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Abstract We discuss some geometric and analytic properties of probabil-
ity distributions that are related to the concept of weak Poincaré type in-
equalities. We deal with isoperimetric and capacitary inequalities of Sobolev
type and applications to finite-dimensional convex measures with weights and
infinite-dimensional Gibbs measures. As one of the basic tools, V. G. Mazya’s
capacitary analogue of the co-area inequality is adapted to the setting of met-
ric probability spaces.

1 Weak Forms of Poincaré Type Inequalities

In this paper, we discuss some geometric and analytic properties of proba-
bility distributions, such as embeddings, concentration, and convergence of
the associated semigroups, that are related to the concept of weak Poincaré
type inequalities. Such inequalities may have different forms and appear in
different contexts and settings. We mainly restrict ourselves to the setting
of an arbitrary metric probability space, say, (M,d, µ) (keeping in mind the
Euclidean space Rn as a basic space and source for various examples). We
will be focusing on the following definition.

Definition. We say that (M, d, µ) satisfies a weak Poincaré type inequality
with rate function C(p), 1 6 p < 2, if for any bounded, locally Lipschitz
function f on M with µ-mean zero
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‖f‖p 6 C(p) ‖∇f‖2 ∀ p ∈ [1, 2). (1.1)

More precisely, (1.1) involves a parameter family of Poincaré type in-
equalities that are controlled by a certain parameter function. Here, we use

the standard notation ‖f‖p =
( ∫

|f |p dµ
)1/p

for the Lp-norm, as well as

‖∇f‖2 =
( ∫

|∇f |2 dµ
)1/2

. Note that it is a rather convenient way to un-

derstand the modulus of the gradient in general as the function

|∇f(x)| = lim sup
y→x

|f(x)− f(y)|
d(x, y)

, x ∈ M

(with the convention that |∇f(x)| = 0 if x is an isolated point in M). By
saying that f is “locally Lipschitz” we mean that f has a finite Lipschitz
seminorm on every ball in M , so that |∇f(x)| is everywhere finite. Once
(1.1) holds for all bounded locally Lipschitz f , it continues to hold for all
unbounded locally Lipschitz functions with µ-mean zero, as long as the right-
hand side of (1.1) is finite. (The latter implies the finiteness of ‖f‖p for all
p < 2.)

As a more general scheme, one could start from a probability space (M,µ),
equipped with some (local or discrete) Dirichlet form E(f, f), and to consider
the inequalities

‖f‖p 6 C(p)
√
E(f, f), 1 6 p < 2, (1.2)

within the domain D of the Dirichlet form. Within the metric probability
space framework, we thus put E(f, f) = ‖∇f‖22. But one may also study
(1.2) in the setting of a finite graph or, more generally, of Markov kernels, or
the setting of Gibbs measures.

The main idea behind (1.1)–(1.2) is to involve in analysis more probability
distributions and to quantify their possible analytic and other properties by
means of the rate function. Indeed, if C(p) may be chosen to be a constant,
we arrive at the usual form of the Poincaré type inequality

λ1 Varµ(f) 6 E(f, f), (1.3)

where

Varµ(f) =
∫

f2 dµ−
(∫

f dµ

)2

stands for the variance of f under µ. This inequality itself poses a rather
strict constraint on the measure µ. For example, under (1.3) in the setting
of a metric probability space (M, d, µ), any Lipschitz function f on M must
have a finite exponential moment. This property, discovered by Herbst [22]
and later by Gromov and Milman [20] and by Borovkov and Utev [13], may
be stated as a deviation inequality
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µ{|f | > t} 6 C e−c
√

λ1 t, t > 0, (1.4)

with some positive absolute constants C and c, where for normalization rea-

sons it is supposed that ‖f‖Lip 6 1 and
∫

f dµ = 0. (The best constant in the

exponent is known to be c = 2 and it is attained for the one-sided exponential
distribution on the real line M = R, cf. [7].) With a proper understanding
of the Lipschitz property, discrete and more general analogues of (1.4) also
hold under (1.3) (cf., for example, [2, 1, 24, 25]).

Another classical line of applications of the usual Poincaré type inequality
deals with the Markov semigroup Pt of linear operators associated to µ on Rn

(or other Riemannian manifold). This semigroup has a generator L, which
may be introduced via the equality

E(f, g) = −
∫

f Lg dµ, f, g ∈ D,

so that Pt = etL in the operator sense. Under (1.3) and mild technical assump-
tions, every Pt represents a contraction on L2(µ), i.e., Pt may be extended
from D as a linear continuous operator acting on the whole space L2(µ) with
the operator norm ‖Pt‖ 6 1. Moreover, for any f ∈ L2(µ),

Varµ(Ptf) 6 Varµ(f) e−λ1t, t > 0, (1.5)

which expresses the L2(µ) exponential ergodicity property of the Markov
semigroup.

The exponential bounds such as (1.4)–(1.5) do not hold any longer without
the hypothesis on the presence of the usual Poincaré type inequality. However,
one may hope to get weaker conclusions under weaker assumptions, such as
the weak Poincaré type inequality (1.1). In the latter case, the rate of growth
of C(p) as p → 2 turns out to be responsible for the strength of deviations
of Lipschitz functions and for the rate of convergence of Ptf to a constant
function, as well.

As a result, in the general situation more freedom in choosing suitable rate
function C(p) will allow us to involve more interesting probability spaces,
especially those without finite exponential moments. In this connection it
should be noted that another kind of inequalities, which serve this aim, is
described by the weak forms of Poincaré type inequalities, that involve an
oscillation term Osc (f) = ess sup f − ess inf f with respect to µ. Namely,
one considers

Varµ(f) 6 β(s) E(f, f) + s Osc (f)2. (1.6)

These inequalities are supposed to hold for all s > 0 with some function β,
so that the case of the constant function β(s) = 1/λ1 also returns us to the
usual Poincaré inequalities.

The inequalities with a free parameter have a long history in analysis,
including, for example, [32, 17, 16, 18, 27, 21, 5, 6] and many others. The



16 S. Bobkov and B. Zegarlinski

weak Poincaré type inequalities (1.6) have recently been studied by Röckner
and Wang [35, 37], as an approach to the problem on the slow rates in the
convergence of the associated Markov semigroups in Rn. This work was mo-
tivated by Liggett [27], who considered similar multiplicative forms of (1.6).
In the setting of Riemannian manifolds, Barthe, Cattiaux, and Roberto [4]
studied the weak Poincaré type inequalities from the point of view of con-
centration and connected them with the family of capacitary inequalities, a
classical object in the theory of Sobolev spaces. Such inequalities go back to
the pioneering works of V. G. Maz’ya in the 60s and 70s; let us only mention
[28], his book [29], and a nice exposition given by A. Grigoryan in [19]. See
also [15], where entropic versions of (1.6) are treated. On the other hand,
although weak Poincaré type inequalities (1.1) should certainly be of inde-
pendent alternative interest, they seemed to attract much less attention. And
for several reasons one may wonder how to fill this gap.

We explore, how the weak forms of Poincaré type inequalities (1.1)/(1.3)
and (1.5) are related to each other (Section 8). Note that for probability
measures on the real line, all the forms may be reduced to Hardy type in-
equalities with weights and this way they may be characterized explicitly in
terms of the density of a measure (cf. [31, 29]). One obvious advantage of
(1.1) over (1.6) is that one may freely apply (1.1) to unbounded functions,
while (1.6) is more delicate in this respect. In fact, the relation (1.1), taken
as a potential “nice” hypothesis, gives rise to a larger family of Poincaré
type inequalities between the norms of f and |∇f | in Lebesgue spaces. This
property, which we briefly discuss in Section 2, is usually interpreted as kind
of embedding theorems. It is illustrated in Section 3 in the problem of large
deviations of Lipschitz functionals. Sections 4 and 5 are technical, with aim
to create tools to estimate the rate function for classes of measures on the
Euclidean space under certain convexity conditions (cf. Sections 6 and 7). In
Section 10, we discuss consequences of our weak Poincaré inequalities for the
Lp decay to equilibrium of Markov semigroups in Rn. But before, in Section
9, we introduce the notation and recall classical arguments, that are used in
the presence of the usual Poincaré inequalities.

Later we extend the corresponding idea to infinite dimensional situation
in Section 11, where, in particular, we prove a stretched exponential decay
for a product case. As we demonstrate there, it is the infinite dimensional
case in which our more general than (1.6) inequalities play an important
role in estimates of the decay rates. Finally, in the last section, we prove a
weak Poincaré inequality for Gibbs measures with slowly decaying tails in
the region of strong mixing. Using this result, we obtain an estimate for the
decay to equilibrium in L2 for all Lipschitz cylinder functions with the same
stretched exponential rate.
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2 Lp-Embeddings under Weak Poincaré

Let us start with an abstract metric probability space (M,d, µ) satisfying the
weak Poincaré type inequality

‖f −Ef‖p 6 C(p) ‖∇f‖2, 1 6 p < 2, (2.1)

with a (finite) rate function C(p). For definiteness, we may put C(p) = C(1)
for 0 < p < 1, although in some places we will consider (2.1) for all p ∈ (0, 2)
with rate function defined in 0 < p < 1 in a different way. Here and in the

sequel, we use the standard notation Ef = Eµf =
∫

f dµ for the expectation

of f under the measure µ.
Let W q(µ) denote the space of all locally Lipschitz functions g on M ,

equipped with the norm

‖f‖W q = ‖∇f‖q + ‖f‖1.

Clearly, the norm is getting stronger with the growing parameter q. From
(2.1) it follows that ‖f‖p 6 (1 + C(p)) ‖f‖W 2 , which means that all Lp(µ),
1 6 p < 2, are embedded in W 2(µ). Therefore, one may wonder whether this
property may be sharpened by replacing W 2(µ) with other spaces W q(µ).
The answer is affirmative and is given by the following assertion.

Theorem 2.1. Given 1 6 p < q 6 +∞, q > 2, for any locally Lipschitz f
on M

‖f −Ef‖p 6 C(p, q) ‖∇f‖q, (2.2)

with constants C(p, q) = 12 C(r)
r p, where 1

r = 1
2 + 1

p − 1
q .

Thus, Lp(µ) may be embedded in W q(µ), whenever 1 6 p < q 6 +∞ and
q > 2.

In particular, 1
r = 1 − 1

q for p = 2, so r represents the dual exponent

q∗ = q
q−1 and C(2, q) = 24 C(q∗)

q∗ 6 24 C(q∗). Hence we obtain a dual variant
of (2.1).

Corollary 2.2. Under (2.1), for any bounded, locally Lipschitz function f
on M

‖f −Ef‖2 6 24 C(q∗) ‖∇f‖q, q > 2. (2.3)

Now, let us turn to the proofs, which actually contain standard arguments.
In the sequel, we will use the following elementary:
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Lemma 2.3. For any measurable function f on a probability space (M, µ)
with a median m and for any p > 1

‖f −m‖p 6 3 inf
c∈R

‖f − c‖p .

Proof. One may assume that the norm ‖f‖p is finite and non-zero. Note
that, in general, the median is not determined uniquely. Nevertheless, by the
monotonicity of this multi-valued functional, for any median m = m(f) of
f there is a median m(|f |) of |f | such that |m(f)| 6 m(|f |). On the other
hand, by the Chebyshev inequality,

µ{|f | > t} 6
‖f‖p

p

tp
<

1
2

,

as long as t > 21/p ‖f‖p, so m(|f |) 6 21/p ‖f‖p for any median of |f |. The
two bounds yield

‖f −m(f)‖p 6 ‖f‖p + |m(f)| 6 (1 + 21/p) ‖f‖p 6 3 ‖f‖p.

Applying this to f − c and noting that m(f) − c is one of the medians of
f − c, we arrive at the desired conclusion. ut

Lemma 2.3 allows us to freely interchange medians and expectations in
the weak Poincaré type inequality. This can be stated as follows.

Lemma 2.4. Under the hypothesis (2.1), for any locally Lipschitz function
f on M with median m(f)

‖f −m(f)‖p 6 C ′(p) ‖∇f‖2, 1 6 p < 2, (2.4)

where C ′(p) = 3C(p). In turn, (2.4) implies (2.1) with C(p) = 2C′(p).

Indeed, by Lemma 2.3, ‖f−m(f)‖p 6 3 ‖f−Ef‖p, and thus (2.1) implies
(2.4). On the other hand, assuming that m(f) = 0 and starting from (2.4),
we get

‖f −Ef‖p 6 ‖f‖p + |Ef | 6 2 ‖f‖p = 2 ‖f −m(f)‖p 6 2C ′(p) ‖∇f‖2.

Lemma 2.5. Assume that the metric probability space (M,d, µ) satisfies

‖f‖p 6 A(p) ‖∇f‖2, 0 < p < 2, (2.5)

in the class of all locally Lipschitz functions f on M with median m(f) = 0.
Then in the same class,
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‖f‖p 6 2A(p, q) ‖∇f‖q, 0 < p < q 6 +∞, q > 2, (2.6)

with constants A(p, q) = A(r)
r p, where 1

r = 1
2 + 1

p − 1
q .

Clearly, A(p, 2) = A(p), so that (2.6) generalizes (2.5) within a factor of 2.
If (2.5) is only given for the range 1 6 p < 2, one may just put A(p) = A(1)
for 0 < p < 1.

Note that, due to the assumption p < q, we always have 0 < r < 2. The
assumption q > 2 guarantees that r 6 p.

Proof of Lemma 2.5. We may assume that 2 < q < +∞ and ‖f‖q < +∞.
First, let f > 0 and m(f) = 0. Hence µ{f = 0} > 1

2 . By the hypothesis (2.5),
for any r ∈ (0, 2)

Efr 6 A(r)r (E |∇f |2)r/2.

Apply this inequality to the function fp/r, which is nonnegative and has
median zero, as well as f . Then, using the Hölder inequality with exponents
α, β > 1 such that 1

α + 1
β = 1, we get

Efp = E (fp/r)r 6 A(r)r
(p

r

)r (
E f2( p

r−1) |∇f |2
)r/2

6 A(r)r
(p

r

)r (
E f2α ( p

r−1)
)r/2α (

E |∇f |2β
)r/2β

. (2.7)

Now let 1
r = 1

2 + 1
p − 1

q and choose α so that 2α (p
r − 1) = p, i.e., 1

2α = 1
r − 1

p .
Since q > 2, we have r < p, so α > 0. Moreover, α > 1 ⇔ 1

r < 1
2 + 1

p which
is fulfilled. Also, put 1

2β = 1
q , so that β = q

2 > 1. Then (2.7) turns into

Efp 6 A(r)r
(p

r

)r

(E fp)r/2α (E |∇f |q)r/2β ,

which is equivalent to
‖f‖p 6 A(p, q) ‖∇f‖q. (2.8)

In the general case, we split f = f+ − f− with f+ = max{f, 0} and
f− = max{−f, 0}. Without loss of generality, let |∇f(x)| = 0, when f(x) = 0
(otherwise, we may work with functions of the form T (f) with smooth T ,
approximating the identity function and satisfying T ′(0) = 0). Then both
f+ and f− are nonnegative, have median at zero, and |∇f+| = |∇f | 1{f>0},
|∇f−| = |∇f | 1{f<0}. Hence, by the previous step (2.8) applied to these
functions,

∫

{f>0}
|f |p dµ 6 A(p, q)p

( ∫

{f>0}
|∇f |q dµ

)p/q

,
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∫

{f<0}
|f |p dµ 6 A(p, q)p

( ∫

{f<0}
|∇f |q dµ

)p/q

.

Finally, adding these inequalities and using an elementary bound as + bs 6
2(a + b)s (a, b > 0, 0 6 s 6 1), we arrive at the desired estimate (2.6). ut
Proof of Theorem 2.1. By Lemmas 2.4 and 2.5, for any locally Lipschitz f
on M with median m(f), whenever 1 6 p < q 6 +∞ and q > 2, we have

‖f −m(f)‖p 6 6p C(r)
r

‖∇f‖q.

Another application of Lemma 2.4 doubles the constant on the right-hand
side. ut

3 Growth of Moments and Large Deviations

As another immediate consequence of Theorem 2.1, we consider the case
q = +∞. Then 1

r = p+2
2p , and we obtain the following assertion.

Corollary 3.1. Under the weak Poincaré type inequality (2.1), any Lips-
chitz function f on M has finite Lp-norms and, if ‖f‖Lip 6 1 and Ef = 0,

‖f‖p 6 6(p + 2) C

(
2p

p + 2

)
, p > 1. (3.1)

In the case of the usual Poincaré type inequality,

λ1 Varµ(f) 6
∫
|∇f |2 dµ,

we have C(p) = 1√
λ1

, and the inequality (3.1) gives

‖f‖p 6 6(p + 2)√
λ1

, p > 1.

Up to a universal constant c > 0, the latter may also be stated as a large
deviation bound µ{√λ1 |f | > t} 6 2 e−ct (t > 0) or, equivalently, as

‖f‖ψ1 6 1
c
√

λ1

(3.2)

in terms of the Orlicz norm generated by the Young function ψ1(t) = e|t|−1.
Thus, Theorem 2.1 may be viewed as a generalization of the Gromov–

Milman theorem [20] on the concentration in the presence of the Poincaré type
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inequality. Let us give one more specific example by imposing the condition

C(p) 6 a

(2− p)γ
, 1 6 p < 2, (3.3)

with some parameters a, γ > 0. In particular, if γ = 0, we return to the usual
Poincaré type inequality.

Corollary 3.2. Let (M, d, µ) satisfy the weak Poincaré type inequality
(2.1) with a rate function admitting the polynomial growth (3.3). For any
function f on M with ‖f‖Lip 6 1 and Ef = 0

µ{|f | > t} 6 2γ+1 exp
{
− c1(γ + 1)

(
c2t

a

)1/(γ+1) }
, t > 0, (3.4)

where c1 and c2 are positive numerical constants.

Proof. According to Corollary 3.1, for any p > 1

‖f‖p 6 6 (p + 2)
a

(2− 2p
p+2 )γ

= 6a · 4−γ(p + 2)γ+1 6 18 a · (3/4)γpγ+1,

where we used p + 2 6 3p at the last step. Hence, in the range p > 1, we
have got the bound E |f |p 6 (Cp)p(γ+1) with a constant given by Cγ+1 =
18 · (3/4)γ a. This bound may a little be weakened as

E |f |p 6 2γ+1(Cp)p(γ+1) (3.5)

to serve also the values 0 < p < 1. Indeed, then we may use ‖f‖p 6 ‖f‖1 6
Cγ+1, so E |f |p 6 Cp(γ+1). Hence (3.5) would follow from 1 6 2pp, which is
true since, on the positive half-axis, the function 2pp is minimized at p = 1

e

and has the minimum value 2e−1/e > 1.
Thus, (3.5) holds in the range p > 0. Now, by the Chebyshev inequality,

for any t > 0

µ{|f | > t} 6 E |f |p
tp

6 2γ+1 (Cp)p(γ+1)

tp
= 2γ+1 (Dq)q,

where q = p (γ + 1) and D = C
(γ+1) t1/(γ+1) . The quantity (Dq)q is minimized,

when q = 1/(De), and the minimum is

e−1/(De) = exp
{
− (γ + 1) t1/(γ+1)

Ce

}
= exp

{
− 4 (γ + 1) t1/(γ+1)

3e (24 a)1/(γ+1)

}
.

Thus, we arrive at (3.4) with c1 = 4/(3e) and c2 = 1/24. ut



22 S. Bobkov and B. Zegarlinski

In analogue with the usual Poincaré type inequality and similarly (3.2),
the deviation inequality (3.4) of Corollary 3.2 may be restated equivalently
in terms of the Orlicz norm generated by the Young function

ψ1/(γ+1)(t) = exp{|t|1/(γ+1)} − 1.

Indeed, arguing in one direction, we consider ξ = |f |1/(γ+1) as a random
variable on (Rn, µ) and write (3.4) as

µ{ξ > t} 6 Ae−Bt, t > 0,

with parameters A = 2γ+1, B = c1(γ+1) ( c2
a )1/(γ+1). Then for any r ∈ (0, B)

E erξ − 1 = r

∫ +∞

0

ertµ{ξ > t} dt 6 Ar

∫ +∞

0

e−(B−r)t dt =
Ar

B − r
= 1

if r = r0 = B
A+1 . Hence E exp{r0|f |1/(γ+1)} 6 2, which means that

‖f‖ψ1/(γ+1) 6 1
rγ+1
0

=
(A + 1)γ+1

Bγ+1
=

a

c2

(2γ+1 + 1)γ+1

(c1(γ + 1))γ+1
.

Thus, under (3.3), up to some constant cγ depending on γ only, we get

‖f‖ψ1/(γ+1) 6 cγa.

4 Relations for Lp-Like Pseudonorms

To give some examples of metric probability spaces satisfying weak Poincaré
type inequalities, we need certain relations for Lp-like pseudonorms, which
we discuss in this section. For a measurable function f on the probability
space (M, µ) and q, r > 0 we introduce the following standard notation. Put

‖f‖q =
( ∫

|f |q dµ
)1/q

and

‖f‖r,1 =
∫ +∞

0

µ{|f | > t}1/r dt, ‖f‖r,∞ = sup
t>0

[
t µ{|f | > t}1/r

]
.

As for how these quantities are related, there is the following elementary (and
apparently well-known) statement: If 0 < q < r, then

‖f‖r,1 > ‖f‖r,∞ >
(

r − q

r

)1/q

‖f‖q.
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In particular,

‖f‖r,1 >
(

r − q

r

)1/q

‖f‖q. (4.1)

However, the constant on the right-hand side is not optimal and may be
improved, when q and r approach 1.

Lemma 4.1. If 0 < q < r 6 1, then

‖f‖r,1 >
(

r − q

r

)1/q−1

‖f‖q. (4.2)

To see the difference between (4.1) and (4.2), we note that ‖f‖r,1 = ‖f‖1
for the value r = 1 and, letting q → 1−, we obtain equality in (4.2), but not
in (4.1).

Proof. Introduce the distribution function F (t) = µ{|f | 6 t} and put u(t) =
1− F (t). Since u 6 1, for any t > 0

‖f‖q
q =

∫ +∞

0

sq dF (s) =
∫ t

0

u(s) dsq +
∫ +∞

t

u(s) dsq 6 tq + q

∫ +∞

t

sq−1 u(s) ds.

Let 0 < r < 1. By the Hölder inequality with exponents p = 1
r and p∗ = p

p−1 ,
we have

∫ +∞

t

sq−1 u(s) ds 6 ‖sq−1‖Lp∗ (t,+∞) ‖u(s)‖Lp(t,+∞)

=
( ∫ +∞

t

sp∗(q−1) ds

)1/p∗( ∫ +∞

t

u(s)p ds

)1/p

.

The last integral may be bounded from above just by ‖f‖r,1 =
∫ +∞

0

u(s)p ds.

Note that p∗(q − 1) < −1; moreover,

p∗(q − 1) + 1 = −1− pq

p− 1
= −r − q

1− r
,

p∗(q − 1) + 1
p∗

= −1− pq

p− 1
p− 1

p
= −(r − q).

Hence the pre-last integral is convergent and

( ∫ +∞

t

sp∗(q−1) ds

)1/p∗

=
t

p∗(q−1)+1
p∗

(−p∗(q − 1)− 1)1/p∗ =
(

1− r

r − q

)1−r

t−(r−q)

since 1
p∗ = p−1

p = 1− r. Thus,
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‖f‖q
q 6 tq + q

(
1− r

r − q

)1−r

t−(r−q) ‖f‖r
r,1.

It remains to optimize over all t > 0 on the right-hand side. Changing the
variable tq = s, we write

‖f‖q
q 6 ϕ(s) ≡ s +

C

α
s−α,

where α = r
q − 1 and

C = q

(
1− r

r − q

)1−r (
r

q
− 1

)
‖f‖r

r,1 = (1− r)1−r(r − q)r ‖f‖r
r,1.

Since α > 0, the function ϕ is minimized at s0 = C1/(α+1) and, at this point,

ϕ(s0) = C1/(α+1) +
C

α
C−α/(α+1) =

(
1 +

1
α

)
C1/(α+1).

Note that α + 1 = r
q and α+1

α = r
r−q , so

C1/(α+1) =
[
(1− r)1−r(r − q)r ‖f‖r

r,1

]q/r
= (1− r)q( 1

r−1) (r − q)q ‖f‖q
r,1

and
ϕ(s0) =

r

r − q
(1− r)q( 1

r−1) (r − q)q ‖f‖q
r,1.

Therefore,

‖f‖q 6 ϕ(s0)1/q =
(

r

r − q

)1
q−1

r(1− r)
1
r−1 ‖f‖r,1.

It remains to note that r(1− r)
1
r−1 6 1, whenever 0 < r < 1. ut

5 Isoperimetric and Capacitary Conditions

Here, we focus on general necessary and sufficient conditions for weak
Poincaré type inequalities to hold on a metric probability space (M,d, µ).
Sufficient conditions are usually expressed in terms of the isoperimetric func-
tion of the measure µ, so it is natural to explore the role of isoperimetric
inequalities. By an isoperimetric inequality one means any relation

µ+(A) > I(µ(A)), A ⊂ M, (5.1)

connecting the outer Minkowski content or µ-perimeter
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µ+(A) = lim inf
ε→0+

µ(Aε)− µ(A)
ε

= lim inf
ε→0+

µ{x ∈ M \A : ∃a ∈ A, d(x, a) < ε}
ε

with µ-size in the class of all Borel sets A in M with measure 0 < µ(A) < 1.
(Here Aε denotes an open ε-neighborhood of A.)

The function I, appearing in (5.1), may be an arbitrary nonnegative func-
tion, defined on the unit interval (0,1). If this function is optimal, it is often
referred to as the isoperimetric function or the isoperimetric profile of the
measure µ.

To any nonnegative function I on (0, 1
2 ] we associate a nondecreasing func-

tion CI(r) given by

1
CI(r)

= inf
0<t6 1

2

[
I(t) t−1/r

]
, 0 < r < 1. (5.2)

One of our aims is to derive the following assertion.

Theorem 5.1. In the presence of the isoperimetric inequality (5.1), the
space (M, d, µ) satisfies the weak Poincaré type inequality

‖f −Ef‖p 6 C(p) ‖∇f‖2, 0 < p < 2,

with rate function

C(p) = 8 inf
2p

2+p <r<1

[
CI(r)

(
r

r − 2p
2+p

)2−p
2p

]
. (5.3)

We first consider one important particular case.

Lemma 5.2. Given c > 0 and 0 < r 6 1, we assume that (M, d, µ)
satisfies

µ+(A) > c µ(A)1/r (5.4)

for all Borel sets A ⊂ M with 0 < µ(A) 6 1
2 . Then for any locally Lipschitz

function f > 0 on M with median zero and for all q ∈ (0, r)

‖f‖q 6 1
c

(
r

r − q

)1/q−1 ∫
|∇f | dµ. (5.5)

For the proof, we recall the well-known co-area formula which remains to
hold in the form of an inequality for arbitrary metric probability spaces (cf.
[10]). Namely, for any function f on M having a finite Lipschitz seminorm
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∫
|∇f | dµ >

∫ +∞

−∞
µ+{f > t} dt.

Note that the function t → µ+{f > t} is always Borel measurable for
continuous f , so the second integral makes sense. Hence, by Lemma 4.1,
if ‖f‖Lip < +∞,

∫
|∇f | dµ > c

∫ +∞

0

µ{f > t}1/r dt = c ‖f‖r,1 > c

(
r − q

r

)1/q−1

‖f‖q.

A simple truncation argument extends this inequality to all locally Lipschitz
f > 0.

Proof of Theorem 5.1. By the definition (5.2), whenever 0 < r < 1, the space
(M, d, µ) satisfies the isoperimetric inequality (5.4) with c = 1/CI(r), so the
functional inequality (5.5) holds.

Let f > 0 be locally Lipschitz on M with median zero. Given 0 < q < r <
1, apply (5.5) to fp/q with p > 0 to be specified later on. Then

∫
fp dµ =

∫
(fp/q)q dµ 6 1

cq

(
r

r − q

)1−q( ∫
|∇fp/q| dµ

)q

=
1
cq

(
r

r − q

)1−q(
p

q

)q( ∫
f

p
q−1|∇f | dµ

)q

6 1
cq

(
r

r − q

)1−q(
p

q

)q( ∫
f2( p

q−1) dµ

)q/2( ∫
|∇f |2 dµ

)q/2

,

where we used the Cauchy inequality at the last step. Choose p so that
2 (p

q −1) = p, i.e., p = 2q/(2− q) or q = 2p/(2+p). Then the obtained bound
becomes

( ∫
fp dµ

)1−q/2

6 1
cq

(
r

r − q

)1−q( 2
2− q

)q( ∫
|∇f |2 dµ

)q/2

,

and, using 1−q/2
q = 1

p and 2
2−q < 2, we get

( ∫
fp dµ

)1/p

6 2
c

(
r

r − q

)1/q−1 ( ∫
|∇f |2 dµ

)1/2

.

By doubling the expression on the right-hand side like in the proof of
Lemma 2.5, we may remove the condition f > 0 and thus get in the general
locally Lipschitz case

‖f −m(f)‖p 6 4
c

(
r

r − q

)1/q−1

‖∇f‖2
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with q = 2p
2+p , where m(f) is a median of f under µ. Note that q < 1 ⇔ p < 2.

Finally, by Lemma 2.4,

‖f −Eµf‖p 6 8
c

(
r

r − q

)1/q−1

‖∇f‖2.

It remains to take the infimum over all r ∈ (q, 1), and we arrive at the desired
Poincaré type inequality with rate function (5.4). ut

Remark 5.1. In order to get a simple upper bound for the rate function

C(p) = 8 inf
q<r<1

[
CI(r)

(
r

r − q

)1
q−1]

, where q =
2p

2 + p
,

in many interesting cases, one may just take

r =
1 + q

2
=

3p + 2
2(p + 2)

,

for example. In this case,

( r

r − q

) 1
q−1

=
(1 + q

1− q

) 1
q−1

= (1 + s)2/s < e2

for s = 2q/(1− q). Hence we obtain the following assertion.

Corollary 5.3. In the presence of the isoperimetric inequality (5.1) with
the associated function CI(r), the space (M, d, µ) satisfies the weak Poincaré
type inequality

‖f −Ef‖p 6 C(p) ‖∇f‖2, 0 6 p < 2,

with rate function C(p) = 8e2 CI( 3p+2
2(p+2) ).

In particular, if µ satisfies a Cheeger type isoperimetric inequality µ+(A) >
c µ(A) (0 < µ(A) 6 1

2 ), then CI(r) is bounded by 1/c, and Corollary 5.3 yields
the usual Poincaré type inequality

‖f −Ef‖2 6 C

c
‖∇f‖2

with a universal constant C. Thus, Theorem 5.1 includes the Maz’ya–Cheeger
theorem (up to a multiplicative factor).

Consider a more general class of isoperimetric inequalities.
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Corollary 5.4. Assume that the metric probability space (M,d, µ) satis-
fies, for some α > 0 and c > 0, an isoperimetric inequality

µ+(A) > c
t

log1/α( 4
t )

, t = µ(A), 0 < t 6 1
2
.

Then for some universal constant C it satisfies the weak Poincaré type in-
equality with rate function

C(p) =
C

c

(
3

2− p

)1/α

, 1 6 p < 2.

Proof. First we show that, given p > 1, for all t ∈ (0, 1)

t

log1/α( 4
t )

> [αe(p− 1)]1/α

4p−1
tp. (5.6)

Indeed, for any C > 0, replacing t = 4s, we can write

C
t

log1/α( 4
t )

> tp ⇐⇒ sα(p−1) log
1

sα(p−1)
6 α(p− 1)

(
C

4p−1

)α

.

But supu>0 [u log 1
u ] = 1

e , so we are reduced to 1
e 6 α(p − 1) ( C

4p−1 )α, where
the best constant is C = 4p−1

[αe(p−1)]1/α .

Now, using the definition (5.2) with r = 1/p and applying (5.6), we con-
clude that (M, d, µ) satisfies an isoperimetric inequality with the associated
function

CI(r) =
C

c

4
1
r−1

( 1
r − 1)1/α

, where C =
1

(αe)1/α
.

Take r = 1+q
2 = 3p+2

2(p+2) with 1 6 p < 2 as in Corollary 5.3 (q = 2p
2+p ). Since

r > 5
6 , we have 4

1
r−1 6 41/5. Also 1

r−1 = 1+q
1−q = 2−p

2+3p > 2−p
8 and α1/α > e−e.

Therefore,

CI(r) 6 41/5 ee

c

(
8/e

2− p

)1/α

.

It remains to apply Corollary 5.3. ut

Although the isoperimetric inequalities may serve as convenient sufficient
conditions for the week Poincaré type inequalities, in general they are not
necessary. To speak about both necessary and sufficient conditions expressed
in terms of geometric characteristics of a measure µ, one has to involve the
concept of the capacity of sets, which is close to, but different than the concept
of the µ-perimeter.
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Given a metric space (M, d) with a Borel (positive) measure µ and a pair
of sets A ⊂ Ω ⊂ M such that A is closed and Ω is open in M , the relative
µ-capacity of A with respect to Ω is defined as

capµ(A, Ω) = inf
∫
|∇f |2 dµ,

where the infimum is taken over all locally Lipschitz functions f on M ,
such that f > 1 on A and f = 0 outside Ω. The capacity of the set A is
capµ(A) = infΩ capµ(A,Ω). This definition is usually applied, when M is the
Euclidean space Rn equipped with the Lebesgue measure µ (or for Rieman-
nian manifolds, cf. [29, 19]). To make the definition workable in the setting
of a metric probability space (M, d, µ), so that to efficiently relate it to the
energy functional

∫ ∇f |2 dµ, the relative capacity should be restricted to the
cases such as µ(Ω) 6 1/2.

Thus, let (M, d, µ) be a metric probability space and A a closed set in M
of measure µ(A) 6 1/2. Following [4], we define the µ-capacity of A by

capµ(A) = inf
µ(Ω)61/2

capµ(A,Ω) = inf
{ ∫

|∇f |2 dµ : 1A 6 f 6 1Ω

}
, (5.7)

where the first infimum runs over all open sets Ω ⊂ M containing A and
with measure µ(Ω) 6 1/2, and the second one is taken over all such Ω’s and
all locally Lipschitz functions f : M → [0, 1] such that f = 1 on A and f = 0
outside Ω.

Note that, by the regularity of measure, we have µ(Aε) ↓ µ(A) as ε ↓
0. Hence, if µ(A) < 1/2, open sets Ω such that A ⊂ Ω, µ(Ω) 6 1/2 do
exist, so the second infimum is also well defined and the definition makes
sense. If µ(A) = 1/2 and Ω does not exist, let us agree that the capacity is
undefined (actually, this case does not appear when dealing with functional
inequalities).

With this definition the measure capacity inequalities on (M, d, µ) take
the form

capµ(A) > J(µ(A)), (5.8)

where J is a nonnegative function defined on (0, 1
2 ] and A is any closed subset

of M with µ(A) 6 1/2, for which the capacity is defined.
To see, how (5.8) is related to the weak Poincaré type inequality

‖f −Ef‖p 6 C(p) ‖∇f‖2, 1 6 p < 2, (5.9)

we take a pair of sets A ⊂ Ω ⊂ M and a function f as in the definition (5.7).
Then f has median zero under µ and, by Lemma 2.3,

‖f −Ef‖p > 1
3
‖f‖p > 1

3
(µ(A))1/p.
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Therefore, by (5.9),
∫
|∇f |2 dµ > 1

9C(p)2
(µ(A))1/p.

Taking the infimum over all admissible f and the supremum over all p, we
get the following elementary assertion.

Theorem 5.5. Under the Poincaré type inequality (5.9), the measure ca-
pacity inequality (5.8) holds with

J(t) =
1
9

sup
16p<2

[
t1/p

C(p)

]2

, 0 < t 6 1
2
.

In particular, the usual Poincaré type inequality, when C(p) = 1/
√

λ1 is
constant, implies that capµ(A) > cλ1µ(A) with a numerical constant c > 0
(cf. [4]).

To move in the opposite direction from (5.8) to (5.9), we need a capacitary
analogue of the co-area formula or co-area inequality, which was used in the
proof of Lemma 5.2. It has indeed been known since the works by Maz’ya
[28, 29], and below we just adapt his result and the argument of [30] to the
setting of a metric probability space.

Lemma 5.6. For any locally Lipschitz function f > 0 on M with µ-dedian
zero ∫

{f>0}
|∇f |2 dµ > 1

5

∫ +∞

0

capµ{f > t} dt2. (5.10)

Note that the capacity functional A → capµ(A) is nondecreasing, so the
second integrand in (5.10) represents a nonincreasing function in t > 0. For
a proof of (5.10), we consider (locally Lipschitz) functions of the form

g =
1

c1 − c0
max{min{f, c1} − c0, 0}, where c1 > c0 > 0.

We have g = 1 on the closed set A = {f > c1} and g = 0 outside the open
set Ω = {f > c0}. Since µ(Ω) 6 1/2, by the definition of the capacity,

∫
|∇g|2 dµ > capµ(A,Ω) > capµ(A).

On the other hand, since the function (c1−c0) g represents a Lipschitz trans-
form of f , we have (c1 − c0) |∇g(x)| 6 |∇f(x)| for all x ∈ M . In addition, g
is constant on the open sets {f < c0} and {f > c1}, so |∇g| = 0 on these
sets. Therefore,
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∫
|∇g|2 dµ =

∫

{c06f6c1}
|∇g|2 dµ 6 1

(c1 − c0)2

∫

{c06f6c1}
|∇f |2 dµ.

The two estimates yield

(c1 − c0)2 capµ{f > c1} 6
∫

{c06f6c1}
|∇f |2 dµ

or, given a ∈ (0, 1), for any t > 0
∫

{at6f6t}
|∇f |2 dµ > t2(1− a)2 capµ{f > t}.

Now, we divide both sides by t and integrate over (0, +∞). This leads to

∫

{f>0}
|∇f |2 dµ > (1− a)2

log(1/a)

∫ +∞

0

t capµ{f > t} dt.

The coefficient on the right-hand side is greater than 2/5 for almost an opti-
mal choice a = 0.3.

Now, we are prepared to derive from the capacitary inequality (5.8) a
certain weak Poincaré type inequality. This may be done with arguments
similar to the ones used in the proof of Lemma 5.2. To get an estimate of
the rate function, consistent with what we have got in Theorem 5.5, let us
assume that (M,d, µ) satisfies

capµ(A) > sup
06p<2

[
µ(A)1/p

C(p)

]2

, 0 < µ(A) 6 1
2
, (5.11)

with a given positive function C(p) defined in 0 < p < 2. Equivalently, we
could start with the measure capacity inequality (5.8) with a “capacitary”
function J(t) and then (5.11) holds with

CJ (p) = sup
0<t61/2

t1/p

√
J(t)

, 0 < p < 2. (5.12)

Let r = p/2 and q < r < 1. Given a locally Lipschitz function f > 0 on
M , we may combine Lemma 5.6 with Lemma 4.1, to get from (5.11) that

∫

{f>0}
|∇f |2 dµ > c

∫ +∞

0

µ{f > t}1/r dt2 = c

∫ +∞

0

µ{f2 > t}1/r dt

= c ‖f2‖r,1 > c

(
r − q

r

)1/q−1

‖f2‖q,



32 S. Bobkov and B. Zegarlinski

where c =
1

5C(p)2
=

1
5C(2r)2

. Equivalently,

‖f‖22q 6 5 C(2r)2
(

r

r − q

) 1−q
q

∫

{f>0}
|∇f |2 dµ. (5.13)

If f is not necessarily nonnegative, but has median zero, one may apply
(5.13) to the functions f+ and f−, and, summing the corresponding inequal-
ities, we will be led again to (5.13) for f . Moreover, by doubling the constant
on the right, the assumption m(f) = 0 may be replaced with Ef = 0. Thus,
in general,

‖f −Ef‖22q 6 10C(2r)2
(

r

r − q

) 1−q
q

∫
|∇f |2 dµ, 0 < q < r < 1.

Finally, replacing 2q with the variable p, we arrive at the following assertion.

Theorem 5.7. Under the hypothesis (5.11), the weak Poincaré type in-
equality

‖f −Ef‖p 6 C ′(p) ‖∇f‖2, 0 < p < 2,

holds with rate function

C ′(p) =
√

10 inf
p
2 <r<1

[
C(2r)

(
r

r − p/2

)1−p/2
p

]
. (5.14)

Alternatively, if we start with the measure capacity inequality (5.8) with
a function J(t), one may associate to it the function CJ defined in (5.12),
and then the rate function of the theorem will take the form

C ′(p) =
√

10 inf
p
2 <r<1

sup
0<t61/2

[
t1/(2r)

√
J(t)

(
r

r − p/2

)1−p/2
p

]
.

In particular, like in Corollary 5.3, choosing in (5.14) the value r = (1+q)/2
with q = p/2 and using the bounds ( r

r−q )
1−q
2q < e and

√
10 e < 9 (just to

simplify the numerical constant), one may take

C ′(p) = 9 C(1 + p/2) = 9 sup
0<t61/2

[
t

1
1+p/2

√
J(t)

]
, 0 < p < 2. (5.15)

Thus, starting with the weak Poincaré type inequality (5.9) with rate
function C(p), we obtain a geometric (capacity) inequality of the form (5.11),
which in turn leads to (5.9), however, with a somewhat worse rate function
C ′(p). Nevertheless, in some interesting cases, these two rate functions are
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in essence equivalent as p → 2. For example, as in Corollary 5.4, if C(p) =
C · (2 − p)−1/α, then C ′(p) = 9 · 21/α C · (2 − p)−1/α, which is of the same
order. It is in this sense one may say that weak Poincaré type inequalities
have an equivalent capacitary description.

6 Convex Measures

Here, we illustrate Theorem 5.1 and especially its Corollary 5.4 on the exam-
ple of probability distributions on the Euclidean space M = Rn possessing
certain convexity properties. The obtained results will be applied to the so-
called convex measures introduced and studied in the works of Borell [11, 12].

A Borel probability measure µ is called κ-concave, where −∞ 6 κ 6 1, if
for all t ∈ (0, 1) it satisfies a Brunn–Minkowski type inequality

µ(tA + (1− t)B) > [ tµ(A)κ + (1− t)µ(B)κ ]1/κ (6.1)

in the class of all nonempty Borel sets A,B ⊂ Rn.
When κ = 0, the right-hand side of (6.1) is understood as µ(A)tµ(B)1−t

and then we arrive at the notion of a log-concave measure, previously con-
sidered by Prékopa [33, 34] and Leindler [26] (cf. also [14]). When κ = −∞,
the right-hand side is understood as min{µ(A), µ(B)}. The inequality (6.1)
is getting stronger, as the parameter κ is increasing, so the case κ = −∞
describes the largest class, whose members are called convex or hyperbolic
probability measures.

Borell gave a complete characterization of such measures. If µ is absolutely
continuous with respect to the Lebesgue measure and is supported on some
open convex set K ⊂ Rn, the necessary and sufficient condition for µ to
satisfy (6.1) is that it has a positive density p on K such that for all t ∈ (0, 1)
and x, y ∈ K

p(tx + (1− t)y) > [ tp(x)κn + (1− t)p(y)κn ]1/κn , (6.2)

where κn = κ
1−nκ (necessarily κ 6 1

n ). Thus, the κ-concavity with κ < 0
means that the density is representable in the form p = V −β for some positive
convex function V on Rn, possibly taking an infinite value, where β > n and
κ = − 1

β−n .
Below we consider κ-concave probability measures with κ < 0. As was

shown in [23] for the convex body case (κ = 1
n ) and then in [8] for the gen-

eral log-concave case (κ = 0), any log-concave probability measure shares the
usual Poincaré type inequality. This property fails when κ < 0 even under
strong integrability hypotheses. Nevertheless, with such additional hypothe-
ses one may reach weak Poincaré type inequalities! More precisely, we will
involve the condition that the distribution function F (r) = µ{|x| 6 r} of the
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Euclidean norm has the tails 1 − F (r) decreasing to zero, as r → +∞, at
worst as e−ctα

. As long as the parameter of the convexity κ is negative, there
is no reason to distinguish between the case corresponding to the exponential
tails with α > 1 (which is typical for log-concave distributions) and the case
of (relatively) heavy or slow tails, when α < 1.

We need some preparations. Denote by Bρ an open Euclidean ball of radius
ρ > 0 with center at the origin.

Lemma 6.1. Any κ-concave probability measure, −∞ < κ 6 1, satisfies
the isoperimetric inequality

2ρµ+(A) > 1− [ t1−κ + (1− t)1−κ ] µ(Bρ)
−κ , (6.3)

where t = µ(A), 0 < t < 1, with arbitrary ρ > 0.

In the log-concave case, the inequality (6.3) should read as

2ρµ+(A) > t log
1
t

+ (1− t) log
1

1− t
+ log µ(Bρ). (6.4)

By the Prékopa–Leindler functional form of the Brunn–Minkowski inequality,
(6.4) was derived in [8]. The arbitrary κ-concave case was considered by
Barthe [3], who applied an extension of the Prékopa–Leindler theorem in
the form of Borell and Brascamp–Lieb. The inequality (6.3) was used in [3]
to study the isoperimetric dimension of κ-concave measures with κ > 0. A
direct proof of (6.3), not appealing to any functional form was given in [9].

To make the exposition self-contained, let us briefly remind the argument,
which is based on the following representation for the µ-perimeter, explicitly
relating it to measure convexity properties. Namely, let a probability measure
µ on Rn be absolutely continuous and have a continuous density p(x) on an
open supporting convex set, say K. It is easy to check that for any sufficiently
“nice” set A, for example, a finite union of closed balls in K or the complement
in Rn to the finite union of such balls

µ+(A) = lim
ε→0+

µ((1− ε)A + εBρ) + µ((1− ε)A + εBρ)− 1
2rε

, (6.5)

where A = Rn \ A. In the case of a κ-concave µ, it remains to apply the
original convexity property (6.1) to the right-hand side of (6.5) to get

µ+(A)> lim
ε→0+

((1−ε)µ(A)κ+εµ(Bρ)κ)1/κ+((1−ε)µ(A)κ+εµ(Bρ)κ)1/κ−1
2rε

,

which is exactly (6.3). Note that, by the Borell characterization, we do not lose
generality by assuming that µ is full-dimensional (i.e., absolutely continuous).

From Lemma 6.1 we can now derive the following assertion.
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Lemma 6.2. Let µ be a κ-concave probability measure on Rn, −∞ <
κ < 0, and let A be a Borel subset of Rn of measure t = µ(A) 6 1

2 . If ρ > 0
satisfies

µ{|x| > ρ} 6 t

2
, (6.6)

then

µ+(A) > c(κ)
ρ

t, where c(κ) =
1− (2/3)−κ

−2κ
. (6.7)

Proof. By Lemma 6.1, since µ(Bρ) > 1− t
2 ,

−2ρκ µ+(A) > 1− [ t1−κ + (1− t)1−κ ]
(

1− t

2

)κ

= 1−
[

t

(
t

1− t/2

)−κ
+ (1− t)

(
1− t

1− t/2

)−κ]
.

Clearly, on the interval 0 6 t 6 1/2, the ratio t
1−t/2 is increasing and so

bounded by 2/3. Also 1−t
1−t/2 6 1, so

−2ρκ µ+(A) > 1−
[

t

(
2
3

)−κ
+ (1− t)

]
= t

[
1−

(
2
3

)−κ]
,

which is the claim (6.7). ut

Note that c(κ) continuously depends on κ and limκ→0 c(κ) = c(0) =
1
2 log 3

2 , while c(κ) ∼ 1
−2κ as κ → −∞. In particular, c(κ) > c

1−κ for κ 6 0.
As a result, we obtain the following assertion.

Theorem 6.3. Let µ be a κ-concave probability measure on Rn, −∞ <
κ < 0, such that ∫

Φ(|x|) dµ(x) 6 D (6.8)

for some increasing continuous function Φ : [0, +∞) → [0, +∞). For any
Borel set A in Rn of measure t = µ(A) 6 1

2

µ+(A) > c

1− κ
t

Φ−1( 2D
t )

, (6.9)

where c is a positive universal constant and Φ−1 is the inverse function.

Indeed, by the Chebyshev inequality and the hypothesis (6.8),

µ{|x| > ρ} 6 D

Φ(ρ)
6 t

2
,
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where the last bound is obviously fulfilled for ρ > Φ−1( 2D
t ). By Lemma 6.2,

we get

µ+(A) > c(κ)
t

Φ−1( 2D
t )

,

and the theorem follows.
As a basic example, we consider the function Φ(x) = exp{(x/λ)α} with

parameters α, λ > 0, which has the inverse Φ−1(y) = λ log1/α y, y > 1. Then
the hypothesis (6.8) with D = 2 is equivalent to saying that the Orlicz norm
generated by the Young function ψα(x) = e|x|

α − 1, x ∈ R, is bounded by λ
for the Euclidean norm, i.e., ‖ |x| ‖ψα

6 λ in the Orlicz space Lψα(Rn, µ).

Corollary 6.4. Let µ be a κ-concave probability measure on Rn, −∞ <
κ < 0, such that, for some α > 0 and λ > 0,

∫
exp

{( |x|
λ

)α}
dµ(x) 6 2. (6.10)

Then for any Borel set A in Rn of measure t = µ(A) 6 1
2 with some universal

constant c > 0
µ+(A) > c

1− κ
t

λ log1/α(4/t)
.

Now, we may recall Corollary 5.4.

Corollary 6.5. Any κ-concave probability measure µ on Rn, −∞ < κ <
0, such that ∫

exp
{( |x|

λ

)α}
dµ(x) 6 2, α, λ > 0,

satisfies the weak Poincaré type inequality with rate function

C(p) = Cλ (1− κ)
(

3
2− p

)1/α

,

where C is a universal constant.

7 Examples. Perturbation

Given a spherically invariant, absolutely continuous probability measure µ
on Rn, we write its density in the form

p(x) =
1
Z

e−V (|x|), x ∈ Rn,
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where V = V (t) is defined and finite for t > 0 and Z is a normalizing factor.
If V is convex and nondecreasing, then µ is log-concave (and conversely). If
not, one may hope that µ will be κ-concave for some κ < 0. Namely, by the
Borell characterization (6.2) with κ < 0, the κ-concavity of µ is equivalent
to the convexity of the function pκn , where κn = κ

1−nκ . In other words, µ is
κ-concave if and only if

1) the function V (t) is nondecreasing in t > 0;
2) the function e−κnV (t) is convex on (0, +∞).

If V is twice continuously differentiable, the second property is equivalent to

2’) V ′′(t)− κnV ′(t)2 > 0 for all t > 0

As a more specific example, we consider densities of the form

p(x) =
1
Z

e−(a+b|x|)α

, x ∈ Rn, (7.1)

with parameters a, b > 0 and α > 0, which corresponds to V (t) = (a + bt)α.
It is clear that property 1) is fulfilled. If α > 1, V is convex and the

measure µ is log-concave. So, assume that 0 < α < 1, in which case V is not
convex. It is easy to verify, the inequality of property 2’) holds for all t > 0
if and only it holds for t = 0, and then it reads as

(α− 1)− ακnaα > 0.

Hence an optimal choice is κn = − 1−α
αaα or, equivalently,

κ = − 1− α

αaα − n(1− α)
provided that αaα − n(1− α) > 0. (7.2)

Conclusion 1. The probability measure µ with density (7.1) is convex
if and only if αaα − n(1 − α) > 0, in which case it is κ-concave with the
convexity parameter κ given by (7.2).

In other words, µ is convex only if the parameter a is sufficiently large. By
Corollary 6.5, if κ > −∞, i.e., if αaα − n(1− α) > 0, the measure µ satisfies
the weak Poincaré type inequality

‖f −Ef‖p 6 C(p) ‖∇f‖2, 1 6 p < 2, (7.3)

with rate function

C(p) = C

(
3

2− p

)1/α

, (7.4)

where C depends on the parameters a, b, α and the dimension n.
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However, it is unlikely that the requirement (7.2), a > a0 > 0, is crucial for
(7.3) to hold with some rate function. To see this, a perturbation argument
may be used to prove the following elementary:

Theorem 7.1. Assume that a metric probability space (M, d, µ) satisfies
the weak Poincaré type inequality (7.3). Let ν be a probability measure on M ,
which is absolutely continuous with respect to µ and has density w = dν

dµ such
that

c1 6 w(x) 6 c2, x ∈ M, (7.5)

for some c1, c2 > 0. Then (M,d, ν) also satisfies (7.3) with rate function
C ′(p) = 2c2√

c1
C(p).

Proof. Indeed, assume that f is bounded and locally Lipschitz on M with

Ef =
∫

f dµ = 0.

Then, by (7.3) and (7.5), for any p ∈ [1, 2)

‖f‖p
Lp(ν) =

∫
|f |p dν 6 c2

∫
|f |p dµ

6 c2 C(p)p

( ∫
|∇f |2 dµ

)p/2

6 c2

c
p/2
1

C(p)p

( ∫
|∇f |2 dν

)p/2

,

so

‖f‖Lp(ν) 6 c
1/p
2

c
1/2
1

C(p) ‖∇f‖L2(ν).

Since c2 > 1, we find

inf
c∈R

‖f − c‖Lp(ν) 6 c2√
c1

C(p) ‖∇f‖L2(ν).

But, in general, ‖f −Ef‖p 6 2 ‖f − c‖p for any c ∈ R. ut

Let us return to the measure µ = µa with density (7.2). Write Va(x) =
(a + b|x|)α and write the normalizing constant as a function of a, Z = Z(a),
although it depends also on the remaining parameters b > 0 and α ∈ (0, 1).
For all a1, a2 > 0 we have

|Va1(x)− Va2(x)| 6 |a1 − a2|α.

Therefore, the density w(x) =
dµa1(x)
dµa2(x)

satisfies c 6 w(x) 6 1/c with
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c =
min{Z(a1), Z(a2)}
max{Z(a1), Z(a2)} e−|a1−a2|α ,

so that the condition (7.4) is fulfilled. Hence, by Theorem 7.1, the weak
Poincaré type inequality (7.3) holds for all measures µa simultaneously with
rate function of the form (7.4), as long as it holds for at least one measure µa.
But, as we have already observed, the latter is true under (7.2) by the con-
vexity property of such measures. Thus, Conclusion 1 may be complemented
with the following one.

Conclusion 2. Probability measures µ having densities (7.1) with arbi-
trary parameters a, b > 0, α ∈ (0, 1) satisfy the weak Poincaré type inequality
(7.3) with rate function C(p) = C · ( 3

2−p )1/α, where C depends on a, b, α,
and n.

8 Weak Poincaré with Oscillation Terms

Let us return to the setting of an abstract metric probability space (M,d, µ).
It is now a good time to look at the relationship between the weak Poincaré
type inequalities

‖f −Ef‖p 6 C(p) ‖∇f‖2, 1 6 p < 2, (8.1)

which is our main object of research, and Poincaré type inequalities

Varµ(f) 6 β(s) ‖∇f‖22 + s Osc (f)2, s > 0, (8.2)

that involve an oscillation term Osc (f) = ess sup f − ess inf f and some
nonnegative function β(s). (Note that we always have Varµ(f) 6 1

4 Osc (f)2,
so for s > 1/4 (8.2) is automatically fulfilled.)

In both cases, f represents an arbitrary locally Lipschitz function with
a possible reasonable constraint that the right-hand sides should be finite.
Hence, from the point of view of direct applications, (8.2) makes sense only
for bounded f , while (8.1) may also be used for many unbounded functions.
Nevertheless, both forms are in a certain sense equivalent, i.e., there is some
relationship between C(p) and β(s). To study this type of connections, we
first note the following elementary inequality of Nash type.

Theorem 8.1. Under the weak Poincaré type inequality (8.1), for all
bounded locally Lipschitz f on M and any p ∈ [1, 2)

Varµ(f) 6 C(p)p Osc (f)2−p ‖∇f‖p
2. (8.3)
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Indeed, since (8.3) is translation invariant, we may assume Ef = 0. Then
it is obvious that ess inf f 6 0 6 ess sup f , so µ-almost everywhere Osc (f) >
‖f‖∞ > |f |. By (8.1),

E|f |2 = E|f |p |f |2−p 6 E|f |p Osc (f)2−p 6 C(p)p(E|∇f |2)p/2 Osc (f)2−p,

where all expectations are with respect to µ.
From Theorem 8.1 we derive an additive form of (8.3).

Theorem 8.2. Under the weak Poincaré type inequality (8.1), (8.2) holds
with

β(s) = inf
16p<2

[
C(p)2 s1− 2

p
]
. (8.4)

Proof. Using the Young inequality xy 6 xα

α + yβ

β , where x, y > 0, α, β > 1,
1
α + 1

β = 1, for any ε > 0 we can estimate the right-hand side of (8.3) by

C(p)p

[
[ 1ε (E |∇f |2)p/2]α

α
+

[ε Osc (f)2−p]β

β

]
.

Choose α = 2
p and β = 2

2−p , to get

Varµ(f) 6 C(p)p

αεα
E |∇f |2 +

C(p)p εβ

β
Osc (f)2. (8.5)

Put

s =
C(p)p εβ

β
, so that ε =

[
βs

C(p)p

]1/β

.

Then the coefficient in front of E |∇f |2 in (8.5) becomes

C(p)p

αεα
=

C(p)p

α

[
βs

C(p)p

]−α/β

= C(p)p(1+ α
β ) 1

αβα/β
s−α/β .

The first exponent on the right is

p(1 +
α

β
) = p(1 +

2
p

2− p

2
) = 2.

For the second term we have

1
αβα/β

=
p

2

(
2− p

2

)(2−p)/p

6 1.

Also α
β = 2

p−1, and (8.5) yields Varµ(f) 6 C(p)2 s1−2/p E |∇f |2+s Osc (f)2.
ut
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Corollary 8.3. If for some a, b > 0 and α > 0, the rate function in the
weak Poincaré type inequality (8.1) admits the bound

C(p) 6 a

(
b

2− p

)1/α

, 1 6 p < 2, (8.6)

then, with some numerical constants β0, β1 > 0, (8.2) holds with

β(s) = β log2/α 1
s
, s > 0, (8.7)

where β = β0a
2 (β1b)2/α.

Proof. We may and do assume that s < 1
4 . Write p = 2−ε, so that 0 < ε 6 1

and 2
p − 1 = ε

2−ε . By Theorem 8.2, the hypothesis (8.6), and the inequality
ε

2−ε 6 ε, for the optimal value of β(s) we have

β(s) 6 C(p)2s1− 2
p 6 a2 b2/α 1

ε2/α

1
s

ε
2−ε

6 a2 b2/α 1
ε2/αsε

for all ε ∈ (0, 1]. To optimize over all such ε, we consider the function ϕ(ε) =
ε2/αsε. Then ϕ(0) = 0, ϕ(1) = s, and ϕ′(ε) = ε2/αsε ( 2

αε − log 1
s ). Hence the

(unique) point of maximum of ϕ on [0, +∞) is ε0 = 2
α log 1

s

and, at this point,

ϕ(ε0) =
(

2
α log 1

s

)2/α

e−2/α =
(

2
αe

)2/α 1

log2/α 1
s

.

Hence, if ε0 6 1, i.e., s 6 e−2/α, then

β(s) 6 a2 b2/α 1
ϕ(ε0)

= a2 b2/α

(
αe

2

)2/α

log2/α 1
s

6 e1/ea2(be)2/α log2/α 1
s

.

Note that, since s < 1/4, the requirement s 6 e−2/α is automatically fulfilled,
as long as α > 1/ log 2. In that case, (8.7) is thus proved with constants
β0 = e1/e and β1 = e.

Now, let α < 1/ log 2 and s > e−2/α. Then ϕ is increasing and is maximized
on [0,1] at ε = 1, which gives β(s) 6 a2 b2/α 1

s . So, we need the bound

1
s

6 A log2/α 1
s

in the interval e−2/α 6 s 6 1/4. Since the function t log 1
t is decreasing in

t > 1/e, the optimal value of A is attained at s = 1/4, so A = 4/ log2/α 4.
Therefore, (8.7) is valid with β0 = 4 e1/e and β1 = e/ log 4. Corollary 8.3 is
proved. ut
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In particular, we have the following assertion.

Corollary 8.4. Any κ-concave probability measure µ on Rn, −∞ < κ <

0, such that
∫

exp{( |x|λ )α} dµ(x) 6 2 (α, λ > 0), satisfies (8.2) with

β(s) = β log2/α 1
s
, s > 0,

where β = β0λ
2(1− κ)2 β

2/α
1 , β0, β1 > 0 are numerical constants.

On the basis of (8.1) one may also consider a more general type of “oscil-
lations,” for example, Poincaré type inequalities of the form

Varµ(f) 6 βq(s) ‖∇f‖22 + s ‖f −Ef‖2q, s > 0, (8.8)

with a fixed finite parameter q > 2. As we will see, this form is natural in
the study of the slow rates of convergence of the associated semigroups Ptf ,
when f is unbounded, but is still in Lq(µ). Note that (8.8) is automatically
fulfilled for s > 1 (since βq is nonnegative), so one may restrict oneself to the
values s < 1. We prove the following assertion.

Theorem 8.5. Under the weak Poincaré type inequality (8.1) with rate
function C(p), (8.8) holds with

βq(s) = inf
16p<2

[
C(p)2 s−

q
q−2

2−p
p

]
. (8.9)

Proof. The argument is very similar to the one used in the proof of Theorem
8.2. Given p ∈ [1, 2) and q > 2, by the Hölder inequality, we have

E |f |2 6 ‖f‖r
p ‖f‖2−r

q ,

where r = p(q−2)
q−p . Therefore, if Ef = 0 (which we assume), by the hypothesis

(8.1),
E |f |2 6 C(p) ‖f‖2−r

q ‖∇f‖r
2. (8.10)

Using the Young inequality with exponents α, β > 1, 1
α + 1

β = 1, for any
ε > 0 we can estimate the right-hand side of (8.10) by

C(p)r

[
[ 1ε ‖∇f‖r

2]
α

α
+

[ε ‖f‖2−r
q ]β

β

]
.

Choose α = 2
r and β = 2

2−r to get
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E |f |2 6 C(p)r

αεα
E |∇f |2 +

C(p)r εβ

β
‖f‖2q. (8.11)

Put

s =
C(p)r εβ

β
, so that ε =

[
βs

C(p)r

]1/β

.

Then the coefficient in front of E |∇f |2 in (8.11) becomes

C(p)r

αεα
=

C(p)r

α

[
βs

C(p)r

]−α/β

= C(p)r(1+ α
β ) 1

αβα/β
s−α/β .

The first exponent on the right is r(1+ α
β ) = r(1+ 2

r
2−r
2 ) = 2. For the second

term we have
1

αβα/β
=

r

2

(
2− r

2

)(2−r)/r

6 1.

Also α
β = 2

r − 1 = q
q−2

2−p
p , and we arrive at

E |f |2 6 C(p)2 s−
q

q−2
2−p

p E |∇f |2 + s ‖f‖2q,

which is the claim. ut

Now, we can strengthen Corollaries 8.3 and 8.4.

Corollary 8.6. If the rate function in the weak Poincaré type inequality
(8.1) admits the bound (8.6), then (8.8) holds with

βq(s) = β log
2
α

2
s
, s > 0, (8.12)

where β = 2a2 (4b q
q−2 )2/α.

Proof. As in the proof of Corollary 8.3, we assume that s < 1 and write
p = 2 − ε, so that 0 < ε 6 1 and 2

p − 1 = ε
2−ε . Put Q = q

q−2 . By Theorem
8.5 and the inequality ε

2−ε 6 ε, for the optimal value of βq(s) we have

βq(s) 6 C(p)2 sQ(1− 2
p ) 6 a2 b2/α 1

ε2/α

1
sQ ε

2−ε
6 a2 b2/α 1

ε2/αsQε

for all ε ∈ (0, 1]. To optimize over all such ε, we consider the function ϕ(ε) =
ε2/αsQε. We have ϕ(0) = 0 and ϕ(1) = sQ. As we know, the (unique) point
of maximum of ϕ on [0, +∞) is ε0 = 2

Qα log 1
s

and, at this point,

ϕ(ε0) =
(

2
Qα log 1

s

)2/α

e−2/α =
(

2
Qαe

)2/α 1

log2/α 1
s

.
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Hence, if ε0 6 1, i.e., s 6 e−2/Qα, then

βq(s) 6 a2 b2/α

ϕ(ε0)
= a2 b2/α

(
Qαe

2

)2/α

log2/α 1
s

6 2a2 (Qbe)2/α log2/α 1
s

,

where we used (α
2 )2/α 6 e1/e < 2. Thus, for this range of s, (8.12) is proved.

Now, we assume that s > e−2/Qα. Then ϕ is increasing and is maximized
on [0,1] at ε = 1, which gives βq(s) 6 a2 b2/αs−Q. So, we need a bound of
the form

s−Q 6 A log2/α(2/s)

or, equivalently,
A−1/Q 6 s log2/Qα(2/s)

in the interval e−2/Qα 6 s 6 1. The function s logc(2/s) with parameter
c > 0 is increasing in 0 < s 6 2e−c and decreasing in s > 2e−c, so we only
need to consider the endpoints of that interval. For the point s = 1 we get

A = 1/ log2/α 2,

while for s = e−2/Qα we get

A =
e2/α

log2/α(2 e2/Qα)
6

(
e

log 2

)2/α

< 42/α.

The corollary is proved. ut

Remark 8.1. As a result, one may also generalize Corollary 8.4. Namely,
any κ-concave probability measure µ on Rn with κ < 0 and

∫
exp

{( |x|
λ

)α}
dµ(x) 6 2, α, λ > 0,

satisfies the weak Poincaré type inequality (8.8) with

βq(s) = β log2/α 2
s
, q > 2,

where β depends on λ, α, κ, and q.

Remark 8.2. It is also possible to derive a weak Poincaré type inequality
(8.1) from (8.2) or (8.8) with some rate functions C(p) explicitly in terms of
β(s) or βq(s). This may be done by virtue of the measure capacity inequalities

capµ(A) > J(µ(A)),

which we discussed in Section 5. As was shown in [4], the latter is fulfilled
with J(t) = t/(4β(t/4)) in the presence of (8.2). Hence, applying Theorem
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5.7 in a somewhat weaker form (5.15), we conclude that (8.1) holds with

C(p)2 = 81 sup
0<t61/2

[
t

4
2+p

J(t)

]
= 81 sup

0<t61/2

[
4

4
2+p t

2−p
2+p β(t/4)

]
.

Hence we arrive at the following assertion.

Theorem 8.7. In the presence of (8.2), the weak Poincaré type inequality
(8.1) holds with rate function given by

C(p)2 = C2 sup
0<s61/8

[
s

2−p
2+p β(s)

]
,

where C is a universal constant.

9 Convergence of Markov Semigroups

Let µ be an absolutely continuous Borel probability measure on Rn. We
assume that the measure is regular enough in the following sense: There exists
a family of operators (Pt)t>0, acting on some space D of bounded smooth
functions f on Rn with bounded partial derivatives, dense in all Lp(µ), p > 1,
such that

1) Ptf ∈ D for all f ∈ D,
2) P0 is the identity operator, i.e., P0f = f for all f ∈ D,
3) Pt forms a semigroup, i.e., Pt(Psf) = Pt+sf for all t, s > 0,
4) for any f ∈ D, in the space L∞(µ), we have ‖Ptf−f‖∞ → 0 as t → 0+,
5) for any f ∈ D, in the space L1(µ), the limit Lf = limt→0+

Ptf−f
t exists,

6) for all f, g ∈ D
∫
〈∇f,∇g〉 dµ = −

∫
f Lg dµ. (9.1)

Equality in 5) expresses the property that L represents the generator of
the semigroup Pt. This is usually denoted by Pt = etL, where the exponential
function is understood in the operator sense. Owing to 1) and 3), it may be
generalized as the property that for any f ∈ D and t > 0, in the space L1(µ),

L(Ptf) = lim
ε→0+

Pt+εf − Ptf

ε
. (9.2)

In other words, the L1-valued map t → Ptf is differentiable from the right
and has the right derivative L(Ptf). The equalities (9.1) and (9.2) may be
used to prove, in particular, the following assertion.
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Lemma 9.1. Given a twice continuously differentiable function u on the

real line, for any f ∈ D the function t →
∫

u(Ptf) dµ is differentiable from

the right and has the right derivative

d

dt

∫
u(Ptf) dµ = −

∫
u′′(Ptf) |∇Ptf |2 dµ. (9.3)

To illustrate classical applications, we assume that a measure µ satisfies a
Poincaré type inequality

λ1 Varµ(f) 6
∫
|∇f |2 dµ (9.4)

for some λ1 > 0 in the class of all smooth f on Rn.

For u(x) = x the equality (9.3) implies that the function ϕ(t) =
∫

Ptf dµ,

where f ∈ D, has the right derivative zero at every point t > 0. Since

this function is also continuous, it must be equal to a constant, i.e.,
∫

f dµ.

Taking u(x) = x2 and assuming that
∫

f dµ = 0, from (9.3) and (9.4) we

have
d

dt

∫
|Ptf |2 dµ = −2

∫
|∇Ptf |2 dµ 6 −2λ1

∫
|Ptf |2 dµ.

Thus, the function ϕ(t) =
∫
|Ptf |2 dµ is continuous and has the right deriva-

tive satisfying ϕ′(t) 6 −2λ1ϕ(t). It is a simple calculus exercise to de-
rive from this differential inequality the bound on the rate of convergence,
ϕ(t) 6 ϕ(0)e−2λ1t. Therefore,

∫
|Ptf |2 dµ 6 e−2λ1t

∫
|f |2 dµ, t > 0. (9.5)

In particular, we obtain a contraction property ‖Ptf‖2 6 ‖f‖2 for all f ∈ D,
which allows us to extend Pt to all L2(µ) as a linear contraction. Moreover,
by continuity, (9.5) extends to all f ∈ L2(µ) with µ-mean zero, and we also
have ∫

Ptf dµ =
∫

f dµ.

Our next natural step is to generalize (9.5) to Lp-spaces.

Theorem 9.2. For all f ∈ Lp(µ), p > 1, and t > 0
∫∫

|Ptf(x)−Ptf(y)|p dµ(x)dµ(y) 6 e−
4(p−1)

p λ1t

∫∫
|f(x)−f(y)|p dµ(x)dµ(y).

(9.6)
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Proof. As in the previous example of the quadratic function, for any twice
continuously differentiable, convex function u on the real line and any f ∈ D,
by (9.3) and (9.4), we have

d

dt

∫
u(Ptf) dµ = −

∫
u′′(Ptf) |∇Ptf |2 dµ

= −
∫
|∇v(Ptf)|2 dµ 6 −λ1 Varµ[v(Ptf)], (9.7)

where the derivative is understood as the derivative from the right and v
is a differentiable function satisfying v′2 = u′′. In particular, we may take
u(z) = |z|p with p > 2, so that u′′(z) = p(p− 1)|z|p−2 and

v(z) = 2
√

p− 1
p

sign(z) |z|p/2,

to get
d

dt

∫
|Ptf |p dµ 6 −4λ1

p− 1
p

∫
|Ptf |p dµ (9.8)

provided that ∫
sign(Ptf) |Ptf |p/2 dµ = 0.

The last equality holds, for example, when Ptf has a distribution under µ,
symmetric about zero. Moreover, a slight modification of u(z) = |z|p near
zero allows us to replace the constraint p > 2 in (9.7) and (9.8) by the weaker
condition p > 1 (cf. details at the end of the proof).

Now, on M = Rn × Rn, we consider the product measure µ ⊗ µ. By
the subadditivity property of the variance functional, it also satisfies the
Poincaré type inequality (9.4) with the same constant λ1. In addition, with
this measure one may associate the semigroup P t, t > 0, acting on a certain
space D of bounded smooth functions on Rn × Rn with bounded partial
derivatives containing functions of the form

f(x, y) = f(x)− f(y), x, y ∈ Rn, f ∈ D.

It easy to see that for such functions

(P tf)(x, y) = Ptf(x)− Ptf(y), (Lf)(x, y) = Lf(x)− Lf(y),

where L is the generator of P t. Apply (9.8) to the product space (Rn ×
Rn, µ⊗ µ). Since P tf has a symmetric distribution under µ⊗ µ about zero,
the function

ϕ(t) =
∫ ∫

|Ptf(x)− Ptf(y)|p dµ(x)dµ(y)
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is continuous and has the right derivative at every point t > 0 satisfying the
differential inequality

ϕ′(t) 6 −C ϕ(t) (9.9)

with C = 4λ1
p−1

p . Then ϕ(t) 6 ϕ(0)e−Ct, which is the claim.

Thus, when p > 2, every Pt represents a continuous linear operator on
D with respect to the Lp-norm, so it may be extended to the whole Lp(µ);
moreover, the inequality (9.6) remains valid for all functions f in Lp(µ).

Now, let us see what modifications may be made in the case 1 < p < 2.
Given a fixed natural number N , define a convex, twice continuously differ-
entiable, even function uN through its second derivative

u′′N (z) = p(p− 1) min{|z|p−2, N}, z ∈ R,

and by requiring that uN (0) = u′N (0) = 0. Also, define an odd function vN

through its first derivative

v′N (z) = sign(z)
√

u′′N (z) = sign(z)
√

p(p− 1) min
{
|z| p

2−1,
√

N
}

, z 6= 0,

or, equivalently,

vN (z) =
√

p(p− 1)
∫ z

0

min{|y| p
2−1,

√
N} dy.

We note that vN is differentiable everywhere, except for z = 0, at which point
the left and right derivatives exist, but do not coincide. On the other hand,
|v′N (z)| is continuous everywhere, including the origin point z = 0, so that,
in the class of all smooth g on Rn, we always have a chain rule

u′′N (g(x))|∇g(x)|2 = |∇vN (g(x))|2, x ∈ Rn,

even if g(x) = 0. Thus, the first part of (9.7) remains valid for uN , i.e.,

d

dt

∫
uN (Ptf) dµ = −

∫
|∇vN (Ptf)|2 dµ.

We also recall that the Poincaré type inequality (9.4) extends to all locally
Lipschitz functions f on Rn. In particular, by the chain rule,

λ1 Varµ(T (g)) 6
∫
|T ′(g)|2 |∇g|2 dµ

if g is smooth on Rn and T on R. For a fixed g this inequality may be written
in dimension one as

λ1 Varν(T ) 6
∫
|T ′|2 dπ
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with respect to the distribution ν of g under µ and the distribution π of g
under the finite measure |∇g|2 dµ. At this step, it is only required that T be
locally Lipschitz on the line, and this is indeed true for T = vN . Therefore,
the second part of (9.7) also holds for vN , and we get

d

dt

∫
uN (Ptf) dµ 6 −λ1

∫
vN (Ptf)2 dµ (9.10)

provided that ∫
vN (Ptf) dµ = 0.

Now, to estimate further the right-hand side of (9.10), we use the integral
description of vN to see that for z > 0

0 6 v(z)− vN (z) =
√

p(p− 1)
∫ z

0

[
y

p
2−1 −min{y p

2−1,
√

N }
]

dy

6
√

p(p− 1)
∫ +∞

0

y
p
2−1 1{y p

2−1>
√

N } dy

= 2
√

p− 1
p

N− p
2(2−p) .

Hence

v(z)2 − vN (z)2 6 2 v(z)(v(z)− vN (z)) 6 8(p− 1)
p

z
p
2 N− p

2(2−p) 6 4√
N

z
p
2 ,

so that

vN (z)2 > v(z)2 − 4√
N

z
p
2 =

4(p− 1)
p

u(z)− 4√
N

z
p
2 ,

and thus, for all z ∈ R,

vN (z)2 > 4(p− 1)
p

uN (z)− 4√
N
|z| p

2 .

Therefore, (9.10) may be continued as

d

dt

∫
uN (Ptf) dµ 6 −4λ1

p− 1
p

∫
uN (Ptf) dµ +

4√
N

∫
|Ptf |

p
2 dµ,

where we assumed that
∫

vN (Ptf) dµ = 0. Since f is bounded, all Ptf are

uniformly bounded (cf. Corollary 9.3 concerning large values of p), so the
above estimate yields



50 S. Bobkov and B. Zegarlinski

d

dt

∫
uN (Ptf) dµ 6 −4λ1

p− 1
p

∫
uN (Ptf) dµ +

A√
N

(9.11)

with some constant A independent of t. Applying (9.11) in the product space
to functions of the form f(x) − f(y), as in the case p > 2, we find that the
function

ϕN (t) =
∫ ∫

uN (Ptf(x)− Ptf(y)) dµ(x)dµ(y)

is continuous and has the right derivative satisfying at every point t > 0 the
following modified form of (9.9):

ϕ′N (t) 6 −CϕN (t) + εN ,

where εN = A√
N

and C = 4λ1
p−1

p , as above. In terms of ψN (t) = ϕN (t) eCt

this differential inequality takes a simpler form ψ′N (t) 6 εN eCt, which is
easily solved as

ψN (t) 6 ψN (0) +
εN

C
(eCt − 1).

Equivalently,
ϕN (t) 6 ϕN (0) e−Ct +

εN

C
(1− e−Ct),

so
∫∫

uN (Ptf(x)−Ptf(y)) dµ(x)dµ(y)

6 e−
4(p−1)

p λ1t

∫∫
uN (f(x)−f(y)) dµ(x)dµ(y) +

εN

C
.

It remains to let N → ∞ and use the property that uN → u uniformly on
bounded intervals of the line. Thus, (9.6) holds for all functions f in D and
therefore for all f from the whole space Lp(µ). Theorem 9.2 is proved. ut

Remark 9.1. Let us describe several immediate applications of Theo-
rem 9.2.

1. Thus, every Pt represents a linear contraction in Lp(µ). Note that if∫
f dµ = 0, by the Jensen inequality, the left-hand side of (9.6) majorizes

‖Ptf‖p
p and the integral on the right-hand side is majorized by 2p‖f‖p

p. Hence
we get a hypercontractive inequality

‖Ptf‖p 6 2e
− 4(p−1)

p2 λ1t ‖f‖p.

2. Similarly, one may consider Orlicz norms different from Lp-norms. For
example, using the Taylor expansion for ψ2(z) ≡ ez2 − 1, from (9.6) we get
that for any α > 0
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∫∫
ψ2(α|Ptf(x)−Ptf(y)|) dµ(x)dµ(y) 6e−2λ1t

∫∫
ψ2(α|f(x)−f(y)|) dµ(x)dµ(y).

Hence the operator Pt continuously acts on Lψ2(µ).

3. Letting p → +∞ in (9.6), we conclude that for any bounded measurable
function f on Rn and for any t > 0

Osc (Ptf) 6 Osc (f). (9.12)

In particular, Pt represents a contraction in L∞(µ), while for finite p > 1
these operators are hypercontractive.

4) Since the inequality (9.12) does not involve λ1, it remains valid in the
case λ1 = 0. Such properties may be seen with the help of Lemma 9.1.
Namely, from (9.3) it follows that, if u is additionally convex, then the func-

tion t →
∫

u(Ptf) dµ is nonincreasing, so that

∫
u(Ptf) dµ 6

∫
u(f) dµ. (9.13)

For example, the case u(z) = |z|p, p > 1, yields

‖Ptf‖p 6 ‖f‖p. (9.14)

By the continuity of Pt on Lp, this inequality extends from D to the whole
space Lp(µ). Note that, in Lemma 9.1, it is assumed that u is twice continu-
ously differentiable and this is fulfilled as long as p > 2. However, the range
1 < p 6 2 may be treated with the help of a smooth approximation, such as
in the proof of Theorem 9.2. Moreover, (9.14) remains valid for p = 1. We
also note that, applying (9.14) in product spaces with p = +∞, we arrive
at (9.12).

10 Markov Semigroups and Weak Poincaré

As the next natural step, one may wonder what a weak Poincaré type in-
equality

‖f −Ef‖p 6 C(p) ‖∇f‖2, 1 6 p < 2, (10.1)

is telling us about possible contractivity property of the semigroup (Pt)t>0

associated to the Borel probability measure µ on Rn. As in the previous
section, we assume that properties 1)–6) are fulfilled, so that one may develop
analysis, such as the basic identity (9.3) of Lemma 9.1.

Since (10.1) is weaker than the usual Poincaré type inequality (9.4), it
is natural to expect to get a weak version of Theorem 9.2 on the rate of
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convergence of Ptf to the constant function. In the classical case p = 2, lower
rate of convergence have been studied by many authors. In particular, for this
aim, developing the ideas of Ligget [27], Röckner and Wang [35] proposed to
use a weak Poincaré type inequality with the generalized “oscillation term”

Varµ(f) 6 β(s) ‖∇f‖22 + sΦ(f)2, s > 0, (10.2)

where Φ is a nonnegative functional on D satisfying

Φ(Ptf) 6 Φ(f) for all t > 0. (10.3)

Indeed, by Lemma 9.1, applied to u(z) = z2, we have

d

dt

∫
|Ptf |2 dµ = −2

∫
|∇Ptf |2 dµ.

Hence, by (10.2) and (10.3), if
∫

f dµ = 0, the function ϕ(t) =
∫
|Ptf |2 dµ

has the right derivative satisfying

ϕ′(t) 6 − 2
β(s)

ϕ(t) +
2s

β(s)
Φ(f)2.

This differential inequality is solved as

ϕ(t) 6 ϕ(0) e−2t/β(s) + s (1− e−2t/β(s))Φ(f)2,

so ∫
|Ptf |2 dµ 6 inf

s>0

[
e−2t/β(s)

∫
|f |2 dµ + sΦ(f)2

]
. (10.4)

Thus, we get a more general statement on the rate of convergence than the
classical inequality (9.5), when β(s) = 1/λ1, which is obtained from (10.4) by
letting s → 0. In applications, the right-hand side of (10.4) can be simplified
as ∫

|Ptf |2 dµ 6 ξ(t)
[

1
2

∫
|f |2 dµ + Φ(f)2

]
, (10.5)

where ξ(t) = inf{s > 0 : β(s) log 2
s 6 2t}.

As the most interesting examples, one may apply this scheme to the
functionals Φ(f) = Osc (f), or more generally Φ(f) = ‖f − Ef‖q or just
Φ(f) = ‖f‖q. Then, by the continuity of Pt, the resulting inequalities (10.4)
and (10.5) extend from D to Lq-spaces.

In the presence of (10.1), we look for a corresponding expression for the
bound on the rate of convergence explicitly in terms of the function C(p).
For this aim, we may appeal to Theorem 8.5, which relates (10.1) to (10.2)
in the case Φ(f) = ‖f − Ef‖q, q > 2. Indeed, by (8.9), the inequality (10.2)
holds with
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β(s) = inf
16p<2

[
C(p)2 s

q
q−2 (1−2/p)

]
,

so the right-hand side of (10.3) is bounded from above by

inf
16p<2

inf
s>0

[
exp

{
− 2t

C(p)2
s

q
q−2 (2/p−1)

} ∫
|f |2 dµ + s ‖f −Ef‖2q

]
.

In particular, we have the following assertion.

Theorem 10.1. Assume that for some a, b > 0 and α > 0 the rate function
in the weak Poincaré type inequality (10.1) admits a polynomial bound

C(p) 6 a

(
b

2− p

)1/α

, 1 6 p < 2. (10.6)

Then for any f ∈ Lq(µ), q > 2, such that
∫

f dµ = 0 and for all t > 0

∫
|Ptf |2 dµ 6 3 exp

{−c t
α

α+2
}‖f‖2q, (10.7)

where the constant c > 0 depends on the parameters a, b, α, and q only.

Indeed, by Corollary 8.6, the hypothesis (10.6) implies β(s) 6 β log2/α(2/s),
where β = β0a

2 (β1b
q

q−2 )2/α with some positive absolute constants β0 and
β1. Hence, in order to estimate ξ(t) from above, it remains to solve

β log1+ 2
α (2/s) 6 2t,

and we arrive at
ξ(t) 6 2 exp

{
−

(2t

β

) α
α+2

}
.

Finally, apply (10.5).
Now, recalling Corollary 8.3 and Remark 8.1, we obtain the hypercontrac-

tivity property (10.7) for a large family of convex probability measures.

Corollary 10.2. If a probability measure µ is κ-concave for some κ < 0
and ∫

exp
{( |x|

λ

)α}
dµ(x) 6 2, α, λ > 0,

then it satisfies (10.7) for any f ∈ Lq(µ), q > 2, such that
∫

f dµ = 0.
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Using a perturbation argument, one may obtain other interesting exam-
ples. In particular, they include all probability measures µ on Rn with den-
sities of the form (7.1), i.e.,

dµ(x)
dx

=
1
Z

e−(a+b|x|)α

, x ∈ Rn,

with parameters a > 0, b > 0, and α > 0.
At the next step, we generalize the previous results to Lp-spaces, so that

to control the rate of convergence of Ptf for norms different than L2-norms.
We start with the weak Poincaré type inequality (10.2) for the functional

Φ(f) = ‖f −Ef‖r, i.e., with the family of inequalities

Varµ(f) 6 βr(s) ‖∇f‖22 + s ‖f −Ef‖2r, s > 0, (10.8)

where f is an arbitrary locally Lipschitz function on Rn, r > 2, and βr is a
function of the parameter s.

Theorem 10.3. Under (10.8), given q > p > 1 such that pr
2 = q, for all

f ∈ Lq(µ) and t, s > 0
∫∫

|Ptf(x)− Ptf(y)|p dµ(x)dµ(y)

6 exp
{
− 4(p− 1)

p

t

βr(s)

} ∫∫
|f(x)− f(y)|p dµ(x)dµ(y)

+ s · p

2(p− 1)

( ∫∫
|f(x)− f(y)|q dµ(x)dµ(y)

)p/q

. (10.9)

Proof. The argument represents a slight modification of the proof of Theo-
rem 9.2. By (9.3), given a twice continuously differentiable, convex function
u on the real line and a differentiable function v such that v′2 = u′′, we have

for any f ∈ D such that
∫

f dµ = 0 and for all t, s > 0

d

dt

∫
u(Ptf) dµ = −

∫
u′′(Ptf) |∇Ptf |2 dµ

= −
∫
|∇v(Ptf)|2 dµ

6 − 1
β(s)

Varµ[v(Ptf)] +
s

β(s)
‖v(Ptf)−Eµv(Ptf)‖2r,

where the derivative is understood as the derivative from the right. In par-
ticular, we may take u(z) = |z|p with p > 2, so that u′′(z) = p(p− 1)|z|p−2,

and v(z) = 2
√

p−1
p sign(z) |z|p/2, to get
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d

dt

∫
|Ptf |p dµ 6 −4(p− 1)

p

1
β(s)

∫
|Ptf |p dµ +

s

β(s)
‖ |Ptf |p/2‖2r (10.10)

provided that ∫
sign(Ptf) |Ptf |p/2 dµ = 0.

Note that the latter holds when Ptf has a distribution under µ, which is sym-
metric about zero. A slight modification of u(z) = |z|p near zero, described
in the proof of Theorem 9.2, allows one to replace the constraint p > 2 by
the weaker condition p > 1. Note that, by the contraction property (9.14),

‖ |Ptf |p/2‖2r = ‖Ptf‖p
pr/2 = ‖Ptf‖p

q 6 ‖f‖p
q ,

so (10.10) yields

d

dt

∫
|Ptf |p dµ 6 −4(p− 1)

p

1
βr(s)

∫
|Ptf |p dµ +

s

βr(s)
‖f‖p

q . (10.11)

Now, to guarantee that Ptf has a symmetric distribution, we consider the
product measure µ⊗µ on M = Rn×Rn. With this measure we associate the
semigroup P t, t > 0, acting on a certain space D of bounded smooth functions
on Rn×Rn with bounded partial derivatives, containing all functions of the
form

f(x, y) = f(x)− f(y), x, y ∈ Rn, f ∈ D.

It easy to see that for such functions

(P tf)(x, y) = Ptf(x)− Ptf(y), (Lf)(x, y) = Lf(x)− Lf(y),

where L is the generator of P t.
We are going to apply (10.11) to f on the product space (Rn×Rn, µ⊗µ), so

we need a hypothesis of the form (10.8) with respect to the product measure.
Note that

Varµ⊗µ(f) = 2 Varµ(f), Eµ⊗µ|∇f(x, y)|2 = 2Eµ|∇f |2

and, by the Jensen inequality,

Eµ|f −Eµf |r 6 Eµ⊗µ|f |r.

Hence (10.8) implies

Varµ⊗µ(f) 6 βr(s)‖∇f‖22 + 2s‖f‖2r, s > 0.

As a result, we obtain a slightly weakened form of (10.11), namely,
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d

dt

∫
|P tf |p d µ⊗ µ 6 −4(p− 1)

p

1
βr(s)

∫
|P tf |p dµ⊗ µ +

2s

βr(s)
‖f‖p

q .

(10.12)
Let us note that, by virtue of the subadditivity property of the variance
functional, (10.12) may be extended to the whole space D, however, with a
worse constant in place of 2.

Thus, the function

ϕ(t) =
∫
|P tf |p dµ⊗ µ =

∫ ∫
|Ptf(x)− Ptf(y)|p dµ(x)dµ(y)

is continuous and has the right derivative at every point t > 0 satisfying the
differential inequality

ϕ′(t) 6 −Aϕ(t) + B

with

A =
4(p− 1)
βr(s)p

, B =
2s

βr(s)
‖f‖p

q .

Using the change ϕ(t) = ψ(t)e−At, we obtain

ϕ(t) 6 ϕ(0)e−At +
B

A
(1− e−At) 6 ϕ(0)e−At +

B

A
,

i.e.,
∫ ∫

|Ptf(x)− Ptf(y)|p dµ(x)dµ(y)

6 e−At

∫ ∫
|f(x)− f(y)|p dµ(x)dµ(y) +

B

A
.

But
B

A
=

ps

2(p− 1)
‖f‖p

q ,

so we arrive at the desired inequality (10.9). Finally, by continuity of Pt, this
inequality extends from D to the whole space Lq(µ). ut

At the expense of some constants, depending on p and q, the inequality

(10.9) may be simplified. Namely, if
∫

fdµ = 0, the left-hand side of (10.9)

majorizes ‖Ptf‖p
p, while the integrals on the right-hand side are bounded by

2p‖f‖p and 2q‖f‖q respectively. Hence

‖Ptf‖p
p 6 2p e−

4(p−1)
p

t
βr(s) ‖f‖p

p + s · 2p p

2(p− 1)
‖f‖p

q .

Corollary 10.4. Given q > p > 1, under (10.8) with r = 2q
p , for all

f ∈ Lq(µ) with mean zero and for all t > 0,
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‖Ptf‖p
p 6 2p ‖f‖p

q inf
s>0

[
e−

4(p−1)
p

t
βr(s) +

p

2(p− 1)
s

]
. (10.13)

To further simplify this bound, define the function

ξ(t) = inf
{

s > 0 : βr(s) log
2
s

6 4p

p− 1
t

}

depending also on the parameters p and r. Then the expression in the square
brackets in (10.13) is bounded by

s

2
+

p

2(p− 1)
s 6 p

p− 1
s.

Therefore,
‖Ptf‖p

p 6 p

p− 1
2p ‖f‖p

q ξ(t). (10.14)

Now, let us start with the weak Poincaré type inequality (10.1) with rate
function C(p) satisfying the bound (10.6), as in Theorem 10.1. Then, as we
know from Corollary 8.6, the hypothesis (10.8) holds with

βr(s) = β log
2
α

2
s
,

where

β = 2a2
(
4b

r

r − 2

)2/α

.

Since r = 2q
p , the coefficient is

β = 2a2
(
4b

q

q − p

)2/α

.

We also find that

ξ(t) 6 2 exp
{
−

( 4p

β(p− 1)
t
)α/(α+2)}

.

As a result, we obtain the following generalization of Theorem 10.1.

Theorem 10.5. Assume that the weak Poincaré type inequality (10.1)
holds with rate function C(p) satisfying the bound (10.6) with some parame-
ters a, b > 0 and α > 0. Given q > p > 1, for all f ∈ Lq(µ) with mean zero
and for all t > 0

∫
|Ptf |p dµ 6 p

p− 1
2p+1 exp

{−c t
α

α+2
} ( ∫

|f |q dµ

)p/q

, (10.15)
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where the constant c > 0 depends on a, b, α, p, and q only.

More precisely, we may put

c =
(

4p

p− 1

) α
α+2 ( q−p

q )
2

α+2

(2a2)
2
α (4b)

2
α+2

.

11 L2 Decay to Equilibrium in Infinite Dimensions

11.1 Basic inequalities and decay to equilibrium in the
product case

In this and next sections, we further simplify the notation for the expectation

setting µf ≡ Eµf =
∫

f dµ for the expectation of f under a probability mea-

sure µ. This will prove to be useful when we have to deal with more involved
mathematical expressions.

Consider a probability measure on the real line of the form

ν0(dx) ≡ 1
Z

e−V (x)dx

with V (x) ≡ ς(1 + x2)
α
2 , where 0 < α 6 1 and ς ∈ (0,∞), while Z denotes a

normalization constant. Since |x| 6 (1 + x2)
1
2 6 1 + |x|, by Theorem 7.1 and

Corollary 8.6, we have the following assertion.

Lemma 11.1. For any p ∈ (2,∞) there exists β ∈ (0,∞) such that for
any s ∈ (0, 1)

ν0 |f − ν0f |2 6 β(s)ν0 |∇f |2 + s (ν0 |f − ν0f |p)
2
p (11.1)

with β(s) ≡ β
(
log 2

s

) 2
α for any function f , for which the right hand side is

well defined.

By a simple inductive argument, one gets the following property for cor-
responding product measures.

Proposition 11.2 (product property). Suppose that νi, i ∈ N, satisfy

νi |f − νif |2 6 β(s)νi |∇if |2 + s (νi |f − νif |p)
2
p . (11.2)

Then the product measure µ0 ≡ ⊗i∈Nνi also satisfies
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µ0 |f − µ0f |2 6 β(s)
∑

i∈N
µ0 |∇if |2 + sAp,µ0(f) (11.3)

with
Ap,µ0(f) ≡

∑

i∈N
µ0 (νi |f − νif |p)

2
p . (11.4)

Proof. Note that for fi ≡ νifi−1 ≡ ν6if , i ∈ N, with f0 ≡ f , we have

µ0 |f − µ0f |2 =
∑

i∈N
µ0νi |fi−1 − νifi−1|2 .

Hence, applying (11.2) to each term, we arrive at

µ0 |f − µ0f |2 6
∑

i∈N
µ0

(
β(s)νi |∇ifi−1|2 + s (νi |fi−1 − νifi−1|p)

2
p

)
.

Next, we note that (by using the Minkowski and Schwartz inequalities)

(νi |fi−1 − νifi−1|p)
2
p 6 ν6i−1 (νi |f − νif |p)

2
p

and
νi |∇ifi−1|2 6 ν6i |∇if |2 .

Thus, taking into the account the fact that µ0ν6iF = µ0F (and similarly,
with νi in place of ν6i), we arrive at

µ0 |f − µ0f |2 6 β(s)
∑

i∈N
µ0 |∇if |2 + s

∑

i∈N
µ0 (νi |f − νif |p)

2
p . (11.5)

This ends the proof of the proposition. ut

The Dirichlet form defines the following Markov generator:

L(0) ≡
∑

i∈N
L

(0)
i ,

with L
(0)
i ≡ ∆i − V ′(xi)∇i, where ∆i and ∇i denote the Laplace operator

and derivative with respect to the ith variable respectively. It is well defined
on a dense domain in L2(µ0). As in our situation V is smooth and V ′ is
bounded, the corresponding semigroup P

(0)
t in L2(µ0) extends nicely to a

C0-semigroup onto the space of continuous functions C(Ω), where Ω ≡ RN.
Using Proposition 11.2 and the fact that functional

Ap,µ0(f) ≡
∑

i∈N
µ0 (νi |f − νif |p)

2
p
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is monotone with respect to the semigroup (in the sense of (10.3)), one can
see that Theorems 10.1 and 10.4 hold. In particular, we have

µ0

∣∣∣P (0)
t f − µ0f

∣∣∣
2

6 Ce−ct
α

α+2
Ap,µ0(f)

with some constants C, c ∈ (0,∞) independent of f .
In the rest of the paper, we prove that an inequality of a similar shape

remains true for infinite systems described by nontrivial Gibbs measures.
Although the corresponding functional Ap may no longer be monotone, with
extra work we show that the corresponding semigroups also satisfy stretched
exponential decay estimate. We begin from presenting the necessary elements
of the construction of the semigroups.

11.2 Semigroup for an infinite system with interaction.

Let Ω ≡ RR, with a countable connected graph R furnished with the natural
metric (given by the number of edges in the shortest path connecting two
points) and with at most stretched exponential volume growth.

Let V ≡ ς(1 + x2)
α
2 , with 0 < α 6 1 and ς ∈ (0,∞). Then

||V ′ ||∞, ||V ′′ ||∞ < ∞.

We set Vi(ω) ≡ V (ωi). Let Ui(ω) ≡ Vi(ω) + ui(ω), where ui is a smooth
function. Later on we set

a ≡ sup
i

(
2γii +

∑

j 6=i

γij

)
, (11.6)

γij ≡ ||∇i∇juj ||∞ (11.7)

and assume that a ∈ (0,∞). We note that, by the definition of local inter-
action Vi, we automatically have ||∇2

i Vi||∞ < ∞, so our assumption is only
about uj ’s. For simplicity of exposition, we assume that R = Zd and that
the interaction is of finite range, i.e., for some R ∈ (0,∞) and all vertices i
one has ∇kui = 0 when dist (i, k) > R.

Let PΛ
t be a Markov semigroup associated to the generator

LΛ ≡
∑

i∈R
L

(0)
i −

∑

i∈Λ

∇iui · ∇i,

where
L

(0)
i ≡ ∆i −∇iVi(ω)∇i = ∆i − V ′(ωi)∇i

and the index i indicates that derivatives are taken with respect to ωi, and
Λ ⊂⊂ R (i.e., Λ is a bounded subset of R). The following lemma will play
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later a crucial role in the control of decay to equilibrium. Naturally, it holds
for PΛ

t as well and is essential in defining the infinite volume semigroup as
follows:

Ptf ≡ lim
Λ→R

PΛ
t f

on the space of bounded continuous functions (cf., for example, [21]).

Lemma 11.3 (finite speed of propagation of information estimate). There
exist A,B, C ∈ (0,∞) such that for any smooth cylinder function f and any
i ∈ R

||∇iPtf ||2 6 CeAt−Bd(i,Λf )|||f |||2, (11.8)

where Λf ⊂ R is the smallest set O ⊂ R such that f depends only on
{ωi : i ∈ O} and

|||f |||2 ≡
∑

i∈R
||∇if ||2∞.

The proof is based on the following arguments (note that, under our
smoothness assumptions on the interaction, the pointwise operations are well
justified):

d

dτ
Pτ |∇iPt−τf |2 = Pτ

(
L|∇iPt−τf |2 − 2∇iPt−τf · L∇iPt−τf

)

+ 2Pτ (∇iPt−τf · [L,∇i]Pt−τf)

> 2Pτ

(
∇iPt−τf · [L,∇i]Pt−τf

)

= Pτ

(
− 2∇2

i Ui|∇iPt−τf |2 − 2
∑

j 6=i

∇i∇juj∇iPt−τf∇jPt−τf

)

> −(2||∇2
i Ui||∞ +

∑

j 6=i

||∇i∇juj ||∞) · Pτ |∇jPt−τf |2

−
∑

j 6=i

||∇i∇juj ||∞Pτ |∇jPt−τf |2.

Hence, with the notation introduced in (11.6) before the lemma, we have

‖∇iPtf‖2 6 eat‖∇if‖2 +
∑

j 6=i

γij

∫ t

0

ea(t−τ)‖∇jPτf‖2 dτ.

In particular, if i /∈ Λf , we get

‖∇iPtf‖2 6
∑

j 6=i

γij

∫ t

0

ea(t−τ)‖∇jPτf‖2 dτ.



62 S. Bobkov and B. Zegarlinski

By standard arguments (cf. [21] and the references therein), this leads to the
desired estimate of final speed of propagation of information (11.8).

11.3 L2 decay

Our way to study the L2 decay of the semigroup is as follows. Suppose that
µ satisfies µEif = µf for any i ∈ R with the following probability kernels:

Ei(f) ≡ Eω
i (f) ≡ δω




∫
fe−Uidωi

∫
e−Uidωi


 = δω




∫
fe−uidνi

∫
e−uidνi


 , (11.9)

where δω denotes the Dirac mass concentrated at ω and, by definition, νi is
an isomorphic copy of the probability measure ν0. Then Pt is a symmetric
semigroups in L2(µ) with quadratic form of the generator given by

µ|∇f |2 ≡
∑

i∈R
µ|∇if |2.

Let
Ap(f) ≡ Ap,µ(f) ≡

∑

i∈R
µ (νi |f − νif |p)

2
p .

With this notation, we have the following assertion.

Lemma 11.4. Assume that, with a positive function β(s),

µ(f − µf)2 6 β(s) µ|∇f |2 + sAp(f).

Then

µ (Ptf − µf)2 6 inf
s

{
e−

t
β(s) µ (f − µf)2 + s sup

06τ6t
Ap(Pτf)

}
.

The above follows from the following simple arguments (cf., for example,
[35] and the references therein) similar to those in Section 10. For ft ≡ Ptf
we have

d

dt
µ (ft − µf)2 = −2µ|∇ft|2 6 − 2

β(s)
µ (ft − µf)2 +

2s

β(s)
Ap(ft).

Hence
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µ (ft − µf)2 6 e−
2t

β(s) µ (f − µf)2 +
∫ t

0

e−
2(t−τ)

β(s)
2s

β(s)
Ap(fτ )dτ

6 e−
2t

β(s) µ (f − µf)2 + s sup
06τ6t

Ap(fτ ).

To go the route based on Lemma 11.4, we need an estimate for the func-
tional Ap.

Proposition 11.5 (estimate of Ap(fτ )). Suppose that Λ ≡ Λt ⊂⊂ R
satisfies

dist (Λc, Λf ) > 1
4

diam (Λ)

with diam (Λ) = 16A
B t. Then

sup
06τ6t

Ap(fτ ) 6 |Λt| ·G (µ |f − µf |p) 2
p + De−A t · |||f |||2

with some constants D,G ∈ (0,∞) independent of f .

Proof. For any Λ ⊂⊂ R we have

Ap(fτ ) ≡
∑

i∈R
µ (νi |fτ − νifτ |p)

2
p

=
∑

i∈Λ

µ (νi |fτ − νifτ |p)
2
p +

∑

i∈Λc

µ (νi |fτ − νifτ |p)
2
p .

Since for p > 2 we have

µ
(
(νi |fτ − νifτ |p)

2
p

)
6 4µ

(
(νi |fτ − µfτ |p)

2
p

)

6 4e
4
p supi ||ui||∞µ

(
(Ei |fτ − µfτ |p)

2
p

)

6 4e
4
p supi ||ui||∞ (µ |fτ − µfτ |p)

2
p

6 4e
4
p supi ||ui||∞ (µ |f − µf |p) 2

p ,

where we used the triangle and Hölder inequalities and gained a factor
e

4
p supi ||ui||∞ while passing from expectations with the measure νi to the

expectation with the conditional expectation Ei. Thus,

Ap(fτ ) 6 |Λ| ·G (µ |f − µf |p) 2
p +

∑

i∈Λc

µ (νi |ft − νift|p)
2
p

with the constant G ≡ 4e
4
p supi ||ui||∞ . To estimate the sum over i ∈ Λc, we

note that for ω, ω̃ ∈ Ω satisfying ωj = ω̃j for j 6= i
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|fτ (ω)− fτ (ω̃)| =
∣∣∣
∫ ωi

ω̃i

dx ∇ifτ (x • ωR\i)
∣∣∣ 6 |ωi − ω̃i| · ‖∇ifτ‖∞

with configuration

[x • ωR\i]j ≡ δijx + (1− δij)ωj .

Thus, we get

|fτ (ω)− fτ (ω̃)| 6 |ωi − ω̃i| · C 1
2 e

A
2 s−B

2 d(i,Λf )|||f |||

which implies

µ (νi |fτ − νifτ |p)
2
p 6 4CeAτ−Bd(i,Λf ) (ν0|ω0|p)

2
p · |||f |||2.

Since
ν0(dx) =

1
Z

e−ς(1+x2)
α
2 dx,

one can obtain the following estimate (using the Stirling bound):

(ν0|ω0|p)
2
p 6 C ′e

4
α log p

with some constant C ′ ≡ C ′(α, ς) ∈ (0,∞) independent of p ∈ (2,∞). (This
is an important place where we take advantage of oscillations in Lp; would
we have the functional Osc as in (1.6), we would be in trouble.) Hence we
obtain the following bound:

∑

i∈Λc

µ (νi |fτ − νifτ |p)
2
p 6 DeAτ−B

2 d(Λc,Λf ) · |||f |||2

with
D ≡ 4CC ′e

4
α log p

∑

i∈R:dist (i,Λf )>d(Λc,Λf )+1

e−
B
2 d(i,Λf )

with the series being convergent due to our assumption about slower than
exponential volume growth of R. For τ ∈ [0, t], choosing Λ ≡ Λt such that
dist (Λc, Λf ) > 1

4 diam (Λ) with diam (Λ) = 16A
B t, we get

∑

i∈Λc

µ (νi |fτ − νifτ |p)
2
p 6 De−A t · |||f |||2.

Combining all the above, we arrive at the following estimate:

sup
06τ6t

Ap(fτ ) 6 |Λt| ·G (µ |f − µf |p) 2
p + De−A t · |||f |||2.

The proposition is proved. ut
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Given the above estimate for Ap(ft), we conclude with the following result.

Theorem 11.6. Let Λ ≡ Λt be an increasing family of bounded subsets
of R such that dist (Λc, Λf ) > 1

4 diam (Λ), with diam (Λ) = 16A
B t and |Λt| 6

ediam (Λt)
θ

, with some θ ∈ (0, 1) for all sufficiently large Λt. Assume that for
a positive function β(s) = ξ−1 (log(1/s))η defined with some ξ, η ∈ (0,∞)

µ(f − µf)2 6 β(s) µ|∇f |2 + sAp(f)

for each s ∈ (0, 1).
If θ ∈ (0, 1/η), then there exist constant ζ, J ∈ (0,∞), and ε ∈ (0, 1) such

that

µ(ft − µft)2 6 e−ζtε

J
(
µ (f − µf)2 + (µ |f − µf |p) 2

p + |||f |||2
)

.

Remark 11.1. In the case of a regular lattice Zd and finite range interac-
tions, one would have |Λt| ∼ td. Our weaker growth assumption allows one
to include more general graphs, as well as interactions which are not of finite
range.

We note that for our considerations it is relevant only what is the behavior
of β(s) for small s. This determines the long time behavior (while the short
time estimates can be compensated by a choice of constant J). This allows
us to disregard factor 2 (or any similar numerical factor) from within the log
in β(s) as compared to estimates used in the product case.

Proof of Theorem 11.6. By Lemma 11.4 and Proposition 11.5, we have

µ(ft − µft)2

6 inf
s

{
e−

t
β(s) µ (f − µf)2 + s

(
|Λt| ·G (µ |f − µf |p) 2

p + De−A t · |||f |||2
)}

.

Hence, choosing s = e−tσ

with σ ∈ (θ, 1/η), we obtain

µ(ft − µft)2 6 exp{−ξt1−ση}µ (f − µf)2

+ e−tσ(
e(16 A

B t)θ ·G (µ |f − µf |p) 2
p + De−A te

4
α log p · |||f |||2).

Thus, if σ ∈ (θ, 1/η), then there exists a constant J ∈ (0,∞) such that with
ε ≡ min(1− ση, σ − θ) and any ζ ∈ (0,min(1, ξ)) we have

µ(ft − µft)2 6 e−ζtε

J
(
µ (f − µf)2 + (µ |f − µf |p) 2

p + |||f |||2
)

.

The theorem is proved. ut
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12 Weak Poincaré Inequalities for Gibbs Measures

In this section, we prove a weak Poincaré inequality for Gibbs measures with
slowly decaying tails in the region of strong mixing property. Using this result,
we obtain an estimate for the decay to equilibrium in L2 for all Lipschitz
cylinder functions with the same stretched exponential rate.

For Λ ⊂⊂ R we define the following conditional expectations (generalizing
the Ei introduced in (11.9))

dEΛ ≡ δω




∫
fe−uΛdνΛ

∫
e−uΛdνΛ




with some smooth function uΛ and νΛ ≡ ⊗i∈Λνi, so that for Λ0 ⊂ Λ we have

dEΛ|ΣΛ0
≡ ρΛ0dνΛ0

with || log ρΛ0 ||∞ 6 φ|Λ0| with some numerical constant φ ∈ (0,∞). Recall
that, by definition, a Gibbs measure satisfies

µEΛ(f) = µf

for each finite Λ and any integrable function f (cf., for example, [21]).
We begin from the following lemma.

Lemma 12.1 (perturbation lemma). Suppose that νi, i ∈ N, satisfy

νi |f − νif |2 6 β(s)νi |∇if |2 + s (νi |f − νif |p)
2
p

with a function β : (0, s0) → R+, for some s0 > 0. Then the conditional
expectation Ei ≡ 1

Zi
e−uidνi satisfies

Ei |f − Eif |2 6 β̃(s)Ei |∇if |2 + s (νi |f − νif |p)
2
p

with
β̃(s) ≡ eosc (ui)β(se− osc (ui))

for s ∈ (0, s0e
osc ui), where osc (ui) ≡ supui − inf ui.

If f depends on ωΓ , with Γ ∩ Λ ≡ Λ0, then

EΛ |f − EΛf |2 6 β̃Λ(s)EΛ |∇Λf |2 + se2φ|Λ0|
∑

i∈Λ0

EΛ (νi |f − νif |p)
2
p

with β̃Λ(s) ≡ e2φ|Λ0|β(e−2φ|Λ0|s) for s ∈ (0, s0e
2φ|Λ0|).
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Proof. We have

Ei |f − Eif |2 6 Ei |f − νif |2 =
∫
|f − νif |2 1

Zi
e−uidνi

6 1
Zi

e− inf uiνi |f − νif |2 .

Hence, by the assumed inequality for νi, we get

Ei |f − Eif |2 6 1
Zi

e− inf uiβ(s)νi |∇if |2 + s
1
Zi

e− inf ui (νi |f − νif |p)
2
p

6 esup ui−inf uiβ(s)Ei |∇if |2 + sesup ui−inf ui (νi |f − νif |p)
2
p .

Hence
Ei |f − Eif |2 6 β̃(s)Ei |∇if |2 + s (νi |f − νif |p)

2
p

with
β̃(s) ≡ eosc uiβ(se− osc ui)

for s ∈ (0, s0e
osc ui), where osc ui ≡ sup ui − inf ui. Similarly,

EΛ |f − EΛf |2 6 EΛ |f − νΛf |2 =
∫
|f − νΛf |2 1

ZΛ
e−uΛdνΛ

6 1
ZΛ

e− inf uΛνΛ |f − νΛf |2

and therefore (using the product property of Weak Poincaré inequality as in
Proposition 11.2),

EΛ |f − EΛf |2 6 1
ZΛ

e− inf uΛβ(s)νΛ |∇Λf |2

+ s
1

ZΛ
e− inf uΛ

∑

i∈Λ

νΛ (νi |f − νif |p)
2
p

6 eosc (uΛ)β(s)EΛ |∇Λf |2 + seosc (uΛ)
∑

i∈Λ

EΛ (νi |f − νif |p)
2
p

with osc (uΛ) ≡ supuΛ − inf uΛ. In the case where f depends on ωΓ , with
Γ ∩Λ ≡ Λ0, one can stream-line the above arguments as follows. Noting that
dEΛ|ΣΛ0

≡ ρΛ0dνΛ0 with || log ρΛ0 ||∞ 6 φ|Λ0| with some numerical constant
φ ∈ (0,∞), by similar arguments as above, we obtain

EΛ

∣∣f −EΛf
∣∣2 = EΛ|ΣΛ0

∣∣f − EΛ|ΣΛ0
f
∣∣2 6 EΛ|ΣΛ0

∣∣f − νΛ0f
∣∣2

6 e2φ|Λ0|β(s)EΛ

∣∣∇Λf
∣∣2 + se2φ|Λ0|

∑

i∈Λ0

EΛ

(
νi

∣∣f − νif
∣∣p) 2

p .

The lemma is proved. ut
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Later on we consider a given set Λ ⊂⊂ R (for example, a ball of radius
L ∈ N in a suitable metric of the graph) and write Λ + j to denote a similar
set around a point j ∈ R. (If the graph R admits a structure of a linear
space, this will coincide with a translation of Λ by the vector j.)

Lemma 12.2 (product property bis). Suppose that

EΛ |f − EΛf |2 6 β̃Λ(s)EΛ |∇Λf |2 + s
∑

i∈Λ0

EΛ (νi |f − νif |p)
2
p .

Let Γ ≡ ⋃
l∈N Λ + jl with jl such that dist (Λ + jl, Λ + jl′) > 2R, for l 6= l′.

Assume that EΛ satisfy the following local Markov property:

∀f ∈ ΣΛ =⇒ EΛ(f) ∈ ΣΛR
,

where ΛR ≡ {j ∈ R : dist (j, Λ) 6 R} for a given R > 1. Then

EΓ |f − EΓ f |2 6 β̃Λ(s)EΓ |∇Γ f |2 + s
∑

i∈Γ

EΓ (νi |f − νif |p)
2
p .

If f ∈ ΣΘ (i.e., Λf ⊆ Θ) and Λf ∩ Γ ⊂ ⋃
l Λ0 + jl, then the above inequality

holds with β̃(s) ≡ β̃Λ0(s).

Remark 12.1. The local Markov property is true when the interaction is
of finite range R.

Because of the local Markov property, in our setup EΓ acts as a product
measure. Therefore, the proof is similar to the proof of Proposition 11.2
(product property).

Later on we consider a family of Γk ⊂ R, k ∈ N. Let Πn(f) ≡
EΓn . . . EΓ1(f). We note that, as in [38, 39], setting

f0 ≡ f and fn ≡ EΓn
fn−1 = Πn(f),

we have
µ (f − µf)2 =

∑

n∈N
µ EΓn (fn−1 − EΓnfn−1)

2
.

Hence, by Lemma 12.2, we get

EΓn (fn−1 − EΓnfn−1)
2 6 β̃Λ(s)EΓn |∇Γnfn−1|2

+ s
∑

i∈Γn

EΓn (νi |fn−1 − νifn−1|p)
2
p .

Now, we prove the following bound for expectation of terms involving the
pth norms.
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Lemma 12.3.
∑

i∈Γn+1

µ
(
νi

∣∣EΓnF − νiEΓnF
∣∣p) 2

p 6
∑

i∈Γn+1, j

ηijµ
(
νj

∣∣F − νjF
∣∣p) 2

p ,

where ηii ≡ 2e6||ui|| and

ηij ≡ 2
∑

k(i):j∈Λk(i)

[
osc Λk(i)∩ΛF

(
EΛk(i)\ΛF

(Di)
)]2 · e4φ(|Λk(i)∩ΛF |+ 1

2 )|Λk(i) ∩ ΛF |

with

Di ≡
ρΛk(i)(ωΛk(i) • ωi • ωR\Λk(i)∪{i})
ρΛk(i)(ωΛk(i) • ω̃i • ωR\Λk(i)∪{i})

− 1,

where Λk(i) ⊂ Γn, i ∈ Γn+1, is such that i ∈ ∂RΛk(i) ≡ {j ∈ Λc
k(i) :

dist (j, Λk(i)) 6 R}.
Proof. First we note that for i ∈ Γn ∩ Γn+1 the quantity EΓn

F − νiEΓn
F

vanishes. For i ∈ Γn+1 let Λk(i) ⊂ Γn be such that

i ∈ ∂RΛk(i) ≡ {j ∈ Λc
k(i) : dist (j, Λk(i)) 6 R}.

Let Γ̃
(i)
n ≡ Γn \ Λ̃(i) and Λ̃(i) ≡ ∪Λk(i). Note that EΓn

F = E
Γ̃

(i)
n

EΛ̃(i)F and
νiEΓ̃

(i)
n

= E
Γ̃

(i)
n

νi. Hence, using the Minkowski inequality for the Lp(νi) norm
and the Schwartz inequality for E

Γ̃
(i)
n

, we get

(
νi

∣∣E
Γ̃

(i)
n

EΛ̃(i)F − νiEΓ̃
(i)
n

EΛ̃(i)F
∣∣p) 2

p 6 E
Γ̃

(i)
n

(
νi

∣∣EΛ̃(i)F − νiEΛ̃(i)F
∣∣p) 2

p .

On the other hand, we have

(
νi

∣∣EΛ̃(i)F − νiEΛ̃(i)F
∣∣p) 2

p 6 2
(
νi

∣∣EΛ̃(i)(F − νiF )
∣∣p) 2

p

+ 2
(
νi

∣∣[EΛ̃(i) , νi]F
∣∣p) 2

p , (12.1)

where
[EΛ̃(i) , νi]F ≡ EΛ̃(i)νiF − νiEΛ̃(i)F.

The first term on the right-hand side of (12.1) can be bounded as follows:

2
(
νi

∣∣EΛ̃(i)(F − νiF )
∣∣p) 2

p 6 2e4||ui||(νi

∣∣E′
Λ̃(i) |F − νiF

∣∣p) 2
p

6 2e6||ui||EΛ̃(i) (νi|F − νiF |p)
2
p , (12.2)

where E′
Λ̃(i) denotes an expectation with interaction ui removed so it com-

mutes with νi expectation, and we can apply the Minkowski inequality (for
the Lp(νi) norm) and the Schwartz inequality for E′

Λ̃(i) at the end inserting
back the interaction ui.
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The second term on the right-hand side of (12.1) is estimated as follows.
First we note that

2
(
νi

∣∣[EΛ̃(i) , νi]F
∣∣p) 2

p 6 2
∑ (

νi

∣∣[EΛk(i) , νi]F
∣∣p) 2

p . (12.3)

Next, we observe that

[EΛk(i) , νi]F =
∫

νi(dω̃i)
{
EΛk(i)

(
Di(F − EΛk(i)F )

)}
, (12.4)

where

Di ≡
ρΛk(i)(ωΛk(i) • ωi • ωR\Λk(i)∪{i})
ρΛk(i)(ωΛk(i) • ω̃i • ωR\Λk(i)∪{i})

− 1.

If F depends on variables Λk(i) ∩ ΛF , then
∣∣EΛk(i)

(
Di(F − EΛk(i)F )

)∣∣
=

∣∣EΛk(i)

(
EΛk(i)\ΛF

(Di)(F − EΛk(i)F )
)∣∣

6 osc
(
EΛk(i)\ΛF

(Di)
) · EΛk(i)

∣∣F − EΛk(i)F
∣∣ (12.5)

with oscillation over variables indexed by points in Λk(i) \ ΛF . Thus,

(
νi

∣∣[EΛk(i) , νi]F
∣∣p) 2

p

6
[
osc

(
EΛk(i)\ΛF

(Di)
)]2 · νiEΛk(i)

∣∣F − EΛk(i)F
∣∣2. (12.6)

Using (12.3)–(12.6), we arrive at

2
(
νi

∣∣[EΛ̃(i) , νi]F
∣∣p) 2

p

6 2
∑[

osc
(
EΛk(i)\ΛF

(Di)
)]2 · νiEΛk(i)

∣∣F − EΛk(i)F
∣∣2. (12.7)

Next, we note that

EΛk(i)

∣∣F − EΛk(i)F
∣∣2 6 e2φ|Λk(i)∩ΛF |νΛk(i)∩ΛF

∣∣F − νΛk(i)∩ΛF
F

∣∣2.

On the other hand, choosing a lexicographic order {jl ∈ Λ}l=1...|Λ|, we have

νΛ|F − νΛF |2 = νΛ

∣∣∣
∑

l=1...|Λ|−1

νΛl
F − νΛl+1F

∣∣∣
2

6 |Λ|
∑

j∈Λ

νΛνj |F − νjF |2 6 |Λ|
∑

j∈Λ

νΛ (νj |F − νjF |p)
2
p (12.8)

with the convention that νΛ0 ≡ I is the identity operator and Λl+1 = Λl ∪
{jl+1}. Using this together with the previous inequality, we get the following
assertion.
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Lemma 12.4.

EΛk(i)

∣∣F − EΛk(i)F
∣∣2 6 e4φ|Λk(i)∩ΛF ||Λk(i) ∩ ΛF |

∑

j∈Λk(i)

EΛk(i) (νj |F − νjF |p)
2
p .

Combining with (12.7), we arrive at

2
(
νi

∣∣[EΛ̃(i) , νi]F
∣∣p) 2

p 6 2
∑

k(i)

[
osc Λk(i)∩ΛF

(
EΛk(i)\ΛF

(Di)
)]2

· e4φ[|Λk(i)∩ΛF |+ 1
2 |Λk(i) ∩ ΛF |

·
∑

j∈Λ

EiEΛk(i)

(
νj |F − νjF |p

) 2
p . (12.9)

This ends the estimates for the second term on the right-hand side of (12.1).
Using (12.2) and (12.9), we find

(
νi

∣∣E
Γ̃

(i)
n

EΛ̃(i)F − νiEΓ̃
(i)
n

EΛ̃(i)F
∣∣p) 2

p 6 2e6||ui||EΛ̃(i)

(
νi

∣∣F − νiF
∣∣p) 2

p

+ 2
∑

k(i)

[
osc Λk(i)∩ΛF

(
EΛk(i)\ΛF

(Di)
)]2 · e4φ[|Λk(i)∩ΛF |+ 1

2 ]|Λk(i) ∩ ΛF |

·
∑

j∈Λk(i)

E
Γ̃

(i)
n

EiEΛk(i)

(
νj |F − νjF |p

) 2
p .

From this we conclude that
∑

i∈Γn+1

µ
(
νi

∣∣EΓnF − νiEΓnF
∣∣p) 2

p 6
∑

i∈Γn+1

2e6||ui||µ
(
νi

∣∣F − νiF
∣∣p) 2

p

+ 2
∑

i∈Γn+1

∑

k(i)

[
osc Λk(i)∩ΛF

(
EΛk(i)\ΛF

(Di)
)]2

· e4φ[|Λk(i)∩ΛF |+ 1
2 |Λk(i) ∩ ΛF | ·

∑

j∈Λk(i)

µ
(
νj |F − νjF |p

) 2
p .

Lemma 12.3 is proved. ut

Applying iteratively Lemma 12.3, we arrive at the following result.

Proposition 12.5. Suppose that Γn, n ∈ N, is a periodic sequence of
period N such that

⋃
l=1,...,N Γl = R. Then there exists a constant C ∈ (0,∞)

such that for any p ∈ (2,∞) and any 1 6 n 6 N − 1
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∑

i∈Γn+1

µ (νi|Πnf − νiΠnf |p) 2
p

6
∑

i∈Γn+1

∑

jn∈Γn\Γn+1,...,j1∈Γ1\Γ2

ηijnηjnjn−1 . . . ηj2j1µ (νj |f − νjf |p)
2
p

6 C
∑

i∈R
µ (νj |f − νjf |p)

2
p .

Moreover, for n = N

∑

i∈Γn+1

µ (νi|ΠNF − νiΠNF |p) 2
p 6 λ

∑

j∈R
µ (νj |F − νjF |p)

2
p

with

λ ≡ sup
j∈R

∑

i∈Γn+1

∑

jn∈Γn\Γn+1,...,j1∈Γ1\Γ2

ηijnηjnjn−1 . . . ηj2j . (12.10)

Therefore, for any n ∈ N
∑

i∈R
µ (νi|Πnf − νiΠnf |p) 2

p 6 Cλ[ n
N ]

∑

i∈R
µ (νj |f − νjf |p)

2
p ,

where [n/N ] is the integer part of n/N , with some constant C ∈ (0,∞).

Remark 12.2. Because of our assumption that conditional expectations
satisfy local Markov property, λ is defined by a finite sum and therefore is
finite.

Lemma 12.6. There exists a constant γ0 ∈ (0,∞) such that for any
p ∈ (2,∞) and s ∈ (0, s0)

µ |∇iEΓnF |2 6 γ0µ |∇iF |2+β̃(s)
∑

j

ηijµ|∇jF |2+s
∑

j

ηijµ (νj |F − νjF |p)
2
p

with

ηij ≡
∑

k(i):j∈Λk(i)

γ0

∥∥ osc Λk(i)∩ΛF

(
EΛk(i)\ΛF

(∇iUΛk(i))
)∥∥2

∞

· e4φ|Λk(i)∩ΛF ||Λk(i) ∩ ΛF |

defined for j ∈ Λ̃(i) and zero otherwise.

Proof. For i ∈ Γn+1 let Λk(i) ⊂ Γn be such that

i ∈ ∂RΛk(i) ≡ {j ∈ Λc
k(i) : dist (j, Λk(i)) 6 R}.
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Let Γ̃
(i)
n ≡ Γn \ Λ̃(i), where Λ̃(i) ≡ ∪Λk(i). Note that

EΓn
F = E

Γ̃
(i)
n

EΛ̃(i)F, ∇iEΓ̃
(i)
n

= E
Γ̃

(i)
n
∇i.

Hence
∇iEΓnF = ∇iEΓ̃

(i)
n

EΛ̃(i)F = E
Γ̃

(i)
n
∇iEΛ̃(i)F.

On the other hand, we have

∇iEΛ̃(i)F = EΛ̃(i)∇iF + [∇i, EΛ̃(i) ]F,

where [∇i, EΛ̃(i) ]F ≡ ∇iEΛ̃(i)F − EΛ̃(i)∇iF . We note that

[∇i, EΛ̃(i) ]F =
∑

k(i)

EΛ̃(i)

(
EΛk(i)

(
F ;∇iUΛk(i)

))
,

where

EΛk(i)

(
F ;∇iUΛk(i)

) ≡ EΛk(i)

(
F · ∇iUΛk(i)

)− EΛk(i)(F )EΛk(i)

(∇iUΛk(i)

)
.

If F depends on variables in Λk(i) ∩ ΛF , we have
∣∣EΛk(i)

(
F ;∇iUΛk(i)

)∣∣ =
∣∣EΛk(i)

(
(F − EΛk(i)F ) · EΛk(i)\ΛF

(∇iUΛk(i))
)∣∣

6 osc Λk(i)∩ΛF

(
EΛk(i)\ΛF

(∇iUΛk(i))
) · EΛk(i)

∣∣F − EΛk(i)F
∣∣.

Thus, in this case,
∣∣∇iEΓnF

∣∣ 6 EΓn

∣∣∇iF
∣∣ + E

Γ̃
(i)
n

∣∣[∇i, EΛ̃(i) ]F
∣∣

6 EΓn

∣∣∇iF
∣∣ +

∑

k(i)

EΓn

∣∣(EΛk(i)

(
F ;∇iUΛk(i)

))∣∣

6 EΓn

∣∣∇iF
∣∣ +

∑

k(i)

EΓn osc Λk(i)∩ΛF

(
EΛk(i)\ΛF

(∇iUΛk(i))
)

· EΛk(i)

∣∣F − EΛk(i)F
∣∣.

Therefore, there exists a constant γ0 ∈ (0,∞) depending only on the number
of k(i)’s such that

µ
∣∣∇iEΓnF

∣∣2 6 γ0µ
∣∣∇iF

∣∣2 +
∑

k(i)

γ0

∥∥ osc Λk(i)∩ΛF

(
EΛk(i)\ΛF

(∇iUΛk(i))
)∥∥2

∞

· µ(
EΛk(i)

∣∣F − EΛk(i)F
∣∣2).

Using Lemma 12.1, we obtain
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µ
∣∣∇iEΓnF

∣∣2 6γ0µ
∣∣∇iF

∣∣2 + β̃(s)
∑

j

ηijµ|∇jF |2

+ s
∑

j

ηijµ
(
νj |F − νjF |p

) 2
p ,

where ηij , for i ∈ Zd \ Λ̃(i), dist (i, Λ̃(i)) 6 R, j ∈ Λ̃(i), are defined by

ηij ≡
∑

k(i):j∈Λk(i)

γ0

∥∥ osc Λk(i)∩ΛF

(
EΛk(i)\ΛF

(∇iUΛk(i))
)∥∥2

∞

· e4φ|Λk(i)∩ΛF ||Λk(i) ∩ ΛF |.

The lemma is proved. ut

Proposition 12.7. Suppose that Γn, n ∈ N, is a periodic sequence of
period N such that

⋃
l=1...N Γl = R and so for any i ∈ R there exists 1 6

l(i) 6 N for which ∇iEΓl(i)f = 0. Then for any p ∈ (2,∞) and any 1 6 n 6
N − 1

µ |∇iEΓn
. . . EΓ1F |2 6 X(s)µ |∇iF |2 + sZ(s)

∑

j

µ (νj |F − νjF |p)
2
p

with X(s) ≡ X(1+β̃(s)N−1) and Z(s) ≡ Z(1+β̃(s)N−1) with some constants
X, Z > 0. Moreover, for n > N

µ |∇iΠnf |2 6 sZ(s)λ
n
N

∑

j∈R
µ (νj |f − νjf |p)

2
p .

Proof. For n 6 N , by Lemma 12.6, we have

µ
∣∣∇Γn+1ΠnF

∣∣2 =
∑

i∈Γn+1

µ |∇iΠnF |2

6
∑

i,jn

1{i∈Γn+1\Γn}A
(n+1,n)(s)1{jn∈Γn\Γn−1}µ |∇jn

Πn−1F |2

+ s
∑

i,jn

1{i∈Γn+1\Γn}η
(n+1,n)1{jn∈Γn\Γn−1}µ (νjn |Πn−1F − νjnΠn−1F |p)

2
p ,

where

A(n+1,n)(s)ij ≡
(
aI + η(n+1,n)

)
ij
≡ (

γ0δij + β̃(s)η(n+1,n)
ij

)
,

where 1{jn∈Γn\Γn−1} denotes the characteristic function of the set Γn \ Γn−1

and η
(n+1,n)
ij is provided by Lemma 12.6 (with i ∈ Γn+1 \Γn and j ∈ Γn). By

induction, we arrive at the bound
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µ
∣∣∇Γn+1ΠnF

∣∣2 6
∑

i,j

Θ
(n,1)
ij µ |∇jF |2

+ s
∑

k=1...n

∑

i,j

Υ
(k)
ij µ (νj |Πn−kF − νjΠn−kF |p) 2

p ,

where

Θ(n,m)

≡ 1{i∈Γn+1\Γn}A
(n+1,n)(s)1{jn∈Γn\Γn−1}A

(n,n−1)(s)1{jn−1∈Γn−1\Γn−2}

. . .1{jm+1∈Γm+1\Γm}A
(m+1,m)(s)1{jm∈Γm\Γm−1}

with the convention that Γ0 ≡ ∅, and

Υ (k) ≡ Θ(n,n−k) · η(n+1−k,n−k)1{j∈Γn−k\Γn−k−1}

with the convention that Θ(n,n) ≡ 1{Γn+1\Γn}.
Using Proposition 12.5, we can simplify the above estimate as follows:

µ
∣∣∇Γn+1ΠnF

∣∣2 6
∑

i,j

Θ
(n,1)
ij µ |∇jF |2 + s

∑

i,j

Υ
(n)
ij µ (νj |F − νjF |p)

2
p ,

where

Υ (n) ≡
∑

k=1...n

Υ (k)1{j∈Γn−k\Γn−k−1}η
(n−k,n−k−1) . . .1{j∈Γ2\Γ1}η

(2,1).

We note that there is a constant X ∈ (0,∞) such that for n 6 N − 1

sup
j

∑

i

Θ
(n,1)
ij 6 X(1 + β̃(s)N−1).

If we assume that for each i there is an l 6 N such that ∇iEΓl
= 0, then we

get
µ

∣∣∇ΓN+1ΠNF
∣∣2 6 s

∑

i,j

Υ
(N)
ij µ (νj |F − νjF |p)

2
p

Since
sup

j

∑

i

Υ
(n)
ij 6 C ′(1 + β̃(s)N−1)

with some constant C ′ ∈ (0,∞) independent of n 6 N , we get

µ
∣∣∇ΓN+1ΠNF

∣∣2 6 s C ′(1 + β̃(s)N−1)
∑

j

µ (νj |F − νjF |p)
2
p .

As a consequence for n > N , setting F ≡ Πn−Nf and using Proposition
12.5, we conclude that
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µ
∣∣∇Γn+1Πnf

∣∣2 6 s Z(1 + β̃(s)N−1)λ[ n
N ]

∑

j∈R
µ (νj |f − νjf |p)

2
p ,

where Z ≡ CC ′. ut

Theorem 12.8. Suppose that Γn, n ∈ N, is a periodic sequence of period N
such that

⋃
l=1...N Γl = R and so for any i ∈ R there exists 1 6 l(i) 6 N for

which ∇iEΓl(i)f = 0. Suppose that the parameter λ introduced in Proposition
12.5 satisfies λ ∈ (0, 1). Then for any p ∈ (2,∞)

µ |f − µf |2 6 β(s)µ |∇f |2 + s
∑

i∈R
µ (νi|f − νif |p)

2
p

with

β(s) ≡ β̃(ϑ−1(s))X(ϑ−1(s))N ≡ X(β̃(ϑ−1(s)) + β̃(ϑ−1(s))N )N

for s ∈ (0, ϑ(s0)), where ϑ(s) ≡ sN(C + β̃(s)Z(s))(1 − λ)−1 with Z(s) ≡
Z(1 + β̃(s)N−1), with some constants X, Z,C > 0.

Proof. By Lemma 12.2, we have

µEΓn+1

∣∣Πnf − EΓn+1Πnf
∣∣2 6 β̃(s)µ

∣∣∇Γn+1Πnf
∣∣2

+ s
∑

i∈Γn+1

µ (νi|Πnf − νiΠnf |p) 2
p .

Hence, by Propositions 12.5, 12.7 and Lemma 12.6, for n 6 N − 1 we have

µEΓn+1

∣∣Πnf − EΓn+1Πnf
∣∣2 6 β̃(s)X(s)µ |∇f |2

+ s(C + β̃(s)Z(s))
∑

i∈R
µ (νi|f − νif |p)

2
p ,

while for n > N we have

µEΓn+1

∣∣Πnf − EΓn+1Πnf
∣∣2 6 s(C + β̃(s)Z(s))λ[ n

N ]
∑

i∈R
µ (νi|f − νif |p)

2
p .

Thus, provided that λ ∈ (0, 1), we arrive at

µ |f − µf |2 =
∑

n∈Z+

µEΓn+1

∣∣Πnf − EΓn+1Πnf
∣∣2

6 β̃(s)X(s)Nµ |∇f |2 + sN(C + β̃(s)Z(s))(1− λ)−1
∑

i∈R
µ (νi|f − νif |p)

2
p .

The theorem is proved. ut
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Examples. Suppose that R = Zd, d ∈ N. Then the corresponding cover-
ing Γn, n = 1 . . . 2d, was introduced as a collection of suitable translates a
sufficiently large cube Λ0 for d = 1 in [40] and for general d in [36]. In the
case where the local specification EΛ, Λ ⊂⊂ Zd satisfies the strong mixing
condition (for cubes)

|EΛ(f ; g)| 6 Const |||f ||| · |||g|||e−M dist (Λf ,Λg)

with some constant M ∈ (0,∞) independent of size of the cube, one shows
(cf., for example, [40, 36, 21]) that, starting with a sufficiently large cube Λ0,
one can achieve λ ∈ (0, 1). In our case, the strong mixing condition holds at
least for finite range sufficiently small interactions uΛ.

In our setup, by Corollary 8.6 and Lemma 12.1, β(s) ≡ C0(log(1/s))δ with
some positive C0 and δ ∈ (0,∞) for all sufficiently small s > 0. Hence

β(s) = C(log(1/s))Nδ

with some positive constant C for all sufficiently small s > 0. Thus, the above
considerations (cf. Theorem 12.8) apply and we have the following result.

Theorem 12.9. Let µ be a Gibbs measure on RZd

corresponding to the
reference product measure µ0 ≡ ν⊗Z

d

0 , where the probability measure dν0 ≡
1
Z exp{−V }dx on real line is defined with V ≡ ς(1 + x2)

α
2 , with 0 < α 6 1,

ς ∈ (0,∞), and a local finite range smooth interaction uΛ, Λ ⊂⊂ Zd, which
is sufficiently small or more generally such that the Strong Mixing Condition
holds.

Then µ satisfies the weak Poincaré inequality

µ |f − µf |2 6 β(s)µ|∇f |2 + sAp(f)2

with β(s) ≡ C(log(1/s))Nδ with some positive constant C and N = 2d for all
s ∈ (0, s) for some s > 0. Hence there exists ε ∈ (0, 1) and constants c, H ∈
(0,∞) such that the semigroup Pt ≡ et∇∗∇ (with the generator corresponding
to the Dirichlet form µ|∇f |2) satisfies

µ(Ptf − µf)2 6 e−ctε

H
(
µ (f − µf)2 + (µ |f − µf |p) 2

p + |||f |||2
)

for each cylinder function for which the right hand side is well defined (with
a constant H ∈ (0,∞) dependent on Λf ).

Acknowledgments. Part of this work was done while one of us (B.Z.) was
holding the Chaire de Excellence Pierre de Fermat, at LSP, UPS Toulouse,
sponsored by the ADERMIP. Research of S.B. was supported in part by the
NSF (grant DMS-0706866). Both authors would like to thank all members



78 S. Bobkov and B. Zegarlinski

of LSP, and in particular D. Bakry and M. Ledoux, for discussions and hos-
pitality in Toulouse.

References

1. Aida, S., Stroock, D.: Moment estimates derived from Poincaré and logarith-
mic Sobolev inequalities. Math. Research Letters, 1, 75–86 (1994)

2. Alon, N., Milman, V.D.: λ1, isoperimetric inequalities for graphs, and super-
concentrators. J. Comb. Theory, Ser. B 38, 75–86 (1985)

3. Barthe, F.: Log-concave and spherical models in isoperimetry. Geom. Funct.
Anal. 12, no. 1, 32–55 (2002)

4. Barthe, F., Cattiaux, P., Roberto, C.: Concentration for independent random
variables with heavy tails. AMRX Appl. Math. Res. Express, no. 2, 39–60
(2005)

5. Bertini, L., Zegarlinski, B.: Coercive inequalities for Gibbs measures. J. Funct.
Anal. 162, no. 2, 257–286 (1999)

6. Bertini, L., Zegarlinski, B.: Coercive inequalities for Kawasaki dynamics. The
product case. Markov Process. Related Fields 5, no. 2, 125–162 (1999)

7. Bobkov, S.G.: Remarks on the Gromov–Milman inequality. Vestn. Syktyvkar
Univ. Ser. 1 3, 15–22 (1999)

8. Bobkov, S.G.: Isoperimetric and analytic inequalities for log-concave probabil-
ity distributions. Ann. Probab. 27, no. 4, 1903–1921 (1999)

9. Bobkov, S.G.: Large deviations and isoperimetry over convex probability mea-
sures. Electr. J. Probab. 12, 1072–1100 (2007)
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