/z2
.

Contents for Part II

10. Proof of Theorem 1.3.
11. Liouville fractional integrals and derivatives.
12. Fourier transforms and fractional derivatives.
13. Binomial decomposition of convolutions.
14. Proof of Theorems 1.1 and 1.2.
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2. DIFFERENTIABILITY WITH IMPROVED REMAINDER TERMS

For our purposes, we use the following terminology.

Definition 2.1. Let a complex-valued function y = y(t) be defined in some interval a < t < b, and let
s ≥ 0. We say that y is s-times differentiable if it has continuous derivatives up to order m = [s] in (a, b)
and for any t0 ∈ (a, b), as t → t0,

y(m)(t) = y(m)(t0) + o(|t − t0|s−m). (2.1)

The case s = 0 corresponds to continuity, while the case of a positive integer s = m to the property
of just having continuous derivatives up to order m.

The following obvious characterization will be an important tool in the derivation of the Edgeworth-
type expansions for charactersitic functions. It is obtained from (2.1) by the repeated integration over the
variable t near t0.

Proposition 2.2. Let y have continuous derivatives of order up to m = [s] in (a, b). The function
y is s-times differentiable on (a, b) if and only if for any point t0 ∈ (a, b) and all p = 0, . . . ,m, as
t → t0,

dp

dtp
y(t) =

dp

dtp

m∑

k=0

y(k)(t0)
k!

(t − t0)k + o(|t − t0|s−p). (2.2)

One can also provide quantitative estimates on the remainder term in (2.2), if we start with

|y(m)(t) − y(m)(t0)| ≤ |t − t0|s−mε(|t − t0|),
where ε = ε(w) is a nondecreasing function in w ≥ 0 such that ε(w) → 0 as w → 0. Then

∣∣∣∣
dp

dtp
y(t) − dp

dtp

m∑

k=0

y(k)(t0)
k!

(t − t0)k
∣∣∣∣ ≤ |t − t0|s−p ε(|t − t0|)

for any p = 0, . . . ,m.
By the chain rule given below as Lemma 2.4, we have the following:

Proposition 2.3. If y is s-times differentiable on (a, b), s ≥ 0, and z = z(y) is analytic in some
domain containing all values y(t), then the superposition z(y(t)) is also s-times differentiable on
(a, b).

Lemma 2.4. Under the conditions of Proposition 2.3, z(y(t)) has derivatives up to order m = [s]
on (a, b), given by

dp

dtp
z(y(t)) = p!

∑ dk1+···+kp z(y)
dyk1+···+kp

∣∣∣∣
y=y(t)

p∏

r=1

1
kr!

(
1
r!

dry(t)
dtr

)kr

, (2.3)

for all p = 1, . . . ,m, where the summation is performed over all nonnegative integer solutions
(k1, . . . , kp) to the equation k1 + 2k2 + · · · + pkp = p.

Proof of Proposition 2.3. By definition, for all t0 ∈ (a, b) and r = 1, . . . ,m,

dry(t)
dtr

= cr + o(|t − t0|s−m) as t → t0,

where cr = y(r)(t0). Raising these equalities to the kr-powers and then multiplying them, we get a
similar representation

m∏

r=1

1
kr!

(
1
r!

dry(t)
dtr

)kr

= ck + o(|t − t0|s−m)
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with some constants ck depending on the m-tuples k = (k1, . . . , km). In addition, putting j = k1 + · · ·+
km, we have

z(j)(y(t)) = z(j)(y(t0)) + O(|y(t) − y(t0)|)
= z(j)(y(t0)) + o(|t − t0|s−m).

Inserting these relations in (2.3) with p = m we obtain that [z(y(t))](m) = c + o(|t − t0|s−m) with some
constant c.

In addition, the right-hand side of (2.3) represents a continuous function in t, so necessarily c =
[z(y)](m)(t0). This means that (2.1) is fulfilled, and Proposition 2.3 is proved.

3. DIFFERENTIABILITY OF FOURIER–STIELTJES TRANSFORMS

A large variety of examples of s-times differentiable functions appear as Fourier–Stieltjes transforms
of finite measures on the real line with finite absolute sth moment.

Proposition 3.1. Let X be a random variable with characteristic function v(t) = E eitX . If
E |X|s < +∞, s ≥ 0, then v is s-times differentiable on the real line. Moreover, its m = [s]
derivatives are representable, as t → 0, by

v(p)(t) =
m−p∑

k=0

E (iX)p+k tk

k!
+ o(|t|s−p), p = 0, . . . ,m. (3.1)

One can state a similar proposition for more general Fourier–Stieltjes transforms

v(t) =

+∞∫

−∞

eitx dF (x),

where F is a function of bounded variation on the real line such that
∫
|x|s d |F |(x) < +∞ (where

|F | denotes the variation of F viewed as a positive finite measure). On the other hand, such a more
general statement may be obtained from Proposition 3.1 as well. Indeed, one can always represent
F as a linear combination c1F1 − c2F2 of two orthogonal probability distributions (with c1, c2 ≥ 0).
Then |F | = c1F1 + c2F2, so

∫
|x|s dFi(x) < +∞. Applying Proposition 3.1 to Fi, we obtain a similar

statement for F .

Proof of Proposition 3.1. By the moment assumption, the characteristic function v has m continuous
derivatives described by

v(p)(t) = E (iX)p =

+∞∫

−∞

eitx (ix)p dF (x), p = 0, 1, . . . ,m,

where F is the distribution function of X. In particular,

v(m)(t) =

+∞∫

−∞

eitx (ix)m dF (x). (3.2)

Hence the relation (3.1) would follow immediately from the formula (2.2) of Proposition 2.2, once it has
been established that v is s-times differentiable. Namely, we need to see that, for any t0 ∈ R, as t → t0,

v(m)(t) = v(m)(t0) + o(|t − t0|s−m). (3.3)

The formula (3.2) is telling us that v(m) represents the Fourier–Stieltjes transform of the finite
measure Fm(dx) = (ix)m dF (x) with

∫
|x|s−m d |Fm|(x) < +∞. Representing Fm = c1G + c2H with
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distribution functions G and H , we can also represent v(m) as a linear combination of the two Fourier–
Stieltjes transforms with

∫
|x|s−m dG(x) < +∞ and similarly for H . Hence, in order to show that v is

s-times differentiable, it is enough to consider in (3.3) the case m = 0 and 0 ≤ s < 1 only.
Thus Proposition 3.1 has been reduced to the case E |X|s < +∞, 0 ≤ s < 1, when one needs to show

that

v(t) = v(t0) + o(|t − t0|s).
Moreover, without loss of generality, it suffices to consider the point t0 = 0 only, in which case we need
to show the relation v(t) = 1 + o(|t|s). The case s = 0 is immediate, so let s > 0 and write

1 − v(t) =

+∞∫

−∞

(1 − eitx) dF (x).

For definiteness, let t > 0. Since in general |1 − eix| ≤ min{2, |x|}, x ∈ R, we have

|1 − v(t)| ≤ 2
∫

|x|≥2/t

dF (x) + t

∫

|x|<2/t

|x| dF (x)

= 2
∫

x≥2/t

dG(x) + t

∫

x<2/t

x dG(x),

where G is the distribution of |X|. By assumption,

ψ(x) = E |X|s 1{|X|≥x} =

+∞∫

x

ys dG(y) → 0 as x → +∞.

We have ψ(x) ≥ xs
∫ +∞
x dG(y), so

∫ +∞
x dG(y) = o(x−s), that is,

∫
x≥2/t dG(x) = o(ts) as t → 0.

Finally, by integration by parts,

∫

x<2/t

x dG(x) ≤
2/t∫

0

(1 − G(x)) dx ≤
2/t∫

0

ψ(x)
xs

dx = ts−1

2∫

0

ψ(y/t)
ys

dy.

Hence

t

∫

x<2/t

x dG(x) ≤ ts
2∫

0

ψ(y/t)
ys

dy.

But the last integral tends to zero, as t → 0, by the Lebesgue dominated convergence theorem.
Proposition 3.1 is proved.

4. CUMULANTS. THE FUNCTIONS ψz(t) = 1
2 t2 + 1

z2 log v(tz)

If a complex-valued function v on the real line has m continuous derivatives and v(0) �= 0, then
v(t) �= 0 in some interval (−c, c). Moreover, the principal value of the logarithm log v(t) is well defined
in that interval and represents a function, which has also m continuous derivatives. The corresponding
derivatives at the origin (with a proper normalization),

γk =
dk

ikdtk
log v(t)

∣∣
t=0

, k = 0, 1, . . . ,m,

will be called the generalized cumulants or just cumulants, associated to v.
This terminology is standard, when v represents the characteristic function of a random variable (with

m finite absolute moments). However, we shall have more general classes of functions.
Applying Propositions 2.2–2.3, we arrive at:
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Proposition 4.1. Let v be s-times differentiable on the real line, s ≥ 0, not vanishing in some
interval (−c, c). Then, log v is s-times differentiable in (−c, c). In particular, as t → 0,

dp

dtp
log v(t) =

dp

dtp

m∑

k=0

γk

k!
(it)k + o(|t|s−p), p = 0, 1, . . . ,m, m = [s]. (4.1)

Note that if v has m + 1 continuous derivatives, then, by the usual Taylor’s theorem, the remainder
term in (4.1) can be sharpened, and we have

dp

dtp
log v(t) =

dp

dtp

m∑

k=0

γk

k!
(it)k + O(|t|(m+1)−p), p = 0, 1, . . . ,m. (4.2)

If v(t) = E eitX is the characteristic function of a random variable X, the assumptions of Proposition
4.1 are fulfilled as long as E |X|s < +∞ (Proposition 3.1). Then γk are usual cumulants with γ0 = 0. In
the particular case p = 0, formula (4.1) takes the form

log v(t) =
m∑

k=1

γk

k!
(it)k + o(|t|s). (4.3)

However, the case p ≥ 1 in (4.1) cannot be deduced directly from (4.3).

Let us recall how to relate the cumulants to the moments αk = EXk. Applying Lemma 2.4 with
z(y) = log y, y = v(t), at the point t = 0, one obtains a well-known identity

γp = p!
∑

(−1)k1+···+kp−1 (k1 + · · · + kp − 1)!
p∏

r=1

1
kr!

(
αr

r!

)kr

,

where the summation extends over all non-negative integer solutions (k1, . . . , kp) to the equation
k1 + 2k2 + · · · + pkp = p. Note that γp depends on the first p moments of X only. For example,

γ1 = α1, γ3 = α3 − 3α1α2 + α3
1,

γ2 = α2 − α2
1, γ4 = α4 − 3α2

2 − 4α1α3 + 12α2
1α2 − 6α4

1.

Under standard moment assumptions, such as EX = 0, EX2 = 1, we have γ1 = 0, γ2 = 1, γ3 = α3,
γ4 = α4 − 3. For any normal random variable, γk = 0 for all k ≥ 3.

Now, returning to the general setting as in Proposition 4.1, assume that s ≥ 2, and v(0) = 1,
v′(0) = 0, v′′(0) = −1. Then γ0 = γ1 = 0, γ2 = 1, so log v(t) = − t2

2 + o(|t|2). Therefore, it is natural
to center and normalize this function by introducing the family of the functions

ψz(t) =
1
2

t2 +
1
z2

log v(tz), |tz| < c,

where z �= 0 is a given parameter. Clearly, ψz is s-times differentiable in this t-interval, and

ψz(0) = ψ′
z(0) = ψ′′

z (0) = 0, ψ(p)
z (0) = γp ipzp−2 (p = 3, . . . ,m).

Moreover, reformulating Proposition 4.1 in terms of the functions t → 1
z2 log v(tz) with fixed z �= 0, we

get:

Corollary 4.2. Let v(t) be s-times differentiable on the real line, s ≥ 2, not vanishing for |t| ≤ c,
and such that v(0) = 1, v′(0) = 0, v′′(0) = −1. Given z �= 0 in the interval |tz| ≤ c for all p =
0, 1, . . . ,m, m = [s],

dp

dtp
ψz(t) =

dp

dtp

m∑

k=3

γk

k!
(it)k zk−2 + |t|s−p |z|s−2ε(tz), (4.4)

where ε = ε(t) is defined and continuous in |t| ≤ c and satisfies ε(t) → 0 as t → 0.
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Also, as remarked after Proposition 4.1, cf. (4.2), when v has m + 1 continuous derivatives, a
representation with sharper remainder term holds,

dp

dtp
ψz(t) =

dp

dtp

m∑

k=3

γk

k!
(it)k zk−2 + A |t|(m+1)−p |z|m−1,

where A = A(t, z) is a bounded function in the domain |tz| ≤ c.
In the case of characteristic functions, Corollary 4.2 admits a slight refinement.

Corollary 4.3. Let X be a random variable with characteristic function v and with EX = 0,
EX2 = 1, E |X|s < +∞, s ≥ 2. Then, given z �= 0, the relation (4.4) holds in the interval |tz| <

√
2.

Indeed, by Taylor’s theorem, |1 − v(t)| ≤ 1
2 t2 for all t ∈ R. Hence one may choose in Corollary 4.2

any value 0 < c <
√

2.

5. THE CASE OF MOMENTS OF ORDER 2 ≤ s < 3
In case 2 ≤ s < 3, Corollary 4.2 is simplified, since then there are no terms in the sum (4.4). In

particular, when s = 2, we have

ψz(t) = t2 ε0(tz), ψ′
z(t) = |t| ε1(tz), ψ′′

z (t) = ε2(tz) (5.1)

with some functions εi(z) → 0 as z → 0. This leads to the following observation, which is classical in
case of characteristic functions.

Proposition 5.1. Assume that v(t) has two continuous derivatives with v(0) = 1, v′(0) = 0 and
v′′(0) = −1. There is a function Tz → +∞ as z → 0 (0 < |z| ≤ 1) such that uniformly in the
intervals |t| ≤ Tz ∣∣∣∣

dp

dtp
v(tz)1/z2 − dp

dtp
e−t2/2

∣∣∣∣ ≤ e−t2/2 ε(z), p = 0, 1, 2, (5.2)

where ε(z) → 0 as z → 0.

Proof. For completeness we include a well-known argument. Let |t| ≤ c be an interval, where the
function v(t) is not vanishing. Choose the function T = Tz satisfying Tz|z| ≤ c whenever 0 < |z| ≤ 1
and Tz|z| → 0 as z → 0. These conditions will be assumed from now on. Moreover, for any continuous
function V (t), one can choose Tz → +∞ as z → 0 such that

sup
|t|≤Tz

|V (t)ψz(t)| → 0 as z → 0,

and similarly for the first two derivatives of ψz .
For the proof, it is enough to see that, whenever ε(z) → 0 and W (t) ≥ 0 is continuous and increasing

in t ≥ 0, one can choose Tz → +∞ such that W (Tz) sup|t|≤Tz
|ε(tz)| → 0 as z → 0. Here, we may

assume in the following that ε(z) ≥ 0 is even and also increasing in z > 0. Then the latter statement
may be simplified to W (Tz) ε(Tzz) → 0, which is obviously true with a sufficiently slowly growing Tz .

In particular, in view of (5.1), with some Tz → +∞ as z → 0 (0 < |z| ≤ 1), we have

ε(z) = sup
|t|≤Tz

(
|ψz(t)| + |ψ′

z(t)| + |ψ′′
z (t)|

)
→ 0 as z → 0. (5.3)

Now, write v(tz)1/z2
= g(t)eψz(t), where g(t) = e−t2/2. Applying (5.3), we get

|v(tz)1/z2 − g(t)| ≤ g(t) |eψz (t) − 1| ≤ Cg(t)|ψz(t)|
for all |t| ≤ Tz with some constant C. Since also ψz(t) → 0 uniformly in that interval, we arrive at the
desired conclusion in case p = 0.

Writing (v(tz)1/z2
)′ = g′(t)eψz(t) + g(t)ψ′

z(t)e
ψz(t) and using the previous step, we get

|(v(tz)1/z2
)′ − g′(t)| ≤ C|t|g(t) |ψz(t)| + Cg(t) |ψ′

z(t)|.
Since ψ′

z(t) → 0 and tψz(t) → 0 uniformly in that interval with an appropriate choice of Tz , we arrive at
the conclusion in case p = 1. The case p = 2 is similar.
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Now, let us turn to the range 2 < s < 3. In this case, we obtain up to polynomial factors in front of
e−t2/2 in (5.2) more information about the possible growth of Tz .

Proposition 5.2. Let v(t) be s-times differentiable, 2 < s < 3, not vanishing for |t| ≤ c (c > 0), and
such that v(0) = 1, v′(0) = 0, v′′(0) = −1. Given 0 < |z| ≤ 1,

∣∣∣∣
dp

dtp
v(tz)1/z2 − dp

dtp
e−t2/2

∣∣∣∣ ≤
(
|t|s−2 + |t|s+2

)
e−t2/2 ε(z), p = 0, 1, 2,

uniformly for |t| ≤ c |z|−(s−2)/s with some function ε(z) → 0 as z → 0.

Proof. By Corollary 4.2, in the intervals |t| ≤ Tz = c |z|−(s−2)/s with 0 < |z| ≤ 1

|ψz(t)| ≤ |t|s |z|s−2 ε(z),

|ψ′
z(t)| ≤ |t|s−1 |z|s−2 ε(z),

|ψ′′
z (t)| ≤ |t|s−2 |z|s−2 ε(z)

with some bounded function ε(z) → 0 as z → 0. Indeed, the conditions 0 < |z| ≤ 1 and |t| ≤ Tz insure
that |tz| ≤ c |z|2/s ≤ c and also |tz| → 0 as z → 0, uniformly in |t| ≤ Tz .

Now, by the first inequality,

|ψz(t)| ≤ |t|s |z|s−2 ε(z) ≤ C (|t| ≤ Tz)

with some constant C. Hence using the same notation and arguments as in the proof of Proposition 5.1,
for all |t| ≤ Tz ,

|v(tz)1/z2 − g(t)| ≤ C ′g(t)|ψz(t)| ≤ C ′g(t) · |t|s |z|s−2 ε(z).

Since also |ψ′
z(t)| ≤ |t|s−1 |z|s−2 ε(z), with some constants C,C ′ we get

|(v(tz)1/z2
)′ − g′(t)| ≤ C|t|g(t) |ψz(t)| + Cg(t) |ψ′

z(t)|
≤ C ′(|t|s+1 + |t|s−1

)
g(t) ε(z).

Finally, writing

(v(tz)1/z2
)′′ = g′′(t)eψz(t) + 2g′(t)ψ′

z(t)e
ψz(t) + 2g(t)(ψ′′

z + ψ′
z(t)

2) eψz(t)

and using |ψ′′
z (t)| ≤ |t|s−2 |z|s−2 ε(z), we get that up to some constants

|(v(tz)1/z2
)′′ − g′′(t)| ≤ Ct2g(t) |ψz(t)| + C|t|g(t) |ψ′

z(t)| + Cg(t)
(
|ψ′′

z (t)| + |ψ′
z(t)|2

)

≤ C ′
(
|t|s+2 + |t|s + |t|s−2 + |t|2(s−1)

)
g(t) |z|s−2ε(z).

All powers of |t| vary from s − 2 to s + 2, so Proposition 5.2 is proved.

6. DEFINITION OF THE EXPANSION POLYNOMIALS Pk

The polynomials Pk introduced in Section 1 appear not only in connection with characteristic
functions, but in a more general setting as well.

Namely, let v(t) be a complex-valued function on the real line, which is s-times differentiable (s ≥ 2)
and such that v(0) = 1, v′(0) = 0, v′′(0) = −1. Then v has cumulants γk, k = 1, . . . ,m, where m = [s].
Moreover, γ1 = 0 and γ2 = 1.

Assume v is not vanishing in the interval |t| ≤ c, and let us return to the functions

ψz(t) =
1
2

t2 +
1
z2

log v(tz),
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where z �= 0 is viewed as a (small) parameter and |tz| ≤ c. Recall that, by Corollary 4.2,

et2/2 v(tz)1/z2
= eψz(t) = exp

{ m−2∑

k=1

γk+2

(k + 2)!
(it)k+2 zk + |t|s|z|s−2 ε(tz)

}
, (6.1)

where ε(t) is defined and continuous in |t| ≤ c and satisfies ε(t) → 0 as t → 0. Moreover, if v has m + 1
derivatives, the remainder term here may be replaced with A |t|(m+1)−p |z|m−1, where A = A(t, z) is
bounded in the domain |tz| ≤ c.

The sum in (6.1) is vanishing in case 2 ≤ s < 3. To study this representation in the case s ≥ 3,
introduce the polynomials

Wz(t) =
m−2∑

k=1

γk+2

(k + 2)!
(it)k+2 zk.

By a formal Taylor’s representation with respect to the (complex) variable z, we have

eWz(t) = 1 +
∞∑

k=1

ak(it) zk (6.2)

with some coefficients ak(it). To justify this step and precisely determine the coefficients, write

eWz(t) =
∞∑

p=0

Wz(t)p

p!
,

which can further be expanded as
∞∑

p=0

∑

p1+···+pm−2=p

(γ3

3! )
p1 . . . (γm

m! )
pm−2

p1! . . . pm−2!
(it)3p1+4p2+···+mpm−2 zp1+2p2+···+(m−2)pm−2 . (6.3)

The whole double sum is absolutely summable for all complex numbers t and z. Indeed, let C =∑m
k=3

|γk|
k! . For any fixed integer p ≥ 0, the finite sum of the absolute values of the terms in (6.3) is

bounded by

1
p!

( m−2∑

k=1

|γk+2|
(k + 2)!

|t|k+2 |z|k
)p

≤ 1
p!

Cp

(
max

1≤k≤m−2
|t|k+2 |z|k

)p

.

Assume without loss of generality (in order to get some quantitative bounds) that |t3z| ≤ 1 and |z| ≤ 1.
Then,

|t|k+2 |z|k ≤ |z|−(k+2)/3 |z|k = |z|(2k−2)/3 ≤ 1.

Hence the above sum is bounded by Cp/p! Furthermore, note that |Wz(t)| ≤ C.
Thus the total sum of the absolute values is bounded by eC , and one may freely choose the order of

summation. Collecting the coefficients in (6.3) in front of zk, we arrive at (6.2) with

ak(it) =
∑

p1+2p2+···+(m−2)pm−2=k

1
p1! . . . pm−2!

(
γ3

3!

)p1

. . .

(
γm

m!

)pm−2

(it)3p1+4p2+···+mpm−2 ,

where the summation is extended over all non-negative integer solutions (p1, . . . , pm−2) to the equation
p1 + 2p2 + · · · + (m − 2)pm−2 = k. Note that

3p1 + 4p2 + · · · + mpm−2 = k + 2(p1 + p2 + · · · + pm−2).

Hence replacing it with t,

ak(t) =
∑

p1+2p2+···+(m−2)pm−2=k

1
p1! . . . pm−2!

(
γ3

3!

)p1

. . .

(
γm

m!

)pm−2

tk+2(p1+···+pm−2). (6.4)
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In addition, if k ≤ m− 2, the condition p1 + 2p2 + · · ·+ (m− 2)pm−2 = k implies that pk+1 = · · · =
pm−2 = 0. Therefore, in this case ak depends on the first k cumulants γ3, . . . , γk+2 only. More precisely,

ak(t) =
∑

p1+2p2+···+kpk=k

1
p1! . . . pk!

(
γ3

3!

)p1

. . .

(
γk+2

(k + 2)!

)pk

tk+2(p1+···+pk), 1 ≤ k ≤ m − 2.

For example, if m = 3, we have a1(t) = γ3

6 t3. In case m = 4, a1(t) = γ3

6 t3 and

a2(t) =
γ2
3

72
t6 +

γ4

24
t4.

In general, subject to p1 + 2p2 + · · · + kpk = k, the expression k + 2(p1 + · · · + pk) does not exceed
3k and reaches this value (when p1 = k, p2 = · · · = pk = 0), so ak represents a polynomial in t of degree
exactly 3k.

Definition 6.1. Given an integer m ≥ 3 and complex numbers γ3, . . . , γm, one defines Pk (1 ≤ k ≤
m − 2) as the polynomial ak introduced above, namely,

Pk(t) =
∑

p1+2p2+···+kpk=k

1
p1! . . . pk!

(
γ3

3!

)p1

. . .

(
γk+2

(k + 2)!

)pk

tk+2(p1+···+pk).

With this definition, the representation (6.2) may also be written as

exp
{ m∑

k=3

γk

k!
(it)kzk−2

}
= 1 +

m−2∑

k=1

Pk(it) zk +
∞∑

k=m−1

ak(it)zk, (6.5)

where ak’s are described in (6.4).

7. ASSOCIATED PROJECTION OPERATORS

Let us note first that every polynomial ak in (6.4) contains terms involving powers of t not smaller
than k + 2 (since necessarily p1 + · · · + pm−2 ≥ 1). This observation may be used to obtain an initial
trivial bound for the last sum in (6.5) in case of small values of t.

Lemma 7.1. Given complex numbers γ3, . . . , γm, for all complex z and t, |t| ≤ 1,
∞∑

k=m−1

|ak(it)zk| ≤
(
eC(z) − 1

)
|t|m+1, (7.1)

where C(z) =
∑m

k=3
|γk|
k! |z|k−2.

Indeed, using (6.4) and |t| ≤ 1, we see that each term in the sum of (7.1) is bounded by |t|m+1 up to
the factor

∑

p1+2p2+···+(m−2)pm−2=k

1
p1! . . . pm−2!

(
|γ3| |z|

3!

)p1

. . .

(
|γm| |z|m−2

m!

)pm−2

.

Summation of these expressions over all k ≥ 1 results in eC(z) − 1.
The bound of Lemma 7.1 is needed in order to express the “cumulants” γk directly in terms of the

associated polynomials Pj .

Lemma 7.2. Given complex numbers γ3, . . . , γm, for all complex z and k = 3, . . . ,m,

γk

k!
zk−2 =

dk

ik dtk
log

(
1 +

m−2∑

j=1

Pj(it)zj

)∣∣∣∣
t=0

. (7.2)
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To see this, note that, by (6.5) and (7.1), we obtain that, as t → 0,

m∑

k=3

γk

k!
(it)kzk−2 = log

(
1 +

m−2∑

j=1

Pj(it)zj

)
+ O(|t|m+1).

Since the right-hand side (without the remainder term) represents an analytic function near zero, the
comparison of coefficients of powers of t immediately leads to (7.2).

The identity (6.5) suggests introducing special operators defined on the space Vs of all s-times
differentiable functions v : R → C, s ≥ 2, such that v(0) = 1, v′(0) = 0, v′′(0) = −1.

Definition 7.3. Given v ∈ Vs, s ≥ 2, and an integer 2 ≤ m ≤ s, we put

(Tmv)(t) = e−t2/2

(
1 +

m−2∑

k=1

Pk(it)
)

, t ∈ R,

where Pk are the polynomials from Definition 6.1 based on the cumulants

γk =
dk

ik dtk
log v(t)

∣∣
t=0

, k = 3, . . . ,m − 2.

If m = 2, there are no cumulants and polynomials in the definition, so (T2v)(t) = e−t2/2 for any
v ∈ Vs. If m = 3,

(T3v)(t) = e−t2/2

(
1 +

γ3

6
(it)3

)

for any v ∈ Vs, s ≥ 3 (where γ3 may be an arbitrary complex number). If m = 4, then for any v ∈ Vs,
s ≥ 4,

(T4v)(t) = e−t2/2

(
1 +

γ3

6
(it)3 +

γ4

24
(it)4 +

γ2
3

72
(it)6

)
.

Clearly, every Tmv is an entire function and hence belongs to all Vs, s ≥ m. This defines an operator
Tm : Vs → Vs which turns out to be a projection operator.

Proposition 7.4. We have TmTmv = Tmv for any v ∈ Vs, 2 ≤ m ≤ s. Moreover, Tmv and v have
identical derivatives at the origin up to order m.

Proof. The statement is equivalent to the property that em = Tmv and v have equal cumulants. Let γ̃k
and γk denote the cumulants of em and v, respectively (3 ≤ k ≤ m). By Definition 7.3,

γ̃k

k!
=

dk

ik dtk
log em(t)

∣∣
t=0

=
dk

ik dtk
log

(
1 +

m−2∑

j=1

Pj(it)
)∣∣∣∣

t=0

.

But the right-hand side equals γk
k! according to Lemma 7.2 applied with z = 1.

Thus Proposition 7.4 is proved.

Note that Tmv need not be a characteristic function, even if v is a characteristic function of some
random variable. However, it always represents the Fourier–Stieltjes transform of a finite signed
measure.

In the following we approximate v by its projections Tmv. Combining Proposition 7.4 with Proposi-
tion 2.2, we get:

Corollary 7.5. Given v ∈ Vs, 2 ≤ m ≤ s, as t → 0,

dp

dtp
(
v(t) − Tmv(t)

)
= o(|t|s−p), p = 0, 1, . . . ,m.
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Finally, let us formulate an asymptotic property of the projection operators Tm for growing parameter
m (although this will not be needed in the sequel).

Proposition 7.6. Assume that v(t) admits an analytic extension to the disc |t| < ρ, where it has
no zeros, and v(0) = 1, v′(0) = 0, v′′(0) = −1. Then Tmv(t) → v(t) as m → ∞, i.e.,

v(t) = e−t2/2

(
1 +

∞∑

k=1

Pk(it)
)

, |t| < ρ.

Moreover, the series is convergent absolutely.

If v(t) = E eitX is the characteristic function of a random variable X, the assumptions of Proposi-
tion 7.6 are fulfilled, provided that EX = 0, EX2 = 1, E eρ|X| < +∞ (that is, an exponential moment
of order ρ is finite) and v(t) does not vanish in the disc |t| < ρ.

Proof. By assumption, log v(t) is analytic in the disc |t| < ρ, so it is representable as the sum of the
absolutely convergent power series

log v(t) =
∞∑

k=3

γk

k!
(it)k, |t| < ρ. (7.3)

Hence, starting with (6.5) with z = 1 and letting there m → ∞, it is sufficient to show that

∞∑

k=m−1

|ak(it)| → 0

(note that ak’s also depend on m).

Rewrite the representation (6.4) as

ak(t) =
∑

p1+2p2+···+(m−2)pm−2=k

1
p1! . . . pm−2!

(
γ3 t3

3!

)p1

. . .

(
γm tm

m!

)pm−2

,

which implies that

|ak(t)| ≤
∑

p1+2p2+···+(m−2)pm−2=k

1
p1! . . . pm−2!

(
|γ3| |t|3

3!

)p1

. . .

(
|γm| |t|m

m!

)pm−2

.

Here the right-hand side may be bounded by the quantity

bk(t) =
∑

p1+2p2+3p3+···=k

∞∏

r=1

1
pr!

(
|γr+2| |t|r+2

(r + 2)!

)pr

,

which does not depend on m. After summation over all k ≥ 1 (thus removing any constraint on pr), we

get
∑∞

k=1 bk(t) = eC(|t|) − 1, where C(a) =
∑∞

k=3
|γk|
k! ak. But C(|t|) < +∞ for all |t| < ρ in view of the

absolute convergence of the series (7.3). Hence in this case

∞∑

k=m−1

|ak(it)| ≤
∞∑

k=m−1

bk(t) → 0 as m → ∞.

With similar arguments, we also obtain that
∑∞

k=1 |Pk(it)| < +∞ for |t| < ρ, in view of Defini-
tion 6.1. Thus Proposition 7.6 is proved.

MATHEMATICAL METHODS OF STATISTICS Vol. 20 No. 3 2011



NON-UNIFORM BOUNDS IN LOCAL LIMIT THEOREMS 185

8. BOUNDS OF Pk AND THEIR DERIVATIVES
We will need a bound similar to the one in Lemma 7.1 which extends to large values of t and involving

derivatives of the polynomials ak and Pk.
To this aim, we start with arbitrary complex numbers γ3, . . . , γm, m ≥ 3 (which may be interpreted

as cumulants of a given function v) and return to the representation (6.2),

wz(t) = eWz(t) = 1 +
∞∑

k=1

ak(it) zk, t, z ∈ C, (8.1)

where

Wz(t) =
m−2∑

k=1

γk+2

(k + 2)!
(it)k+2 zk, (8.2)

and where the polynomials ak are described in (6.4). By the very definition, ak = Pk as long as k ≤ m− 2.
As we have already noticed, the sum in (8.1) is absolutely convergent and therefore represents

an entire function with respect to z for any fixed t. It is also clear that the series may be termwise
differentiated, so that

w(p)
z (t) =

∞∑

k=1

ip a
(p)
k (it) zk, p ≥ 1, (8.3)

which is absolutely convergent as well.
In order to bound ak and its derivatives, we use the quantity

C =
m∑

k=3

|γk|.

One natural approach (which is however different from the one in [5]) is based on the application of
Cauchy’s integral formula

ak(it) =
1

2πi

∫

|z|=ρ

wz(t)
zk+1

dz

with a suitably chosen parameter ρ > 0. In view of (8.3), there is a more general identity, involving the
derivatives,

ip a
(p)
k (it) =

1
2πi

∫

|z|=ρ

w
(p)
z (t)
zk+1

dz, p = 0, 1, 2 . . . (8.4)

Lemma 8.1. Let |tz| ≤ 2 and |t3z| ≤ 2, and let 0 ≤ p ≤ m be an integer. Then

|W (p)
z (t)| ≤ 2m−2C |t|−p min{1, |t|2}. (8.5)

Indeed, by definition (8.2),

W (p)
z (t) =

m∑

q=max(p,3)

γq iq

(q − p)!
tq−pzq−2.

But |tq−p zq−2| = |tz|q−3 |t3z| |t|−p ≤ 2m−2 |t|−p whenever 3 ≤ q ≤ m. Hence

|W (p)
z (t)| ≤ 2m−2C|t|−p.

On the other hand, just using |z| ≤ 2/|t|, we get

|tq−p zq−2| ≤ |t|q−p 2q−2

|t|q−2
= 2q−2|t|2−p ≤ 2m−2|t|2−p.

This gives an improvement over the previous estimate in case |t| ≤ 1 and proves (8.5).
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Lemma 8.2. For all integers k ≥ 1, 0 ≤ p ≤ m, and all complex t,

|a(p)
k (it)| ≤ Cm,p |t|−p min{1, |t|2}

(
max{|t|, |t|3}

2

)k

with constants Cm,p = (4m(1 + C))p e2mC .

Proof. Given t �= 0, we choose in (8.4) the radius

ρ =
2

max{|t|, |t|3} .

Hence on the circle |z| = ρ, both |tz| ≤ 2 and |t3z| ≤ 2 are fulfilled, thus inequality (8.5) may be applied.
In particular, |Wz(t)| ≤ 2m−2C, and from (8.4) with p = 0 we get the desired estimate

|ak(it)| ≤
1
ρk

e2m−2C .

Next, by the formula (2.3) of Lemma 2.4, for all p ≥ 1,

w(p)
z (t) = p!wz(t)

∑ p∏

r=1

1
kr!

(
W

(r)
z (t)
r!

)kr

,

where the summation is taken over all nonnegative integer solutions (k1, . . . , kp) to the equation
k1 + 2k2 + · · · + pkp = p. Hence using (8.5), given that |z| = ρ, we arrive at

|w(p)
z (t)| ≤ e2m−2C |t|−p p!

∑ p∏

r=1

1
kr!

(
2m−2C min{1, |t|2}

r!

)kr

.

Since necessarily 1 ≤ k1 + · · ·+ pkp ≤ p, the product may be bounded by the product of min{1, |t|2} (in
the first power) and 2m−2C (replaced by 2m−2(1 + C)), and raised to power p. This leads to

|w(p)
z (t)| ≤ e2m−2C

(
2m−2(1 + C)

)p |t|−p min{1, |t|2}Bp, (8.6)

where Bp = p!
∑ ∏p

r=1
1

kr!(
1
r!)

kr . This constant can also be described by virtue of the same formula (2.3)
applied with z = ey and y(s) = es, in which case it reads

dp

dsp
ees

= ees
p!

∑ p∏

r=1

1
kr!

(
es

r!

)kr

.

One should apply this formula at s = 0, thus we consider the functions bp(s) = (ees
)(p), s ≥ 0, and their

values bp = bp(0) = Bp/e. The recursive identity bp+1(s) = (es ees
)(p) = es

∑p
r=0 Cr

p br(s) implies that
the sequence r → br is nondecreasing and bp+1 ≤ 2p bp. Therefore,

bp ≤ 2p−1bp−1 ≤ 2p−12p−2bp−2 ≤ · · · ≤ 2p−12p−2 . . . 20 b0 = 2p(p−1)/2 e.

Hence Bp ≤ 2p(p−1)/2, and together with (8.6) this gives the estimate

|w(p)
z (t)| ≤ e2m−2C

(
2(m−2)+(p−1)/2(1 + C)

)p|t|−p min{1, |t|2}.
It remains to apply (8.4) and simplify the constant. Thus Lemma 8.2 is proved.

Now, fix an integer p = 0, 1 . . . ,m, and assume that |z| ≤ ρ
2 = 1

max{|t|,|t|3} , that is, |tz| ≤ 1 and

|t3z| ≤ 1. By Lemma 8.2,
∞∑

k=m−1

|a(p)
k (it) zk| ≤ Cm,p |t|−p min{1, |t|2}

∞∑

k=m−1

|z|k
ρk
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≤ 2Cm,p |t|−p min{1, |t|2} |z|m−1

ρm−1

≤ Cm,p |t|−p min{1, |t|2}
(
max{|t|, |t|3}

)m−1 |z|m−1.

To simplify the dependence on t, note that in case |t| ≤ 1,

|t|−p min{1, |t|2}
(
max{|t|, |t|3}

)m−1 = |t|(m+1)−p,

while the left expression is equal to |t|3(m−1)−p in case |t| ≥ 1.

Also note that the condition |tz| ≤ 1 is fulfilled automatically, as long as |t3z| ≤ 1 and |z| ≤ 1.
Therefore, recalling also that Pk = ak for k ≤ m − 2, we obtain:

Proposition 8.3. If 0 < |z| ≤ 1 and |t3z| ≤ 1, then for all p = 0, 1 . . . ,m,

dp

dtp
eWz(t) =

dp

dtp

(
1 +

m−2∑

k=1

Pk(it) zk

)
+ A

(
|t|m+1−p + |t|3(m−1)−p

)
|z|m−1,

where |A| ≤ Cm,p = (4m(1 + C))p e2mC .

9. EDGEWORTH-TYPE EXPANSION FOR THE FUNCTIONS v(tz)1/z2

Assume that v(t) is s-times differentiable, s ≥ 2, and not vanishing for |t| ≤ c (c > 0), and such that
v(0) = 1, v′(0) = 0, v′′(0) = −1. For

vz(t) = v(tz)1/z2

define the approximating functions

um(t) = um(t, z) = e−t2/2

(
1 +

m−2∑

k=1

Pk(it) zk

)
, m = [s],

where the polynomials Pk are based on the cumulants γ3, . . . , γm of v. Put m′(s) = s − p,

m′′(s) = 3(m − 2) + max{s + p, (s − 1)p}.

In particular, m′(s) = s and m′′(s) = s + 3(m − 2) in case p = 0. Note that m′′(s) ≤ 2m2 in all
admissible cases.

In this section, relation (1.8) is established in the following more general form.

Proposition 9.1. Let s ≥ 3. Given z real, 0 < |z| ≤ 1, in the interval |t3z| ≤ c3, for all p =
0, 1, . . . ,m,

∣∣v(p)
z (t) − u(p)

m (t)
∣∣ ≤

(
|t|m′

+ |t|m′′)
e−t2/2 |z|s−2 ε(z), (9.1)

where ε(z) → 0 as z → 0. Moreover, if s ≥ 2 and v(t) has (m + 1) continuous derivatives, then with
some constant A and with m′, m′′ corresponding to s = m + 1,

∣∣v(p)
z (t) − u(p)

m (t)
∣∣ ≤ A

(
|t|m′

+ |t|m′′)
e−t2/2 |z|m−1. (9.2)

We will refer to (9.1) and (9.2) as the scenarios 1 and 2, respectively. Note that in the second case,
although v has cumulants up to order m + 1, we require that γm+1 does not participate in the definition
of the polynomials Pk. In particular, the value m = 2 is covered in (9.2), and then um(t) = e−t2/2 (that
is, P1 is not present).
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Proof. Without loss of generality, assume c = 1. Write vz(t) = e−t2/2 wz(t) ehz(t), where

wz(t) = eWz(t), Wz(t) =
m∑

k=3

γk

k!
(it)kzk−2,

ψz(t) =
1
2

t2 +
1
z2

log v(tz) = log
(
et2/2vz(t)

)
, hz(t) = ψz(t) − Wz(t).

By definition of ak and Pk,

wz(t) = 1 +
m−2∑

k=1

Pk(it) zk + Rz(t), Rz(t) =
∞∑

k=m−1

ak(it) zk.

Therefore,

vz(t) = um(t) ehz(t) + Rz(t) g(t) ehz (t), g(t) = e−t2/2.

Given p = 0, 1 . . . ,m, we differentiate this representation according to the Leibnitz rule:

v(p)
z (t) − u(p)

m (t) = I1 + I2 + I3 = u(p)
m (t) (ehz(t) − 1) +

p∑

k=1

Ck
p u(p−k)

m (t) (ehz(t))(k)

+
p∑

k=0

Ck
p (Rz(t) g(t))(k) (ehz(t))(p−k), (9.3)

where Ck
p = p!

k!(p−k)! are the combinatorial coefficients. Note that when p = 0, the second term I2 is
vanishing.

Estimation of I1.
In Corollary 4.2 it is shown that, if |z| ≤ 1 and |t3z| ≤ 1, the functions hz and their derivatives are

uniformly bounded and admit the bounds

|h(p)
z (t)| ≤ |t|s−p|z|s−2εp(z), p = 0, 1, . . . ,m, (9.4)

where each εp(z) is defined in |z| ≤ 1 and satisfies εp(z) → 0 as z → 0. Moreover, if v has m + 1
continuous derivatives, then we have a sharper estimate

|h(p)
z (t)| ≤ Ap |t|(m+1)−p |z|m−1 (9.5)

with some constants Ap. In particular, when p = 0, these bounds correspondingly give

|ehz(t) − 1| ≤ |t|s|z|s−2ε(z), |ehz(t) − 1| ≤ A0 |t|m+1 |z|m−1 (9.6)

with some ε(z) → 0 as z → 0, and a constant A0.

On the other hand, since every Pk has degree 3k ≤ 3(m − 2) and |z| ≤ 1, for all p = 0, 1, . . . ,m,
m ≥ 3,

∣∣∣∣
dp

dtp

(
1 +

m−2∑

k=1

Pk(it) zk

)∣∣∣∣ ≤ C
(
1 + |t|3(m−2)−p

)

with some constant C depending on m, p and the cumulants γk’s. Since also

|g(p)(t)| =
∣∣∣∣
dp

dtp
e−t2/2

∣∣∣∣ ≤ Cp (1 + |t|p) e−t2/2, (9.7)

we get, by the Leibnitz rule,

|u(p)
m (t)| ≤ C

(
1 + |t|3(m−2)+p

)
e−t2/2, (9.8)
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where we allow the constants depend on m, p and the cumulants γ3, . . . , γm. For m = 2, um(t) = e−t2/2,
so (9.8) holds in this case as well (p = 0, 1, 2). Combining this with (9.6), we correspondingly arrive at

|I1| ≤
(
|t|s + |t|s+p+3(m−2)

)
e−t2/2 |z|s−2ε(z), (9.9)

|I1| ≤ A
(
|t|m+1 + |t|p+(4m−5)

)
e−t2/2 |z|m−1 (9.10)

with some constant A and ε(z) → 0 as z → 0. As a result, we obtain the desired bounds on the first term
I1 in (9.3) for both scenarios.

Estimation of I2.

To treat the second term, or, more precisely, the products u
(p−k)
m (t) (ehz(t))(k), assume that p ≥ 1. By

formula (2.3), for any k = 1, . . . , p,

(ehz(t))(k) = ehz(t) k!
∑ k∏

r=1

1
pr!

(
h

(r)
z (t)
r!

)pr

,

where the summation is performed over all nonnegative integer solutions (p1, . . . , pk) to the equation
p1 + 2p2 + · · · + kpk = k. From (9.4)–(9.5) we get for the two scenarios

|h(r)
z (t)|pr ≤ |t|(s−r)pr |z|(s−2)prεr(z)pr , |h(r)

z (t)|pr ≤ Apr
r |t|((m+1)−r)pr |z|(m−1)pr .

After multiplication of these inequalities over all r = 1, . . . , k (separately in both scenarios), using
1 ≤ p1 + · · · + pk ≤ k together with

s − k ≤
k∑

r=1

(s − r)pr ≤ (s − 1)k, (m + 1) − k ≤
k∑

r=1

((m + 1) − r)pr ≤ mk,

we obtain that ∣∣(ehz(t))(k)
∣∣ ≤

(
|t|s−k + |t|(s−1)k

)
|z|s−2ε(z), (9.11)

∣∣(ehz(t))(k)
∣∣ ≤ A

(
|t|(m+1)−k + |t|mk

)
|z|m−1 (9.12)

with some constant A and ε(z) → 0 as z → 0. One may combine these bounds with (9.8), which
immediately yields

∣∣u(p−k)
m (t) (ehz(t))(k)

∣∣ ≤
(
|t|s−k + |t|(s−1)k+(p−k)+3(m−2)

)
e−t2/2 |z|s−2 ε(z),

∣∣u(p−k)
m (t) (ehz(t))(k)

∣∣ ≤ A
(
|t|(m+1)−k + |t|mk+(p−k)+3(m−2)

)
e−t2/2 |z|m−1.

Since k varies from 1 to p, the right-hand sides can be made independent of k, and we arrive at the
desired bounds on the second term I2 in (9.3), needed for the values p ≥ 1:

|I2| ≤
(
|t|s−p + |t|(s−1)p+3(m−2)

)
e−t2/2 |z|s−2ε(z), (9.13)

|I2| ≤
(
|t|(m+1)−p + |t|mp+3(m−2)

)
e−t2/2 |z|m−1. (9.14)

Estimation of I3.

Now, let us turn to the third term, i.e., to the products (Rz(t) g(t))(k) (ehz(t))(p−k). By Proposition
8.3, for all p = 0, 1, . . . ,m,

∣∣R(p)
z (t)

∣∣ ≤ C
(
|t|(m+1)−p + |t|3(m−1)−p

)
|z|m−1.

Using (9.7) and the Leibnitz formula, the latter gives, for all k = 0, . . . , p,
∣∣(Rz(t) g(t)

)(k)∣∣ ≤ C
(
|t|(m+1)−k + |t|3(m−1)+k

)
e−t2/2 |z|m−1. (9.15)

Case p = 0. Then necessarily k = 0, and the above inequality yields

|I3| ≤ C
(
|t|m+1 + |t|3(m−1)

)
e−t2/2 |z|m−1. (9.16)
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It has only to be compared with (9.9)–(9.10). In the second scenario, one clearly obtains from (9.10) and
(9.16) that

|vz(t) − um(t)| ≤ |I1| + |I3| ≤ C
(
|t|m+1 + |t|4m−5

)
e−t2/2 |z|m−1.

This proves (9.2) in case p = 0.

In the first scenario, just write in (9.16) |z|m−1 = |z|s−2 ε̃(z) with ε̃(z) → 0 as z → 0. Together with
(9.9) this leads to a similar estimate

|vz(t) − um(t)| ≤ |I1| + |I3| ≤ C
(
|t|s + |t|s+3(m−2)

)
e−t2/2 |z|s−2,

proving (9.1) in case p = 0. Thus, Proposition 9.1 is proved in this case.

Case 1 ≤ p ≤ m. If k = p, the absolute value of the product

(Rz(t) g(t))(k) (ehz(t))(p−k) = (Rz(t) g(t))(p) ehz(t)

may be estimated according to (9.15) by

C
(
|t|(m+1)−p + |t|3(m−1)+p

)
e−t2/2 |z|m−1. (9.17)

As in the previous step, |z|m−1 may be replaced here with |z|s−2 ε(z).
If 0 ≤ k ≤ p − 1, by (9.11)–(9.12) for the two scenarios we have

∣∣(ehz(t))(p−k)
∣∣ ≤

(
|t|s−(p−k) + |t|(s−1)(p−k)

)
|z|s−2ε(z), (9.18)

∣∣(ehz(t))(p−k)
∣∣ ≤ A

(
|t|(m+1)−(p−k) + |t|m(p−k)

)
|z|m−1. (9.19)

It remains to multiply these inequalities by (9.15). At this step we consider the two scenarios separately.

Scenario 1 (Inequality (9.1)): When multiplying (9.15) by (9.18) and looking for the maximal power
of |t|, notice that

(3(m − 1) + k) + (s − 1)(p − k)

is maximized for k = 0, and for this value it is equal to 3(m − 1) + (s − 1)p. Therefore,
∣∣(Rz(t) g(t)

)(k) (ehz(t))(p−k)
∣∣ ≤

(
|t|(m+1)+(s−p) + |t|3(m−1)+(s−1)p

)
e−t2/2 |z|(m−1)+(s−2)ε(z).

Now, comparing with (9.9), (9.13) and (9.17), we see that the smallest power of |t| in these
inequalities is m′ = s − p. Hence we do not loose much by writing

∣∣(Rz(t) g(t)
)(k) (ehz(t))(p−k)

∣∣ ≤
(
|t|m′

+ |t|3(m−1)+(s−1)p
)
e−t2/2 |z|(m−1)+(s−2)ε(z),

which holds for all k = 0, 1, . . . , p. To simplify, let us note that |t|3(m−1)|z|(m−1) ≤ 1, which leads to
∣∣(Rz(t) g(t)

)(k) (ehz(t))(p−k)
∣∣ ≤

(
|t|m′

+ |t|(s−1)p
)
e−t2/2 |z|s−2ε(z). (9.20)

In addition, the largest power of |t| in (9.9), (9.13), (9.17) and (9.20) is

m′′ = 3(m − 2) + max{s + p, (s − 1)p}.

Hence I3 ≤
(
|t|m′

+ |t|m′′)
e−t2/2 |z|s−2ε(z) and similarly for I1 and I2. This proves (9.1).

Scenario 2 (Inequality (9.2)): This case can be dealt with along the lines of scenario 1 by letting s →
m + 1. Or, repeating the previous arguments, note that when multiplying (9.15) by (9.19), the expression
3(m − 1) + k + m(p − k) is maximized for k = 0, and for this value it is equal to 3(m − 1) + mp.
Therefore,

∣∣(Rz(t) g(t)
)(k) (ehz(t))(p−k)

∣∣ ≤ A
(
|t|2(m+1)−p + |t|3(m−1)+mp

)
e−t2/2 |z|2(m−1).
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In (9.10), (9.14) and (9.17) the smallest power of |t| is m′ = (m + 1) − p. Hence
∣∣(Rz(t) g(t)

)(k) (ehz(t))(p−k)
∣∣ ≤ A

(
|t|m′

+ |t|3(m−1)+mp
)
e−t2/2 |z|2(m−1).

Again using |t|3(m−1)|z|m−1 ≤ 1, we get
∣∣(Rz(t) g(t)

)(k) (ehz(t))(p−k)
∣∣ ≤

(
|t|m′

+ |t|mp
)
e−t2/2 |z|m−1. (9.21)

In addition, the largest power of |t| in (9.10), (9.14), (9.17) and (9.21) is

m′′ = 3(m − 2) + max{m + p + 1,mp}.

Hence I3 ≤ A
(
|t|m′

+ |t|m′′)
e−t2/2 |z|m−1 and similarly for I1 and I2 in case p ≥ 1.

This proves (9.2) and Proposition 9.1.
One may combine Proposition 9.1 (first part) with Propositions 5.1–5.2 for the case 2 ≤ s < 3, if we

do not care about polynomial factors in front of e−t2/2.

Corollary 9.2. There is a function Tz → +∞ as z → 0 (0 ≤ |z| ≤ 1) such that in the interval
|t| ≤ Tz, for all p = 0, 1, . . . ,m, m = [s],

∣∣v(p)
z (t) − u(p)

m (t)
∣∣ ≤ ε(z)|z|s−2 e−t2/4

with ε(z) → 0. Moreover, up to some constant c > 0, one can choose Tz = c |z|−1/3 in case s ≥ 3
and Tz = c |z|−(s−2)/s in case 2 < s < 3.
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