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Abstract Convergence to stable laws in relative entropy is established for sums of
i.i.d. random variables.
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1 Introduction

Given independent identically distributed random variables (Xn)n≥1, consider the
normalized sums

Zn = X1 + · · · + Xn

bn

− an,

defined for given (non-random) an ∈ R and bn > 0. Assume that Zn converges
weakly in distribution to a random variable Z which has a non-degenerate stable
law. In this paper, we would like to study whether or not this convergence holds in a
stronger sense. This question has been studied and affirmatively solved in the litera-
ture, for example, using the total variation distance between the distributions of Zn
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and Z (cf. [3]). Results in the central limit theorem suggest to consider for instance
the stronger “entropic” distance, that is, the relative entropy, where, however, not so
much is known. Similarly one might consider the convergence in terms of the closely
related Fisher information (a question raised in [4], Chap. 5). Convergence in such
distances may be viewed as part of a theoretic-information approach to limit theo-
rems, which has been initiated by Linnik [6], who studied the behavior of the entropy
of sums of regularized independent summands in the central limit theorem.

Given random variables X and Z with distributions μ and ν, respectively, the
relative entropy of μ with respect to ν, sometimes called informational divergence or
Kullback–Leibler distance, of μ and ν, is defined by

D(X‖Z) = D(μ‖ν) =
∫

log
dμ

dν
dμ,

provided that μ is absolutely continuous with respect to ν (and otherwise D(X‖Z) =
+∞).

We consider the relative entropy with respect to so-called non-extremal stable laws
(cf. relations (1.1) below and the definition before them). The aim of this note is to
prove the following theorem.

Theorem 1.1 Assume that the sequence of normalized sums Zn defined above con-
verges weakly to a random variable Z with a non-extremal stable limit law. Then the
relative entropy distances converge to zero, that is, D(Zn‖Z) → 0, as n → ∞, if and
only if D(Zn‖Z) < +∞, for some n.

In the sequel, we consider non-degenerate distributions, only.
If X1 has a finite second moment, weak convergence Zn ⇒ Z holds with

an = √
nEX1, bn = √

n, and Z being normal. In this case, Theorem 1.1 turns into
the entropic central limit theorem by Barron [1]; cf. also [2] for refinements and a
different approach. Thus, Theorem 1.1 may be viewed as an extension of Barron’s
result.

If X1 has an infinite second moment, but still belongs to the domain of normal
attraction, it follows that D(Zn‖Z) = +∞ for all n (cf. Corollary 2.3 below). Hence,
in this special case there is no convergence in relative entropy.

In the remaining cases Z has a stable distribution with some parameters 0 < α < 2
and −1 ≤ β ≤ 1. It then has a continuous density ψ(x) with characteristic function
f (t) = EeitZ described by the formula

logf (t) = exp
{
iat − c|t |α(

1 + iβ sign(t)ω(t, α)
)}

,

where a ∈ R, c > 0, and ω(t,α) = tan(πα
2 ) in case α 
= 1, and ω(t,α) = 2

π
log |t | for

α = 1. In particular, |f (t)| = e−c|t |α .
Exact expressions for the characteristic function are, however, not sufficiently in-

formative for establishing results like Theorem 1.1. In order to pass from weak con-
vergence to a stronger convergence, we need more information about the stable den-
sities ψ .
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This information in turn will depend on the type of the given stable distribution.
A stable distribution is called non-extremal, if it is normal or, if 0 < α < 2 and
−1 < β < 1. In the latter case, the density ψ of Z is positive on the whole real
line and satisfies asymptotic relations

ψ(x) ∼ c0|x|−(1+α) (x → −∞), ψ(x) ∼ c1x
−(1+α) (x → +∞) (1.1)

with some constants c0, c1 > 0 (cf. [3, 7, 8]).
The behavior of ψ in the extremal case (when |β| = 1) is different. For ex-

ample, when 0 < α < 1, the density is positive on a half-axis H = (x0,+∞) or
H = (−∞, x0) of the real line, only. Hence, to guarantee finiteness of the relative
entropies D(Zn‖Z), one has to require that Zn take values in H (which involves a
certain requirement on the coefficients an and bn). Another important issue is that, as
x → x0, ψ(x) → 0 extremely fast, so the finiteness of D(Zn‖Z) leads as well to an
additional strong moment assumption about the distribution of X1 near the point x0.
A similar effect may be observed in the case 1 ≤ α < 2, |β| = 1, as well. Here ψ is
positive everywhere, but tends to zero extremely fast either near +∞ or −∞ (espe-
cially, when α = 1).

Note that the property that X1 belongs to the domain of attraction of a stable law
of index 0 < α < 2 may be expressed explicitly in terms of the distribution function
F(x) = P{X1 ≤ x}. Namely, we have Zn ⇒ Z with some bn > 0 and an ∈ R, if and
only if

F(x) = (
c0 + o(1)

)|x|−αB
(|x|) (x → −∞),

1 − F(x) = (
c1 + o(1)

)
x−αB(x) (x → +∞),

for some constants c0, c1 ≥ 0 that are not both zero, and where B(x) is a slowly
varying function in the sense of Karamata (cf. [3, 8]).

Furthermore, in the non-extremal case the condition D(Zn‖Z) < +∞ in Theo-
rem 1.1 is equivalent to saying that Zn has a density pn with finite entropy

h(Zn) = −
∫ +∞

−∞
pn(x) logpn(x)dx

(with an additional requirement that EX2
1 < +∞, when Z is normal). Once this prop-

erty is fulfilled for a particular value n = n0, it continues to hold for all n ≥ n0. This
will be explained in the next section.

We shall turn to the proof which we divide into several steps. For completeness,
the argument will cover the normal case as well.

2 Remarks on Relative Entropy

First, let us give necessary and sufficient conditions for the property D(Zn‖Z) <

+∞, especially when Z has a non-extremal stable distribution.
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Given a random variable X with density p, consider the entropy functional

h(X) = −
∫

p(x) logp(x)dx.

In general, it may or may not be defined as a Lebesgue integral. (Here and below, we
often omit the limits of integration when integrating over the whole real line.)

It is well-known that, if X has a finite second moment, then h(X) is well-defined,
and one has an upper estimate

h(X) ≤ h(Z), (2.1)

where Z is a normal random variable with the same mean and variance as X. (Here
the value h(X) = −∞ is possible.) This important observation may be generalized
with respect to other (not necessarily normal) reference measures.

Proposition 2.1 Let X denote a random variable with density p. Assume that ψ

denotes a probability density on the real line, such that ψ(x) = 0 implies p(x) = 0
a.e., and such that E log+( 1

ψ(X)
) < +∞. Then h(X) exists and satisfies

h(X) ≤ E log
1

ψ(X)
. (2.2)

This bound seems to be folklore knowledge and is based on a direct application
of Jensen’s inequality. To recall the argument, let Z have density ψ , and assume that
ψ(x) = 0 implies p(x) = 0 a.e. The relative entropy given by

D(X‖Z) =
∫

p(x) log
p(x)

ψ(x)
dx = Eξ log ξ, ξ = p

ψ
,

is then well-defined, where the expectation refers to the probability space
(R,ψ(x) dx). Moreover, since Eξ = 1, and due to the convexity of the function t →
t log t , the expectation Eξ log ξ exists and is non-negative. But p log p

ψ
+ p log 1

p
=

p log 1
ψ

and, by the assumption,
∫

p log 1
ψ

dx exists and does not take the value +∞.

Hence, h(X) = ∫
p log 1

p
dx also exists and cannot take the value +∞. In addition,

the equality

D(X‖Z) = −h(X) + E log
1

ψ(X)
(2.3)

is justified. Here, the left-hand side is non-negative, so the inequality (2.2) immedi-
ately follows.

Choosing for ψ a normal density with the same mean and the same variance as
for X, one may easily see that (2.2) reduces to (2.1).

As another example, choosing for ψ the density of the Cauchy measure, we obtain
a weaker moment condition E log(1+|X|) < +∞, which guarantees that the entropy
exists and satisfies h(X) < +∞.

Let us return to the definition of the relative entropy,

D(X‖Z) =
∫

p(x) log
p(x)

ψ(x)
dx,
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assuming that Z has density ψ . In order to describe when this distance is finite, one
may complement Proposition 2.1 with the following:

Proposition 2.2 Let X be a random variable with density p. Assume that

(a) ψ(x) = 0 ⇒ p(x) = 0 a.e.;
(b) E log+( 1

ψ(X)
) < +∞;

(c) h(X) is finite.

Then D(X‖Z) is finite and is given by (2.3). Conversely, if ψ is bounded and∫
ψ(x)γ dx < +∞, for some 0 < γ < 1, then the conditions (a)–(c) are also nec-

essary for the relative entropy to be finite.

Proof Condition (a) means that the distribution of X is absolutely continuous with
respect to the distribution of Z (which is necessary for the finiteness of the relative
entropy).

Assuming condition (a), we have D(X‖Z) < +∞, if and only if the integral

I =
∫

p(x) log

(
1 + p(x)

ψ(x)

)
dx

is finite. Let I indeed be finite. Split the real line into the two sets A = {x ∈ R: p(x) ≥
ψ(x)γ

′ } and B = R \ A, where γ < γ ′ < 1. Restricting the integration to A, we get

I ≥
∫

A

p(x) log

(
1 + 1

ψ(x)1−γ ′

)
dx ≥ (

1 − γ ′)∫
A

p(x) log+
(

1

ψ(x)

)
dx.

Hence,
∫
A

p(x) log+( 1
ψ(x)

) dx < +∞. On the other hand, using tγ
′
log(1/t) ≤ Ctγ

(0 ≤ t ≤ 1), we get
∫

B

p(x) log+
(

1

ψ(x)

)
dx ≤

∫
B

ψ(x)γ
′
log+

(
1

ψ(x)

)
dx

=
∫

B

ψ(x)γ
′
log

(
1

ψ(x)

)
1{ψ(x)≤1} dx

≤ C

∫ +∞

−∞
ψ(x)γ dx < +∞.

As a result,
∫

p(x) log+( 1
ψ(x)

) dx < +∞, that is, (b) is fulfilled.
But then, by Proposition 2.1, the entropy is well-defined in the Lebesgue sense

and, moreover, h(X) < +∞. This justifies writing (2.3), which in view of the bound-
edness of the density ψ implies that h(X) > −∞ as well. Hence, the property (c)
holds as well.

In the other direction, assuming that (a)–(c) are fulfilled, one may start with equal-
ity (2.3), which shows that D(X‖Z) is finite.

Thus, Proposition 2.2 is proved. �

When ψ is the density of a stable law, the condition
∫

ψ(x)γ dx < +∞ (for some
0 < γ < 1) is fulfilled, so the properties (a)–(c) are necessary and sufficient for the
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finiteness of the relative entropy with respect to ψ . In fact, a more detailed conclusion
may be stated according to the types of stable law.

Corollary 2.3 If Z is normal, then D(X‖Z) < +∞, if and only if X has a finite
second moment and finite entropy.

Corollary 2.4 If Z has a non-extremal stable distribution, which is not normal, then
D(X‖Z) < +∞, if and only if X has a finite logarithmic moment E log(1 +|X|) and
finite entropy.

This follows from Proposition 2.2 and the property (1.1). Let us recall that the
condition E log(1 + |X|) < +∞ insures that the entropy of X exists and, moreover,
h(X) < +∞.

The situation where Z has an extremal stable distribution is a bit more delicate, but
may be studied on the basis of Proposition 2.2 as well. However, we do not discuss
this case here.

These characterizations may be simplified for normalized sums
Zn = X1+···+Xn

bn
− an with i.i.d. summands as in Theorem 1.1, provided that the se-

quence Zn is weakly convergent in distribution. Indeed, the property Zn ⇒ Z, where
Z has a stable distribution with parameter 0 < α < 2 implies that E|X1|s < +∞ for
any 0 < s < α, cf. [3, 8]. Hence, E|Zn|s < +∞ for all n ≥ 1, and thus the random
variables Zn have finite logarithmic moments.

Corollary 2.5 Assume that Zn converges weakly to a random variable Z with a non-
extremal stable limit law, which is not normal. Then, for each n ≥ 1, the finiteness of
the relative entropy D(Zn‖Z) is equivalent to the finiteness of the entropy of Zn.

A similar conclusion holds in the normal case as well, provided that bn ∼ √
n.

Here it is well-known that Zn ⇒ Z implies that E|X1|2 < +∞.
Finally, let us mention another property of non-extremal stable distributions.

Corollary 2.6 Assume that Z has a non-extremal stable distribution. If the relative
entropy D(Zn‖Z) is finite for some n = n0, it will be finite for all n ≥ n0.

Proof By Jensen’s inequality, h(X + Y) ≥ h(X) for all independent summands such
that h(X) exists and h(X) > −∞. If D(Zn0‖Z) < +∞, then h(Zn0) is finite accord-
ing to Proposition 2.2. Hence, for the sums Sn = X1 + · · · + Xn, h(Sn) exists for all
n ≥ n0 and

h(Sn) ≥ h(Sn0) = logbn0 + h(Zn0) > −∞.

Thus, h(Zn) exists with h(Zn) > −∞. In addition, by Corollary 2.4 (if Z is not
normal), we also have E log(1 + |Zn0 |) < +∞. By convexity of the function u →
log(1 + u) (u ≥ 0), this yields E log(1 + |X1|) < +∞. In turn, since log(1 + u +
v) ≤ log(1 + u) + log(1 + v) (u,v ≥ 0), we get E log(1 + |Sn|) < +∞, for all n. In
particular, h(Sn) < +∞, according to Proposition 2.1. Therefore, h(Zn) is finite, and
applying Proposition 2.2, we conclude that D(Zn‖Z) is finite for all n ≥ n0.
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Using Corollary 2.3, a similar argument applies to the normal case as well.
Note that Corollary 2.6 does not extend to the class of extremal stable distribu-

tions. �

3 Binomial Decomposition of Convolutions

Given independent identically distributed random variables (Xn)n≥1 and numbers
an ∈ R, bn > 0, consider the sums

Sn = X1 + · · · + Xn and Zn = Sn

bn

− an.

If Z is a random variable with an absolutely continuous distribution (not neces-
sarily stable), the condition D(Zn‖Z) < +∞ (n ≥ n0) used in Theorem 1.1 implies
that, for any such n, Zn has an absolutely continuous distributions with density, say
pn(x). For simplicity, we may and will assume that n0 = 1, that is, already X1 has a
density p(x). (The case, where Zn have densities starting from n ≥ n0 with n0 > 1
requires minor modifications only.)

Since it is advantageous in the following to work with bounded densities, we
slightly modify pn at the expense of a small change in the relative entropy. For a
given number 0 < b < 1

2 , split the real line into the two Borel sets H1 and H0, such
that p is bounded by a constant M on H1 with

b =
∫

H0

p(x)dx.

Consider the decomposition

p(x) = (1 − b)ρ1(x) + bρ0(x), (3.1)

where ρ1, ρ0 are the normalized restrictions of p to the sets H1 and H0, respectively.
Hence, for the convolutions we have a binomial decomposition

p∗n =
n∑

k=0

Ck
n(1 − b)kbn−kρ∗k

1 ∗ ρ
∗(n−k)
0 .

This function represents the density of Sn.
For n ≥ 2, we split the above sum into the two parts, so that p∗n = ρn1 + ρn0 with

ρn1 =
n∑

k=2

Ck
n(1 − b)kbn−kρ∗k

1 ∗ ρ
∗(n−k)
0 ,

ρn0 = bnρ∗n
0 + n(1 − b)bn−1ρ1 ∗ ρ

∗(n−1)
0 .

Note that

εn ≡
∫

ρn0(x) dx = bn + n(1 − b)bn−1 < nbn−1. (3.2)
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Finally define

p̃n(x) = bn

1 − εn

ρn1(an + bnx), pn0(x) = bn

εn

ρn0(an + bnx). (3.3)

Thus, for the densities pn of Zn we have the decomposition

pn(x) = (1 − εn)p̃n(x) + εnpn0(x). (3.4)

The (probability) densities p̃n are bounded and provide a strong approximation
for pn regardless of the choice of numbers an and bn from the definition of Zn. In
particular, from (3.2) and (3.4) and using b < 1

2 , it follows that

∫ ∣∣p̃n(x) − pn(x)
∣∣dx < 2−n, (3.5)

for all n large enough. One of the immediate consequences of this estimate is the
bound ∣∣f̃n(t) − fn(t)

∣∣ < 2−n (t ∈ R) (3.6)

for the corresponding characteristic functions

f̃n(t) =
∫

eitxp̃n(x) dx, fn(t) =
∫

eitxpn(x) dx.

Under mild conditions on an and bn, the approximation (3.5) may be sharpened
by using a polynomial weight function in the L1-distance.

Lemma 3.1 If E|X1|s < +∞ (s > 0), and |an| + 1/bn = O(nγ ) with some γ > 0,
then for all n large enough,

∫
|x|s∣∣p̃n(x) − pn(x)

∣∣dx < 2−n.

Proof We refine arguments from the proof of a similar Lemma 2.1 in [2]. By (3.4),
∣∣p̃n(x) − pn(x)

∣∣ ≤ εn

(
p̃n(x) + pn0(x)

)
,

so ∫
|x|s∣∣p̃n(x) − pn(x)

∣∣dx ≤ εn

1 − εn

b−s
n

∫
|x − an|sρn1(x) dx

+ b−s
n

∫
|x − an|sρn0(x) dx. (3.7)

Let U1,U2, . . . be independent copies of U and V1,V2, . . . be independent copies
of V (that are also independent of all Un), where U and V are random variables with
densities ρ1 and ρ0, respectively. From (3.1)

βs ≡ E|X1|s = (1 − b)E|U |s + bE|V |s , (3.8)
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so E|U |s ≤ βs/b and E|V |s ≤ βs/b (using b < 1
2 ). Consider the sums

Sk,n = U1 + · · · + Uk + V1 + · · · + Vn−k, 0 ≤ k ≤ n.

If s ≥ 1, then by the Minkowski inequality in the space Ls with norm ‖ξ‖s =
(E|ξ |s)1/s ,

‖Sk,n‖s ≤
k∑

j=1

‖Uj‖s +
n∑

j=k+1

‖Vj‖s = k‖U‖s + (n − k)‖V ‖s ≤ n(βs/b)1/s . (3.9)

Hence, E|Sk,n|s ≤ βs

b
ns and, by Jensen’s inequality, E|Sk,n −an|s ≤ 2s(

βs

b
ns +|an|s).

If 0 < s < 1, one can just use

|Sk,n|s ≤ |U1|s + · · · + |Uk|s + |V1|s + · · · + |Vn−k|s ,

implying that E|Sk,n|s ≤ nβs/b and E|Sk,n − an|s ≤ n
βs

b
+ |an|s . In both cases,

E|Sk,n − an|s ≤ 2s

(
βs

b
nmax(s,1) + |an|s

)
.

Hence,

∫
|x − an|sρn1(x) dx =

n∑
k=2

Ck
n(1 − b)kbn−kE|Sk,n − an|s

≤ 2s

(
βs

b
nmax(s,1) + |an|s

)
(1 − εn),

∫
|x − an|sρn0(x) dx =

1∑
k=0

Ck
n(1 − b)kbn−kE, |Sk,n − an|s

≤ 2s

(
βs

b
nmax(s,1) + |an|s

)
εn.

The two estimates may be used in (3.7), and we get

∫
|x|s∣∣p̃n(x) − pn(x)

∣∣dx ≤ 2s+1

bs
n

(
βs

b
nmax(s,1) + |an|s

)
εn.

It remains to apply (3.2) together with the assumption on (an, bn). Lemma 3.1 is
proved. �

Lemma 3.2 For any t0 > 0, there are positive constants c and C such that, for all
n ≥ 2, ∫

|t |≥t0bn

∣∣f̃n(t)
∣∣dt < Cbne

−cn.
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Proof Consider the densities ρ = ρ∗k
1 ∗ ρ

∗(n−k)
0 appearing in the definition of ρn1.

Their Fourier transforms (i.e., the corresponding characteristic functions) are con-
nected by

ρ̂(t) = ρ̂1(t)
kρ̂0(t)

n−k (t ∈ R).

By the Riemann–Lebesgue theorem, |ρ̂j (t)| ≤ e−c, for all |t | ≥ t0 with some con-
stant c > 0 (j = 0,1). Hence, whenever 2 ≤ k ≤ n

∣∣ρ̂(t)
∣∣ ≤ A

∣∣ρ̂1(t)
∣∣2

, A = e−c(n−2).

By the decomposition construction, ρ1(x) ≤ M , for all x. Applying Plancherel’s for-
mula, we get

∫
|t |≥t0

∣∣ρ̂(t)
∣∣dt < A

∫ ∣∣ρ̂1(t)
∣∣2

dt = 2πA

∫
ρ1(x)2 dx ≤ 2πAM.

As a consequence, the density ρn1 satisfies a similar inequality
∫

|t |≥t0

∣∣ρ̂n1(t)
∣∣dt < 2πAM(1 − εn).

But by (3.3) f̃n(t) = 1
1−εn

e−itan/bn ρ̂n1(t/bn), so

∫
|t |≥t0bn

∣∣f̃n(t)
∣∣dt = bn

1 − εn

∫
|t |≥t0

∣∣ρ̂n1(t)
∣∣dt < 2πMbne

−c(n−2).

Thus, Lemma 3.2 is proved. �

Remark 3.3 If Zn ⇒ Z, where Z has a stable distribution of index 0 < α ≤ 2, then
necessarily bn ∼ n1/αB(n), as n → ∞, where B is a slowly varying function in the
sense of Karamata (cf. [3]). Using standard arguments (cf. e.g. [5]), one can show as
well that an = o(n). Thus, the conditions of Lemma 3.1 for the coefficients (an, bn)

are fulfilled, once there is a weak convergence.

4 Entropic Approximation of pn by p̃n

We need to extend the assertion of Lemma 3.1 to the relative entropies with respect
to the stable laws. Thus, assume that Z has a stable distribution of index α ∈ (0,2]
with density ψ(x) (thus including the normal law). Put

Dn = D(Zn‖Z) =
∫

pn(x) log
pn(x)

ψ(x)
dx, D̃n =

∫
p̃n(x) log

p̃n(x)

ψ(x)
dx,

where p̃n are defined according to the decomposition (3.4) for the densities pn of the
normalized sums

Zn = 1

bn

(X1 + · · · + Xn) − an (an ∈ R, bn > 0).

Here, as before, Xk denote independent identically distributed random variables.
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In the lemma below, it does not matter whether or not the sequence Zn converges
weakly to Z.

Lemma 4.1 Assume that the distribution of Z is non-extremal. If Dn is finite for all
n ≥ n0, and |an| + logbn + 1/bn = O(nγ ) with some γ > 0, then

∣∣D̃n − Dn

∣∣ < 2−n,

for all n large enough.

Proof To simplify the notations (and the argument), we assume that n0 = 1. In par-
ticular, D1 = D(X1‖Z) is finite, hence the entropy h(X1) is finite and E log 1

ψ(X1)
<

+∞, according to Proposition 2.2. Define

Dn0 =
∫

pn0(x) log
pn0(x)

ψ(x)
dx.

By convexity of the function L(u) = u logu (u ≥ 0) it follows that Dn ≤
(1 − εn)D̃n + εnDn0. Applying the inequality (u + v) log(u + v) ≥ u logu + v logv,
holding true for all u,v ≥ 0, we also have

Dn ≥ (
(1 − εn)D̃n + εnDn0

) + εn log εn + (1 − εn) log(1 − εn).

The two estimates give

∣∣D̃n − Dn

∣∣ ≤ εn

(
D̃n + Dn0

) + εn log
1

εn

+ (1 − εn) log
1

1 − εn

.

Recalling the definition (3.2) of εn and using log 1
1−u

≤ 2u for 0 ≤ u ≤ 1
2 , we there-

fore obtain ∣∣D̃n − Dn

∣∣ < Cn
(
n + D̃n + Dn0

)
bn−1, (4.1)

which holds for all n ≥ 1 with some constant C. In addition, using an elementary
inequality L((1 − b)u + bv) ≥ (1 − b)L(u) − 1

e
u − 1

e
(u,v ≥ 0, 0 ≤ b ≤ 1), we get

from (3.1) that

D(X1‖Z) =
∫

L

(
p(x)

ψ(x)

)
ψ(x)dx ≥ (1 − b)

∫
ρ1(x) log

ρ1(x)

ψ(x)
dx − 2

e
.

A similar inequality also holds for ρ0 with b in place of 1 − b, so

D(X1‖Z) ≥ (1 − b)D(U‖Z) − 2

e
, D(X1‖Z) ≥ bD(V ‖Z) − 2

e
,

where U and V have densities ρ1 and ρ0, respectively. Hence, these random variables
have finite entropies, and by Proposition 2.2,

E log
1

ψ(U)
< +∞, E log

1

ψ(V )
< +∞. (4.2)
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Let U1,U2, . . . be independent copies of U and let V1,V2, . . . be independent
copies of V (which are independent of all Un as well). Again, by convexity of the
function u logu,

D̃n ≤ 1

1 − εn

n∑
k=2

Ck
n(1 − b)kbn−k

∫
rk,n(x) log

rk,n(x)

ψ(x)
dx, (4.3)

Dn0 ≤ 1

εn

1∑
k=0

Ck
n(1 − b)kbn−k

∫
rk,n(x) log

rk,n(x)

ψ(x)
dx, (4.4)

where rk,n are the densities of the normalized sums

Rk,n = Sk,n

bn

− an = 1

bn

(U1 + · · · + Uk + V1 + · · · + Vn−k) − an, 0 ≤ k ≤ n.

Now, write

D(Rk,n‖Z) =
∫

rk,n(x) log
rk,n(x)

ψ(x)
dx = −h(Rk,n) +

∫
rk,n(x) log

1

ψ(x)
dx,

(4.5)
using the entropy functional h(R) = − ∫

r(x) log r(x) dx. Adding independent sum-
mands to R will only increase the value of this functional. Hence, for any 1 ≤ k ≤ n,

h(Rk,n) = − logbn + h(U1 + · · · + Uk + V1 + · · · + Vn−k)

≥ − logbn + h(U).

For k = 0 there are similar relations (with V replacing U ), so whenever 0 ≤ k ≤ n,
we have h(Rk,n) ≥ − logbn − C with some constant C. Inserting in (4.5), we arrive
at

D(Rk,n‖Z) ≤ logbn + C + E log
1

ψ(Rk,n)
. (4.6)

Case 1: Z ∼ N(a,σ 2) with some a ∈ R and σ > 0. Using (4.6) and (3.8)–(3.9)
with s = 2 and the assumption EX2

1 < +∞ (due to the assumption D1 < +∞, cf.
Corollary 2.3), we get

D(Rk,n‖Z) ≤ logbn + C1 + C2E|Rk,n|2

≤ logbn + C3 + C4
n2

b2
n

+ C5a
2
n

with some constants Cj depending on a,σ, b and EX2
1. Using the condition on an

and bn, we conclude that D(Rk,n‖Z) ≤ nγ ′
with some γ ′ for all n large enough.

Applying this in (4.3)–(4.4), (4.1) yields |D̃n − Dn| = o(bn
1), whenever b < b1 < 1

2 .
Case 2: Z has a non-extremal stable distribution. By (4.2), we have E log(1 +

|U |) < +∞ and similarly for V . In addition, by (1.1),

E log
1

ψ(Rk,n)
≤ A + BE log

(
1 + |Rk,n|

)
(4.7)
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with some constants A and B . To bound the last expectation, one may use the in-
equality log(1 + |u1 + u2|) ≤ log(1 + |u1|) + log(1 + |u2|), which yields

log
(
1 + |Rk,n|

) ≤ log
(
1 + |an|

) + log
(
1 + |Sk,n|/bn

)
.

Applying another general inequality log(1 + u) ≤ u
v

+ log(1 + v) (u, v ≥ 0) with
u = |Sk,n|/bn, v = |Sk,n|, we also get

log
(
1 + |Sk,n|/bn

) ≤ 1/bn + log
(
1 + |Sk,n|

)
.

Therefore,

log
(
1 + |Rk,n|

) ≤ 1

bn

+ log
(
1 + |an|

) +
k∑

j=1

log
(
1 + |Uj |

) +
n∑

j=k+1

log
(
1 + |Vj |

)

and

E log
(
1 + |Rk,n|

) ≤ 1

bn

+ log
(
1 + |an|

) + kE log
(
1 + |U |) + (n − k)E log

(
1 + |V |)

≤ 1

bn

+ log
(
1 + |an|

) + Cn.

Thus, by (4.7) and (4.6), with some constant C

D(Rk,n‖Z) ≤ C
(
n + logbn + 1/bn + log

(
1 + |an|

))
.

It remains to apply this bound in (4.3)–(4.4), and then (4.1) yields |D̃n −Dn| = o(bn
1)

with any b1 > b. One may take b1 = 1
2 , and thus Lemma 4.1 is proved. �

5 Uniform Local Limit Theorem

Consider the normalized sums Zn = 1
bn

(X1 +· · ·+Xn)−an (where an ∈ R, bn > 0),
associated to independent identically distributed random variables Xk .

Proposition 5.1 Assume that Zn ⇒ Z, where Z has a (continuous) density ψ . If
the random variables Zn have absolutely continuous distributions for n ≥ n0 with
densities, say pn, then

sup
x

∣∣p̃n(x) − ψ(x)
∣∣ → 0 (n → ∞). (5.1)

Here p̃n denote the modified densities of pn, constructed in Sect. 3 for the
case n0 = 1. Necessarily, Z has a stable distribution of some index α ∈ (0,2], and
bn ∼ n1/αB(n), where B is a slowly varying function.

Note that in this proposition it does not matter, whether Z is extremal or not.
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Proof Consider the characteristic functions

f̃n(t) =
∫ +∞

−∞
eitxp̃n(x) dx, f (t) =

∫ +∞

−∞
eitxψ(x)dx,

and express the densities via inverse Fourier transforms to split the Fourier integral
into the two regions,

p̃n(x) − ψ(x) = 1

2π

∫
|t |≤Tn

e−itx
(
f̃n(t) − f (t)

)
dt

+ 1

2π

∫
|t |>Tn

e−itx
(
f̃n(t) − f (t)

)
dt

with given t0 > 0 and 0 < Tn ≤ t0bn.
Let fn denote the characteristic functions of Zn. By the assumption, if Tn → +∞

sufficiently slowly, then Tn max|t |≤Tn |fn(t) − f (t)| → 0. Hence, by (3.6),

Tn max|t |≤Tn

∣∣f̃n(t) − f (t)
∣∣ → 0 (n → ∞),

so that uniformly in all x

p̃n(x) − ψ(x) = 1

2π

∫
|t |>Tn

e−itx
(
f̃n(t) − f (t)

)
dt + o(1).

Moreover, since f is integrable,

sup
x

∣∣p̃n(x) − ψ(x)
∣∣ ≤ 1

2π

∫
|t |>Tn

∣∣f̃n(t)
∣∣dt + o(1). (5.2)

Recall that the characteristic functions f̃n are integrable as well. The integration
in (5.2) should also be split into the two regions accordingly, and hence the integral
itself will be bounded by

∫
Tn<|t |<t0bn

∣∣f̃n(t)
∣∣dt +

∫
|t |>t0bn

∣∣f̃n(t)
∣∣dt.

But by Lemma 3.2 the last integral tends to zero, as long as bn has at most polynomial
growth. Using once more (3.6), we arrive at

sup
x

∣∣p̃n(x) − ψ(x)
∣∣ ≤ 1

2π

∫
Tn<|t |<t0bn

∣∣fn(t)
∣∣dt + o(1).

It remains to apply the following bound derived in [3], p. 133. There exist con-
stants c > 0 and t0 > 0, such that |fn(t)| ≤ e−c|t |α/2

for all n ≥ 1 and t in the interval
|t | < t0bn. This gives

∫
Tn<|t |<t0bn

∣∣fn(t)
∣∣dt ≤

∫
Tn<|t |<t0bn

e−c|t |α/2
dt → 0.

Thus, Proposition 5.1 is proved. �
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6 Proof of Theorem 1.1

Let X and Z be random variables with densities p and ψ , such that ψ(x) = 0 ⇒
p(x) = 0 a.e. The relative entropy

D(X‖Z) =
∫

p(x)

ψ(x)
log

p(x)

ψ(x)
ψ(x)dx (6.1)

is well-defined and may be bounded from above by applying an elementary inequality

t log t ≤ (t − 1) + Cε|t − 1|1+ε (t ≥ 0), (6.2)

where Cε depends on ε ∈ (0,1], only. Namely, it immediately yields

D(X‖Z) ≤ Cε

∫ |p(x) − ψ(x)|1+ε

ψ(x)ε
dx.

Moreover, letting  = supx |p(x) − ψ(x)|, we get

D(X‖Z) ≤ Cε
ε

∫
1

ψ(x)ε

∣∣p(x) − ψ(x)
∣∣dx. (6.3)

This is a general upper bound which may be used in the proof of Theorem 1.1 in
case of a non-normal stable density ψ of index 0 < α < 2 and using X = Z̃n with
modified densities p̃n. Indeed, by Proposition 5.1,

n = sup
x

∣∣p̃n(x) − ψ(x)
∣∣ → 0 (n → ∞).

In addition, if Z is non-extremal, ψ admits a lower bound ψ(x) ≥ c(1 + |x|)−(1+α)

with some constant c > 0, cf. (1.1). Hence, by (6.3),

D
(
Z̃n‖Z

) ≤ Cε
n

∫ (
1 + |x|)ε(1+α)∣∣p̃n(x) − ψ(x)

∣∣dx,

where the constant depends on ε and ψ . But for an arbitrary ε < α
1+α

, so that s =
ε(1 + α) < α, we see that the last integral does not exceed

∫ (
1 + |x|)s∣∣p̃n(x) − pn(x)

∣∣dx +
∫ (

1 + |x|)s
pn(x) dx +

∫ (
1 + |x|)s

ψ(x) dx.

All these integrals are bounded by a constant, which follows from Lemma 3.1 and the
fact that supn E|Zn|s < +∞ (which is due to the assumption Zn ⇒ Z, cf. [3]). As a
result, we have D(Z̃n‖Z) → 0, which yields the desired conclusion D(Zn‖Z) → 0
in view of Lemma 4.1.

In the normal case (α = 2), a similar argument with slight modifications may
be applied as well. Without loss of generality, assume that Z is standard normal,
i.e., ψ(x) = 1√

2π
e−x2/2. Now we use (6.2) with ε = 1 and Cε = 1. More precisely,

splitting the integration in (6.1) into the two regions, we get

D(X‖Z) ≤
∫

|t |≤T

|p(x) − ψ(x)|2
ψ(x)

dx +
∫

|t |>T

p(x) log
p(x)

ψ(x)
dx (6.4)
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with an arbitrary T > 0. Furthermore, the first integral on the right-hand side is
bounded by

eT 2/2
√

2π

∫
|t |≤T

∣∣p(x) − ψ(x)
∣∣dx ≤ 2eT 2/2

√
2π.

If additionally p(x) ≤ M , (6.4) leads to another general upper bound

D(X‖Z) ≤ 2eT 2/2
√

2π +
∫

|t |>T

(
x2 + log

(
M

√
2π

))
p(x)dx. (6.5)

Here, again let X = Z̃n and T = Tn. Then the above bound holds with M = 1 and
all n large enough. If Tn → +∞ sufficiently slow, we have eT 2

n /2n → 0. On the
other hand,

∫
|t |>Tn

x2p̃n(x) dx ≤
∫ +∞

−∞
x2

∣∣p̃n(x) − pn(x)
∣∣dx

+
∫

|t |>Tn

x2pn(x)dx +
∫

|t |>Tn

x2ψ(x)dx.

Again, all the integrals tend to zero, in view of Lemma 3.1 and the uniform integra-
bility of the sequence Z2

n. Hence, by (6.5), D(Z̃n‖Z) → 0, which, by Lemma 4.1,
proves Theorem 1.1 in the normal case.
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