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On weighted isoperimetric and

Poincaré-type inequalities

Sergey G. Bobkov1,∗ and Michel Ledoux2

University of Minnesota and University of Toulouse

Abstract: Weighted isoperimetric and Poincaré-type inequalities are studied
for κ-concave probability measures (in the hierarchy of convex measures).

1. Introduction

A Borel probability measure μ on R
n is said to satisfy a weighted Poincaré-type in-

equality with weight function w2 (where w is a fixed non-negative, Borel measurable
function), if for any bounded smooth function f on R

n with gradient ∇f ,

(1.1) Varμ(f) ≤
∫

| ∇f |2w2dμ.

As usual, Varμ(f) =
∫

f2dμ − (
∫

fdμ)2 stands for the variance of f under μ.
As a classical example, the standard Gaussian measure μ = γn with density

dγn(x)
dx = (2π)−n/2 e− |x|2/2 with respect to Lebesgue measure on R

n satisfies (1.1)
with w = 1. In general, the validity of (1.1) with a constant weight, that is, the usual
Poincaré-type inequality requires that all Lipschitz functions have finite exponential
moments under the underlying measure μ (cf. [1, 24, 29, 30]). So, in order to involve
in (1.1) other important distributions, it is natural to allow non-constant weight
functions. This way one may analyze concentration properties and the behaviour
of the associated Markov semigroups for various probability measures that have
rather heavy (e.g. polynomial) tails at infinity. Another closely related family of
analytic inequalities that serve the same aim are the so-called weak Poincaré and
logarithmic Sobolev inequalities with an oscillation term, intensively studied in the
recent years (cf. [3, 4, 9, 17, 39]). We do not touch here this line of applications and
concentrate on the weighted inequalities, such as (1.1).

In analogy with the Gaussian case, it was recently shown in [12] that the gen-
eralized Cauchy distributions μ = νβ on R

n, which have densities of the form
dνβ(x)

dx = 1
Z (1 + |x|2)−β , satisfy for β > n the weighted Poincaré-type inequality

(1.2) Varνβ
(f) ≤ Cβ

∫ ∣∣∇f(x)
∣∣2(1 + |x|2

)
dνβ(x).

∗Research supported in part by NSF grant.
1School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA, e-mail:

bobkov@math.umn.edu
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Moreover, one may choose the constants Cβ behaving like 1/(2β) for large values
of β. Since after rescaling of the coordinates the measures νβ approximate γn, (1.2)
may be used to recover the Gaussian Poincaré-type inequality. For related matters
and different approaches, see [5, 6, 18, 20].

Apart from the problem on optimal constants, this example may further be
generalized to include arbitrary convex probability measures with a fixed parameter
of convexity. A probability measure μ on R

n is called κ-concave, where −∞ ≤ κ ≤
+∞, if it satisfies the Brunn-Minkowski-type inequality

(1.3) μ
(
tA + (1 − t)B

)
≥

[
tμ(A)κ + (1 − t)μ(B)κ

]1/κ

for all t ∈ (0, 1) and for all Borel measurable sets A, B ⊂ R
n with positive measure.

Here tA + (1 − t)B = {tx + (1 − t)y : x ∈ A, y ∈ B} stands for the Minkowski sum
of the two sets. When κ = 0, the inequality (1.3) becomes

μ
(
tA + (1 − t)B

)
≥ μ(A)tμ(B)1−t,

and we arrive at the notion of a log-concave measure, introduced by A. Prékopa (cf.
[32, 37, 38]). When κ = −∞, the right-hand side is understood as min{μ(A), μ(B)}.
The inequality (1.3) is getting stronger as the parameter κ is increasing, so in the
case κ = −∞ we obtain the largest class, whose members are called convex or
hyperbolic probability measures. For general κ’s, the family of κ-concave measures
was introduced and studied by C. Borell [14, 15], cf. also [16].

A remarkable feature of this family is that many important geometric properties
of κ-concave measures may be controlled by the parameter κ, only, and in essense do
not depend on the dimension n (like the properties expressed in terms of Khinchin
and dilation-type inequalities). This is in despite of the fact that the dimension
appears in the density description of many κ-concave measures. Indeed, one may
start with an arbitrary probability density p(x) = dμ(x)

dx = V (x)−β , where V is a
positive convex function on an open supporting set Ω ⊂ R

n, with β ≥ n, and then we
obtain a κ-concave probability measure with a negative parameter κ = −1/(β − n).

Let us return to the weighted type inequalities (1.1)–(1.2). In [12] it was also
shown that any κ-concave probability measure μ on R

n satisfies

Varμ(f) ≤ Cμ

∫ ∣∣∇f(x)
∣∣2(1 + |x|2

)
dμ(x),

thus, up to a constant with the same weight function as in the Cauchy case. More-
over, within universal factors, there is a stronger analytic form, which in turn may
equivalently be described as an isoperimetric inequality of Cheeger’s type.

The purpose of this note is to derive a more precise inequality, which would cor-
rectly reflect the behaviour of the weight function with respect to the parameter κ,
especially when it is close to zero. To this task, introduce the geometric mean for
the Euclidean norm under μ,

m0 = exp
∫

log |x| dμ(x).

It is finite for any κ-concave probability measure with finite κ and may be shown
to be equivalent to the median of the Euclidean norm (up to factors, depending
on κ).

The main statement of this work is the following theorem.
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Theorem 1.1. If μ is a κ-concave probability measure on R
n, −∞ < κ ≤ 0, for

any locally Lipschitz function f on R
n we have

(1.4)
∫∫

|f(x) − f(y)| dμ(x)dμ(y) ≤ Cκ

∫ ∣∣∇f(x)
∣∣(m0 − κ|x|

)
dμ(x)

with constants Cκ that continuously depend on κ in the indicated range.

One may equivalently rephrase Theorem 1.1 as the following statement of isoperi-
metric flavor: For all non-empty Borel sets A and B in R

n located at distance
h = dist(A, B) > 0,

(1.5) μ(A) μ(B) ≤ Cκ

2h

∫
Rn \(A∪B)

(m0 − κ|x|) dμ(x).

In particular, in the log-concave case (κ = 0) we arrive at

(1.6) μ(A) μ(B) ≤ C0m0

2h
(1 − μ(A ∪ B)),

where C0 is a universal constant. This is one of the variants of the isoperimetric
inequality of Cheeger’s type

(1.7) μ+(A) ≥ 2
C0m0

μ(A)
(
1 − μ(A)

)
,

relating the μ-perimeter of the set μ+(A) = lim infh→0
μ(Ah)−μ(A)

h to the size μ(A)
(where Ah denotes an h-neighbourhood of A).

For the uniform distributions on convex bodies (which correspond to the value
κ = 1/n in the hierarchy of convex measures), inequalities (1.6)-(1.7) were obtained
by R. Kannan, L. Lovász and M. Simonovits in [27]. In fact, their localization
approach carries over the class of general log-concave measures; cf. also [7] for a
different approach. By a standard argument due to V. G. Maz’ya and J. A. Cheeger,
(1.6)-(1.7) imply the usual Poincaré-type inequality

(1.8) Varμ(f) ≤ C2
0m2

0

∫ ∣∣∇f(x)
∣∣2dμ(x),

which in turn, up to a universal factor, may be shown to imply (1.6)-(1.7) in the
class of log-concave probability measures, cf. [31]. Let us emphasize that in the log-
concave case the geometric mean m0 is equivalent to the L1-norm m1 =

∫
|x| dμ(x),

or one may also take L2-norm. When, however, κ is negative, m1 might be infinite,
and we need to involve other characteristics, such as m0.

Thus, the inequalities (1.4)-(1.5) may be viewed as a natural extension of the
Kannan-Lovász-Simonovits theorem to the family of κ-concave measures with neg-
ative finite κ’s. Correspondingly, as an extension of (1.8) to this family we derive
from Theorem 1.1:

Theorem 1.2. If μ is a κ-concave probability measure on R
n, −∞ < κ ≤ 0, for

any locally Lipschitz function f with finite μ-variance, we have

(1.9) Varμ(f) ≤ Cκ

∫ ∣∣∇f(x)
∣∣2(m2

0 + κ2|x|2
)
dμ(x),

where the constants Cκ continuously depend on κ.
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The paper is organized as follows. In Section 2 we recall basic facts, describing
the class of κ-concave measures. Some additional results about dimension one are
collected in Section 3. Here we treat general κ-concave measures as “nice” trans-
formations of the so-called Pareto distributions on the line, which will allow us in
Section 5 to reach a one-dimensional variant of Theorem 1.1. One of the ingredients
in the argument is based on Khinchin-type inequalities for norms, which we consider
separately in Section 4. In Section 6, which is rather general and where convexity
does not play any special role, we discuss equivalent forms for the analytic inequal-
ity (1.4), including (1.5) and some other. (Two general statements are postponed to
the Appendix). An important localization argument, which is used to extend these
inequalities from the line to higher dimensions, is discussed in Section 7. Finally, in
Section 8 we make final steps towards Theorems 1.1 and 1.2.

Contents
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3. Transforms of Pareto distributions
4. Median and geometric mean of norms
5. Weighted Cheeger-type inequalities on the line
6. Isoperimetric inequalities of Cheeger type
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8. Proof of Theorems 1.1-1.2
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2. Characterization of κ-concave measures

A full characterization of κ-concave measures was given by C. Borell in [14, 15],
cf. also [16]. Namely, any κ-concave probability measure is supported on some
(relatively) open convex set Ω ⊂ R

n and is absolutely continuous with respect to
Lebesgue measure on Ω. Necessarily, κ ≤ 1/dim(Ω), and if Ω has dimension n, we
have:

Proposition 2.1. An absolutely continuous probability measure μ on R
n is κ-

concave, where −∞ ≤ κ ≤ 1/n, if and only if μ is supported on an open convex set
Ω ⊂ R

n, where it has a positive density p such that, for all t ∈ (0, 1) and x, y ∈ Ω,

(2.1) p(tx + (1 − t)y) ≥
[
tp(x)κn + (1 − t)p(y)κn

]1/κn
,

where κn = κ
1−nκ .

If κ is negative, one may represent the density in the form p = V −β with β ≥ n,
κ = −1/(β − n), where V is an arbitrary positive convex function on Ω, satisfying
the normalization condition

∫
Ω

V −β dx = 1.
The κ-mean function,

M (t)
κ (a, b) = [taκ + (1 − t)bκ

]1/κ
, a, b ≥ 0,

which appears both in the Brunn-Minkowsi-type inequality (1.3) and in the density
description (2.1), is understood as atb1−t for κ = 0, and as min{a, b} for κ = −∞.

In dimension one there is another equivalent characterization. If an absolutely
continuous probability measure μ on the real line R is supported on an open interval
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(a, b), bounded or not, and has there a positive continuous density p, one may
associate to it the function

Iμ(t) = p(F −1(t)), 0 < t < 1,

where F −1 : (a, b) → (0, 1) is the inverse to the distribution function F (x) = μ(a, x),
a < x < b. Conversely, starting from a continuous positive function I on (0, 1), we
obtain via the equality

(2.2) F −1(t) − F −1(t0) =
∫ t

t0

ds

I(s)
, 0 < t, t0 < 1,

a probability measure μ with the distribution function F and the associated function
Iμ = I. (The measure is unique modulo shifts.)

With these notations and assumptions, we have (cf. [9]):

Proposition 2.2. The probability measure μ is κ-concave, where −∞ < κ < 1, if
and only if the function I

1/(1−κ)
μ is concave on (0, 1).

This follows from Proposition 2.1 and the general identity

κ (I1/(1−κ)
μ )′(F (x)) = (p(x)κ/(1−κ))′, κ 
= 0.

Note, in the case κ = 1, the class of non-degenerate κ-concave measures coincides
with the class of uniform distributions on bounded intervals.

3. Transforms of Pareto distributions

In this section we consider one-dimensional measures, only. In this case, Propo-
sition 2.2 may be used to represent κ-concave measures as “nice” transforms of
certain “standard” κ-concave measures. Note the concavity of I

1/(1−κ)
μ implies that

the limit Iμ(0+) = limt→0+ I(t) exists, is finite, and the associated function admits
a lower bound

(3.1) Iμ(t) ≥ Iμ(0+) (1 − t)1−κ, 0 < t < 1.

Here, an equality is attained for some probability distributions which play an im-
portant role in the class of κ-concave measures on the real line. Namely, given a
finite κ ≤ 1, introduce a probability measure μκ on the positive half-axis (0, +∞)
with the distribution function

(3.2) Fκ(x) = 1 − (1 − κx)1/κ, 0 < x < cκ,

and the associated function Iμκ(t) = (1−t)1−κ. When −∞ < κ < 0, the measure μκ

represents a Pareto distribution with parameter α = −1/κ, which in the limit (or
for κ = 0) becomes a one-sided exponential distribution with density p(x) = e−x,
x > 0. In these cases cκ = +∞. When 0 < κ ≤ 1, μκ is supported on the finite
interval (0, 1/κ), that is, cκ = 1/κ.

Now, let μ be a probability measure, supported on an open interval (a, b), −∞ ≤
a < b ≤ +∞, and having there a positive continuous density p. Consider the
(unique) increasing map T : (0, cκ) → (a, b), which pushes forward μκ to μ, i.e.,

T (x) = F −1(Fκ(x)), 0 < x < cκ,

where F −1 : (a, b) → (0, 1) is the inverse to the distribution function F of μ.
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Proposition 3.1. If μ is κ-concave with −∞ < κ ≤ 1, and a > −∞, then T is
concave on (0, cκ) and has a Lipschitz seminorm

‖T ‖Lip ≤ 1
p(a+)

.

Proof. In terms of the associated functions the property ‖T ‖Lip ≤ C is equivalent
to C Iμ ≥ Iμκ , which is indeed fulfilled with C = 1/p(a+), according to (3.1) and
since Iμ(0+) = p(a+).

Now, using the κ-concavity of μ, apply the definition (1.3) to the half-axes A =
(x, +∞), B = (y, +∞) with arbitrary x, y ∈ (a, b). Then, for all t ∈ (0, 1), s = 1 − t,

(3.3) 1 − F (tx + sy) ≥ M (t)
κ (1 − F (x), 1 − F (y)).

Note that for the distribution Fκ, defined in (3.2), the above inequality turns into
an equality. Therefore, representing F = Fκ(T −1), where T −1 : (a, b) → (0, cκ) is
the inverse map, we obtain from (3.3) that

1 − Fκ

(
T −1(tx + sy)

)
≥ M (t)

κ

(
1 − Fκ(T −1(x)), 1 − Fκ(T −1(y))

)
= 1 − Fκ

(
tT −1(x) + sT −1(y)

)
.

Hence, T −1(tx + sy) ≤ tT −1(x) + sT −1(y), that is, T −1 is convex or T is concave.
Proposition 3.1 follows.

There is another useful variant of Proposition 3.1 involving a median of the
distribution. By the concavity of I

1/(1−κ)
μ , we also have

(3.4) Iμ(t) ≥ 21−κ Iμ(1/2) (min{t, 1 − t})1−κ, 0 < t < 1.

Here, up to the factor, an equality is attained for a symmetric probability distrib-
ution νκ with the associated function Iνκ(t) = (min{t, 1 − t})1−κ. Its distribution
function is given by

(3.5) νκ(x, +∞) =
1

(2−κ − κx)−1/κ
, x ≥ 0,

so, when −∞ < κ < 0, νκ may be viewed as a symmetrized Pareto distribution,
which in the limit (or for κ = 0) becomes a two-sided exponential distribution with
density p(x) = 1

2 e− |x|. Note νκ is supported on the finite interval (− 2−κ

κ , 2−κ

κ )
when 0 < κ ≤ 1.

Since I(1/2) = p(m), where m is the median of μ, we have (with a similar
argument as in the proof of Proposition 3.1):

Proposition 3.2. Let μ be a non-degenerate κ-concave probability measure on the
real line with density p and median m (−∞ < κ ≤ 1). Then μ represents the image
of the measure νκ under a non-decreasing Lipschitz map T : R → R with

‖T ‖Lip ≤ 1
21−κp(m)

.

To make the obtained bounds on the Lipschitz seminorm practical, it is natural
to relate the quantity p(m) to integral characteristics of random variables with
distribution μ. For a random variable X introduce Lq-norms ‖X‖q = (E |X|q)1/q,
including the geometric mean

‖X‖0 = exp E log |X|.
If X has a κ-concave distribution for some κ < 0, then ‖X‖q < +∞ for all q < −1/κ,
so ‖X‖0 = limq→0 ‖X‖q is always finite (cf. [9, 25]).
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Proposition 3.3. There are positive continuous functions C1(κ) and C2(κ) in the
range −∞ < κ ≤ 1 with the following property. For any random variable X, having
a non-degenerate κ-concave distribution with density p and median m,

(3.6) C1(κ) ‖X − m‖0 ≤ 1
p(m)

≤ C2(κ) ‖X − m‖0.

For a proof first note that, by the concavity of I
1/(1−κ)
μ , we immediately obtain:

Lemma 3.4. If a non-degenerate probability measure μ on the real line with density
p and median m is κ-concave, −∞ < κ ≤ 1, then

2κ−1 sup
x

p(x) ≤ p(m) ≤ sup
x

p(x).

Proof of Proposition 3.3. If F is the distribution function of X with inverse F −1

and the associated function I(t) = p(F −1(t)), then X −m has the same distribution
as the function

F −1(t) − F −1(1/2) =
∫ t

1/2

ds

I(s)

has under the Lebesgue measure on (0,1). In particular, for any q > 0,

(3.7) ‖X − m‖q
q =

∫ 1

0

∣∣∣∣
∫ t

1/2

ds

I(s)

∣∣∣∣
q

dt.

Using I(s) ≤ supx p(x), we get |
∫ t

1/2
ds

I(s) | ≥ 1
sup p |t − 1

2 | and

‖X − m‖q
q ≥ 1

(supx p(x))q

∫ 1

0

∣∣∣∣t − 1
2

∣∣∣∣
q

dt =
1

(supx p(x))q

1
2q (q + 1)

.

With Lemma 3.4, this gives ‖X − m‖q ≥ 1
p(m)

1
22−κ (q+1)1/q . Letting q → 0, we

arrive at the second inequality in (3.6) with C2(κ) = 22−κ e.
For the converse bound, one may apply Proposition 3.2 or directly (3.4) with

(3.7), which yield

‖X − m‖q ≤ 1
21−κ p(m)

‖Xκ‖q,

where Xκ is a random variable with the distribution νκ introduced in (3.5). Hence,
one may take C1(κ) = 21−κ ‖Xκ‖0.

However, in further applications it will be more convenient to bound 1/p(m) in
terms of ‖X‖0, rather than to work with ‖X − m‖0. To get a desired estimate, one
may use a very general principle concerning the integrals of the form

Lμ =
∫

Φ(|x|) dμ(x),

where Φ is a given non-decreasing function on [0, +∞). Namely, in the class of
all absolutely continuous probability measures μ on R

n with densities p such that
supx p(x) ≤ 1, the functional Lμ is minimized, when μ represents a uniform distri-
bution λ on the Euclidean ball B(0, R) with center at the origin and volume one
(so that ωnRn = 1, where ωn is the volume of the unit ball). When Φ(r) = r2,
this observation was first made by D. Hensley [26] (who considered log-concave
densities) and then was stated in the general situation by K. Ball [2].



8 S. G. Bobkov and M. Ledoux

For a simple argument, let us note that Lμ is linear with respect to Φ, so one
may assume Φ = 1(r,∞), the indicator function of a half-axis. Then the property
Lμ ≥ Lλ reads as

μ{ |x| ≤ r} ≤ λ{ |x| ≤ r} =
{

ωnrn, for 0 ≤ r ≤ R,
1, for r > R.

This inequality is automatically fulfilled, when r > R. In the other case, due to the
assumption p ≤ 1, we have

μ{|x| ≤ r} =
∫

{ |x|≤r}
p(x) dx ≤

∫
{ |x|≤r}

dx = voln(B(0, r)) = λ{|x| ≤ r},

which is the statement.
In particular, subject to the condition supx p(x) = 1, we have that, for any

q > 0, the one-dimensional integral
∫ +∞

− ∞ |x|q dμ(x) is minimized for the uniform
distribution on (−1/2, 1/2), and the minimum is equal to 1

2q (1+q) . Equivalently, if
X is a random variable with density p,

1
supx p(x)

≤ 2 (1 + q)1/q ‖X‖q.

In the limit case q = 0, we also have 1
supx p(x) ≤ 2e ‖X‖0. Recalling Lemma 3.4, we

arrive at:

Proposition 3.5. For any random variable X, having a non-degenerate κ-concave
distribution with density p and median m,

1
p(m)

≤ 22−κe ‖X‖0.

Note the constant here is the same as the constant C2(κ) from Proposition 3.3.

4. Median and geometric mean of norms

To proceed, we need reasonable integral estimates for the median. In fact, for convex
measures rather sharp and at the same time general bounds are available, which are
treated in the scheme of the so-called dilation-type inequalities. Special cases and for
the class of log-concave measures dilation-type inequalities were considered in many
works, starting in [14] (cf. for an account [36, 8]). The class of κ-concave measures
was, however, considered only recently. One particular case in such inequalities
corresponds to the dilation of symmetric convex bodies, and we state it below ([13],
cf. also [21]).

Proposition 4.1. Given a κ-concave probability measure μ on R
n, −∞ < κ ≤ 1,

for any symmetric, convex set B in R
n and for all h > 1,

(4.1) 1 − μ(B) ≥
[

2
h + 1

(1 − μ(hB))κ +
h − 1
h + 1

]1/κ

.

When κ = 0, the above reads as 1 − μ(B) ≥ (1 − μ(hB))2/(h+1), or equivalently,

1 − μ(hB) ≤ (1 − μ(B))(h+1)/2,

which is due to L. Lovász and M. Simonovits [33] in case of Euclidean balls B.
O. Guédon [25] extended this inequality to general convex bodies and also found a
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precise relation in the case κ > 0. Namely, then (4.1) is solved in terms of 1 − μ(hB)
as

1 − μ(hB) ≤ max1/κ

{
h + 1

2
(1 − μ(B))κ − h − 1

2
, 0

}
.

We are mostly interested in the range κ < 0, when (4.1) yields

(4.2) 1 − μ(hB) ≤
[

h + 1
2

(1 − μ(B))κ − h − 1
2

]1/κ

.

Let X be a random vector in R
n with distribution μ. If R

n is equipped with
a norm ‖ · ‖, Proposition 4.1 may be used to study integrability properties of the
random variable ‖X‖. This way one can reach various Khinchin-type inequalities
for the Lq-norms ‖X‖q = (E ‖X‖q)1/q under κ-concave measures, including the
geometric mean

‖X‖0 = exp E log ‖X‖.

In particular, this quantity may be related to the median m = m(‖X‖) of ‖X‖,
which is defined in the usual way as a number such that

P{ ‖X‖ ≤ m} =
1
2
.

More precisely, what we need is:

Corollary 4.2. If X has a non-degenerate κ-concave distribution on R
n, then

(4.3) C1(κ) ‖X‖0 ≤ m(‖X‖) ≤ C2(κ) ‖X‖0

for some positive continuous functions C1, C2 of κ in the range −∞ < κ ≤ 1.

Proof. It is enough to consider the values κ < 0 and to obtain (4.3) with some
continuous functions C1,2 having finite limits C1,2(0−) as κ → 0 (and then one
may put C1,2(κ) = C1,2(0−) for κ > 0).

If κ < 0, applying (4.2) to the convex set B = {x ∈ R
n : ‖x‖ ≤ m}, we obtain a

large deviation inequality

(4.4) P{ |X| > mh} ≤
[

h + 1
2

2−κ − h − 1
2

]1/κ

, h ≥ 1.

Thus, P{‖X‖ > mh} = O(h1/κ), as h → +∞, a property mentioned by C. Borell
in [14]. To get a more precise information, we replace h = 1 + x with x ≥ 0 and
notice that

h + 1
2

2−κ − h − 1
2

= 2−κ +
2−κ − 1

2
x ≥ 2−κ + (−κ)

log 2
2

x,

so that, by (4.4),

P{ ‖X‖ > m(1 + x)} ≤
[

2−κ + (−κ)
log 2

2
x

]1/κ

, x ≥ 0.

Here, up to the factor c = log 2
2 , the right-hand side may be recognized as the tail

function of the symmetrized Pareto distribution νκ, cf. (3.5). In other words, if Xκ

is a random variable with distribution νκ,

P{ ‖X‖ > m(1 + x)} ≤ 1
2

P{|Xκ| > cx}, x ≥ 0.
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Therefore, introducing the distribution functions F (h) = P{‖X‖ ≤ mh} and
G(x) = P{|Xκ| ≤ cx}, we have, for all q > 0,

E

(
‖X‖
m

)q

=
∫ +∞

0

(1 − F (h)) dhq ≤ 1 +
∫ +∞

1

(1 − F (h)) dhq

≤ 1 +
1
2

∫ +∞

0

(1 − G(x)) d(1 + x)q

=
1
2

+
1
2

∫ +∞

0

(1 + x)q dG(x) =
1
2

+
1
2

E

(
1 +

|Xκ|
c

)q

.

This gives

(4.5) ‖X‖q ≤ m

(
1
2

+
1
2

∥∥∥∥1 +
|Xκ|

c

∥∥∥∥
q

q

)1/q

with finite right-hand side, as long as q < −1/κ. Since ‖1 + |Xκ |
c ‖q → ‖1 + |Xκ |

c ‖0,
as q → 0 (with a finite limit), we get that

‖X‖0 ≤ m lim
q→0

(
1
2

+
1
2

∥∥∥∥1 +
|Xκ|

c

∥∥∥∥
q

q

)1/q

= m lim
q→0

(
1
2

+
1
2

∥∥∥∥ 1 +
|Xκ|

c

∥∥∥∥
q

0

)1/q

= m

(∥∥∥∥ 1 +
|Xκ|

c

∥∥∥∥
0

)1/2

.

Thus, the first inequality in (4.3) holds with constant, defined by

1
C2

1 (κ)
=

∥∥∥∥ 1 +
|Xκ|

c

∥∥∥∥
0

.

The second inequality should be based on a bound for “small ball probabilities”.
In fact, such a bound can be derived from the same dilation-type inequality (4.2).
Namely, taking there B = {x ∈ R

n : ‖x‖ ≤ mε} with fixed ε ∈ (0, 1] and applying
it to h = 1/ε, we may write (4.2) as

1
2

≤
[

1 + ε

2ε
P{ ‖X‖ > mε}κ − 1 − ε

2ε

]1/κ

and solve as

(4.6) P{ ‖X‖ ≤ mε} ≤ 1 −
[
1 + (2−κ − 1)

2ε

1 + ε

]1/κ

.

To simplify, put α = −1/κ, x = (2−κ − 1) 2ε
1+ε , and consider the function φ(x) =

1 − (1 + x)−α which appears on the right-hand side of (4.6). Since this function is
concave in x > −1, we have φ(x) ≤ φ(0) + φ′(0)x = αx, so

(4.7) P{ ‖X‖ ≤ mε} ≤ 2−κ − 1
−κ

2ε

1 + ε
, 0 < ε ≤ 1.

Now, applying (4.7),

E log
‖X‖
m

=
∫ +∞

0

log ε d P{ ‖X‖ ≤ mε}

≥
∫ 1

0

log ε d P{ ‖X‖ ≤ mε} = −
∫ 1

0

P{‖X‖ ≤ mε}
ε

dε

≥ 2−κ − 1
κ

∫ 1

0

2 dε

1 + ε
=

2−κ − 1
κ

log 4.
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Therefore, ‖X‖0
m ≥ 4

2−κ −1
κ , that is, the second inequality in (4.3) holds with con-

stant
C2(κ) = 4

2−κ −1
−κ .

Note that C2(0) = limκ→0 C2(κ) = 4log 2.
A combination of the inequality (4.5), which we obtained in the proof of the

lower bound on the median m = m(‖X‖) in Corollary 4.2, together with the upper
bound immediately leads to a Khinchine-type inequality for Lq-norms.

Corollary 4.3. If X has a non-degenerate κ-concave distribution on R
n with

−∞ < κ < 0, then for all q < −1/κ,

‖X‖q ≤ C(κ, q) ‖X‖0,

where C continuously depends on (κ, q).

For example, when q = 1 and κ = −1/2, we have with a universal constant C

(4.8) ‖X‖1 ≤ C ‖X‖0.

5. Weighted Cheeger-type inequalities on the line

It is time to explain how to get functional forms for Cheeger-type (isoperimetric)
inequalities with weight on the real line. Although there is a full characterization of
probability measures that satisfy Hardy-type inequalities with weight (cf. [34, 35]),
still we would be lead to questions on the dependence of the constants in such
inequalities on the involved measures.

Instead, let us start with the standard Pareto distributions μκ, κ < 0, which we
discussed in Section 2, cf. (3.2). These measures are concentrated on the positive
half-axis (0, +∞) and have the tail function

1 − Fκ(x) = (1 − κx)1/κ, x ≥ 0,

that is, dμκ(x) = −(1 − κx)1/κ−1 dx.
Given a smooth function f on [0, +∞) with f(0) = 0 (and having a compactly

supported derivative), we get, integrating by parts, that∫
f(x) dμκ(x) =

∫ +∞

0

f ′(x) (1 − Fκ(x)) dx =
∫ +∞

0

f ′(x) (1 − κx) dμκ(x).

This identity easily yields the inequality

(5.1)
∫

|f(x)| dμκ(x) ≤
∫ +∞

0

|f ′(x)| (1 − κx) dμκ(x),

which is true for all locally Lipschitz f on [0, +∞) with f(0) = 0 (and where f ′ is
understood as the Radon-Nikodym derivative).

Thus, we arrived in (5.1) at a functional Cheeger-type inequality for μκ with
weight w(x) = 1 − κx. The general κ-concave case may be treated via (5.1) using
transforms of the measures μκ.

Proposition 5.1. Let μ be a non-degenerate κ-concave probability measure on R

with density p and median m, −∞ < κ < 0. For any locally Lipschitz function f
on R,

(5.2)
∫

|f − f(m)| dμ ≤
∫

|f ′(x)|
(

1
2p(m)

− κ|x − m|
)

dμ(x).
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Since the functional c →
∫

|f − c| dμ is minimized for (any) median c = m(f) of
f under μ, the above inequality yields

(5.3)
∫

|f − m(f)| dμ ≤
∫

|f ′(x)|
(

1
2p(m)

− κ|x − m|
)

dμ(x).

The log-concave case may also be included in this statement by letting κ → 0, and
then we arrive at the usual Cheeger-type inequality without weights,∫

|f − m(f)| dμ ≤ 1
2p(m)

∫
|f ′ | dμ.

In other words, Cheeger’s isoperimetric constant Is(μ) of μ is bounded from below
by 2p(m). In fact, the above inequality is optimal, i.e., Is(μ) is equal to 2p(m), cf.
[7], Section 4.

Proof of Proposition 5.1. Shifting the measure μ (if necessary), we may assume
m = 0, as well as f(0) = 0. Let (a, b) be a supporting interval of μ, so that
−∞ ≤ a < 0 < b ≤ +∞, and denote by μ+ the normalized restriction of μ to (0, b).
Thus, it has the density p+(x) = 2p(x), x ∈ (0, b).

Introduce the increasing map T : (0, +∞) → (0, b), which pushes forward the
Pareto distribution μκ to μ+. Note T (0+) = 0, so we may apply (5.2) to the function
f(T ), which gives

(5.4)
∫ b

0

|f | dμ+ ≤
∫ +∞

0

|f ′(T (x))| T ′(x) (1 − κx) dμκ(x).

Here the expression T ′(x) (1 − κx) = T ′(x) − κ T ′(x) x on the right-hand side can
be estimated from above with the help of Proposition 3.1. For the first term, we use
the bound ‖T ‖Lip ≤ 1/p+(0+), and since p+(0+) = 2p(0), we get T ′ ≤ 1/(2p(0)).
To bound the second term, we use the concavity of the function T , which implies
that T ′(x)x ≤ T (x). Indeed, whenever x > y > 0, we may write T (x) − T (y) ≥
T ′(x)(x − y) and then let y → 0. Being combined, the two bounds give

T ′(x) (1 − κx) ≤ 1
2p(0)

− κT (x),

so by (5.4), after the change y = T (x) we may return on its right-hand side to the
measure μ+ and arrive at

∫ b

0

|f | dμ+ ≤
∫ b

0

|f ′(y)|
(

1
2p(0)

− κy

)
dμ+(y).

With a similar inequality for the measure μ−, the normalized restriction of μ to
(a, 0), we finally obtain that

∫ b

a

|f | dμ ≤
∫ b

a

|f ′(y)|
(

1
2p(0)

− κ|y|
)

dμ(y).

Proposition 5.1 is proved.

To further estimate the right-hand side of (5.2)-(5.3) in terms of integral charac-
teristics of μ, one may just write |x − m| ≤ |x| + |m| and bound |m| by the μ-median
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m(|x|) of the Euclidean distance. Next both m(|x|) and 1/p(m) may be bounded
from above by the geometric mean of the Euclidean distance,

m0 = exp
∫

log |x| dμ(x),

in accordance with Corollary 4.2 (the second inequality) and Proposition 3.5.

Corollary 5.2. Given a non-degenerate κ-concave probability measure μ on R with
−∞ < κ ≤ 0, for any locally Lipschitz function f on R with μ-median m(f),

(5.5)
∫

|f − m(f)| dμ ≤
∫

|f ′(x)| (Cκ m0 − κ|x|) dμ(x),

where Cκ is a continuous function of κ in the indicated range.

The assumption that μ is non-degenerate is not essential: If μ is concentrated at
a point, say a, then m0 = a, and (5.5) is immediate (the left-hand side is vanishing).

Using an elementary bound
∫

|f − m(f)| dμ ≥ 1
2

∫
|f −

∫
f dμ| dμ, we may obtain

from (5.5) an equivalent (within a factor of 2) analytic inequality of Cheeger-type

1
2

∫ ∣∣∣∣f −
∫

f dμ

∣∣∣∣ dμ ≤
∫

|f ′(x)| (Cκ m0 − κ|x|) dμ(x).

It should be understood in the standard sense: Any locally Lipschitz function f
on R, such that the right-hand side is finite, is integrable with respect to μ, and
the inequality holds true.

As another variant, which does not require any integrability assumption, we may
also write

(5.6)
1
2

∫∫
|f(x) − f(y)| dμ(x)dμ(y) ≤

∫
|f ′(x)| (Cκ m0 − κ|x|) dμ(x).

The form (5.6) is better adapted for multidimensional extensions. However, first we
need to recall a family of geometric inequalities that may be used in place of (5.6).

6. Isoperimetric inequalities of Cheeger’s type

Weighted analytic inequalities like (5.5)-(5.6) may equivalently, at least within uni-
versal factors, be stated on sets in a very general setting, say, on abstract metric
spaces. However, here we restrict ourselves to the Euclidean space R

n. In this sec-
tion, we recall basic arguments, which lead to the equivalence between isoperimetric
and analytic inequalities of Cheeger-type with weight. (For spaces with finite mea-
sure such statements are usually considered about inequalities without weight, cf.
e.g. [19, 40], Theorem 1; [28, 10], Theorems 1.1-1.2).

For definiteness, assume we are given a non-negative Borel measurable function
w on R

n, not identically zero (called a weight function). To every Borel probability
measure μ on R

n we associate a Borel measure, μw, which is absolutely continuous
with respect to μ with density w, i.e.,

μw(A) =
∫

A

w(x) dμ(x), A ⊂ R
n (Borel).

We assume, although this is not essential for most statements, that the function w
is locally integrable with respect to μ. Equivalently, the measure μw is supposed to
be finite on compact subsets of the space.
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For any Borel set A in R
n, one may define its (outer Minkowski) μw-perimeter

μ+
w(A) = lim inf

ε↓0

μw(Aε \ A)
ε

,

where Aε = {x ∈ R
n : ∃y ∈ A, |x − y| < ε} denotes an open Euclidean ε-nei-

ghbourhood of A. It is natural to restrict this definiton to those A’s that have finite
measure μw(A), and then

μ+
w(A) = lim inf

ε↓0

μw(Aε) − μ(A)
ε

.

Recall, for example, that the classical isoperimetric inequality for the Lebesgue
measure in R

n requires finiteness of the measure of a set.
If f is a locally Lipschitz function f on R

n, its generalized modulus of the gradient
is defined as the (finite Borel measurable) function

| ∇f(x)| = lim sup
y→x

|f(x) − f(y)|
|x − y| , x ∈ R

n.

Clearly, when the function is differentiable, we arrive at the usual definition.
We will say that f is μw-finite, if

μw { |f | > t} < +∞ for all t > 0.

For example, any μw-integrable function is μw-finite. This definition may be used
in the setting of an abstract measure space (and indeed this property is essential in
the Theory of Lebesgue integration over infinite measures). Note that if a measure
ν is finite, then any measurable function on that space is ν-finite.

Proposition 6.1. Given a Borel probability measure μ on R
n, the following prop-

erties are equivalent:

a) For any locally Lipschitz μw-finite function f on R
n,

(6.1)
∫

| ∇f(x)| w(x) dμ(x) ≥ 1
2

∫∫
|f(x) − f(y)| dμ(x) dμ(y) ;

b) For any closed set A in R
n of finite measure μw(A), we have

(6.2) μ+
w(A) ≥ μ(A)(1 − μ(A)) ;

c) For any Borel set A in R
n of finite measure μw(A) and for any h > 0,

(6.3)
μw(Ah) − μw(A)

h
≥ μ(A)

(
1 − μ(Ah)

)
;

d) For all non-empty Borel sets A, B ⊂ R
n at distance h > 0, with finite μw(A),

(6.4)
1
h

∫
Rn \(A∪B)

w dμ ≥ μ(A) μ(B) ;

e) (6.4) holds true for all non-empty compact sets A, B ⊂ R
n at distance h > 0.
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Let us remind that the distance functional between non-empty sets is defined in
the usual way as

h = dist(A, B) = inf
x∈A,y∈B

|x − y|.

The geometric inequality (6.4) will be used for extensions of analytic inequalities
with weight, such as (6.1), from the line to higher dimensions.

Remark 6.2. It is not clear if one may remove from the property a) the assump-
tion that f is μw-finite, or equivalently, the assumption that μw(A) is finite in the
property d). However, in some cases this can easily be done. For example, when the
measure μ is compactly supported or can be approximated by compactly supported
measures that satisfy a similar property such as (6.1) with a common (or asymp-
totically common) weight function, one may write this inequality for such measures
without any assumption on the function f , and then in the limit we obtain (6.1) for
μ in the class of all locally Lipschitz f . In particular, this argument may be applied
to the family of κ-concave measures μ.

Remark 6.3. If w(x) > 0 on the support of μ, then μ is absolutely continuous
with respect to μw, and as a result, the isoperimetric-type inequality (6.2) can be
extended from the class of all closed sets to the class of all Borel sets A ⊂ R

n with
finite μw(A).

Indeed, every Aε contains clos(A), the closure of A. So, if μw(clos(A)) > μw(A),
then μ+

w(A) = +∞, and (6.2) is immediate. In case μw(clos(A)) = μw(A), we have
that μ(clos(A)) = μ(A). This implies μ+

w(clos(A)) = μ+
w(A), and the inequality

(6.2), being applied to the closed set clos(A), yields the same inequality for A.

Remark 6.4. It is not clear how optimal the inequalities (6.3)-(6.4) are. When
the weight function w is constant, the isoperimetric-type inequality (6.2) takes the
form

μ+(A) ≥ cμ(A)(1 − μ(A)).

As is known (cf. e.g. [10]), it may be “integrated” or “iterated” with respect to the
parameter h > 0 to yield an equivalent relation

μ(Ah) ≥ p

p + (1 − p) e−ch

in the class of all Borel sets A in R
n of measure p = μ(A). Equality is attained for

all h > 0 and p ∈ (0, 1) simulateneoulsy, when μ is the so-called logistic distribution
on the real line, and when A is a half-axis.

Proof of Proposition 6.1. We involve in the proof a somewhat weakened variant of
the property b):

b′) For any closed set A in R
n, such that μw(Aε) < +∞ for some ε > 0, the

weighted isoperimetric inequality (6.2) holds true.
We start with the equivalence between a) and b′).
a) ⇒ b′): Assume μw(Aε) < +∞ for some ε > 0. By Lemma 9.1 of the Appendix,

there is a sequence of Lipschitz μw-finite functions f	 : R
n → [0, 1], such that

lim sup
	→∞

∫
| ∇f	| dμw ≤ μ+

w(A)

and f	 → 1A pointwise. The latter yields

lim
	→∞

∫∫
|f	(x) − f	(y)| dμ(x) dμ(y) = 2 μ(A)(1 − μ(A)).
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Hence, applying (6.1) to the the functions f	, in the limit we arrive at (6.2).
b′) ⇒ a): First assume f is Lipschitz and μw-finite. By Lemma 9.2, applied to

the measure ν = μw, if the function

Drf(x) = sup
0<|x−y|<r

|f(x) − f(y)|
|x − y| , x ∈ R

n,

is μw-integrable for some r > 0, then

(6.5)
∫

Rn

| ∇f | dμw ≥
∫ 0

− ∞
μ+

w {f ≤ t} dt +
∫ +∞

0

μ+
w {f ≥ t} dt.

Note the integrals on the right-hand side do not depend on whether we use strict
or non-strict inequalities in the integrands.

For t > 0, the sets At = {f ≥ t} are closed, and by the Lipschitz property,
Aε ⊂ {f ≥ t − Mε}, where M = ‖f ‖Lip. Hence, for each t > 0, μw(Aε

t ) is finite
for sufficiently small ε > 0. Thus the assumption in property b′) is fulfilled, so that
(6.2) may be applied to these sets:

μ+
w {f ≥ t} ≥ F (t−)(1 − F (t−)), for any t > 0,

where F (t) = μ{f ≤ t} is the distribution function of f under μ. Similarly,

μ+
w {f ≤ t} ≥ F (t)(1 − F (t)), for any t < 0.

Hence, (6.5) yields

∫
Rn

| ∇f | dμw ≥
∫ +∞

− ∞
F (t)(1 − F (t)) dt

=
1
2

∫∫
|f(x) − f(y)| dμ(x) dμ(y),(6.6)

that is, the desired inequality (6.1).
To remove the assumption that f is Lipschitz and Drf is μw-integrable, first

assume f is μw-integrable. Note that, since f is locally Lipschitz, it has a finite
Lipschitz seminorm on every ball in R

n, so for any r > 0, Drf is bounded on balls.
Consider the Lipschitz functions of the form fR(x) = f(x)gR(x), R > 0, where
gR(x) = hR(|x|) with

hR(t) =

{1, for 0 ≤ t ≤ R,
1 − (t − R), for R ≤ t ≤ R + 1,
0, for t ≥ R.

Then DrfR is bounded on balls, and in addition DrfR(x) = 0, as long as |x| > R+r.
Hence, we may apply the previous step and write (6.6) for fR. Since

| ∇fR(x)| ≤ |f(x)| | ∇gR(x)| + |gR(x)| | ∇f(x)|
≤ |f(x)| 1{R≤ |x|≤R+1} + | ∇f(x)|,

we get that

(6.7)
∫∫

|fR(x) − fR(y)| dμ(x) dμ(y) ≤
∫

| ∇f | dμw +
∫

{R≤ |x|≤R+1}
|f | dμw.



On weighted isoperimetric and Poincaré-type inequalities 17

By the integrability assumption, the last term is vanishing for growing R. The first
term majorizes ∫

{ |x|≤R}

∫
{ |y|≤R}

|f(x) − f(y)| dμ(x) dμ(y).

It remains to let R → +∞, and then (6.7) yields (6.1).
In the general case, consider the functions of the form fT = T (f), where T is an

arbitrary odd, non-decreasing, continuously differentiable function on the real line,
such that T (0) = 0 and T ′ ≤ 1. In particular, | ∇fT | ≤ | ∇f |. Note that in terms of
the distribution function F of f under μ there is a general identity

1
2

∫∫
|T (f(x)) − T (f(y))| dμ(x) dμ(y) =

∫ +∞

− ∞
F (t)(1 − F (t)) ϕ(t) dt,

where ϕ = T ′. Hence, by the previous step, being applied to fT , we obtain that, if
fT is μw-integrable,

∫
Rn

| ∇f | dμw ≥
∫ +∞

− ∞
F (t)(1 − F (t)) ϕ(t) dt ≡ Lϕ.

The function ϕ may be an arbitrary element in the class F of all even Borel mea-
surable functions on R, such that 0 ≤ ϕ(t) ≤ 1, with an additional assumption that
it is continuous and satisfies∫

|T (f)| dμw =
∫ +∞

0

μw {|f | > t} ϕ(t) dt < +∞.

Since the function ψ(t) = μw { |f | > t} is finite and non-increasing for t > 0, a
standard density argument allows one to remove the condition

∫ +∞
0

ψ(t)ϕ(t) dt <
+∞ when maximizing Lϕ. But supϕ∈F Lϕ is attained for ϕ ≡ 1, at which it becomes
the right-hand side of (6.6).

c) ⇐⇒ d): Note that when A and h are fixed, an optimal set in the inequality
(6.4) is given by B = R

n \ Ah (which is always closed), and then the inequality
becomes

(6.8)
1
h

∫
Ah \A

w dμ ≥ μ(A) (1 − μ(Ah)),

which is exactly (6.3). Indeed, if A and B are non-empty with h = dist(A, B) > 0,
then |x−y| ≥ h, for all x ∈ A, y ∈ B, so B ⊂ R

n \Ah. From this Ah \A ⊂ R
n \(A∪B),

so (6.8) would imply that

(6.9)
1
h

∫
Rn \(A∪B)

w dμ ≥ 1
h

∫
Ah \A

w dμ ≥ μ(A) (1 − μ(Ah)) ≥ μ(A)μ(B).

Consequently, c) is formally stronger than d). Conversely, given a Borel set A
and h > 0, define B = R

n \ Ah. If B is empty, (6.8) is immediate. In the other
case, we have that dist(A, B) = h. Indeed, dist(A, B) ≥ h, by the definition of B.
To derive the converse bound, introduce the function u(x) = d(A, x). We have
u = 0 on A and u ≥ h on B. But the set J = u(Rn) is connected (as image of the
connected space) and therefore represents an interval on the line. Hence, [0, h] ⊂ J .
In particular, the level set u−1(h) is non-empty, that is, B contains points x with
d(A, x) = h. Hence, dist(A, B) ≤ h. This shows that c) is implied by d).
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c) & d) ⇐⇒ e): In view of the previous step and the general inequalities (6.9),
we only need to see that (6.8) may be extended from compact sets to general Borel
sets A with finite measure μw(A).

First assume A is a non-empty bounded Borel set in R
n. Then it has a compact

closure clos(A), to which we may apply (6.8):

1
h

∫
(clos(A))h \clos(A)

w dμ ≥ μ(clos(A)) (1 − μ((clos(A))h).

But in general (clos(A))h = Ah, so the above inequality immediately yields (6.8).
In the general case of a non-empty Borel set A in R

n, one may approximate it
by bounded sets AR = A ∩ { |x| ≤ R}, so that by the previous step, for any h > 0,

(6.10) μw((AR)h) ≥ μw(AR) + h μ(AR) (1 − μ(AR)).

Letting R → +∞, we have μw(AR) ↑ μw(A) and μw((AR)h) ↑ μw(Ah), and simi-
larly for the measure μ. So if μw(A) is finite, the limits in both sides of (6.10) exist,
the limit on the right-hand side is finite, and we obtain (6.8) for the set A.

a) ⇒ c): Starting from (6.1) and taking into account the previous two steps, we
need to derive (6.8) for an arbitrary non-empty compact set A. In this case Ah is
bounded and has a finite μw-measure for any h > 0.

Fix h, and for ε > 0, consider the function

f(x) = 1 − 1
h

min{d(Aε, x), h}, x ∈ R
n.

Clearly, 0 ≤ f ≤ 1 on the whole space, while f = 0 on Bε = {x ∈ R
n : d(Aε, x) > h}

and f = 1 on Aε. Note that

f(x) > t > 0 ⇒ d(Aε, x) < h ⇒ x ∈ Ah+ε,

so μw {f > t} ≤ μw(Ah+ε) < +∞, that is, f is μw-finite. Therefore, we may apply
(6.1) to this function. By the construction, | ∇f | ≤ 1/h on the whole space, but since
both Aε and Bε are open and f is constant on these sets, | ∇f | = 0 on Aε ∪ Bε.
Hence (6.1) gives

(6.11)
1
h

∫
Rn \(Aε ∪Bε)

w dμ ≥ 1
2

∫∫
|f(x) − f(y)| dμ(x) dμ(y) ≥ μ(Aε)μ(Bε).

By the closeness of A, we have μ(Aε) ↓ μ(A) and Bε ↑ R
n \ clos(Ah), as ε → 0.

Indeed, the complement B̄ε = R
n \ Bε = {x : d(Aε, x) ≤ h} contains Ah and

therefore clos(Ah). Conversely, if d(Aε, x) ≤ h, then x ∈ Ah′+ε, for any h′ > h. In
particular, x ∈ Ah+2ε. Hence, B̄ε ⊂ Ah+2ε and

⋂
ε>0

B̄ε ⊂
⋂
ε>0

Ah+2ε =
⋂
ε>0

(Ah)2ε = clos(Ah).

The two inclusions give
⋂

ε>0 B̄ε = clos(Ah). In particular, μ(Bε) ↑ 1−μ(clos(Ah)).
Taking the limit in (6.11), we get

1
h

∫
clos(Ah)\A

w dμ ≥ μ(A) (1 − μ(clos(Ah))).
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Now apply this bound with arbitrary h′ ∈ (0, h). Using clos(Ah′
) ⊂ Ah, we obtain

a similar inequality

(6.12)
1
h′

∫
Ah \A

w dμ ≥ μ(A) (1 − μ(Ah)).

It remains to let h′ → h, and then we arrive at the desired inequality (6.8).
c) ⇒ b): Let A be closed with finite measure μw(A). Since, as explained before,

the property c) may equivalently be written in the form (6.8), we get that, for any
ε > 0,

μw(Aε) − μw(A)
ε

≥ μ(A) (1 − μ(Aε)).

It remains to send ε to zero and note that μ(Aε) ↓ μ(A).
Since b) is stronger than b′), we have covered the whole cycle: a) ⇔ b′) ⇒

c), d), e) ⇒ b) ⇒ b′). Proposition 6.1 is proved.

7. Localization

In order to extend Corollary 5.2 to higher dimensions, we use a localization argu-
ment in the form of R. Kannan, L. Lovász and M. Simonovits, described in [33]
and [27] (cf. also [22, 23] for further developments). The method itself allows one
to reduce various multidimensional functional and geometric inequalities to specific
problems in dimension one. In particular, we have:

Proposition 7.1. Let α, β > 0 and κ ∈ [−∞, 1] be fixed, and let f1, f2, f3, f4 be
non-negative continuous functions on R

n. Then the inequality of the form

(7.1)
( ∫

f1 dμ

)α( ∫
f2 dμ

)β

≤
(∫

f3 dμ

)α( ∫
f4 dμ

)β

holds true for all κ-concave probability measures μ on R
n, if it holds true in the

class of all one-dimensional κ-concave probability measures on R
n with a compact

support.

In the log-concave case (when κ = 0), this remarkable observation was made
in [27]. But the general case is no more difficult, so we omit the proof. Let us
just mention that the argument is based on the so-called localization lemma of
Lovász-Simonovits [33].

In many interesting situations, the continuity assumption on the functions fi’s
in Proposition 7.1 may be relaxed (by using suitable approximations). This is so in
the following particular case.

Let α, β > 0, h > 0, and κ ∈ [−∞, 1] be fixed, and let v, w be non-negative
continuous functions on R

n.

Corollary 7.2. For all non-empty Borel sets A, B ⊂ R
n at distance h, and for any

κ-concave probability measure μ on R
n, we have that

(7.2) μ(A)α μ(B)β ≤
( ∫

Rn \(A∪B)

w dμ

)α ( ∫
Rn

v dμ

)β

if and only if this property holds true in the class of all one-dimensional κ-concave
probability measures on R

n with a compact support.

Proof. Assume the property (7.2) is fulfilled in the class of all one-dimensional
κ-concave probability measures on R

n, and let μ0 be an arbitrary κ-concave proba-
bility measure on R

n with compact support. Once (7.2) is established for compactly
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supported measures, the general case would follow immediately by applying (7.2)
to the normalized restrictions of κ-concave measures to the balls of large radii.

Using regularity of Borel measures, it is enough to establish (7.2) for μ0, when
A and B are non-empty compact sets in R

n at distance dist(A, B) > h.
Choose ε > 0 small enough, such that the open (Euclidean) neighbourhoods

Aε and Bε of these sets are still at a distance more than h. Take two continuous
functions f1, f2 : R

n → [0, 1] such that f1 = 1 on A, f1 = 0 on R
n \ Aε, and

similarly f2 = 1 on B, f2 = 0 on R
n \ Bε, and take an arbitrary continuous

function ϕ : R
n → [0, 1], such that ϕ = 1 on the closed set Cε = R

n \ (Aε ∪ Bε).
Then

(7.3) μ(A) ≤
∫

f1 dμ ≤ μ(Aε), μ(B) ≤
∫

f2 dμ ≤ μ(Bε).

By the one-dimensional hypothesis (7.2), applied to Aε and Bε, and using the right
inequalities in (7.3), we obtain that

(7.4)
(∫

f1 dμ

)α ( ∫
f2 dμ

)α

≤
( ∫

w ϕdμ

)α ( ∫
v dμ

)β

,

which holds for any one-dimensional κ-concave probability measure μ on R
n with a

compact support. Hence, by Proposition 7.1, (7.4) holds for μ0, as well. Using the
left inequalities in (7.3), we therefore obtain that

μ0(A)α μ0(B)β ≤
( ∫

w ϕdμ0

)α (∫
v dμ0

)β

.

Finally, taking here the infimum over all admissible ϕ’s and using closeness of the
set Cε, we arrive at

μ0(A)α μ0(B)β ≤
( ∫

Cε

w dμ0

)α(∫
v dμ0

)β

≤
( ∫

Rn \(A∪B)

w dμ0

)α( ∫
v dμ0

)β

,

which is the statement. Corollary 7.2 follows.

8. Proof of Theorems 1.1-1.2

We are prepared to consider weighted analytic inequalties for κ-concave measures
on R

n. Let X be a random vector with distribution μ. Define

‖X‖0 = exp E log |X|.

In view of the general Proposition 6.1 (and recalling Remark 6.2), Theorem 1.1 may
equivalently be formulated as the following geometric statement which we already
mentioned in Section 1, cf. (1.5).

Theorem 8.1. Let μ be a κ-concave probability measure on R
n, −∞ < κ ≤ 0. For

all non-empty Borel sets A, B ⊂ R
n at distance h > 0,

(8.1) μ(A) μ(B) ≤ Cκ

h

∫
Rn \(A∪B)

(‖X‖0 − κ|x|) dμ(x),

where the constants Cκ continuously depend on κ in the range κ ≤ 0.
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Proof. First let μ be a κ-concave probability measure on R with a compact support.
By Corollary 5.2 in the form of the inequality (5.6), for any locally Lipschitz function
f on the real line, we readily obtain that

1
2

∫∫
|f(x) − f(y)| dμ(x)dμ(y) ≤ (1 + Cκ ‖X‖0)

∫
|f ′(x)| (1 − κ|x|) dμ(x)

with some continuous function C = Cκ, κ ≤ 0. We are in a position to apply
Proposition 6.1 in dimension one, which gives

(8.2) μ(A) μ(B) ≤ 1 + Cκ ‖X‖0

h

∫
R\(A∪B)

(1 − κ|x|) dμ(x)

for any h > 0 and for all non-empty Borel sets A, B ⊂ R at distance h. Note that
the condition

∫
A
(1−κ|x|) dμ(x) < +∞ in the claim d) of Proposition 6.1 is satisfied.

In order to extend (8.2) to higher dimensions, we have to modify this inequality.
Note that, for any random variable ξ ≥ 0 with finite Lq-norm, q > 0,

1 + ‖ξ‖0 ≤ ‖1 + ξ‖0 ≤ ‖1 + ξ‖q.

The first bound can be obtained from Jensen’s inequality when applying it to the
convex function t → log(1 + et). Taking ξ = 1 + Cκ |X|, (8.2) yields

μ(A) μ(B) ≤ ‖1 + Cκ |X| ‖q

h

∫
R\(A∪B)

(1 − κ|x|) dμ(x).

Assume 0 < q ≤ 1. Using μ(B) ≥ (μ(B))1/q and raising the above inequality to
the power q, we get

(8.3) (μ(A))q μ(B) ≤
∫ (

1 + Cκ |x|
h

)q

dμ(x)
( ∫

R\(A∪B)

(1 − κ|x|) dμ(x)
)q

.

Now, we are in a position to apply Corollary 7.2 with α = q, β = 1, w(x) = 1 − κ|x|,
and v(x) = (1+Cκ |x|

h )q, to get that

(8.4) (μ(A))q μ(B) ≤
‖1 + Cκ |X| ‖q

q

hq

(∫
Rn \(A∪B)

(1 − κ|x|) dμ(x)
)q

for any κ-concave probability measure μ on R
n and for all non-empty Borel sets

A, B ⊂ R
n at distance h > 0 (where X is a random vector in R

n with distribu-
tion μ).

Indeed, according to Corollary 7.2 it suffices to establish (8.4) for one-dimensional
κ-concave μ with a compact support. Such measures may be characterized as the
distributions of X = a + Y θ with arbitrary orthogonal vectors a, θ ∈ R

n, |θ| = 1,
and where Y is a random variable with an arbitrary compactly supported κ-concave
distribution on R. Note that the Euclidean norm |X| of X in R

n satisfies

|X|2 = |a|2 + |Y |2 ≥ |Y |2,

so ‖1+ |X| ‖q ≥ ‖1+ |Y | ‖q. Therefore, (8.4) for the one-dimensional random vector
X is implied by the one-dimensional inequality (8.3) for the distribution μ of the
random variable Y .

Thus, we have obtained the inequality (8.4) for the class of all κ-concave prob-
ability measures μ on R

n. To proceed, we need to distinguish between small and
large values of −κ.
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Case 1. − 1
2 ≤ κ ≤ 0.

In this case one may just take q = 1. By Corollary 4.3, cf. (4.8), applied with
the Euclidean norm in R

n, and using continuity of Cκ in κ, we then have

‖1 + Cκ |X| ‖1 = 1 + Cκ ‖X‖1 ≤ 1 + C‖X‖0

with some absolute constant C. Hence, (8.4) yields

(8.5) μ(A) μ(B) ≤ 1 + C‖X‖0

h

∫
Rn \(A∪B)

(1 − κ|x|) dμ(x).

Case 2. κ ≤ − 1
2 .

In this case we take q = −1/(2κ). Since in general ‖1 + ξ‖q
q ≤ 1 + ‖ξ‖q

q (where
ξ ≥ 0 and 0 < q ≤ 1), again applying Corollary 4.3, i.e., ‖X‖q ≤ C(κ, q) ‖X‖0, we
obtain that

‖1 + Cκ |X| ‖q
q ≤ 1 + Cq

κ ‖X‖q
q ≤ 1 + Cq

κ C(κ, q)q ‖X‖q
0.

Recall that the constants C(κ, q) are finite and continuously varying in the region
q < −1/κ, κ ≤ 0. Hence with q = −1/(2κ), (8.4) yields

(μ(A))q μ(B) ≤ 1 + Cq
κ ‖X‖q

0

hq

( ∫
Rn \(A∪B)

(1 − κ|x|) dμ(x)
)q

with some (new) continuous function Cκ in the region κ ≤ − 1
2 . Raising this in-

equality to the power 1/q and using (aq + bq)
1
q ≤ 2

1
q −1(a + b), we get that

(8.6) μ(A) (μ(B))1/q ≤ 2
1
q −1 1 + Cκ ‖X‖0

h

∫
Rn \(A∪B)

(1 − κ|x|) dμ(x).

Note that one may interchange A and B in (8.6) so that to bound its right-
hand side by μ(B) (μ(A))1/q. So, one may assume without loss in generality that
μ(B) ≥ 1/2. But then μ(A) (μ(B))1/q ≥ 21− 1

q μ(A) μ(B), and (8.6) gives

(8.7) μ(A) μ(B) ≤ 4−2κ−1 1 + Cκ ‖X‖0

h

∫
Rn \(A∪B)

(1 − κ|x|) dμ(x).

This inequality is very similar to (8.5), so both can further be treated in a similar
manner. It remains to make them to be homogeneous with respect to X. If we apply
(8.7) to the random vector λX, λ > 0, and to the sets λA, λB, the inequality will
take the form

μ(A) μ(B) ≤ 4−2κ−1 1 + Cκ λ‖X‖0

λh

∫
Rn \(A∪B)

(1 − λκ|x|) dμ(x).

Then choose λ = 1/‖X‖0 to rewrite it as

μ(A) μ(B) ≤ 4−2κ−1 1 + Cκ

h

∫
Rn \(A∪B)

(‖X‖0 − κ|x|) dμ(x).

It is exactly of the desired form (8.1). The case of small κ may be included in
the above inequality with Cκ = C (and without term 4−2κ−1).

Theorem 8.1 is proved.

Remark. In [12] it is shown that, if μ is a κ-concave probability measure on R
n,

−∞ < κ < 0, then for any locally Lipschitz function f on R
n,

(8.8)
∫∫

|f(x) − f(y)| dμ(x)dμ(y) ≤ C · (1 − κ)
∫ ∣∣∇f(x)

∣∣(r + |x|
)
dμ(x),



On weighted isoperimetric and Poincaré-type inequalities 23

where C is a universal constant and r is a quantile of the Euclidean norm under μ of
order 2/3 (which is larger than, but still equivalent to the median). As we know from
Corollary 4.2, r may be replaced with the geometric mean m0 = ‖X‖0. Therefore,
up to constants, depending on κ, the inequalities (8.8) and (1.4) of Theorem 1.1
are equivalent in the case where the parameter κ is separated from zero.

Note that (8.8) implies the weighted Poincaré-type inequality

Varμ(f) ≤ C · (1 − κ)2
∫ ∣∣∇f(x)

∣∣2(r2 + |x|2
)
dμ(x)

with some (other) universal constant C. This inequality is also derived in [12],
where however the factor 1 − κ = β−n+1

β−n missed the power 2 in the formulation of
Theorem 5.1.

Proof of Theorem 1.2. Note that in general∫∫
|f(x) − f(y)| dμ(x) dμ(y) ≥

∫
|f − m(f)| dμ,

where m(f) is a median of f under μ. Hence, the inequality (1.4) of Theorem 1.1
yields

(8.9)
∫

|f | dμ ≤
∫

| ∇f | w dμ

for any locally Lipschitz function f on R
n with μ-median zero, where we use w(x) =

Cκ(m0 − κ|x|) to denote the corresponding weight function (with m0 = ‖X‖0). In
particular, if additionally f ≥ 0, we may apply (8.9) to f2 and get, together with
Cauchy’s inequality, that∫

f2 dμ ≤ 2
∫

f | ∇f | w dμ ≤ 2
( ∫

f2 dμ

)1/2(∫
| ∇f |2 w2 dμ

)1/2

.

Hence,
∫

f2 dμ ≤ 4
∫

| ∇f |2 w2 dμ. In the general case of a locally Lipschitz func-
tion f with median zero, represent f = f+ = f − with f+ = max{f, 0}, f − =
max{−f, 0}, and apply the obtained bound to f+ and f −. This gives∫

{f ≥0}
f2 dμ ≤ 4

∫
{f ≥0}

| ∇f |2 w2 dμ,∫
{f ≤0}

f2 dμ ≤ 4
∫

{f ≤0}
| ∇f |2 w2 dμ.

There is no loss in generality to assume that | ∇f | = 0 on the set {f = 0}, since
otherwise one may consider approximations of f by the functions of the form T (f)
with T (0) = T ′(0) = 0. Consequently, adding the above inequalities, we arrive at

Varμ(f) ≤
∫

f2 dμ ≤ 4
∫

| ∇f |2 w2 dμ.

It remains to note that w2 ≤ 2C2
κ (m2

0 + κ2|x|2).

Appendix

Here we give details, justifying two steps in the proof of Proposition 6.1. One of the
steps was based on the well-known assertion that, in order to derive an isoperimetric
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inequality from a given analytic inequality, one can properly approximate indicator
functions by Lipschitz functions. For our purposes, we need Lemma 9.1 below, which
extends Lemma 3.5 of [11] to the case of infinite measures. The second step made
use of the so-called coarea inequality, Lemma 9.2 below, which extends Lemma 3.2
of [11]. The coarea equality for the class of (sufficiently) smooth Lipschitz functions
is a classical tool in the Theory of Sobolev spaces, cf. e.g. [34]. However, it becomes
an inequality when stated for more general classes of functions and metric spaces.

Thus, assume we have a metric space (M, d), equipped with a σ-finite Borel
measure ν. To any function f on M , one may associate its generalized modulus of
the gradient defined to be

| ∇f(x)| = lim sup
y→x

|f(x) − f(y)|
|x − y|

for points x ∈ M that are not isolated, and to be zero otherwise. Note the collection
of all isolated points forms an open subset of M .

As easy to see, if f is continuous on M , then | ∇f | is Borel measurable. We say
that f is locally Lipschitz, if any point in M has a neighbourhood, where f has a
finite Lipschitz seminorm. In this case | ∇f | is everywhere finite. Moreover, when M
is locally compact, the generalized modulus of the gradient of any locally Lipschitz
function is bounded on every ball in M .

For every Borel set A in M we define its ν-perimeter (or, the outer Minkowski
content) as

ν+(A) = lim inf
ε↓0

ν(Aε \ A)
ε

,

where Aε = {x ∈ R
n : ∃y ∈ A, d(x, y) < ε} denotes an open Euclidean ε-neighbour-

hood of A. In particular, ν+(∅) = ν+(M) = 0.

Lemma 9.1. For any Borel set A in M , there exists a sequence of Lipschitz func-
tions fn : M → [0, 1], such that fn → 1clos(A) pointwise and

lim sup
n→∞

∫
| ∇fn| dν ≤ ν+(A).

Moreover, if ν(Aε) < +∞, for some ε > 0, such functions may be chosen to satisfy
the property that ν{ |fn| > t} < +∞ for all t > 0.

Proof. In general, clos(Aε) ⊂ Aε′
whenever 0 < ε < ε′, where clos(A) denotes the

closure of A. Therefore, by the definition of the perimeter, one can always choose
a sequence εn ↓ 0 such that

lim
n→∞

ν(clos(Aεn) \ A)
εn

= ν+(A).

Now, take a sequence cn ∈ (0, 1), such that cn → 0, and define the functions

fn(x) = max
{

1 − d(Acnεn , x)
(1 − cn)εn

, 0
}

,

where d(B, x) = infy∈B d(y, x). All distance functions have Lipschitz seminorm ≤ 1,
so ‖fn‖Lip ≤ 1/((1 − cn)εn) and

| ∇fn(x)| ≤ 1
(1 − cn)εn

, for all x ∈ M.
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Moreover, | ∇fn| = 0 on A, since fn = 1 on the open set Acnεn containing A. If
x /∈ Aεn , then d(A, x) ≥ εn, and by the triangle inequality, d(Acnεn , x) ≥ (1−cn)εn.
This shows that fn = 0 outside Aεn , so | ∇fn| = 0 on the open set M \ clos(Aεn).

Combining these properties, we conclude that∫
M

| ∇fn| dν =
∫

clos(Aεn )\A

| ∇fn| dν ≤ ν(clos(Aεn) \ A)
(1 − cn)εn

.

Taking the limit, we arrive at the desired inequality.
Finally, assume ν(Aε) < +∞ for some ε > 0. Hence, ν(Aεn) < +∞ for all n large

enough. For the constructed sequence fn, the required property ν{|fn| > t} < +∞,
where we may assume 0 < t ≤ 1, reads as ν{d(Acnεn , x) < (1 − t)(1 − cn)εn} < +∞.
It is fulfilled, since by the triangle inequality, the property d(Acnεn , x) < (1 − t)(1 −
cn)εn implies d(A, x) < t(1 − cn)εn < εn, so x ∈ Aε.

Lemma 9.1 is proved.

Lemma 9.2. Given a continuous function f on M , let ν{|f | > t} < +∞ for all
t > 0, and assume the function

(9.1) Drf(x) = sup
0<|x−y|<r

|f(x) − f(y)|
|x − y| , x ∈ M,

is ν-integrable for some r > 0. Then

(9.2)
∫

| ∇f | dν ≥
∫ 0

− ∞
ν+{f < t} dt +

∫ +∞

0

ν+{f > t} dt.

Proof. Consider the case f ≥ 0. First assume f is ν-integrable and bounded. If we
subtract from f the constant a = inf f , the function g = f − a will satisfy the same
hypothesis as f , while (9.2) will not change. Hence we may also assume inf f = 0
(which is necessary, when the measure ν is not finite).

Put b = sup f and define a non-increasing family of open sets At = {f > t} in
M with parameter t ∈ (0, b). Since∫

f dν =
∫ b

0

ν(At) dt < +∞,

necessarily ν(At) < +∞ for all t ∈ (0, b). In this case we may write (using rational
numbers h > 0)

ν+(At) = sup
ε>0

inf
0<h<ε

ν(Ah
t ) − ν(At)

h
= lim inf

h↓0

ν(Ah
t ) − ν(At)

h
.

This representation shows (since ν(At) and ν(Ah
t ) are monotone with respect to t)

that the resulting function t → ν+(At) is Borel measurable on (0, b) and thus on
the whole real line.

Introduce the family of lower semicontinuous functions fε(x) = sup|x−y|<ε f(y),
ε > 0, so that

lim sup
ε→0

fε(x) − f(x)
ε

≤ | ∇f(x)|, x ∈ M.

By the definition (9.1),

sup
0<ε<r

fε(x) − f(x)
ε

= sup
0<|x−y|<r

f(y) − f(x)
|x − y| ≤ Drf(x),
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so (fε − f)/ε for ε < r have a common ν-integrable majorant, if r is small enough.
Hence, we may apply the Lebesgue dominated convergence theorem, which gives

lim sup
ε→0

∫
fε − f

ε
dν ≤

∫
| ∇f(x)| dν.

Now, apply the identity {fε > t} = {f > t}ε and use once more ν-integrability of
f to write ∫

fε − f

ε
dν =

∫ b

0

ν(Aε
t ) − ν(At)

ε
dt.

By Fatou’s lemma,

lim inf
ε→0

∫ b

0

ν(Aε
t ) − ν(At)

ε
dt ≥

∫ b

0

lim inf
ε→0

ν(Aε
t ) − ν(At)

ε
dt =

∫ b

0

ν+(At) dt.

The two inequalities yield (9.2).
To remove the condition of the ν-integrability of f , just assume f is non-negative

and bounded as before, with inf f = 0, sup f = b. Consider functions of the form
fT = T (f) where T is an arbitrary non-decreasing, continuously differentiable func-
tion on [0, b], such that T (0) = 0 and T ′ ≤ 1. Then | ∇fT | ≤ | ∇f | and DrfT ≤ Drf ,
so DrfT is ν-integrable. By the previous step, applied to fT , we obtain that, if fT

is ν-integrable, ∫
| ∇f | dν ≥ Lϕ ≡

∫ b

a

ν+{f > t} ϕ(t) dt,

where ϕ = T ′. Note that the function ϕ may be an arbitrary element in the class
F of all Borel measurable functions on [0, b], such that 0 ≤ ϕ(t) ≤ 1, with an
additional assumption that it is continuous and satisfies∫

T (f) dν =
∫ b

0

ν{f > t} ϕ(t) dt < +∞.

Since the function ψ(t) = ν{f > t} is finite and non-increasing on (0, b), one may
apply a simple density argument to remove the condition

∫ b

0
ψ(t)ϕ(t) dt < +∞ when

maximizing Lϕ. But supϕ∈F Lϕ is exactly the second integral on the right-hand
side of (9.2).

Now, to remove the condition of the boundedness of f , in the general situation
one may truncate f at a high level c > 0. That is, apply (9.2) to the new function fc

defined to be fc(x) = f(x), if f(x) ≤ c, and fc(x) = c, if f(x) > c. Then | ∇fc| = 0
on the open set {f > c}, and in addition | ∇fc| ≤ | ∇f |, Drfc ≤ Drf on the whole
space. In particular, Drfc is ν-integrable. Choosing c so that ν{f = c} = 0 (this is
the only place, where we need σ-finiteness of the measure), (9.2) yields∫

{f(x)≤c}
| ∇f(x)| dν(x) ≥

∫ c

0

ν+{x ∈ M : f(x) > t} dt.

Letting c → +∞ along admissible values, we arrive at

(9.3)
∫

| ∇f | dν ≥
∫ +∞

0

ν+{f > t} dt,

which is (9.2) for f . Note that one may formally sharpen this inequality by writing

(9.4)
∫

{f>0}
| ∇f | dν ≥

∫ +∞

0

ν+{f > t} dt.
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Indeed, apply (9.3) to fn = Tn(f), where Tn : [0, +∞) → [0, +∞) are increasing
smooth functions, such that Tn(0) = T ′

n(0) = 0, T ′
n ≤ 1. Then | ∇fn| ≤ | ∇f |

everywhere, | ∇fn| = 0, as long as f = 0, and we get

(9.5)
∫

{f>0}
| ∇f | dν ≥

∫ +∞

0

ν+{f > t} ϕn(t) dt,

where ϕn = T ′
n. Choosing these functions so that, for all t > 0, ϕn(t) ↑ 1 as n → ∞,

in the limit (9.5) will become the desired inequality (9.4).
Finally, consider the general case and write f = f+ − f −, where f+ = max{f, 0},

f − = max{−f, 0}. Clearly, | ∇f ± | ≤ | ∇f | and Drf
± ≤ Drf , so we may apply to

the functions f ± the previous step in the form of (9.4) to get that∫
{f>0}

| ∇f | dν ≥
∫ +∞

0

ν+{f > t} dt,

∫
{f<0}

| ∇f | dν ≥
∫ 0

− ∞
ν+{f < t} dt.

It remains to add these two inequalities. Lemma 9.2 is proved.
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