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ON A THEOREM OF V. N. SUDAKOV ON TYPICAL DISTRIBUTIONS
S. G. Bobkov* UDC 519

The rate of approximation with respect to the Kantorovich—Rubinstein distance is considered in a theorem of
V. N. Sudakov on typical distributions. Bibliography: 18 titles.

Let X = (X1, ,Xp) bearandom vector in R™, n > 2 We consider linear functionals
Sp =01 X1 +---+6,X,,
whose coefficients satisfy the condition 67 + --- + 62 = 1, and the corresponding distribution functions
Fyp(z) =P{Sp <z}, z€R

The above coefficients can be coordinates of arbitrary vectors § = (§;, ,6,) on the unit sphere S?~1

In 1978, V. N Sudakov made the following remarkable observation (see [15]): If the second order absolute
moments of the random variables Sy are bounded uniformly in # and the dimension n is large, then the Fj
concentrate at a “typical” distribution ' One may take as F' the average

F(z) = Eg Fy(z) = / Fy(2) don_1(6)
S’n—l

with respect to the uniform distribution ¢,,_; on the unit sphere and estimate the closeness of distributions on
the real line using, for example, the average metric (Kantorovich Rubinstein metric),

+oo
k(Fy,F) = / |Fp(z) — F(z)|dz

In our notation, the Sudakov theorem can be stated as follows

Theorem 1. For any 6 > 0 there exists a natural number ns having the following property Assume that a
random vector X in the Euclidean space R™ of dimension n > ns satisfies the condition

E|So|> <A\ forany 6c St
with some A\ >0 Then there exists a measurable subset © C S~ ! of measure On-1(0) > 1—4§ such that
K(Fg, F) S bY)

for any element of this set

The typical distribution F' can be characterized as the distribution of the random variable £||X||, where
| X = (X744 X2)'/2 is the Euclidean length of the initial random vector, and the variable ¢ is independent
of X and equidistributed with the first coordinate of a unit vector on the sphere with respect to the measure
on—1 It is well known that the distribution of a random variable £,/n for large n is close to the standard normal
one Thus, the variables || X || and Z||X||/+/n are almost identically distributed, where Z is a standard normal
random variable independent of X Hence (as was emphasized in [15]), one may take as a typical distribution a
certain mixture of normal laws on the line with zero mean

If in this case the random variable || X||/y/n is almost constant (i e, the sequence X? satisfies a kind of the
weak law of large numbers), then it is possible to conclude that “almost” all linear functionals Sy are distributed
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almost normally One may treat such a conclusion as a variant of the central limit theorem without any essential
assumptions on the character of dependence of the initial random variables

At present, many papers are devoted to the problem of typical distributions, in particular, to refinements and
generalizations of Theorem 1 as well as to its variations (see, for example, [1 3, 6, 8, 12 14, 16 17]) Some of
these papers are related to complicated problems of convex geometry We do not give here a survey of the results
obtained; let us only make the following remark

Similarly to the case of problems related to the rate of convergence in the central limit theorem, one of the
most interesting topics is the problem on the concentration rate of Fy around the typical distribution F' with
respect to various probability metrics For example, one can characterize the concentration rate by the variable

By w(F), F) = / K(Ey, F) doy+ (6)
Snfl

or by similar average distances for Lévy or Kantorovich metrics The problem concerning the smallest distance,
infy k(Fy, F), is of interest as well
In this note, we prove the following statement

Theorem 2. Assume that a random vector X in R"™ satisfies the following condition:
Ee!%l/X <2 forany 6e S™!

with some X\ >0 Then

logn
E Fy,F) <
0’/‘:( 0 )—C)\ \/’I’L )

where C' is an absolute constant

Applying the Lipschitz continuity of the function § — k(Fy, F'), we can sharpen the statement of Theorem 2
in terms of large deviations

Corollary 1. Under the conditions of Theorem 2,

1 A
‘fn—l{“(FeaF) > CA (f’nn + At} < e~ (=112

forallt >0

As we show below, weaker moment assumptions on linear functionals Sy also lead to definite (weaker) asymp
totic estimates for the variables Eg k(Fy, F)

On the other hand, it is possible to omit the logarithmic term in the statement of Theorem 2 under stronger
assumptions Indeed, assume that X has a logarithmically concave density and all the linear functionals Sy
satisfy the conditions

ES; =0 and E|Sy]* =1,

which is equivalent to the following requirements: EX; = 0, EX? = 1, and EX;X; = 0 (i # j) Note that in
this case, the condition Eel%1/¢ < 2 is satisfied automatically due to a theorem of C Borell on logarithmibally
concave measures (see [5, Lemma 3 1]) In addition, it is shown in [2, Proposition 3 1] that functions of the form

uy(9) = Fy(z) — F(z), 6ecS" 1,

are Lipschitz continuous on the sphere, and their Lipschitz seminorms (in the sense of the distance induced from
R") satisfy the estimate
Juel, < e, R

The property of concentration of the uniform distribution on the sphere implies that

Huz| Lip Ce—c|90|

/ ur@)ldr, a9y < e < O
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Integrating this inequality in z, we get the following inequality, which correlates with known results for indepen

dent random variables: o

/H(Fe,F)dUn_1(9)S\/n

Sn—1
In this case, similarly to Corollary 1,
o1 {Vn K(Fy, F) > t} < 2e/2

for all ¢ > 0 (we denote by C' and ¢ various absolute positive constants which may differ in different positions)

The above reasoning is essentially based on the property of logarithmic concavity of the distribution of the
initial random vector To include the general case under moment assumptions (possibly, with weaker estimates
for the concentration rate), we need the following known lemma (one can prove this statement applying the
isoperimetric theorem and logarithmic Sobolev inequality on the sphere)

Lemma 1. If u : R™ — R is a continuously differentiable function with zero mean with respect to the measure

On_1, then
T
u|do,—1 < Vul|do,,—
Juldn, < F [ 9uldo,

a_nil{u > t} < e—(n—1) t2/2

In addition, if ||u

Lip S 17 th’en

forallt >0,

At the end of this note, we give several comments on the asymptotic behavior of the best constant in the first
inequality (with respect to dimension) and on the concentration property on the sphere

Let us explain the application of Lemma 1 To simplify notation, we write Eyu(f) instead of the inte
gral [wdo,_

We relate to a continuously differentiable function f: R — R with bounded derivative f’ the function

+o0 +oo
u)= [ fdFs~ [ 1dF =B1(S) - B£(S),

where S is an imaginary random variable with distribution function ' Then Eyu = 0, and the definition of the
random variables Sy implies that

(Vu(6),0") = E Sy f'(Se)
for any unit vectors 6 and ¢’ If a moment assumption of the form
(E|SyP)Y/? < M, forany 6 ™!
with a fixed p > 1 and a finite constant M), is satisfied, then we deduce from the Holder inequality that

(Vu(®),0)] < My BIF(SHIDV, a= 7
Since 6’ is arbitrary, we conclude that
[Vu(@)] < M, (E|f'(Se)|")"/

We integrate this inequality over the sphere and apply Lemma 1 (and the Markov inequality) to get the estimate

7 3My (T N
[ saw-m| <0 ([ igpar)

Now we integrate by parts to rewrite the first integral in terms of the derivative f’; as a result, we see that

oo +oo 14
/ F(2) (Folz) — F(m))dm‘ . 3% ( / |f’|qdp>

Ey

Ey

In this formula, f’ is an arbitrary function from the class of bounded continuous functions on the real line
Approximating any bounded (Lebesgue) measurable function by functions of the above mentioned class, we get
the following statement (which is an auxiliary step in the proof of Theorem 2)
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Lemma 2. Assume that a random vector X in R™ satisfies the following condition:
(E|SpP)/? < M, for any 6e St

with a constant M, for a fired p > 1 Then, for any bounded measurable function f on the real line,

E < 3My T ? v
: <0 ([ rerar@)

+oo
/ f(@) (Fy() — F()) de

p

where q = oy S the adjoint degree

In particular, we get the estimate

Eq

for any a < b

The expression on the left in the above inequality looks similar to the average Kantorovich Rubinstein distance
Eg k(Fy, F); in fact, this expression would become the distance if we could insert the sign of absolute value under
the integral sign The following observation is useful for reaching this goal (but with some losses)

Lemma 3. Let F and G be arbitrary distribution functions Then

’ 2(b — a)
/(F(w)—G(m))dm SR

Qp—1

b N
/ F(z) - Go)dz < S
a k=1

k
N

Proof Denote by I the family of indices k = 1, , N such that the function p(z) = F(x) — G(x) does not
change sign in the kth interval Ay, = (ag—1,ar) The remaining indices form aset J C {1, ,N} Ifk € I, then

for any a < b and a natural number N, where a, =a+ (b—a)

/ |F(z) — G(x)|dz = ‘ /(F(m) — G(z))dx
Ay, A

If k£ € J, then it is clear that

Sup lp(z)| < wzlé% (p(@) — oY) < F(Ag) 4+ G(Ap),

where F' and G are considered as probability measures in the last step In this case,

b—a

[1F@) - G)ds < (Fa0) + G@0IAL (A=
Ay

b
Combining both estimates, we conclude that the integral [ |F(z) — G(x)|dz does not exceed
a

3 / (F(z) - G(2) dz| + 3 (F(Ak) + G(A4)| Ak

kel X, keJ

N b—a N
+0 o Y (F(AR) + G(AR))

<
N
k k=1

=1

/ (F(x) - G(x)) da
Ay
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The lemma is proved

We can apply Lemma 3 under the conditions of Lemma 2 in estimation of the the Kantorovich Rubinstein
distance Without loss of generality, we assume that M, = 1; this is possible since Eg k(Fy, F') is homogeneous
in X Applying Lemma 2 with the same intervals Ay = (ag—1, ar), we see that

3
Eo| [ (Fo(x) — F(z)) dx S\/nF(Ak)”q;
Ay
hence,
2b—a) 3 <
< B 1/q
E9/|F9 )| dz Nt m ;F(Ak)

by Lemma 3 By the Holder inequality, the last sum does not exceed

N 1/q
N1/p <ZF(A’“)) < NUp,

k=1
and we arriwe at the estimate
2(b—a) 3N
E Fy( )| do <
0/'0 M= T
In particular, if a = —b, b > 0, then
4b 3N/
E Fy( )| dx <
[ / | 9 | &£ N + \/n

To extend the integral to the whole real line, we apply the assumption that M, = 1; by the Chebyshev
inequality, this assumption implies that Fp{x : || > ¢t} <t 7P for t > 0 A similar estimate for F' is obtained

after averaging in 6 Hence,
2b1—P
[ 1@ -r@las [ pra=]
p—
{lz|>b} {lz|>b}

Combining both estimates, we conclude that

2p1-P  4h  3NU/P
<
E9/|F9 (z)| dz —1+N+ Jn

for any real b and natural N It is easily seen that the right hand side attains its minimum for b = (g )1/ P and

21— 4p ANQ-p)/p  yNIA-P)/P

- — g2 t1l/a y—1/a
p-1 T NTamp_n T am ¢

in this case
Thus,
3N1/p

Ey (Fy, F) < g2 tt/aN—1/a 4
vn

Now we have to optimize the right hand side of the obtained inequality over all natural n  Consider the
following function of a real variable z > 0:

R ARy LN B LA (N T
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The function ¢ attains its minimum at

ap 1,14y
To Bq 3 pVn

Note that zo > g NS g Hence, if N = [z0] + 1, then g < N < 2z, For this value,

B(N) < azy !+ B (2w0) /P = Cpn~ /20,

1 1 3 1/q 21) 1/p
C, =201%a) +3
P a P 3

To replace this expression by a simpler one, we apply the obvious estimates

1 1 1 1 2py\ 1/ A
(1+ ): (2— )31 and 3(p) "< 3e2/00) <4
D q D D 3

where

It is easily seen that (13))1/‘1 < 2 Hence, Cp, < 2(2q + 4) < 12¢, and
Eg k(Fp, F) < 12¢qn~ /(29

As a result, we get the following statement

Theorem 3. Assume that a random vector X in R"™ satisfies the following condition:
(E|Sy|P)Y/P < M, for any 6c S"*
with a constant M, for a fited p >1 Then

Eyr(Fy, F) <12M, P . n= "
oo

For example, if p = 2, then Ey k(Fp, F) < 24 Mon~'/* As a corollary, we see that

24p~1/4
ou1 {6 S"7 i R(Fy, F) > Mas} < 7
for any 6 > 0 The expression on the right does not exceed § whenever n > 24*/68
Corollary 2. One can take ns = [24* 678 + 1 in Theorem 1

It remains to make the last step in the proof of Theorem 2

Proof of Theorem 2 We may set A = 1 In this case, the elementary inequality t? < pPe~P e!, which is valid for
allt > 0 and p > 1, implies that
E|Sy|P < pPPePEel%l <2pPe?,

so that M, < 2p/e By Theorem 3,

2 1
Eow(Fy,F)<12? P pa

e p—1 vn

Takep =1+ ; logn (n > 2) Then nee < e, and it is clear that the coefficient of \/1” is bounded by C'logn with
an absolute constant C' Theorem 2 is proved

Proof of Corollary 1 Similarly to the case of Theorem 2, we take A = 1 It is enough to show that the function

+oo
u(f) = k(Fy, F) = / |Fp(z) — F(z)|dz

469



has a bounded Lipschitz seminorm on the unit sphere By the Kantorovich Rubinstein theorem (see, for example,
[7, p 330]), the following representation is valid:

u(®) = sup { 70f dFy — 7f dF] = sup [E £(Ss) — E £(S)],

where S is a random variable with distribution F, and the supremum is taken over the set of all functions
f: R — R with Lipschitz seminorm || f||.;, <1 It follows that

u(@) —u(8') < sup [E f(Sp) —E f(Se)]
for any pair 6, ' of unit vectors Note that

B f(So) — E f(So)| <E|Sp — Sor| = E[(X,0 —0')| < My [|6 — 6",

where M; = sup E|Sy| Hence, |ull., < M; By the condition of our theorem, E¢l%! < 2; hence, E |Sy| <

fesn—1
el Eel%l <1 Thus, |lullu, <1
It remains to apply the second inequality of Lemma 1 to the function u — Egu and to use the estimate of Egu
according to Theorem 2

Remarks. (1) If we assume in Theorem 2 that the linear functionals are sub Gaussian uniformly in 6, ie,
EeSi/N < 2, then the statement can be sharpened up to the estimate

Viogn
Vn

The proof is the same, only Theorem 3 must be applied with parameter p of order v/logn

(2) It follows from Theorem 3 that the condition (E|Sp|?)!/? < X in Theorem 1 can be weakened up to
the condition (E |Sy|?)1/P < X for any fixed p > 1 At the same time, it is not clear whether it is enough to
assume that the first absolute moments are bounded, ie, that E|Ss| < A The main argument opposing the
statement of Theorem 1 in such a general case is the following fact: The family of all probability distributions on
the real line with a bounded absolute moment fails to be compact in the Kantorovich Rubinstein metric (while
it remains compact in the topology of weak convergence) Thus, it is natural to consider the problem on the
rate of concentration around a typical distribution in different standard metrics which are responsible for weak
convergence For example, the following statement holds

Egk(Fy, F) <CA

Theorem 4. Assume that a random vector X in R™ satisfies the condition E |Sg| < X\ for any 0 € S™"~1 with a

constant A Then
logn

EGL(F97F) S C}\ ’I’L1/47

where C depends on A
In this theorem, L(Fy, F) is the Lévy distance, which is defined as the smallest value h € [0, 1] such that

F(x—h)—h<Fy(x) < F(x+h)+h

forallz € R
Proof We apply the Zolotarev inequality (see [18]):

T
1 t)— f(t logT
L(Fy,F) < /|f9() TOU gy 91087 1oy
T t T
0
which relates the Lévy distance between distributions Fy and F' to their characteristic functions

folt) = Ee*™ and  f(t) = Ee'™S = Eqfy(t)
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Here S is a random variable distributed according to F' (such a relation holds for any pair of probability
distributions on the line)
For any fixed ¢ > 0 the (complex valued) function

u(8) = fo(t) — f(t) = E ("% —e"%), §eR”,

is defined and continuously differentiable on the whole space, and (Vu;(#),8’) = it E Sy /% for any unit vectors
0 and ¢’ Hence,
[(Vui(6),6') <tE|Sy| < At

Since ¢ is arbitrary, |Vu:(0)| < At on the unit sphere The isoperimetric theorem on the sphere implies that

2 :
Ey |fo(6) = £(2)] = Bolu| < ”@jnw <

Hence, averaging the Zolotarev inequality in 8, we conclude that

20T logT
Eg L(Fy,F) < 2
o L{(Fs, )_W\/n+ ‘7

for all T > 13 It remains to optimize the right hand side in T' (it is enough to take T' of order n'/%)

Remark (to Lemma 1). It follows from the general theory of Sobolev type inequalities (see, for example, [10,
4]) that the best constant in the inequality

cn Eg lu — Egu| < Eg|Vu|

is attained in the asymptotic sense at indicator functions u = 14 of measurable subsets A € S®~! For such
functions, the considered integro differential inequality turns into an inequality of isoperimetric type,

of (A) >2c,t(1—t), t=o0,_1(4),

n—

where

1
of_1(A) =liminf | " op_y {we S" '\ A: thereexists v € A such that |[v—w|<e}
n—l €10 e

denotes the perimeter of A is the sense of the measure 0,,_; Minimizing in A, we get an equivalent relation
I(t) > 2c,t(1—-1t), 0<t<1,
in terms of the isoperimetric function I(t) = inf{o," ;(A) : 0,,_1(A) = t}; hence,

1(t)
= inf
“n = oLl 26(1 — 1)

This formula remains valid in a rather abstract situation, namely, for arbitrary metric spaces

In the case of a sphere, it follows from the Lévy Schmidt isoperimetric theorem that, for any fixed ¢ € (0, 1),
the perimeter o, | (A) in the class of sets with fixed measure o,,_;(A) = t is minimized at balls of the sphere
Hence, it is possible to get an explicit analytic description of the corresponding isoperimetric function I(t)
In addition, it is known that the function ¢(1 — t)/I(t) is concave (see [4, Theorem 1 9]), which immediately
implies that ¢, = 2I(1/2) We note that I(1/2) equals the perimeter of a half sphere whose boundary is a
sphere of dimension n — 2 and that the (n — 1) dimensional area of the sphere S™~! is given by the formula
$p_1 = 21"/?/T'(n/2) Tt follows that

_ 28p—2 2 F(g)

Cp =

Sp1 /T F(";l)
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In particulat, co = 2/7 It follows from the Stirling formula that ¢,v/n — \/2/7r as n — oo Hence, the best
(dimensionless) constant in an inequality of the form

C

Eg|u — Egu| < Jn Ey|Vu|

is not less than /5 A routine analysis of the formula for ¢, shows that the value of ¢,/y/n is minimal for

n = 2, which corresponds to the optimal value C' = \7/Tz
If we know, in addition, that |Vu(#)| <1,ie, ||u|, <1, then

C
Ey |u—Egu|§ \/TL

7 is not optimal, and we can take C' =1 Indeed, by

by Lemma 1 In this case, however, the constant C' = 72
the Lévy Schmidt theorem, the distribution of any Lipschitz continuous function « with respect to the measure
0n—1 is the image of the distribution of the function u; () = #; with respect to the same measure under some
nondecreasing mapping ¥ : R — R with Lipschitz seminorm ||¥|., < 1 It is easy to conclude that, for
dispersions in the sence of the measure o,_1,

Var (u) = ;//W(ul(e)) — U (uy(0")|? dop—1(0) do,—1(9")

1 2 A _ 1
S 9 / |U1(9) — u1(9 )| dan,l(G) d0n71(0 ) = Var (Ul) = n

Hence, Eg |u — Egu| < \/1” This inequality was applied in our remark on logarithmically concave probability
distributions and in the proof of Theorem 4 (with a doubled constant since the function u is complex valued)

The isoperimetric theorem allows one to estimate the o,_1 measure for large deviations as well In particular,
under the same assumption that ||u||w;, < 1, we conclude that

Op—1{u—m(u) >t} <on1{us >t}

for all ¢ > 0, where m(u) is the median (or one of medians) for u in the sense of o,,—; The right hand side of
the above inequality is estimated by the expression e—(n=1)¢*/ 2. similarly to Lemma 1 However, if we want to
pass from a median to mathematical expectation without losses, it is better to apply the logarithmic Sobolev
inequality,

Eg u’logu® — Egu? log Egu® < 20, E9|Vu|2,

where it is assumed that w is an arbitrary continuously differentiable function It is well known (see, for example,
[9]) that, for functions with ||ul/;, < 1, such an integro differential inequality guarantees that tails of the
corresponding distributions are sub Gaussian; namely, the estimate

On—1{u—Egu >t} < e_t2/20", t>0,
holds Finally, it is shown in [11] that the best constant in the logarithmic Sobolev inequality for the measure
Op—1i8 Cp =1/(n—1)
This research was supported by the NSF (project DMS 0706866)

Transalted by S Yu Pilyugin
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