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Abstract Isotropy-like properties are considered for finite measures with heavy
tails. As a basic tool, we extend K. Ball’s relationship between convex bodies and
finite logarithmically concave measures to a larger class of distributions, satisfying
convexity conditions of the Brunn–Minkowski type.
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1 Introduction

A symmetric convex body K in Rn is called isotropic or to be in isotropic position, if
for some constant L K > 0,

1

voln(K )1+ 2
n

∫

K

〈x, θ〉2dx = L2
K , (1.1)

for all (unit vectors) θ ∈ Sn−1, where voln(K ) stands for the n-dimensional volume.
Intuitively, this means that K is more/less round and not dilated in any direction.
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304 S. G. Bobkov

The quantity L K is referred to as an isotropic constant of K . In general, for any
symmetric convex body K , there is a linear invertible map T : Rn → Rn , such that the
image T (K ) represents an isotropic body. So, often, the condition (1.1) has the matter
of normalization, only. Although the existence of the isotropic position [that is, of the
map T or the body T (K )] is a rather obvious algebraic fact, it is of a large importance
in many geometric problems, where it is essential that all linear functionals behave
over K in a similar manner. We refer the reader to the pioneering work [34], where
the isotropic position is discussed in various aspects; cf. also [7,23].

For a start, let us recall a theorem due to Hensley [28]: If K is isotropic, then all its
central sections have approximately equal size in the sense that

voln−1(K ∩ H1)

voln−1(K ∩ H2)
≤ C, (1.2)

for all hyperplanes H1, H2 (passing through the origin). Moreover, Hensley proved
(1.2) with an optimal dimension free constant C = √

6. A similar property was also
shown to hold for all subspaces of Rn of a fixed codimension (with some constants
depending on codimensions). The inequality (1.2) was later rediscovered by Milman,
as follows from [14], where this result was applied to obtain dimension free maximal
inequalities.

As a natural extension, one may wonder, if an analogue of (1.2) continues to hold
for classes of finite symmetric measures on Rn , rather than for convex bodies, only.
(When speaking about measures, bodies, or functions, the symmetry assumption will
always be meant with respect to the origin.) Given a finite Borel measure µ on Rn

with a (nice) density f and a linear subspace H in Rn of dimension n − 1, introduce
µ-perimeter of the half-space with boundary H ,

µ+(H) =
∫

H

f (x)dx,

where dx stands for the Lebesgue measure on H . In particular, whenµ is the Lebesgue
measure on Rn restricted to a convex body K , µ+(H) represents the (n − 1)-
dimensional volume of K ∩ H , i.e., the size of the corresponding section of K . A
more general intriguing question is therefore whether or not after some linear trans-
formation the measure µ shares the property

µ+(H1)

µ+(H2)
≤ C (1.3)

similarly to (1.2). For example, if µ is spherically invariant, then it trivially satisfies
(1.3) with C = 1, and no linear transformation is needed.

Since (1.3) requires that µmust be in a sense “round” like in the convex body case,
it is natural to assume that the integral

σ 2 =
∫

〈x, θ〉2dµ(x) (1.4)
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Convex bodies and norms associated to convex measures 305

as a function of θ is constant on the unit sphere. This property, extending the definition
(1.1) of the isotropy to the measure case, is typically used when µ is log-concave, i.e,
when it has a log-concave density f . As was shown in [7,28], although it was not
stated there explicitly, if a symmetric finite log-concave measure µ on Rn is isotropic
in the sense of (1.4), it satisfies the desired relation (1.3), and with the same constant
C as in the convex body case. This is actually reduced to the statement that, for any
symmetric, log-concave probability density f on the real line,

1

6
≤ 2 f (0)2

+∞∫

−∞
|x |2 f (x)dx ≤ 1.

Some further extensions of Hensley’s theorem to non-symmetric bodies, considered
in [9,20], remain also to hold for non-symmetric log-concave measures.

However, when trying to obtain (1.3) via (1.4) for more general classes of measures,
a main difficulty is that (1.4) requires finiteness of the second moment

∫ |x |2dµ(x).
And even if it is finite, the previous argument does not work [while, the example of the
spherically invariant measures shows that any integrability assumption is irrelevant
for assertions such as the Hensley-type property (1.3)]. This inspires to look for other
isotropy-like conditions that would be still appropriate for measures with heavy tails.

In this note we consider such problems for general convex measures. Following
Borell [12,13], a finite measure µ on Rn is called convex, if

µ(t A + s B) ≥ min{µ(A), µ(B)} (1.5)

for all non-empty Borel sets A and B in Rn and t, s > 0, such that t + s = 1, with
the usual understanding of the Minkowski sum t A + s B = {t x + sy : x ∈ A, y ∈ B}.
The definition also makes sense, when a measure is finite at least on compact subsets
of the space. If µ is absolutely continuous with respect to Lebesgue measure (we also
say that it is full-dimensional), the inequality (1.5) is equivalent to the property that µ
is concentrated on some open convex set� ⊂ Rn , where it has a density f satisfying

f (t x + sy) ≥
(

t f (x)−1/n + s f (y)−1/n
)−n

(1.6)

for all x, y ∈ � and t, s > 0 such that t + s = 1. That is, the density should be of
the form f = V −n for some positive convex function V on�. This is part of Borell’s
characterization theorem ([12], Theorem 1.1; [13], Theorem 3.2). For definiteness, we
define f to be zero outside �.

Note f must be continuous on �. However, in contrast with the log-concave case,
the tail function µ{|x | > r} may decrease to zero as r → +∞ as slow, as we wish.

As we will see, Hensley’s theorem admits the following generalization.

Theorem 1.1 Let µ be a full-dimensional symmetric finite convex measure on Rn.
There is a linear invertible map T : Rn → Rn, such that the image ν = T (µ) satisfies

ν+(H1) ≤ √
6ν+(H2), (1.7)

for all hyperplanes H1, H2 in Rn passing through the origin.
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306 S. G. Bobkov

The image ν = T (µ) is defined to be the measure ν(B) = µ{x ∈ Rn : T (x) ∈ B}
on Borel subsets B of Rn .

It turns out that the inequality (1.7) may be reduced to the convex body case by
virtue of a remarkable correspondence, discovered by K. Ball in his study of logarith-
mically concave functions. Namely, given a non-negative, symmetric function f on
Rn , put

‖x‖ =
⎛
⎝

+∞∫

0

f (r x)dr p

⎞
⎠

−1/p

, x ∈ Rn . (1.8)

A principal result of [7] is that, if f is log-concave and integrable, with f (0) > 0,
then ‖ · ‖ represents a norm on Rn for any p > 0. Therefore, we obtain a family of
symmetric convex bodies in Rn , parameterized by p, and they indeed may be used to
reduce various problems about log-concave measures to the ones about convex bodies
(such as the slicing problem, for example). Here we prove that, if f is not log-concave,
still there is a somewhat weaker property:

Theorem 1.2 Let µ be a finite symmetric, full-dimensional convex measure on Rn

with density f . Whenever 0 < p ≤ n − 1, the equality (1.8) defines a norm.

The particular case p = n − 1 together with Hensley’s theorem yields (1.7). More
precisely, we obtain that, for any finite symmetric, full-dimensional convex measure
µ on Rn , there exists a unique symmetric convex body K , such that

µ+(H) = voln−1(K ∩ H),

for any linear subspace H of Rn of dimension n − 1. And this body represents the
unit ball with respect to the norm (1.8). Hence, for a linear map T in Theorem 1.1 one
may take the one, which puts in the isotropic position the convex body K (and then
ν = T (µ) itself may be viewed as an isotropic measure).

The interval of possible values of p in Theorem 1.2 may be enlarged and related
to the convexity properties according to Borell’s hierarchy of convex measures. This
we discuss in the next section, where the proofs are also included. Some applications,
including Theorem 1.1 and its generalization for subspaces of a fixed codimension,
are considered in Sect. 3. In Sect. 4, we derive a lower bound on the size of the slices of
the measure, µ+(H), in terms of the size of the slices of the associated convex body.
In Sects. 5 and 6 we examine another possible approach to the isotropy in terms of
the so-called floating bodies and surfaces of convex measures (in fact with arguments
which are also used in the proof of Theorem 1.2). Finally, in Sect. 7 we conclude with
remarks on the duality and Santaló-type inequalities for densities of convex measures.

2 Extension of K. Ball’s theorem

The description (1.6) represents a particular case of the characterization of the so-called
κ-concave measures, given by Borell [12,13]. We say that a finite Borel measure µ
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Convex bodies and norms associated to convex measures 307

on Rn is κ-concave, where −∞ ≤ κ ≤ +∞, if it satisfies

µ(t A + s B) ≥ (tµ(A)κ + sµ(B)κ)1/κ (2.1)

for all non-empty Borel sets A and B in Rn and t, s > 0 with t + s = 1. If µ is not
concentrated at a point, then necessarily κ ≤ 1, and moreover, κ ≤ 1/n in the abso-
lutely continuous case. More precisely, in that case (2.1) is equivalent to the property
that µ is concentrated on some open convex set � ⊂ Rn , where it has a density f ,
satisfying, for all x, y ∈ � and t, s > 0, t + s = 1,

f (t x + sy) ≥ (t f (x)κn + s f (y)κn )1/κn , (2.2)

where κn = κ/(1 − nκ). Following Caplin and Nalebuff [17], one may say that f is
κn-concave (cf. also [5] for a special discussion of such functions).

One may start with an arbitrary κn-concave function f on�, and then it will serve
as a density of a σ -finite measure µ, concentrated on � and satisfying the Brunn–
Minkowski-type inequality (2.1), cf. Lemma 2.3 below. In this sense, µ will be
κ-concave; for example, the Lebesgue measure itself is 1

n -concave. However, all state-
ments below are restricted to the family of finite κ-concave measures.

Note the inequality (2.1) becomes stronger, as κ increases, so for κ = −∞ we
obtain the largest class of (convex) measures, described by the Brunn–Minkowski-type
inequality (1.5). If κ = 0, (2.1)–(2.2) describe log-concave measures, while the case
κ = 1/n is only possible, when, up to a factor, µ is the Lebesgue measure, restricted
to � (provided that it is full-dimensional).

Theorem 2.1 Let µ be a finite, symmetric, full-dimensional κ-concave measure on
Rn, −∞ ≤ κ ≤ 0, with density f as above. The equality

‖x‖ =
⎛
⎝

+∞∫

0

f (r x) dr p

⎞
⎠

−1/p

(2.3)

defines a norm on Rn, whenever 0 < p ≤ n − 1 − 1
κ

.

If K is a symmetric convex body in Rn with the inner norm

‖x‖K = min{λ ≥ 0 : x ∈ λK },

and µ is the Lebesgue measure on Rn , restricted to K (thus with density f = 1K , the
indicator function of K ), the above definition leads to the equal norms ‖x‖ = ‖x‖K

regardless of p > 0. Hence, general convex bodies do not create special bodies.
When a finite symmetric measure µ or its density f are log-concave (κ = 0),

Theorem 2.1 corresponds to the result of Ball [7]. In that case, f decays exponentially
fast at infinity, so the integral in the theorem is finite for any p > 0.
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308 S. G. Bobkov

Ifµ is κ-concave with κ < 0, then for some constant C , depending on the measure,
its density satisfies, for all x ∈ Rn (cf. [11]),

f (x) ≤ C

1 + |x |n+α , α = − 1

κ
. (2.4)

Therefore, for any x �= 0, the integral
∫ +∞

0 f (r x) dr p is finite, as long as

p < n − 1

κ
. (2.5)

It would be rather interesting to clarify whether or not this condition provides a more
precise restriction for the functional (2.3) to be a norm. In particular, one may think
this is true for general symmetric convex measures in the important case p = n, when
(2.3) becomes

‖x‖ =
⎛
⎝

+∞∫

0

f (r x) drn

⎞
⎠

−1/n

.

By Theorem 2.1, it is a norm, if κ ≥ −1. Anyway, by the polar representation of the
Lebesgue integral, the set K = {x ∈ Rn : ‖x‖ ≤ 1} has a finite volume, µ(Rn).

Example Let µ denote the generalized Cauchy distribution on Rn with density

f (x) = c

(1 + |x |2) n+d
2

, x ∈ Rn,

where d > 0 is a parameter and c = cn,d is a normalizing constant. (The standard
Cauchy distribution corresponds to d = 1.) As easy to check, this measure is κ-con-
cave with optimal value κ = −1/d. In this case, all norms (2.3) are proportional to
the Euclidean norm in Rn , provided that they are finite. The latter is equivalent to the
requirement p < n + d, which is exactly the condition (2.5).

Remark 2.2 In dimension one, according to Borell’s characterization (2.2), a proba-
bility measure µ on the real line R with density f is κ-concave, if and only if the
function f is κ

1−κ -concave. In particular, µ is convex if and only if 1/ f is convex
on the supporting interval, say (a, b), of the measure µ. This characterization may
equivalently be stated in terms of the associated function

I (t) = f (F−1(t)), 0 < t < 1,

where F−1 : (a, b) → (0, 1) is the inverse to the distribution function F(x) =
µ(a, x), a < x < b. Namely (cf. [11], Lemma 2.2), µ is κ-concave, if and only if
the function I 1/(1−κ) is concave on (0,1). This immediately follows from the general
identity

κ (I 1/(1−κ))′(F(x)) = ( f (x)κ/(1−κ))′, κ �= 0.

Similarly, µ is convex, if and only if the function log I is concave on (0,1).
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Convex bodies and norms associated to convex measures 309

Therefore, in order to describe an arbitrary non-degenerate convex probability mea-
sureµ on the line with median at zero (for definiteness), one may start with an arbitrary
positive log-concave function I on (0,1) and then put F−1(t) = ∫ t

1/2
ds

I (s) . The latter
shows, in particular, that the tail function of the measure may decay at infinity as slow
as we wish. More precisely, for any function ε = ε(r) such that ε(r) ↓ 0, as r → +∞,
there exists a convex symmetric probability measure µ, satisfying

µ{|x | > r} > ε(r), for all r large enough.

Equivalently, F−1(t) > R(t) for all t close to 1, where R is any prescribed increas-
ing function on [1/2, 1). To see this, first note that R may be assumed to be smooth
(otherwise, one may rescale the coordinates and apply convolution) and to satisfy
R(t) ↑ +∞ for t ↑ 1. Secondly, any smooth function S on [1/2, 1) is majorized by
the convex function ϕ(t) = S(1/2) + ∫ t

1/2 max1/2≤u≤s S′(u) ds. Take such a convex
function for S(t) = log(1 + 2R′(t)). Then (by comparing derivatives), we readily get
F−1(t) = ∫ t

1/2 eϕ(s) ds ≥ 2(R(t) − R(1/2)). But 2(R(t) − R(1/2)) > R(t) for all

t close to 1, and then F−1(t) > R(t). Finally, extending ϕ to (0,1/2] by symmetry
about 1/2, we obtain F−1, which corresponds to a convex probability measure with
the associated log-concave function I (t) = e−ϕ(t).

Now, let us turn to the proof of Theorem 2.1. We need in the dimension n = 1
Borell–Brascamp–Lieb’s functional form for the Brunn–Minkowski inequality, which
we state as a lemma below, cf. [12,13,16,18,19]. [Also note it provides the implication
(2.2) ⇒ (2.1).]

Lemma 2.3 Let t, s > 0 be fixed, t + s = 1, and let −∞ ≤ κ ≤ 1
n . Assume non-neg-

ative measurable functions u, v, w, defined on an open convex set � ⊂ Rn, satisfy

w(t x + sy) ≥ (tκn u(x)+ sv(y)κn )1/κn , x, y ∈ �, (2.6)

with κn = κ
1−nκ , whenever u(x)v(y) > 0. Then

∫

�

w(z) dz ≥
⎡
⎣ t

⎛
⎝

∫

�

u(x) dx

⎞
⎠
κ

+ s

⎛
⎝

∫

�

v(y) dy

⎞
⎠
κ ⎤
⎦

1/κ

. (2.7)

Introduce the κ-mean functions

M (t)
κ (a, b) = (taκ + (1 − t)bκ)1/κ , a, b ≥ 0, t ∈ (0, 1),

appearing in (2.6)–(2.7). In particular, M (t)
0 (a, b) = at b1−t and M (t)

−∞(a, b) =
min{a, b}.

From Lemma 2.3, we first derive the following assertion of independent interest
(which appeared for the particular case q = 0 in [7] and before in [6], where it was
called “the Brunn–Minkowski inequality for the harmonic mean”).
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310 S. G. Bobkov

Lemma 2.4 Let t, s > 0, t + s = 1, and q ∈ [−1, 0] be fixed. Assume non-negative
measurable functions u, v, w are defined on (0,+∞) and satisfy for all x, y > 0

w
(

M (t)
−1(x, y)

)
≥ M (λ)

q (u(x), v(y)), (2.8)

where λ = t y/(t y + sx). Then, if 0 ≤ p ≤ −1 − 1/q,

⎡
⎣

+∞∫

0

w(z) dz p

⎤
⎦

−1/p

≤ t

⎡
⎣

+∞∫

0

u(x) dx p

⎤
⎦

−1/p

+ s

⎡
⎣

+∞∫

0

v(y) dy p

⎤
⎦

−1/p

. (2.9)

In the extreme case p = 0, (2.9) should be understood as

+∞∫

0

w(z)

z
dz ≥ min

⎧⎨
⎩

+∞∫

0

u(x)

x
dx,

+∞∫

0

v(y)

y
dy

⎫⎬
⎭ .

Proof Since any function of the type q → Mq is non-decreasing, one may assume
p = −1 − 1

q or q = − 1
p+1 . Change the variables x = 1

ξ
, y = 1

η
with arbitrary

ξ, η > 0. Then the assumption (2.8) takes the form

(tξ + sη)1/q w

(
1

tξ + sη

)
≥ [

t ξ u(1/ξ)q + s η v(1/η)q
]1/q

.

In other words, the new three functions

ū(ξ) = ξ1/q u(1/ξ), v̄(η) = η1/q v(1/η), w̄(ζ ) = ζ 1/qw(1/ζ )

satisfy on � = (0,+∞)

w̄(tξ + sη) ≥ M (t)
q (ū(ξ), v̄(η)).

So, the hypothesis (2.6) of Lemma 2.3 is fulfilled in dimension one for these functions
with κ1 = q, that is, κ = q

q+1 = − 1
p . Therefore, we obtain (2.7), which reads as

∫

�

w̄(ζ ) dζ ≥ M (t)
−1/p

⎛
⎝

∫

�

ū(ξ) dξ,
∫

�

v̄(η) dη

⎞
⎠ . (2.10)

Now, if q > −1, or equivalently p > 0, return to the original variables and note that

∫

�

ū(ξ) dξ =
+∞∫

0

ξ1/q u(1/ξ) dξ = 1

p

+∞∫

0

u(x) dx p,
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Convex bodies and norms associated to convex measures 311

and similarly for v andw. Thus, (2.10) is exactly the desired inequality (2.9). If q = −1
(that is, p = 0), (2.10) becomes

∫

�

w̄(ζ )dζ ≥ min

⎧⎨
⎩

∫

�

ū(ξ)dξ,
∫

�

v̄(η)dη

⎫⎬
⎭ .

But
∫
�

ū(ξ)dξ = ∫ +∞
0

u(x)
x dx and similarly for v and w. Lemma 2.4 is proved. ��

Remark 2.5 One may conjecture that, under the additional assumptions on the func-
tions u, v and w that they are non-decreasing on the positive half-axis and sat-
isfy ‖u‖∞ = ‖v‖∞, the inequality (2.10) will remain to hold in the larger interval
0 ≤ p ≤ − 1

q . This would extend Theorem 2.1 to the values p ≤ n − 1
κ

.

Proof of Theorem 2.1. Let f be the density of µ, supported on� and satisfying (2.2).
Since it is even, ‖λx‖ = |λ| ‖x‖, for all x ∈ Rn and λ ∈ R. As was already explained,
‖x‖ < +∞ everywhere. Fix a, b ∈ Rn , t ∈ (0, 1), s = 1 − t , and apply Lemma 2.4
to the functions on (0,+∞)

u(x) = f (xa), v(y) = f (yb), w(z) = f (zc),

where c = ta + sb. Since

M (t)
−1(x, y) c = t y

ty + sx
(xa)+ sx

ty + sx
(yb),

and f is κn-concave, the hypothesis (2.8) is fulfilled with q = κn . The resulting
inequality (2.9) of the lemma shows that the function x → ‖x‖ is convex. This yields
Theorem 2.1. ��
Remark 2.6 As the above proof shows, if we drop the symmetry assumption in
Theorem 2.1, the functional

Np(x) =
⎛
⎝

+∞∫

0

f (r x) dr p

⎞
⎠

−1/p

, x ∈ Rn,

still shares the properties:

(a) 0 ≤ Np ≤ +∞, and Np(x) = 0 if and only if x = 0;
(b) Np(λx) = λNp(x), for all x ∈ Rn and λ ≥ 0;
(c) Np(t x + sy) ≤ t Np(x)+ s Np(y), for all x, y ∈ Rn and t, s > 0 with t + s = 1.

Moreover, Np is everywhere finite, as long as the supporting open convex set � of
the measure µ contains the origin. In this case, {x ∈ Rn : Np(x) ≤ 1} represents a
convex body in Rn .
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312 S. G. Bobkov

3 Isotropic positions

Theorem 2.1 inspires to introduce the following definition in the class of convex
measures. Let us say that a finite, symmetric, full-dimensional convex measureµwith
density f on Rn is q-isotropic, where −n < q < +∞, if the set

Kµ(q) =
⎧⎨
⎩x ∈ Rn :

+∞∫

0

f (r x) drn+q ≥ 1

⎫⎬
⎭

represents an isotropic convex body in the classical sense (1.1).
Whenµ is the Lebesgue measure on a symmetric convex body K , then Kµ(q) = K

for all q > −n, so the property of being q-isotropic does not depend on q.
Note Kµ(q) is always a convex body for −n < q ≤ −1. Moreover, if µ is

κ-concave, −∞ < κ ≤ 0, the latter is true for a larger range −n < q ≤ −1 − 1
κ

. In
particular, there is no upper level restriction on q, when µ is log-concave.

If Kµ(q) is a convex body, but not isotropic, one can find a linear invertible map
T : Rn → Rn with |det(T )| = 1, which puts Kµ(q) in the isotropic position, i.e.,
such that the convex body T (Kµ(q)) is isotropic. And then the image of the measure,
T (µ), will be q-isotropic, since

KT (µ)(q) = T (Kµ(q)).

Thus, the linear maps, which preserve the Lebegue measure on Rn and put convex
measures and associated convex bodies in the q-isotropic positions, are the same.

If q = 2 and µ has a finite second moment, we return to the usual isotropy defi-
nition (1.4) for measures, which requires that L2(µ)-norms of the linear functionals,
‖〈x, θ〉‖2 = (

∫ 〈x, θ〉2dµ(x))1/2, are constant on the unit sphere. This is due to the
general identity

∫
|〈x, θ〉|2dµ(x) =

∫

Kµ(2)

|〈x, θ〉|2dx .

Since Kµ(2) might not be a convex body in general, one could work with Lq(µ)

-“norms” of the linear functionals x → 〈x, θ〉, other than L2(µ)-norms, even if q < 1
(for example, for q = 0 or q = −1/2). Indeed, if µ is κ-concave, −∞ < κ < 0, the
bound on the density (2.4) ensures that

∫ |x |qdµ(x) < +∞, whenever 0 < q < −1/κ .
This was already noted by Borell [12]. In that case

‖〈x, θ〉‖q =
(∫

|〈x, θ〉|qdµ(x)

)1/q

, q < −1/κ,

is finite for all directions θ . Hence, one may wonder whether or not, after some linear
transformation of µ these Lq -quantities will be equal or almost equal to each other
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Convex bodies and norms associated to convex measures 313

along all directions. This turns out to be true and may be shown on the basis of the
body case by virtue of the norms associated to µ.

Theorem 3.1 Let µ be a finite, symmetric, full-dimensional κ-concave measure on
Rn, −∞ < κ ≤ 0. If it is q-isotropic with −1 < q ≤ −1 − 1/κ(q < +∞), then for
all unit vectors θ, θ ′,

1

C
‖〈x, θ ′〉‖q ≤ ‖〈x, θ〉‖q ≤ C ‖〈x, θ ′〉‖q , (3.1)

where the constant C depends q, only.

Proof In accordance with Theorem 2.1, consider the family of the norms on Rn ,

‖x‖q =
⎛
⎝

+∞∫

0

f (r x) drn+q

⎞
⎠

−1/(n+q)

, −n < q ≤ −1 − 1

κ
( q < +∞ ),

and denote by K (q) = Kµ(q) the corresponding unit balls. Note the Lebesgue mea-
sure, restricted to K (q), with its density fq = 1K (q) generates the same norm ‖x‖q

as µ. Using the polar coordinates x = ru (u ∈ Sn−1, r > 0), write

∫
|〈x, θ〉|q dµ(x) =

∫

Rn

|〈x, θ〉|q f (x) dx

= ωn

∫

Sn−1

|〈u, θ〉|q
⎛
⎝

+∞∫

0

rq f (ru) drn

⎞
⎠ dσn−1(u)

= nωn

n + q

∫

Sn−1

|〈u, θ〉|q
⎛
⎝

+∞∫

0

f (ru) drn+q

⎞
⎠ dσn−1(u)

= nωn

n + q

∫

Sn−1

|〈u, θ〉|q ‖u‖−n−q
q dσn−1(u),

where ωn denotes the volume of the unit Euclidean ball in Rn . Similarly,

∫

K (q)

|〈x, θ〉|q dx = nωn

n + q

∫

Sn−1

|〈u, θ〉|q ‖u‖−n−q
q dσn−1(u).

Therefore, for all θ we have
∫ |〈x, θ〉|q dµ(x) = ∫

K (q) |〈x, θ〉|q dx . From this, if

q �= 0, for all θ, θ ′ ∈ Sn−1,

‖〈x, θ〉‖Lq (µ)

‖〈x, θ ′〉‖Lq (µ)

= ‖〈x, θ〉‖Lq (µq )

‖〈x, θ ′〉‖Lq (µq )

, (3.2)
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where µq denotes the normalized Lebesgue measure on the set K (q). But, in the
convex body case (cf. [24,25]), L2-norms of the linear functionals are equivalent to
Lq -norms for all q > −1 in the sense that

1

Cq
‖〈x, θ〉‖2 ≤ ‖〈x, θ〉‖q ≤ Cq ‖〈x, θ〉‖2.

[Here the norms are with respect to the uniform distribution over K (q).] Hence, when
K (q) is isotropic, we get (3.1) from (3.2). ��

As another application, let us now turn to the comparison of the sections of a
measure and the Hensley-type theorem. A main observation in this section is:

Theorem 3.2 Let d be integer, 1 ≤ d ≤ n − 1. For any finite, symmetric, full-dimen-
sional convex measureµ on Rn with density f , there exists a unique symmetric convex
body Kd in Rn, such that

∫

H

f (x)dx = voln−d(Kd ∩ H) (3.3)

for any linear subspace H in Rn of codimension d. Namely, Kd = Kµ(−d).

Introduce the quantity

µ+(H) =
∫

H

f (x) dx

similarly to the slices case d = 1. Note the integral is finite in view of the general
estimate f (x) ≤ C(1 + |x |)−n on the density of a convex measure [cf. (2.4)].

Proof The associated convex body,

Kd = Kµ(−d) =
⎧⎨
⎩x ∈ Rn :

+∞∫

0

f (r x) drn−d ≥ 1

⎫⎬
⎭ ,

is defined for the norm ‖x‖ =
(∫ +∞

0 f (r x) drn−d
)−1/(n−d)

. Given a linear subspace

H in Rn of codimension d, one may use the polar coordinates x = rθ, r > 0, |θ | =
1, θ ∈ H , to write that

µ+(H) =
∫

H

f (x)dx = ωn−d

∫

Sn−1∩H

⎛
⎝

+∞∫

0

f (rθ)drn−d

⎞
⎠ dσn−d−1(θ)

= ωn−d

∫

Sn−1∩H

‖θ‖−(n−d)dσn−d−1(θ),
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where σn−d−1 is the normalized Lebesgue measure on the unit sphere of H . Similarly,
by the definition of Kd ,

voln−d(Kd ∩ H) = ωn−d

∫

Sn−1∩ H

‖θ‖−(n−d)dσn−d−1(θ).

This proves the desired relation (3.3).
Uniqueness is provided by the Funk (also called Funk–Minkowski) theorem: The

function of the form H → voln−d(K ∩ H), defined on the set of all linear subspaces
of Rn of codimension d, uniquely determines a symmetric convex body K . See [22,
Theorem 7.2.3], where this property is proved by using the injectivity of the spher-
ical Radon transform, or [29, Corollary 3.10], with the proof based on the Fourier
transform. ��
Remark Relation (3.3) with Kd = {x : ∫ +∞

0 f (r x) drn−d ≥ 1} continues to hold
without the symmetry assumption. More precisely, if the supporting open convex set
of the measure µ contains the origin, then Kd is a convex body (cf. Remark 2.6) and
(3.3) is fulfilled.

Under the same assumptions on the measure as in Theorem 3.2, we obtain the
following corollary (containing Theorem 1.1 in case d = 1).

Corollary 3.3 If µ is q-isotropic with q = −d, for all linear subspaces H1, H2 in Rn

of codimension d,

µ+(H1)

µ+(H2)
≤ Cd , (3.4)

where the constant Cd depends on d, only. In particular, C1 = √
6.

Indeed, when K is an isotropic symmetric convex body in Rn with volume
voln(K ) = 1, Theorem 1′ in [28] asserts that, for any linear subspace H in Rn of
codimension d,

C ′
d ≤ Ld

K voln−d(K ∩ H) ≤ C ′′
d , (3.5)

where L K is an isotropic constant of the body, and C ′
d ,C ′′

d are certain positive (explicit)
constants, depending on d, only. In particular, C ′

1 = 1
2
√

3
, C ′′

1 = 1√
2

, which are opti-

mal [in this case, treated by D. Hensley separately, (3.5) follows from the functional
inequality (3.9) below]. Therefore, for all linear subspaces H1 and H2 of codimen-
sion d,

voln−d(K ∩ H1)

voln−d(K ∩ H2)
≤ Cd (3.6)
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with Cd = C ′′
d/C ′

d . In particular, C1 = √
6. When, however, d grows, Hensley’s

constant Cd grows faster than d(d
2+d)/2. It was improved by K. Ball in [7], where

(3.6) is obtained with Cd = (d(d + 1)(d + 2))d/2ωd/(2dd!1/2), so that C1 = √
6 and

Cd < ( 1
2πe2d)d/2 in general.

Note the assumption on the volume may be removed in (3.6). It remains to apply
the equality (3.3) to H1, H2 and deduce (3.4) from (3.6) with K = Kd .

A similar comparison statement continues to hold for other positions. However, we
do not know whether the involved constant may be made universal. Let us look at
what one can get for 0-isotropic convex measures. We need:

Lemma 3.4 Let ξ be a non-degenerate real-valued random variable with a symmetric
κ-concave probability distribution, −∞ < κ ≤ 1. If g is its density, then, whenever
q > −1 and q < −1/κ (in case κ ≤ 0),

c1(q) ≤ g(0)‖ξ‖q ≤ cκ(q), (3.7)

where cκ(q) > 0 depends on (κ, q), only.

Proof The distribution ν of ξ is concentrated on some symmetric interval (−a, a).
Introduce the distribution function G(x) = ν(−∞, x] = P{ξ ≤ x} and its inverse
G−1 : (0, 1) → (−a, a). Define I (t) = g(G−1(t)) so that

G−1(t) =
t∫

1/2

ds

I (s)
, 0 < t < 1.

As mentioned in Remark 2.2, the function I 1/(1−κ) is concave on (0, 1), which is
equivalent to the κ-concavity of ν. For normalization convenience, assume g(0) = 1,
so that I (1/2) = g(0) = 1. Then, by the concavity, for all s ∈ (0, 1),

(2 min{s, 1 − s})1−κ ≤ I (s) ≤ 1.

Therefore,

∣∣∣∣∣∣∣

t∫

1/2

ds

∣∣∣∣∣∣∣
≤ |G−1(t)| ≤

∣∣∣∣∣∣∣

t∫

1/2

ds

(2 min{s, 1 − s})1−κ

∣∣∣∣∣∣∣
.

Since the distribution of G−1 under the Lebesgue measure on (0, 1) coincides with ν,
we conclude (with a standard modification in case q = 0) that

⎛
⎜⎝

1∫

0

∣∣∣∣∣∣∣

t∫

1/2

ds

∣∣∣∣∣∣∣

q

dt

⎞
⎟⎠

1/q

≤ ‖ξ‖q ≤
⎛
⎜⎝

1∫

0

∣∣∣∣∣∣∣

t∫

1/2

ds

(2 min{s, 1 − s})1−κ

∣∣∣∣∣∣∣

q

dt

⎞
⎟⎠

1/q

. (3.8)
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Here the right-hand side represents the constant cκ (q), and for κ = 1 it coincides
with the left-hand side of (3.8), representing c1(q). The requirement q > −1 is needed
for c1(q) > 0. If κ ≥ 0, we have cκ(q) < +∞ for all q. However, when κ is negative,
this constant is finite if and only if q < −1/κ . The lemma is proved. ��

Remark As follows from (3.8), the optimal value of cκ (q) in (3.7) is attained regardless
of q, when the distribution ν of the random variable ξ corresponds to the associated
function I (s) = (2 min{s, 1 − s})1−κ . In particular, c1(q) is attained for the uniform
distribution on [− 1

2 ,
1
2 ] and c0(q) for the two-sided exponential distribution with den-

sity g(x) = e−2|x |. If κ < 0, the extreme measure ν may be viewed as a symmetrized
Pareto distribution with parameter α = −1/κ .

Let us also mention that in the log-concave case (κ=0) and when q=2, we have
c1(q)2 = ‖ξ‖2

2 = 1
12 (where ξ is uniformly distributed in [− 1

2 ,
1
2 ]) and c0(q)2 =

‖ξ‖2
2 = 1

2 (with ξ exponentially distributed). Therefore, the inequality (3.7)
of Lemma 3.4 becomes

1

12
≤ g(0)2

+∞∫

−∞
x2g(x)dx ≤ 1

2
, (3.9)

which thus holds true for any symmetric log-concave probability density g on the
line. This is exactly what Hensley proved towards his inequality (3.5) for the case of
(n − 1)-dimensional sections of convex bodies.

Now, combining Theorems 3.1 and 3.4, we obtain:

Corollary 3.5 Let µ be a finite, 0-isotropic, symmetric, κ-concave measure on
Rn, n ≥ 2, with κ ≥ −1. For all hyperplanes H1, H2, passing through the origin,

µ+(H1)

µ+(H2)
≤ C,

where C is a universal constant.

Indeed, without loss of generality let µ(Rn) = 1. If H = {x ∈ Rn : 〈x, θ〉 = 0},
where θ is a unit vector, then µ+(H) = g(0), where g is the density of the random
variable ξ(x) = 〈x, θ〉 under the probability measure µ. Since µ is symmetric and
κ-concave, all linear functionals have symmetric κ-concave distributions on R. Hence,
by Lemma 3.4 with κ = −1 and q = 0,

c1(0)

‖ξ‖0
≤ µ+(H) ≤ c−1(0)

‖ξ‖0
.

Applying this to H1 and H2, it remains to make use of Theorem 3.1 with q = 0.
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4 The slicing problem

The well-known slicing problem, raised and deeply studied by Bourgain [15], is to
determine whether or not, for any convex body K in Rn of unit volume, there is
a hyperplane H such that voln−1(K ∩ H) ≥ �, for some universal constant � > 0.
Equivalently, restricting ourselves to symmetric isotropic convex bodies, one wonders
if one can bound the isotropic constant L K from above by a (dimension free) universal
constant.

The problem has various equivalent formulations. What also seems rather interest-
ing, it may be generalized and formulated as a problem about isotropic log-concave
measures. This direction was examined by Ball in the same paper [7] with the help of
the norms

‖x‖ =
⎛
⎝

+∞∫

0

f (r x)drn+q

⎞
⎠

−1/(n+q)

(4.1)

in the particular case q = 2. In that case, if a symmetric, log-concave probability mea-
sure µ on Rn with density f is 2-isotropic, this norm generates an isotropic convex
body K . More precisely, it was shown that the “isotropic constant” of the measure,

L2
µ = f (0)

2
n

∫
〈x, θ〉2 dµ(x) (θ ∈ Sn−1), (4.2)

can be bounded from above by C2 L2
K , up to some universal factor C .

The purpose of the present section is to extend this type of relationship between L K

and Lµ to other convex measures. However, the definition (4.2) does not make sense
in general, and it is more natural to speak about the size of the slices of the measure,
µ+(H), similarly to the original formulation of the slicing problem for convex bodies.

Thus, assume we have a finite, symmetric, full-dimensional convex measure µ on
Rn, n ≥ 2, with density f , satisfying (for normalization reason) f (0) = 1. What can
one say about possible values of µ+(H)? As we know from Theorem 1.1, all slices
have approximately equal size, as long as the measure µ is (−1)-isotropic. So this
may naturally be assumed, but we do not do this.

Introduce the best constant � = �µ in the (isoperimetric-type) relation

µ+(H) ≥ �

⎛
⎝

∫

Rn

f (x)dx

⎞
⎠
(n−1)/n

, (4.3)

serving for all hyperplanes H , passing through the origin. In particular, when µ is
the Lebesgue measure, restricted to a symmetric convex body K in Rn , the above
inequality defines the best constant � = �K in the inequality

voln−1(K ∩ H) ≥ �voln(K )
(n−1)/n . (4.4)
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Within universal factors, the quantity �K is known to be reciprocal to L K , if K is
isotropic. Indeed, by Hensley’s inequality (3.9), applied to the densities of the linear
functionals over the uniform distribution in K , we always have 1

12 ≤ �2
K L2

K ≤ 1
2 .

With a similar argument, this relation extends to symmetric 2-isotropic log-concave
measures as 1

12 ≤ �2
µL2

µ ≤ 1
2 , but not to the larger class of convex measures.

Theorem 4.1 Given a finite, symmetric, full-dimensional, κ-concave measure µ on
Rn,−∞ < κ < 0, with density f such that f (0) = 1, we have

�µ ≥ c�K , (4.5)

where K is the associated unit ball for the norm (4.1) with q = −1, and where

c = α

n

(
�(α) n!
�(n + α)

)1/n

, α = − 1

κ
. (4.6)

The log-concave case may also be included in this statement by letting κ → 0, in
which case limα→+∞ c = n!1/n/n. Then we get that

�µ ≥ n!1/n

n
�K ≥ 1

e
�K .

This is an equivalent formulation of K. Ball’s theorem (Lµ ≤ CL K ), up to a universal
factor coming in the passage from slices sizes to L2-norms of linear functionals.

When κ is fixed and n grows to infinity, the constant c is equivalent to α/(en), so
the dimension may essentially influence on the size of µ+(H). Note, however, the
value of c, given in (4.6), is optimal for (4.5), as one can see on the example of the
measure µ with density f (x) = (1 + |x |)−(n+α), x ∈ Rn .

Proof Let K = {x ∈ Rn : ‖x‖ ≤ 1} be the convex body, generated by the norm

‖x‖ =
⎛
⎝

+∞∫

0

f (r x)drn−1

⎞
⎠

−1/(n−1)

.

Given a linear subspace H in Rn of dimension n−1, we may use the polar coordinates
x = rθ, r > 0, |θ | = 1, as in the proof of Theorem 3.2, and apply the definition (4.4)
to write that

µ+(H) = voln−1(K ∩ H) ≥ �K voln(K )
(n−1)/n

= �K

⎛
⎜⎝ωn

∫

Sn−1

‖θ‖−ndσn−1(θ)

⎞
⎟⎠
(n−1)/n

.
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Since also

∫

Rn

f (x) dx = ωn

∫

Sn−1

⎛
⎝

+∞∫

0

f (rθ) drn

⎞
⎠ dσn−1(θ),

in order to get an inequality of the form (4.3) and then (4.5), we are reduced to the
bound

∫

Sn−1

‖θ‖−n dσn−1(θ) ≥ cn/(n−1)
∫

Sn−1

⎛
⎝

+∞∫

0

f (rθ) drn

⎞
⎠ dσn−1(θ).

Moreover, it is enough to require a similar inequality for integrands at every θ ∈ Sn−1,
that is,

+∞∫

0

f (rθ) drn−1 ≥ c

⎛
⎝

+∞∫

0

f (rθ) drn

⎞
⎠
(n−1)/n

. (4.7)

Our task is now completely in dimension one. Recall that f (0) = 1 is assumed,
and that f is κn-concave, according to Borell’s characterization (2.2) of κ-concave
measures, where κn = κ/(1 − nκ). In addition, by the symmetry hypothesis, f (rθ)
is non-increasing in r > 0 along every direction. So,

f (rθ) = (1 + ψθ(r))
1/κn , r > 0,

for some convex, non-decreasing function ψθ : [0,+∞) → [0,+∞) with
ψθ(0) = 0. ��

To derive (4.7) and thus complete the proof of the theorem, we appeal to:

Lemma 4.2 Let q > p > 0 and let Q : [0,+∞) → [0,+∞) be non-increasing,
not identically zero. In the class of all convex functions ψ(r) ≥ 0 in r ≥ 0, such that
ψ(0) = 0, the best constant c in

+∞∫

0

Q(ψ(r)) dr p ≥ c

⎛
⎝

+∞∫

0

Q(ψ(r)) drq

⎞
⎠

p/q

(4.8)

is attained at the function ψ(r) = r .

In case of the exponential function Q(r) = e−r , this statement is proved in [7],
Lemma 4 (with an additional assumption p ≥ 1, which can actually be relaxed to
p > 0). But the argument may easily be extended to cover the case of the general Q. It
is based on Lemma 3 in [7], which asserts the following (under the same assumptions
as in Lemma 4.2): If
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+∞∫

0

Q(ψ(r))dr p =
+∞∫

0

Q(r)dr p, (4.9)

and the integrals are finite, then for all t ≥ 0,

+∞∫

t

Q(ψ(r))dr p ≤
+∞∫

t

Q(r)dr p. (4.10)

Assuming this assertion, take a convex, non-negative function ψ on [0,+∞) with
ψ(0) = 0, and define λ > 0 by

∫ +∞
0 Q(ψ(r)) dr p = ∫ +∞

0 Q(r/λ)dr p, so that

λ−p =
∫ +∞

0 Q(r)dr p

∫ +∞
0 Q(ψ(r))dr p

(4.11)

(without loss of generality, assume the integrals are finite). Then (4.9) is fulfilled for
Qλ(r) = Q(r/λ) in place of Q and ψλ = λψ in place of ψ . Using a general identity

+∞∫

0

h(r)drq = q(q − p)

p

+∞∫

0

sq−p−1

⎛
⎝

+∞∫

s

h(r)dr p

⎞
⎠ ds,

we can apply the conclusion (4.10) to (Qλ, ψλ) and obtain that

+∞∫

0

Q(ψ(r))drq =
+∞∫

0

Qλ(ψλ(r)) drq

= q(q − p)

p

+∞∫

0

sq−p−1

⎛
⎝

+∞∫

s

Qλ(ψλ(r)) dr p

⎞
⎠ ds

≤ q(q − p)

p

+∞∫

0

sq−p−1

⎛
⎝

+∞∫

s

Qλ(r) dr p

⎞
⎠ ds = λq

+∞∫

0

Q(r) drq .

In view of (4.11), we arrive at

(∫ +∞
0 Q(ψ(r)) drq

)1/q

(∫ +∞
0 Q(ψ(r)) dr p

)1/p ≤
(∫ +∞

0 Q(r) drq
)1/q

(∫ +∞
0 Q(r) dr p

)1/p ,

which is exactly the statement of Lemma 4.2.
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In particular, take in Lemma 4.2 the function Q(r) = (1 + r)−β with a parameter
β > 0. Then

∫ +∞
0 Q(r) dr p = �(β − p) �(p + 1)/�(β), whenever 0 < p < β. If

p = n − 1, q = n, the best constant c = cn(β) in (4.8) is therefore given by

∫ +∞
0 Q(r) drn−1

(∫ +∞
0 Q(r) drn

)(n−1)/n
= β − n

n

(
n!1/n �(β − n)

�(β)

)1/n

.

Finally, since in (4.7) our parameter is β = −1/κn = −(1 − nκ)/κ = n + α, where
α = −1/κ , cn(β) is exactly the constant (4.6).

This finishes the proof of Theorem 4.1.
Note, when c is optimal [and is defined by (4.6)], the equality in (4.7) and therefore

in (4.5) is attained in case f (rθ) = (1 + r)1/κn , i.e., when f (x) = (1 + |x |)−(n+α).

5 The floating body

Given a probability measure µ on Rn and a number δ ∈ (0, 1
2 ), the floating body Fδ

of µ at level 1 − δ may be defined as

Fδ =
⋂

µ(H)≥ 1−δ
H, (5.1)

where the intersection is running over all closed half-spaces H in Rn with measure
µ(H) ≥ 1−δ. In connection with the general problem on the conditions, ensuring that
Fδ is non-empty, the floating body was considered by many authors (cf. e.g. [26,35,38]
and remarks below).

If µ is absolutely continuous, the restriction on half-spaces may be replaced with
µ(H) = 1 − δ. In general, Fδ represents a compact convex set. If µ is symmetric, it
is symmetric, as well (and therefore non-empty).

In particular, when K is a symmetric convex body with its uniform distribution, we
arrive at the notion of a floating body of K , cf. [34]. In this case a closely related is
the notion of the flotation surface, when in each direction one cuts from K a segment
of a fixed proportional “volume”, cf. [30,31]. More precisely, to involve the general
symmetric measure case, for every unit vector θ choose the minimal r = rδ(θ) ≥ 0,
such that µ{〈x, θ〉 ≤ r} ≥ 1 − δ. The flotation surface of µ is then defined as the
collection

Sδ = {rδ(θ) θ : θ ∈ Sn−1}.

The two concepts were given a considerable attention in Convex Geometry in the
late 1980s, when C. Schütt raised the following natural question in the convex body
case: Is it true that every half-space H in Rn with measure µ(H) = 1 − δ serves as
a tangent plane at some boundary point of Fδ? Or, equivalently, one wonders if the
flotation surface Sδ represents the boundary of the floating body Fδ .
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An affirmative answer to this question was given by Meyer and Reisner in [32],
and independently by K. Ball with a different proof. K. Ball’s argument covers the
case of an arbitrary log-concave probability measure and is described in [33]. In the
next section we discuss further extensions of this result to the class of (some) convex
measures.

However, first let us look at the meaning of the definition (5.1). As emphasized in
[34], when a symmetric convex body K is isotropic, its floating body Fδ is almost a
Euclidean ball, centered at the origin and with some radius r , depending only on K ,
mainly through its isotropic constant L K . More precisely, if (for normalization reason)
K has volume one, for some function c = c(δ), we have

L K

c
B ⊂ Fδ ⊂ cL K B, (5.2)

where B is the unit Euclidean ball. Therefore, whether or not Fδ looks like a ball may
serve as indication that the original body K is (almost) isotropic. Note that without
the isotropy assumption (5.2) implies that Fδ is close to some ellipsoid.

This view may appropriately be extended to general convex measures in the fol-
lowing observation.

Theorem 5.1 Letµ be a symmetric, full-dimensional, κ-concave probability measure
on Rn with κ > −∞. There exists an ellipsoid E , such that for all δ ∈ (0, 1

2 ),

1

c
E ⊂ Fδ ⊂ cE, (5.3)

where c depends on δ and κ , only. Moreover, if µ is (−1)-isotropic, then for E one can
take a Euclidean ball.

Proof Fix δ and assume µ is (−1)-isotropic. Introduce the half-spaces Hθ = {x ∈
Rn : 〈x, θ〉 ≤ r}, where r = rδ(θ), as before. Thus, Fδ = ⋂

θ∈Sn−1 Hθ . So, x ∈ Fδ if
and only if 〈x, θ〉 ≤ rδ(θ) for all θ ∈ Sn−1, that is,

‖x‖ ≡ sup
θ∈Sn−1

〈x, θ

rδ(θ)
〉 ≤ 1.

Therefore, Fδ may be described as the dual to the unit ball

Gδ = {x ∈ Rn : ‖x‖∗ ≤ 1} = clos conv

{
θ

rδ(θ)
: θ ∈ Sn−1

}

for the norm ‖ · ‖, where clos conv denotes the closed convex hull of a set.
Now, consider the linear functionals ϕθ (x) = 〈x, θ〉 and their densities gθ under

the measure µ, together with the distribution functions Gθ (λ) = µ{ϕθ ≤ λ}. By the
very definition, rδ(θ) represents the quantile of ϕθ under µ of order 1 − δ, that is,
rδ(θ) = G−1

θ (1 − δ). As we have seen in the proof of Lemma 3.4, for any t ∈ ( 1
2 , 1),
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t∫

1/2

ds ≤ G−1
θ (t)

gθ (0)
≤

t∫

1/2

ds

(2 min{s, 1 − s})1−κ .

Applying this with t = 1 − δ, we get

1 − 2δ

2
gθ (0) ≤ rδ(θ) ≤ (2δ)κ − 1

−2κ
gθ (0). (5.4)

Note the both sides of (5.4) coincide in the critical case κ = 1 (which is only possible
for the uniform distribution on interval of the real line). Thus, for all θ, θ ′ ∈ Sn−1,

rδ(θ)

rδ(θ ′)
≤ (2δ)κ − 1

−κ(1 − 2δ)

gθ (0)

gθ ′(0)
.

But, by Corollary 3.3 with d = 1, we have gθ (0)
gθ ′ (0)

≤ √
6. So, defining c = c(δ, κ) > 0

by

c2 = (2δ)κ − 1

−κ(1 − 2δ)

√
6, (5.5)

one can choose r > 0 such that 1
c ≤ r

rδ(θ)
≤ c, for all θ ∈ Sn−1. As a consequence,

B(0, 1/(rc)) ⊂ Gδ ⊂ B(0, c/r), where B(0, ρ) stands for the Euclidean ball with
center at the origin and radius ρ. Equivalently, for the dual sets we obtain that

1

c
B(0, r) ⊂ Fδ ⊂ cB(0, r).

The statement of Theorem 5.1 follows with E = B(0, r). ��
Remark As follows from (5.5) with κ = 0, in the log-concave case one may take in
Theorem 5.1 c2 = (

√
6 log 1

2δ )/(1 − 2δ), which is of order log 1
δ
, as δ → 0. If κ < 0,

c is of order δκ/2. Also, if κ = 0, (5.4) takes the form

1 − 2δ

2
gθ (0) ≤ rδ(θ) ≤ 1

2
log

1

2δ
gθ (0).

Ifµ is isotropic in the sense that
∫ 〈x, θ〉2dµ(x) = σ 2 for all unit vectors θ , then gθ (0)

is of order 1/σ within universal factors. Hence, for 0 < δ ≤ δ0 < 1/2, there exist
some constants C0 = C0(δ0),C1 = C1(δ0), such that C0σ ≤ rδ(θ) ≤ C1σ log 1

δ
.

Therefore,

C0σ B ⊂ Fδ ⊂ C1σ log
1

δ
B,

where B is the unit Euclidean ball, and we recover (5.2).
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Now, let us comment on the conditions, ensuring that Fδ is non-empty, when a
probability measureµ on Rn is not necessarily symmetric. In general, Fδ �= ∅, as long
as δ ≤ 1/(n + 1). In case of the plane, this result was obtained by Neumann [35] in
1945. Higher dimensions were treated by Rado [38], who involved a larger class of
subadditive measures; see also [8] for related results.

When µ is a uniform distribution in a convex body K , this statement may consid-
erably be sharpened: Fδ is non-empty for δ = (n/(n + 1))n . Again, for dimension
n = 2 this was proved in [35], while for higher dimensions—by Grünbaum [26] (and
independently by Hammer [27]), with similar proofs, based on the Schwarz symme-
trization. More precisely, it was shown that Fδ contains the baricenter (or centroid)
of K .

Note, regardless of the dimension, we have Fδ �= ∅ for δ = 1/e in the convex body
case. This observation may properly be generalized to involve arbitrary κ-concave
probability measures. The following nice theorem is due to Caplin and Nalebuff, cf.
[17], Proposition 3 (where the condition κ > −1 was somehow hidden).

Theorem 5.2 For any κ-concave probability measure µ on Rn with −1 < κ ≤ 1, the
floating body Fδ contains the baricenter of the measure, as long as

δ ≤ (1 + κ)−1/κ . (5.6)

The condition κ > −1 ensures, in particular, that
∫ |x | dµ(x) < +∞ [cf. (2.4)],

so the baricenter
∫

x dµ(x) is well-defined. In the case of the uniform distribution in
a convex body, one has κ = 1/n and (1 + κ)−1/κ = (n/(n + 1))n , and we obtain
Grünbaum’s theorem. In the log-concave case, Theorem 5.2 also appeared in [10],
Lemma 3.3. Let us explain how to extend its argument to involve general κ-concave
measures.

Since the κ-concavity property is invariant under projections, the distributions of
the linear functionals under µ represent κ-concave probability measures on the real
line. Therefore, (5.6) is reduced to the following one-dimensional statement: For any
random variable ξ with a non-degenerate κ-concave distribution,

(1 + κ)−1/κ ≤ Pr{ξ ≤ Eξ} ≤ 1 − (1 + κ)−1/κ . (5.7)

If κ = 1, ξ has to be uniformly distributed on a finite interval (a, b), and then both
sides of (5.7) coincide. So, assume −1 < κ < 1. Introduce the distribution function
G(x) = Pr{ξ ≤ x} = ∫ x

a g(z) dz, a < x < b, with its inverse G−1 : (0, 1) → (a, b),
and define the associated function I = g(G−1). As we discussed in Remark 2.2, the
function I 1/(1−κ) is concave on (0,1), so for all α ∈ (0, 1),

I (u)1/(1−κ)

1 − u
≤ I (α)1/(1−κ)

1 − α
, for u ∈ (0, α],

I (u)1/(1−κ)

1 − u
≥ I (α)1/(1−κ)

1 − α
, for u ∈ [α, 1).
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Since G−1(s)− G−1(α) = ∫ s
α

du
I (u) , 0 < s < 1, we get that

Eξ =
1∫

0

G−1(s)ds =
1∫

0

⎡
⎣G−1(α)+

s∫

α

du

I (u)

⎤
⎦ ds

= G−1(α)+
1∫

α

1 − u

I (u)
du −

α∫

0

u

I (u)
du

≤ G−1(α)+ (1 − α)1−κ

I (α)

1∫

α

(1 − u)κ du − (1 − α)1−κ

I (α)

α∫

0

u

(1 − u)1−κ du

= G−1(α)+ (1 − α)1−κ

I (α)

[
1

1 + κ
− 1 − (1 − α)κ

κ

]
.

The expression in the square brackets is vanishing for α = 1 − (1 + κ)−1/κ , and then
Eξ ≤ G−1(α) or G(Eξ) ≤ α. This is exactly the right inequality in (5.7). The left
inequality in (5.7) is obtained from the right by applying it to −ξ .

Remark Proposition 3 of [17] asserts that Pr{ξ ≤ Eξ} ≥ (1 + κ)−1/κ for any
κ-concave distribution function G(x) = Pr{ξ ≤ x}. This condition is somewhat
weaker than the κ-concavity of the distribution of ξ .

Both inequalities in (5.7) are sharp, since on the right-hand side there is equality for
ξ having a special distribution. Namely, introduce a κ-concave probability measure
µκ on (0,+∞) by requiring that its associated function is Iκ(t) = (1 − t)1−κ . Its
distribution function is given by

G(x) = µκ(0, x) = 1 − (1 − κx)1/κ , 0 < x < cκ .

More precisely, when 0 < κ ≤ 1,µκ is supported on the finite interval (0, 1
κ
). If κ = 1,

we obtain a uniform distribution on the unit interval (0, 1). When −∞ < κ ≤ 0,µκ is
not supported on a finite interval, so that cκ = +∞. If κ = 0, we obtain the one-sided
exponential distribution with density e−x . Now, if κ > −1 and ξ is distributed
according to µκ , then Eξ = 1/(1 + κ) and G(Eξ) = 1 − (1 + κ)−1/κ .

6 The flotation surface

Let µ be a symmetric, full-dimensional κ-concave probability measure on Rn . As we
have mentioned, by a theorem of Meyer-Reisner and Ball [32,33], in the log-concave
case, for any δ ∈ (0, 1

2 ),

Sδ = ∂Fδ. (6.1)

That is, the boundary of the floating body of µ at a given level is exactly the cor-
responding flotation surface of the measure. Here we follow K. Ball’s argument to
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involve in this statement more convex measures. Our basic tool will be Lemma 2.4
(needed with p = 1).

Theorem 6.1 For any symmetric, full-dimensional, κ-concave probability measureµ
on Rn, the identity (6.1) is valid whenever κ ≥ −1.

We do not know whether any restriction on κ may be removed. For readers con-
venience, first let us remind basic steps as described in [33]. Introduce the symmetric
strips

B(a) = {x ∈ Rn : |〈x, a〉| ≤ 1}, a ∈ Rn,

and their measures W (a) = µ(B(a)). Note W (0) = 1 and W (a) → 0, as |a| → +∞
(which is true for any absolutely continuous µ).

Theorem 6.1 will follow from:

Lemma 6.2 If κ ≥ −1, the function 1/W (a) is convex on Rn.

As soon as we accept this property, one may define a norm

‖a‖ = min{ρ ≥ 0 : W (a/ρ) ≥ 1 − 2δ}

with the unit ball G = {a ∈ Rn : W (a) ≥ 1 − 2δ}. Writing a = 1
r θ with r > 0,

θ ∈ Sn−1, we have, by symmetry of the measure and the very definition of rδ ,

a ∈ G ⇐⇒ W (a) ≥ 1 − 2δ ⇐⇒ µ{|〈x, θ〉| ≤ r} ≥ 1 − 2δ

⇐⇒ µ{〈x, θ〉 ≤ r} ≥ 1 − δ ⇐⇒ r ≥ rδ(θ).

Therefore, ∂G = { θ
rδ(θ)

: θ ∈ Sn−1} and G = Gδ . From this, the dual norm is

‖x‖∗ = sup
‖a‖=1

|〈x, a〉| = sup

{
1

rδ(θ)
|〈x, θ〉| : θ ∈ Sn−1

}
,

which is exactly the norm with unit ball Fδ (We considered it in the beginning of
the proof of Theorem 5.1). Therefore, at every point x ∈ ∂Fδ there is a supporting
hyperplane 〈x, a〉 = 1 with some a ∈ ∂G. Since a = θ

rδ(θ)
, the equation of the plane

is 〈x, θ〉 = rδ(θ), for some θ ∈ Sn−1, which is the equation for the boundary of one
of the half-spaces H , participating in the intersection Fδ = ∩µ(H)=1−δH = ∩θ Hθ .
Moreover, by the convexity of G, any ∂Hθ is a tangent plane at some boundary point
of Fδ .

This would complete the proof of the theorem.

Remark As have seen, what is needed for the proof of Theorem 6.1 is only the
convexity of the set G. This means that the function W should be quasi-concave.
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Proof of Lemma 6.2. Since projections of κ-concave measures are κ-concave, the
statement of the lemma is entirely two-dimensional. So one may assume for sim-
plicity that n = 2 (of course, the symmetry of the measure plays a crucial role).

We follow the construction, described in [33]. Thus, fix non-collinear non-zero
vectors a, b ∈ R2 and let c = a+b

2 . In particular, ρ = (|a|2|b|2 − 〈a, b〉2)1/2 > 0. Put

a′ = 〈a, b〉a − |a|2b

ρ
, b′ = |b|2a − 〈a, b〉b

ρ
, c′ = a′ + b′

2
.

Then |a′| = |a|, |b′| = |b|, |c′| = |c|, and 〈a, a′〉 = 〈b, b′〉 = 〈c, c′〉 = 0. In addition,

〈a′, a − b〉 = 〈b′, a − b〉 = 〈c′, a − b〉 = ρ.

Introduce the line H = {x ∈ R2 : 〈x, a − b〉 = 0 and the segment on it

D = {x ∈ H : |〈x, a〉| ≤ 1} = {x ∈ H : |〈x, b〉| ≤ 1} = {x ∈ H : |〈x, c〉| ≤ 1}.

Then we have the representation of the strips on the plane as the union of the disjoint
segments B(a) = ∪t∈R(ta′ + D), and similarly for the vectors b and c.

Now, let f be the density of µ on the plane, chosen to be κ2-concave [recall that
κ2 = κ/(1 − 2κ) as in the Borell description (2.2)]. Given a line J , parallel to H ,
denote by µJ the measure on it with density f with respect to Lebesgue measure on
J . Note, by the same characterization (2.2) in dimension one, µJ is κ ′-concave, if and
only if f is κ ′

1-concave with κ ′
1 = κ ′/(1 − κ ′). Equalizing κ2 = κ ′

1, we conclude that
every µJ is κ ′-concave with κ ′ = κ/(1 − κ). ��

By Fubini’s theorem and the symmetry of µ,

W (a) = µ(B(a)) = 2ρ

|a − b|
+∞∫

0

µta′+H (ta
′ + D)dt, (6.2)

and similarly for b and c with the same coefficient in front of the integral. Define the
functions on (0,+∞)

u(t) = µta′+H (ta
′ + D), v(t) = µtb′+H (tb

′ + D), w(t) = µtc′+H (tc
′ + D).

For all t, s > 0, we have t
t+s (sa′ + D) + s

t+s (tb
′ + D) = 2ts

t+s c′ + D, so, by the
κ ′-concavity of µJ ’s,

w

(
2ts

t + s

)
≥ M

( t
t+s )

κ ′ (u(s), v(t)).

Hence, the hypothesis (2.8) of Lemma 2.4 is fulfilled with its notations t = 1
2 and

q = κ ′. So, if κ ≤ 0, the concluding inequality (2.9) is valid for all p, whenever
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0 ≤ p ≤ − 1
q − 1 = − 1

κ
. In particular, when κ ≥ −1, one can take p = 1, which

gives

⎡
⎣

+∞∫

0

w(t)dt

⎤
⎦

−1

≤ 1

2

⎡
⎣

+∞∫

0

u(t)dt

⎤
⎦

−1

+ 1

2

⎡
⎣

+∞∫

0

v(t)dt

⎤
⎦

−1

.

In view of (6.2), this is exactly the desired inequality W (c)−1≤ 1
2 W (a)−1+ 1

2 W (b)−1.
Lemma 6.2 follows.

7 Santaló-type inequalities

In this section we conclude with remarks on the Santaló-type inequalities for the fam-
ily of convex measures. Given a symmetric convex body K in Rn , the Santaló or
Blashke-Santaló inequality asserts (cf. [36,37]) that

voln(K )voln(K
o) ≤ voln(B)

2, (7.1)

where

K o = {x ∈ Rn : 〈x, y〉 ≤ 1, for all y ∈ K }

is the polar body, and where B stands for the unit Euclidean ball in Rn with center at
the origin. Thus, the left-hand side of (7.1) is maximized for Euclidean balls.

In [6], K. Ball found an interesting application of (7.1) to the class of symmetric
log-concave functions. Namely, introduce the Legendre transform,

Lv(y) = sup
x∈Rn

[〈x, y〉 − v(x)], y ∈ Rn,

which may be defined for all functions v on Rn with values in [−∞,+∞]. The corre-
spondence v → Lv is known to have a number of remarkable properties and, from the
other side, it appears naturally in various characterization problems, related to abstract
duality transforms on different classes of functions. For recent developments in this
direction we refer the interested reader to the works of Artstein and Milman [2–4].

In particular, consider the class Fn of all symmetric lower-semicontinuos convex
functions v : Rn → [0,+∞] with v(0) = 0. In this class the Legendre transform acts
as bijection, and L(Lv) = v, for all v ∈ Fn . The result of K. Ball, obtained on the
basis of (7.1), is that

∫
e−v(x)dx

∫
e−w(y)dy ≤ (2π)n,

for any v in Fn with w = Lv. Only recently, in [1], this inequality was understood
as the Santaló-type inequality for the canonical polarity in the class Fn . In modern
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language and notations, it is now stated as

∫
f (x)dx

∫
f o(y)dy ≤ (2π)n, (7.2)

where f = e−v is an arbitrary integrable symmetric log-concave function with f (0) =
1 (that is, with v ∈ Fn), and f o = e−w is its dual. Note the Blashke-Santaló inequality
(7.1) is included in the functional form (7.2), when the latter is restricted to the special
functions f (x) = e−‖x‖2/2, f o(y) = e−‖x‖2∗/2, where ‖ · ‖ and ‖ · ‖∗ are the norms,
generated by the convex bodies K and K o, respectively.

The inequality (7.2) may be properly modified to cover non-symmetric log-concave
functions (cf. e.g. [1]). On the other hand, it may further be extended to a larger class
of functions, serving as densities of finite convex measures on Rn . More precisely, we
have:

Theorem 7.1 Given v ∈ Fn with the Legendre transform w = Lv, for any β > n,

∫
dx

(1 + v(x))β

∫
dy

(1 + w(y))β
≤

(∫
dz

(1 + |z|2)β/2
)2

. (7.3)

If β > n, the functions of the form f = (1 + v)−β represent densities of finite
κ-concave measures on Rn , satisfying f (0) = 1, with κ = −1/(β − n). In analogy
with the log-concave case, f o = (1 + w)−β may be viewed as the density, dual
to f within the same class of κ-concave measures (with an additional property that
f (0) = 1).

As an equivalent variant of (7.3), we also have

∫
dx

(1 + v(x)/β)β

∫
dy

(1 + w(y)/β)β
≤

(∫
dz

(1 + |z|2/β)β/2
)2

,

which in the limit, as β → +∞, turns into (7.2). Therefore, Theorem 7.1 implies
the Blashke–Santal’́o inequality. Note, however, in contrast with (7.2) the inequality
(7.3) does not say anything about the extremal situation (the extremal role of Cauchy
measures is only asymptotical).

As for the proof (7.3) may easily be derived from a recent result of Fradelizi and
Meyer, which says the following (cf. [21, Proposition 3]). Let f1, f2 : Rn → [0,+∞)

and ρ : [0,+∞) → [0,+∞) be measurable functions, satisfying

f1(x) f2(y) ≤ ρ(〈x, y〉)2 (7.4)

for all x, y ∈ Rn , such that 〈x, y〉 > 0. Then, if f1 is even,

∫
f1(x) dx

∫
f2(y) dy ≤

(∫
ρ(|z|2) dz

)2

. (7.5)
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Take f1(x) = (1 + v(x))−β , f2(y) = (1 +w(y))−β , ρ(t) = (1 + t)−β/2. Then the
hypothesis (7.4) reads as

(1 + v(x))(1 + w(y)) ≥ 1 + 〈x, y〉, given that 〈x, y〉 > 0.

It is obviously fulfilled, since, by the definition of the Legendre transform, we have
v(x) + w(y) ≥ 〈x, y〉. The resulting inequality (7.5) is exactly (7.3), where the
right-hand side is finite for β > n.
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