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WEIGHTED POINCARÉ-TYPE INEQUALITIES FOR CAUCHY
AND OTHER CONVEX MEASURES1

BY SERGEY G. BOBKOV AND MICHEL LEDOUX

University of Minnesota and Université Paul-Sabatier

Brascamp–Lieb-type, weighted Poincaré-type and related analytic in-
equalities are studied for multidimensional Cauchy distributions and more
general κ-concave probability measures (in the hierarchy of convex mea-
sures). In analogy with the limiting (infinite-dimensional log-concave)
Gaussian model, the weighted inequalities fully describe the measure con-
centration and large deviation properties of this family of measures. Cheeger-
type isoperimetric inequalities are investigated similarly, giving rise to a com-
mon weight in the class of concave probability measures under consideration.

1. Introduction. The aim of these notes is to study some aspects of the high-
dimensional analysis, such as measure concentration and isoperimetric proper-
ties, of families of convex probability measures through inequalities of the type
of Brascamp–Lieb, Poincaré, Cheeger and logarithmic Sobolev, with weight. Al-
though such inequalities may be considered in different contexts and settings, we
restrict ourselves to the Euclidean space R

n. The multidimensional Cauchy distrib-
ution is the prototype model in the family of convex measures under investigation,
and may be analyzed in analogy with the Gaussian model for the class of log-
concave measures. Under a proper scaling, the Gaussian model actually appears as
the limiting case of the (finite-dimensional) Cauchy model.

A Borel probability measure μ on R
n is said to satisfy a weighted Poincaré-type

inequality with weight function w2 (where w is a fixed nonnegative, Borel mea-
surable function), if for any bounded smooth function g on R

n with gradient ∇g,

Varμ(g) ≤
∫

|∇g|2w2 dμ.(1.1)

As usual, Varμ(g) = ∫
g2 dμ − (

∫
g dμ)2 stands for the variance of g under μ.

Throughout this paper, we state the various functional inequalities for smooth and
bounded, or square integrable, functions. The inequalities may then be classically
extended to the class of all locally Lipschitz functions (Poincaré or similar inequal-
ities are then understood in the following sense: if the right-hand side is finite, then
the function is square-integrable, and the inequality holds true).
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As a classical example, the standard Gaussian measure μ = γn with density
dγn(x)/dx = (2π)−n/2e−|x|2/2 with respect to Lebesgue measure on R

n satis-
fies (1.1) with w = 1 (cf., e.g., [17]). The dimension-free character of this inequal-
ity allows one to consider important properties of infinite-dimensional Gaussian
measures in terms of general Gaussian processes. An attempt to extend this exam-
ple to other probability distributions may lead to other forms of the usual Poincaré-
type inequalities, including those that admit nonconstant weights. Of particular in-
terest is the family of the generalized Cauchy distributions νβ on R

n, which have
densities

dνβ(x)

dx
= 1

Z
(1 + |x|2)−β

with parameter β > n/2 and a normalizing constant Z, depending on n and β .
These densities play an important role in different mathematical problems. For
example, they appear to be the extremal functions for the classical Sobolev in-
equalities in R

n. Under a different name (as a finite-mass Barenblatt profile), they
are also used to represent a stationary attractor of the nonlinear diffusion equation
∂u/∂t = �(um) + div(xu).

Although the family νβ is of interest in itself, it may be considered in particular
as a natural “pre-Gaussian” model, where the Gaussian case appears in the limit as
β → ∞ (after proper rescaling of the coordinates). This view inspires us to look for
general geometric and analytic properties of the Cauchy distributions, which would
describe some finite-dimensional analogues of the infinite-dimensional Gaussian
model as well as recover a number of known results for the Gaussian measure γn,
such as (1.1), in the limit as β → ∞. To this aim we prove in particular that each
νβ with β ≥ n satisfies the weighted Poincaré-type inequality

Varνβ (g) ≤ C

β

∫
|∇g(x)|2(1 + |x|2) dνβ(x)(1.2)

for all bounded smooth functions g on R
n with a numerical constant C. Simple test

functions suggest that, up to a constant, the weight function is chosen correctly.
Inequality (1.2) can be used to study large deviations of Lipschitz functionals g

under νβ . While all exponential moments might be infinite (like for the Euclidean
norm), we will see that the tails νβ(|g − ∫

g dνβ | ≥ t) admit an exponential bound
on a long interval with length proportional to β . Actually, on smaller intervals the
tails are sub-Gaussian, and this leads to a certain generalization of the concen-
tration phenomenon for the Gaussian measure. From (1.2) one may also derive a
reverse weighted form

inf
c∈R

∫ |g − c|2
1 + |x|2 dνβ(x) ≤ Cβ

∫
|∇g|2 dνβ.(1.3)

Using symmetrization and a careful treatment of an associated one-dimensional
problem, a similar imbedding inequality was recently obtained by Denzler and
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McCann [12] and applied there to study the rate of convergence to the stationary
attractor of the diffusion equation.

Returning to the Gaussian Poincaré-type inequality, in the mid 1970s, Bras-
camp and Lieb [10] proposed a remarkable extension to the class of probability
measures μ on R

n with log-concave densities

p(x) = e−W(x).(1.4)

Namely, let W be a twice continuously differentiable convex function with positive
second derivative W ′′ in the matrix sense (so that the inverse matrix W ′′−1 exists
and is continuous). Then, for all bounded smooth functions g on R

n,

Varμ(g) ≤
∫

〈W ′′−1∇g,∇g〉dμ.(1.5)

The formula (1.4) describes the class of the so-called log-concave probability mea-
sures, which are known to satisfy also the usual Poincaré-type inequality, that is,
(1.1) with w = C(μ), compare [4]. For this class, (1.1) and (1.5) are in general not
comparable. When however W ′′ ≥ c Id for some c > 0 in the sense of symmetric
matrices, (1.5) yields

Varμ(g) ≤ 1

c

∫
|∇g|2 dμ.(1.6)

In full analogy with the Gaussian case, we examine here the natural extension
of the family of Cauchy distributions to the so-called class of κ-concave measures.
A Radon probability measure λ on a locally convex space L is called κ-concave,
where −∞ ≤ κ ≤ +∞, if it satisfies

λ∗
(
tA + (1 − t)B

) ≥ [tλ(A)κ + (1 − t)λ(B)κ ]1/κ(1.7)

for all t ∈ (0,1) and for all Borel measurable sets A,B ⊂ L with positive measure,
where λ∗ stands for the inner measure associated to λ. When κ = 0, the right-hand
side of (1.7) is understood as λ(A)tλ(B)1−t and then we arrive at the notion of
a log-concave measure, previously considered by Prékopa [22, 23] and Leindler
[18]. When κ = −∞, the right-hand side is understood as min{λ(A),λ(B)}. The
inequality (1.7) is getting stronger as the parameter κ is increasing, so the case
κ = −∞ describes the largest class whose members are called convex or hy-
perbolic probability measures. The family of probability measures satisfying the
Brunn–Minkowski-type inequality (1.7) was introduced and studied by Borell [8,
9]. In particular, he gave the following characterization of such measures: If L has
finite dimension, any κ-concave probability measure is supported on some convex
set 
 ⊂ L and is absolutely continuous with respect to Lebesgue measure on 
.
Necessarily, κ ≤ 1/dim(
), so if λ is not a delta measure, we have κ ≤ 1. If L has
dimension n and λ is absolutely continuous with respect to Lebesgue measure on
L, the necessary and sufficient condition that λ satisfies (1.7) is that it is supported
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on some open convex set 
 ⊂ L, where it has a positive density p such that, for
all t ∈ (0,1),

p
(
tx + (1 − t)y

) ≥ [tp(x)κn + (1 − t)p(y)κn]1/κn, x, y ∈ 
,(1.8)

where κn = κ/(1 − nκ) (necessarily κ ≤ 1/n). If L has infinite dimension, then λ

is κ-concave if and only if all finite-dimensional projections of λ are κ-concave.
This description may be applied to the generalized Cauchy distribution νβ , in

which case κ < 0, so that the inequality (1.8) turns into
(
1 + |tx + (1 − t)y|2)−βκn ≤ t (1 + |x|2)−βκn + (1 − t)(1 + |y|2)−βκn.

Note that r = −βκn > 0 and that the function z → (1+|z|2)r with r > 0 is convex
on R

n if and only if r ≥ 1/2. Hence, an optimal value of κ corresponds to −βκn =
1/2. As a conclusion, if β = (n+d)/2, d > 0, the generalized Cauchy measure νβ

is κ-concave with the optimal value

κ = − 1

d
= − 1

2β − n
.

For example, the standard Cauchy measure on the line is κ-concave with κ = −1.
Thus, the characteristics d or κ , which are directly responsible for convexity prop-
erties, may be taken equivalently as the main parameter for the generalized Cauchy
measures.

More generally, one may consider probability measures μ with densities with
respect to Lebesgue measure

dμ(x)

dx
= V (x)−β,(1.9)

where V is a positive convex function on R
n, defined on some open convex set

in R
n, and β ≥ n. If β = n, this formula describes the class of all absolutely con-

tinuous convex measures on R
n. More precisely, the measure μ will be κ-concave

with κ = −1/(β − n), which may or may not be optimal, depending on the choice
of V .

The Borell description (1.8), or, more precisely its sufficiency part, represents a
particular case of the following lemma that describes the Borell–Brascamp–Lieb
dimensional extension of the Prékopa–Leindler theorem [9, 10] (cf. [11, 13], . . .).
This result is the one which is suited to the family of convex measures considered
here.

LEMMA 1.1. Let κ ≤ 1/n and κn = κ/(1 − nκ). Given 0 < t < 1, let u, v,w

be nonnegative measurable functions, defined on some open convex set 
 ⊂ R
n

and satisfying

w
(
tx + (1 − t)y

) ≥ [tu(x)κn + (1 − t)v(y)κn]1/κn(1.10)
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for all x, y ∈ 
 such that u(x) > 0 and v(y) > 0. Then
∫



w(z) dz ≥
[
t

(∫



u(x)dx

)κ

+ (1 − t)

(∫



v(y) dy

)κ]1/κ

.(1.11)

This result will be the key tool to the following generalization of the Brascamp–
Lieb theorem (1.5). Namely, let μ be a probability measure of the type (1.9). Under
the additional assumption of twice differentiability on V , if β ≥ n, for any bounded
smooth function g with mean zero,

Varμ(g) ≤ 1

β + 1

∫ 〈V ′′−1∇G,∇G〉
V

dμ,(1.12)

where G = gV . Replacing here V with c
1/β
β (1 + 1

β
W), where cβ is a normalizing

constant, and letting β → +∞, we indeed arrive at (1.5). On the other hand, (1.12)
will be shown to easily imply the weighted Poincaré-type inequality (1.2) for the
Cauchy distributions.

The extension (1.12) of the Brascamp–Lieb theorem is proved in Section 2 on
the basis of Lemma 1.1. It is applied next to derive a quantitative refinement
of (1.5) within the class of log-concave measures. In Section 3, the extended
Brascamp–Lieb theorem is applied to the Cauchy family to establish in particu-
lar (1.2) and (1.3). The family of Cauchy distributions νβ , β ≥ (n + 1)/2, also
shares another functional inequality of interest, namely the following weighted
logarithmic Sobolev inequality:

Entνβ (g2) ≤ 1

β − 1

∫
|∇g(x)|2(1 + |x|2)2 dνβ(x)

with thus (and naturally) a worse weight function in comparison with (1.2). Here
Entμ(g2) = ∫

g2 logg2 dμ − ∫
g2 dμ log

∫
g2 dμ denotes the entropy of g2 un-

der μ. This weighted logarithmic Sobolev inequality is established by a different
procedure, as a consequence actually of the Gaussian case.

Abstract weighted Poincaré and logarithmic Sobolev inequalities are connected
with the problem of large deviations of Lipschitz functions and measure concen-
tration. This aspect is studied in Section 4 and illustrated on the Cauchy examples.
As announced, the tails of Lipschitz functions with respect to νβ admit in turn
Gaussian, exponential, and polynomial decays as the interval tends to infinity.

In the last section, we consider weighted isoperimetric inequalities and show
that, somehow surprisingly, all concave probability measures described by (1.9)
share the weighted Poincaré-type inequality (1.1) with, up to a constant, the univer-
sal weight w(x)2 = 1 + |x|2. The result is established through a stronger Cheeger-
type isoperimetric inequality. This universality property illustrates the importance
of this weight and of the family of Cauchy distributions in this investigation.

After this work was completed, we became aware of the related references
[2, 3], where some similar inequalities are proved and analyzed by different meth-
ods and with different purposes.
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2. Brascamp–Lieb-type inequality. Consider throughout this section an ab-
solutely continuous probability measure μ, concentrated on an open, convex set

 ⊂ R

n, with density

p(x) = V (x)−β, x ∈ 
,

where β > n and V is a positive, twice continuously differentiable convex function
on 
 with positive second derivative V ′′ in the matrix sense with inverse V ′′−1.
We associate to V a distance-like or cost function

dV (x, y) = V (y) − V (x) − 〈V ′(x), y − x〉, x, y ∈ 
.(2.1)

Note that dV (x, y) is nonnegative and is only vanishing when x = y. For example,
dV (x, y) = |x − y|2 for V (x) = 1 + |x|2.

As a first step toward (1.12) we prove the following result:

THEOREM 2.1. Let β > n, and let f,g be measurable functions on 
 satisfy-
ing, for all x, y ∈ 
,

f (x)V (x) ≤ g(y)V (y) + dV (x, y).(2.2)

If f is μ-integrable and g ≥ −1 on 
, then

1 + β

β − n

∫
f dμ ≤

[∫
(1 + g)−β dμ

]−1/(β−n)

.(2.3)

The statement remains to hold for arbitrary positive convex differentiable func-
tions V on 
 with

∫
V −β dx = 1. One particular case is worth mentioning sepa-

rately.

COROLLARY 2.2. Let μ be a probability measure on 
 with density e−W ,
where W is a differentiable convex function on 
. For all measurable functions
f,g on 
 satisfying

f (x) ≤ g(y) + dW(x, y)(2.4)

for all x, y ∈ 
 and such that g is μ-integrable,∫
ef dμ ≤ e

∫
g dμ.(2.5)

To deduce the corollary, apply Theorem 2.1 to the functions fβ = −g/β ,
gβ = −f/β with (f, g) satisfying (2.4), and to the densities cβ(1 + 1

β
W)−β .

That is, with V = c
1/β
β (1 + 1

β
W), dV = c

1/β
β dW/β in (2.1) and (2.2). Then, un-

der unessential technical assumptions on f , g and W , the inequality (2.2) will be
fulfilled as β → +∞, and in the limit (2.3) will turn into (2.5).

In the Gaussian case, inequality (2.5) was obtained by Tsirelson [25], with con-
vex g, who developed Chevet’s concept of Gaussian mixed volumes, and by Mau-
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rey [20], who proposed a different approach using the infimum-convolution op-
erator and the Prékopa–Leindler theorem. As shown in [6], infimum-convolution
estimates for the quadratic cost dW are connected with logarithmic Sobolev in-
equalities. Maurey’s argument was further developed and extended to the class of
log-concave probability measures in [7], where Corollary 2.2 was established for
“potentials” W whose associated distance dW is controlled in terms of a norm
on R

n.
As announced, to reach Theorem 2.1, we make use of the fundamental

Lemma 1.1 (with κ < 0).

PROOF OF THEOREM 2.1. One may assume that f is bounded from above
and inf
 g > −1. For t ∈ (0,1), s = 1 − t , define Ts(x, y) = 1

ts
[tV (x) + sV (y) −

V (tx + sy)] so that

lim
s→0

Ts(x, y) = dV (x, y).(2.6)

The convergence is uniform on compact subsets of 
 × 
. Take an arbitrary
open convex set 
0 with compact closure in 
. Given t ∈ (0,1) and ε > 0, ap-
ply Lemma 1.1 with κ = −1/(β − n), κn = κ/(1 − nκ) = −1/β , to the functions
on 
0,

u(x) = (
1 − sfε(x)

)1/κnp(x)/μ(
0),

v(y) = (
1 + tg(y)

)1/κnp(y)/μ(
0),

w(z) = p(z)/μ(
0),

where fε = f −ε/V . Note that u is well-defined and positive for sufficiently small
s > 0. Now, condition (1.10) in Lemma 1.1 reads as

f (x)V (x) ≤ g(y)V (y) + Ts(x, y) + ε, x, y ∈ 
0.

Due to the hypothesis (2.2) and the property (2.6), this condition is fulfilled for all
sufficiently small s > 0 uniformly on 
0. Hence, we obtain (1.11) of Lemma 1.1,
that is,

1 ≤ t

[∫
(1 − sfε)

1/κn dν0

]κ

+ s

[∫
(1 + tg)1/κn dν0

]κ

,(2.7)

where ν0 denotes the normalized restriction of μ to the set 
0. By Taylor’s expan-
sion, (2.7) yields in the limit as s → 0,

1 + κ

κn

∫
fε dν0 ≤

[∫
(1 + g)1/κn dν0

]κ

.

It remains to let first ε → 0 and then 
0 ↑ 
 to get the desired inequality (2.3).
The proof of Theorem 2.1 is complete. �

On the basis of Theorem 2.1, we establish our main extension of the Brascamp–
Lieb theorem.
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THEOREM 2.3. Let β > n. For any smooth, μ-square integrable function g

on 
, and G = Vg,

(β + 1)Varμ(g) ≤
∫ 〈V ′′−1∇G,∇G〉

V
dμ + n

β − n

(∫
g dμ

)2

.(2.8)

If we assume that g has mean zero, so that the last term in (2.8) is vanishing,
we arrive at the announced bound (1.12) from the Introduction. At this step, the
condition β > n may be relaxed to β ≥ n by continuity.

PROOF OF THEOREM 2.3. We may assume that ‖V ′′‖ and ‖V ′′−1‖ are
bounded and uniformly continuous on 
. Assume also g, |∇G| and ‖G′′‖ are
bounded [otherwise, restrict all inequalities to open, convex sets 
0 with compact
closure in 
, and then approximate the latter with 
0’s in the resulting inequal-
ity (2.8)]. Given ε > 0, define

Fε(x) = inf
y∈


[
G(y) + 1

ε
dV (x, y)

]
, x ∈ 


with dV introduced in (2.1), and set fε = Fε/V . That is, εfε is optimal for the
function εg in the “infimum-convolution” inequality (2.2). Note that Fε is upper-
semicontinuous as infimum of a family of continuous functions. By Theorem 2.1
applied to the couple (εfε, εg) with sufficiently small ε (when εg ≥ −1),

1 + ε
κ

κn

∫
fε dμ ≤

[∫
(1 + εg)1/κn dμ

]κ

,(2.9)

where κ = −1/(β − n) and κn = −1/β .
We claim that inequality (2.9), as ε → 0, yields (2.8). Note, by the assump-

tion on V , we have d(x, x + εh) ≥ c|h|2ε2 with a constant c > 0, depending V ,
only. Hence, the infimum in the definition of Fε(x) may be restricted to the points
y = x + εh with |h| < r , where r depends on V and G. Moreover, by Taylor’s
expansion

dV (x, x + εh) = ε2

2
〈V ′′(x)h,h〉 + |h|2o(ε2),

where the constant in o(ε2) is numerical, that is, it may be chosen to be indepen-
dent of (x,h) by the uniform continuity of V ′′. Hence, together with the Taylor
expansion for G(x + εh), we get that

Fε(x) = inf
h : x+εh∈


[
G(x + εh) + 1

ε
dV (x, x + εh)

]

= inf
h : x+εh∈


[
G(x) + ε〈∇G(x),h〉 + ε

2
〈V ′′(x)h,h〉 + |h|2o(ε)

]

≥ inf
h∈Rn

[
G(x) + ε〈∇G(x),h〉 + ε

2
〈V ′′(x)h,h〉 + |h|2o(ε)

]

= Gε(x) + o(ε),
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where Gε(x) = G(x) − ε
2〈V ′′−1∇G(x),∇G(x)〉. Hence,

fε(x) = g(x) − ε

2

〈V ′′−1∇G(x),∇G(x)〉
V (x)

+ o(ε).(2.10)

Now, let us turn to the right-hand side of (2.9). By Taylor’s expansion, using the
expectation sign E for integrals over the measure μ,

[E(1+εg)1/κn]κ = 1+ εκ

κn

Eg+ ε2

2

κ

κn

(
1

κn

−1
)

Eg2 + κ(κ − 1)

2

(
ε

κn

Eg

)2

+o(ε2).

Subtracting 1 from both sides of (2.9) and dividing by ε2 κ
κn

, we arrive together
with the latter at

Efε − Eg

ε
≤ 1

2

[(
1

κn

− 1
)

Eg2 + κ − 1

κn

(Eg)2
]

+ o(1).

Finally, by (2.10), comparing the coefficients in front of ε, we get
(

1 − 1

κn

)
Eg2 ≤ E

〈V ′′−1∇G,∇G〉
V

+ κ − 1

κn

(Eg)2,

which is an equivalent form of (2.8). Theorem 2.3 has thus been proved. �

We suggest an alternate formulation of Theorem 2.3. Given V , a positive twice
continuously differentiable convex function on some open convex set 
 in R

n,
let μβ be the probability measure with density p(x) = Z−1

β V (x)−β , β > n, where
it will be useful here to specify the normalization Zβ . If we rewrite Theorem 2.3
in terms of G rather than g, we see that whenever

∫
Gdμβ+1 = 0, then

(1 + β)

∫
G2

V 2 dμβ ≤
∫ 〈V ′′−1∇G,∇G〉

V
dμβ.

By definition of μβ , and changing β into β − 1 ≥ n,
∫

G2 dμβ+1 ≤ 1

β
· Zβ

Zβ+1

∫
〈V ′′−1∇G,∇G〉dμβ(2.11)

provided that
∫

Gdμβ = 0. This provides an alternate extension of the Brascamp–
Lieb inequality (1.5). In particular, if V ′′ ≥ c Id for some c > 0 in the sense of
symmetric matrices, and β ≥ n + 1,∫

G2 dμβ+1 ≤ 1

cβ
· Zβ

Zβ+1

∫
|∇G|2 dμβ(2.12)

for all smooth G with
∫

Gdμβ = 0, as an analogue of (1.6).
To conclude this section, we briefly mention an application of Theorem 2.3

to some improved bound for logarithmically concave measures. Thus, let μ be a
probability measure on an open convex set 
 in R

n with density e−W , where W
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is a function on 
 of class C2 with positive second derivative. In (2.8) we may
take V = eW/β , which has the first two derivatives V ′ = V

β
W ′ and V ′′ = V

β
(W ′′ +

1
β
W ′ ⊗ W ′). Here, for vectors v ∈ R

n, we use the tensor product notation v ⊗ v to
denote the n × n matrix with entries vivj .

Let g be smooth and such that
∫

g dμ = 0. To estimate the integrand on the right
of (2.8), write (gV )′ = gV ′ + Vg′ (where we simplify notations from ∇g to g′).
Apply the elementary bound

〈A(u + v), (u + v)〉 ≤ r〈Au,u〉 + r

r − 1
〈Av,v〉, u, v ∈ R

n, r > 1,(2.13)

where A is an arbitrary positively definite, symmetric matrix, to get that

〈V ′′−1(gV )′, (gV )′〉 ≤ r〈V ′′−1V ′,V ′〉g2 + r

r − 1
〈V ′′−1g′, g′〉V 2.(2.14)

Now, by the convexity of W ,

〈V ′′−1V ′,V ′〉
V

= 〈(βW ′′ + W ′ ⊗ W ′)−1W ′,W ′〉 ≤ 1.

Hence, applying (2.14) in (2.8) and introducing the family of positively definite
matrices

RW,β = W ′′ + 1

β
W ′ ⊗ W ′,(2.15)

we obtain that

(β + 1 − r)

∫
g2 dμ ≤ rβ

r − 1

∫
〈R−1

W,β∇g,∇g〉dμ.

It remains to optimize over all r > 1 to conclude with the following statement:

THEOREM 2.4. For any smooth, μ-square integrable function g on 
, and
for any β ≥ n,

Varμ(g) ≤ Cβ

∫
〈R−1

W,β∇g,∇g〉dμ,(2.16)

where Cβ = (1 + √
β + 1)2/β .

Note 1 < Cβ < 6 and Cβ → 1 as β grows to infinity. Since R−1
W,β ≤ W ′′−1 in the

matrix sense, the Brascamp–Lieb inequality (1.5) may thus be viewed as a limiting
case of (2.16). On the other hand, finite values of β may give an improvement in
terms of the decay of the weight function. In particular, in dimension one with
β = 1 we always have

Varμ(g) ≤ 6
∫

g′(x)2

W ′′(x) + W ′(x)2 dμ(x).(2.17)
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For example, when μ has density p(x) = λe−λx on 
 = (0,+∞) with a positive
parameter λ, we arrive at the usual Poincaré-type inequality Varμ(g) ≤ 6

λ2

∫
g′2 dμ,

which cannot be obtained on the basis of (1.5). For the Gaussian measure μ = γ1,
(2.17) gives a weighted Poincaré-type inequality

Varγ1(g) ≤ 6
∫

g′(x)2

1 + x2 dγ1(x)

with an asymptotically sharp weight function. Note, however, for the n-dimension-
al Gaussian measure μ = γn we only have from (2.16) with β = n,

Varγn(g) ≤ 6
∫ [

|∇g(x)|2 − 〈∇g(x), x〉2

n + |x|2
]
dγn(x).(2.18)

Being restricted to radial functions g(x) = g(|x|), the latter yields a weighted Po-
incaré-type inequality for the family of χn-distributions.

3. The generalized Cauchy distribution. In this section, we specialize The-
orem 2.3 to the case of the generalized Cauchy distributions νβ and develop for
this specific family an analytic and geometric investigation similar to the one for
the classical Gaussian model. Recall the generalized Cauchy distribution νβ has
the density

p(x) = 1

Z
(1 + |x|2)−β, x ∈ R

n, β >
n

2
.

Here, Z = nωn�(n
2 )�(β − n

2 )/2�(β) is a normalizing factor (where ωn denotes
the volume of the Euclidean ball in R

n of radius one). But it has no influence for the
first integral in (2.8), so one may take V (x) = 1 + |x|2. In this case V ′′−1 = 1

2 Id,
and if g has νβ -mean zero, Theorem 2.3 with β ≥ n tells us that

(β + 1)

∫
g2 dνβ ≤

∫ |∇G(x)|2
2(1 + |x|2) dνβ(x),(3.1)

where G(x) = g(x)(1 + |x|2). Evidently, |∇G(x)| ≤ 2|g(x)||x| + |∇g(x)|(1 +
|x|2), and applying (2.13) with parameter r > 1,

|∇G(x)|2 ≤ 4rg(x)2|x|2 + r

r − 1
|∇g(x)|2(1 + |x|2)2.

Using this estimate in (3.1) we obtain a family of the weighted Poincaré-type in-
equalities∫

g2 dνβ ≤ r

2(r − 1)((β + 1) − 2r)

∫
|∇g(x)|2(1 + |x|2) dνβ(x).

It is easy to check that the constant on the right is minimized for r = √
(β + 1)/2

and then we arrive at:
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THEOREM 3.1. The generalized Cauchy distribution νβ with β ≥ n satisfies
the weighted Poincaré-type inequality

Varνβ (g) ≤ Cβ

2(β − 1)

∫
|∇g(x)|2(1 + |x|2) dνβ(x)(3.2)

for all bounded smooth functions g on R
n with Cβ = (

√
1 + 2

β−1 +
√

2
β−1)2.

Note that Cβ > 1 and Cβ → 1 as β → +∞. So, after the linear change of the
variable y = √

2βx, in the limit we will be led in (3.2) to the Gaussian Poincaré-
type inequality with optimal constant.

To get more information on how optimal the constant in (3.2) is, one can just
test the weighted Poincaré-type inequality

Varνβ (g) ≤ C(β,n)

∫
|∇g(x)|2(1 + |x|2) dνβ(x)(3.3)

on simple functions. Take, for example, g(x) = 1/(1 + |x|2). For every m =
1,2, . . . ,

Im ≡
∫

(1 + |x|2)−m dνβ(x) = (β − n/2)(β − n/2 + 1) · · · (β − n/2 + (m − 1))

β(β + 1) · · · (β + (m − 1))
.

Now, Varνβ (g) = I2 − I 2
1 = (β − n

2 )n
2/β2(β + 1). Since |∇g(x)|2 = 4|x|2/(1 +

|x|2)4, the integral in (3.3) equals 4(I2 − I3) = 4(β − n
2 )(β − n

2 + 1)n
2/β(β +

1)(β + 2). Comparing both sides, we conclude that

C(β,n) ≥ β + 2

4β(β − n/2 + 1)
≥ 1

4β
.

Thus, the constant in (3.2) is optimal within universal factors at least in the re-
gion β ≥ max{n,2}. As for the region n/2 < β < n, the optimal value of C(β,n)

essentially depends on the dimension n (see below).
Let us mention that in dimension one this constant may be analyzed directly by

reducing the weighted Poincaré-type inequality (3.3) to the Hardy-type inequality∫ +∞
0

g(x)2p(x)dx ≤ C

∫ +∞
0

g′(x)2q(x) dx

with specific weights p(x) = (1 + |x|2)−β , q(x) = (1 + |x|2)−(β−1) (where g is
smooth on [0,+∞) with g(0) = 0). In general (cf. [21]), one has B ≤ C ≤ 4B ,
where B = supx>0[

∫ x
0 dt/q(t)

∫ +∞
x p(t) dt]. By elementary calculus, this quantity

may be bounded in the weighted Cauchy case by 1/max{2(β − 1),1}. Hence,

C(β,1) ≤ 4

max{2(β − 1),1} ≤ 6

β

in the whole range β > 1. Together with (3.2) for the case n ≥ 2, we obtain that
C(β,n) ≤ C/β for all β ≥ n (β > 1) with some numerical constant C.

The following corollary is concerned with the reversed form (1.3).
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COROLLARY 3.2. If β ≥ n + 1, for any smooth bounded function g on R
n,

inf
c∈R

∫ |g(x) − c|2
1 + |x|2 dνβ(x) ≤ 1

2β

∫
|∇g|2 dνβ.(3.4)

The proof of Corollary 3.2 is an immediate consequence of (2.12) (or directly
Theorem 2.3) with c = 2. The remaining range n/2 < β ≤ n + 1 in Corollary 3.2
may be treated similarly by choosing a different “potential,” Vα(x) = (1 + |x|2)α ,
with 1/2 < α ≤ 1. At every point x ∈ R, x �= 0, it has a positive Hessian V ′′

α (x) =
2α(1 + |x|2)α−1(Id −λe ⊗ e), where e = x/|x|, λ = 2(1 −α)|x|2/(1 + |x|2), with
the inverse matrix

V ′′
α (x)−1 = 1

2α(1 + |x|2)α−1

(
Id + λ

1 − λ
e ⊗ e

)
.

It follows that ‖V ′′
α (x)−1‖ ≤ 1/[2α(2α − 1)(1 + |x|2)α−1].

Now, given β > n/2, write β = 2α + β ′ − 1 with β ′ = αγ , γ ≥ n. Applying
Theorem 2.3 to νβ ′ with density written as 1

Z
V

−γ
α (i.e., with γ in place of β), we

obtain similarly to (3.1) that

(γ + 1)

∫
g2 dνβ ′ ≤ 1

2α(2α − 1)

∫ |∇G(x)|2
(1 + |x|2)2α−1 dνβ ′(x),

where g is bounded, smooth, with νβ ′ -mean zero, and G = Vαg. Equivalently, in

terms of νβ and G, we have that (γ + 1)
∫ |G(x)|2

1+|x|2 dνβ(x) ≤ 1
2α(2α−1)

∫ |∇G|2 dνβ .
Changing G into g, we deduce that

inf
c∈R

∫ |g(x) − c|2
1 + |x|2 dνβ(x) ≤ 1

2α(2α − 1)(γ + 1)

∫
|∇g|2 dνβ.

If n/2 < β ≤ n + 1, one may just choose α = (β + 1)/(n + 2), which leads to the
analogue of the reversed weighted Poincaré-type inequality (3.4),

inf
c∈R

∫ |g(x) − c|2
1 + |x|2 dνβ(x) ≤ C

∫
|∇g|2 dνβ(3.5)

with constant

C = (n + 2)2

2(n + 1)(β + 1)

1

2β − n
≤ 1

β − n/2
.

A similar approach may also be used to involve the values n/2 < β ≤ n in
Theorem 3.1, but we leave this to the reader as an exercise. Instead, let us note
that the reversed form, such as (3.4) and (3.5), can be deduced from the weighted
Poincaré-type inequalities, such as (3.2). Namely, in place of the variance in (3.1),
one may consider other similar quantities. For example, due to the elementary
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general bound Var(g) ≥ 1
3Eμ|g −m|2, where m is a median of g with respect to μ,

(3.2) yields
∫

|g − m|2 dνβ ≤ 3Cβ

2(β − 1)

∫
|∇g(x)|2(1 + |x|2) dνβ(x).

With the help of this inequality, Corollary 3.2 immediately follows for sufficiently
large β (say, β ≥ 7) and with an additional numerical factor in view of the follow-
ing general proposition of possible independent interest.

PROPOSITION 3.3. Assume a probability measure μ on R
n satisfies the

weighted Poincaré-type inequality∫
|g − m|2 dμ ≤

∫
|∇g(x)|2(a + b|x|2) dμ(x)(3.6)

with some constants a > 0 and b ∈ [0,1). Then for any smooth g on R
n,

inf
c∈R

∫ |g(x) − c|2
a + b|x|2 dμ(x) ≤ 1

(1 − √
b)2

∫
|∇g|2 dμ.(3.7)

PROOF. Indeed, we may restrict ourselves to nonnegative g with median

zero. Fix such a function and consider f (x) = g(x)/

√
a + b|x|2. By the one-

dimensional variant of (2.13), for every r > 1,

|∇f (x)|2 ≤ r

r − 1

|∇g(x)|2
a + b|x|2 + rb

g(x)2

(a + b|x|2)2 .

This estimate may be used in (3.6) with f in place of g to get that, whenever
rb < 1,

∫
g(x)2

a + b|x|2 dμ(x) ≤ r

(r − 1)(1 − rb)

∫
|∇g(x)|2 dμ(x).

The optimal choice r = 1/
√

b then leads to the conclusion (3.7). �

Returning to the reversed form (3.4) and (3.5), let us finally note that the weight
function on the left-hand side may be slightly improved: one of the results by
Denzler and McCann in [12] states that, for n ≥ 2,

inf
c∈R

∫ |g(x) − c|2
|x|2 dνβ(x) ≤ C(β,n)

∫
|∇g|2 dμ.

As announced in the introductory section, in analogy with the Gaussian mea-
sure, the Cauchy measures νβ admit a weighted logarithmic Sobolev inequality,
but with a different weight function in comparison with (3.1).
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THEOREM 3.4. If β ≥ (n + 1)/2, β > 1, for any smooth bounded g on R
n,

Entνβ (g2) ≤ 1

β − 1

∫
|∇g(x)|2(1 + |x|2)2 dνβ(x).(3.8)

After linear rescaling of the coordinates, the inequality (3.5) with growing β

yields the Gross logarithmic Sobolev inequality for the Gaussian measure γn

on R
n,

Entγn(g
2) ≤ 2

∫
|∇g|2 dγn.(3.9)

However, the proof of Theorem 3.4 may be given on the basis of this limiting case
itself.

PROOF OF THEOREM 3.4. Write β = (n + d)/2 with d ≥ 1. The measure νβ

may be characterized as the distribution of the random vector X = Y/ξ , where Y

is a random vector in R
n with the standard Gaussian distribution, and ξ > 0 is a

random variable independent of Y and having the χd -distribution with d degrees
of freedom. That is, ξ has density

χd(r) = 1

2d/2−1�(d/2)
rd−1e−r2/2, r > 0.

In other words, νβ represents the image of the product probability measure P =
γn ⊗ χd on R

n × (0,+∞) under the map (y, r) → y/r [where, with some abuse,
we denote by χd the probability measure with density χd(r)].

Since d ≥ 1, the density χd is log-concave with respect to γ1. So, the Bakry–
Emery criterion may be applied in dimension one to get the one-dimensional ana-
logue of (3.9), that is, Entχd

(u2) ≤ 2
∫ |u′|2 dχd (cf. [17]). Therefore, by the basic

product property of logarithmic Sobolev inequalities, the measure P also satisfies
the logarithmic Sobolev inequality

EntP (f 2) ≤ 2
∫

|∇f |2 dP

in the class of all smooth functions f on R
n × (0,+∞). Now, given a smooth g

on R
n, apply this inequality to functions of the form f (y, r) = g(y/r). Then we

get

Entνβ (g2) = EntP (f 2) ≤ 2
∫

|∇f |2 dP(3.10)

with |∇f |2 = |∇yf |2 + |∇rf |2. Letting x = y/r , we have

∂f (y, r)

∂yi

= 1

r

∂g(x)

∂yi

, i = 1, . . . , n,
∂f (y, r)

∂r
= −1

r
〈∇g(x), x〉,
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so that |∇f (y, r)|2 ≤ 1+|x|2
r2 |∇g(x)|2. We apply this bound to the right-hand side

of (3.10). Namely, changing the variable y = rx and then r = t/

√
1 + |x|2, we get

in terms of �(x) = (1 + |x|2)|∇g(x)|2 that∫
|∇f |2 dP ≤

∫ 1

r2 �(x)dP (y, r)

= 1

2d/2−1�(d/2)(2π)n/2

×
∫

Rn

�(x)

(1 + |x|2)(n+d)/2−1 dx

∫ +∞
0

tn+d−3e−t2/2 dt.

The last expression can be recognized as

∫
(1 + |x|2)�(x) dνβ(x) ·

∫ +∞
0 tn+d−3e−t2/2 dt∫ +∞
0 tn+d−1e−t2/2 dt

,(3.11)

since repeating the previous arguments we also have that

1 =
∫

dP (y, r)

= 1

2d/2−1�(d/2)(2π)n/2

∫
Rn

dx

(1 + |x|2)(n+d)/2

∫ +∞
0

tn+d−1e−t2/2 dt.

But
∫ +∞

0 td−1e−t2/2 dt = 2d/2−1�(d/2), so the ratio in (3.11) is equal to

2(n+d−2)/2−1�((n + d − 2)/2)

2(n+d)/2−1�((n + d)/2)
= 1

2

1

(n + d)/2 − 1
= 1

2(β − 1)
.

It remains to combine (3.10) and (3.11) to conclude the argument. The proof of
Theorem 3.4 is complete. �

4. Growth of moments and large deviations. Once we have realized that
the generalized Cauchy distributions satisfy weighted Poincaré-type and weighted
logarithmic Sobolev inequalities

Varμ(g) ≤
∫

|∇g|2w2 dμ,(4.1)

Entμ(g) ≤ 2
∫

|∇g|2w2 dμ(4.2)

with some specific weight functions w2, it is natural to wonder what kind of in-
formation may be deduced from these functional inequalities themselves. In par-
ticular, one is typically interested in the moment and large deviation bounds for
Lipschitz functions, parts of the concentration of measure phenomenon. As we
will see, the Gromov–Milman theorem and the so-called Herbst argument (cf. [14,
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16, 17]) may be adapted in a natural way to the case of a general weight w2 to pro-
duce probability decays that fit the nature of the Cauchy and more general convex
distributions.

Given a measurable function f on R
n, define Lp-norms or pth moments with

respect to μ by ‖f ‖p
p = E|f |p = ∫ |f |p dμ, where p ≥ 1.

THEOREM 4.1. Assume w has a finite pth moment, p ≥ 2. Then under (4.1)
any Lipschitz function f on R

n has a finite pth moment, and if ‖f ‖Lip ≤ 1,∫
f dμ = 0,

‖f ‖p ≤ p√
2
‖w‖p.(4.3)

Moreover, under (4.2),

‖f ‖p ≤
√

p − 1‖w‖p.(4.4)

PROOF. Let ‖f ‖Lip ≤ 1 and
∫

f dμ = 0. We may assume f is bounded (oth-
erwise apply a simple truncation argument). The inequality (4.1) can be tensorized
to yield, for any bounded measurable function g on R

n × R
n, which is locally

Lipschitz with respect to every variable,

Varμ⊗μ(g) ≤
∫

[|∇xg(x, y)|2w(x)2 + |∇yg(x, y)|2w(y)2]dμ(x) dμ(y).

Since p ≥ 2, we may apply it to g(x, y) = sign(f (x) − f (y))|f (x) − f (y)|p/2,
which gives, due to the Lipschitz property of f ,

E|f (x) − f (y)|p ≤ p2

4
E

(|f (x) − f (y)|p−2[w(x)2 + w(y)2]),
where for short we use the expectation sign for integrals with respect to μ⊗μ. By
Hölder’s inequality, the expectation on the right-hand side may be bounded by

(
E|f (x) − f (y)|p)(p−2)/p(

E[w(x)2 + w(y)2]p/2)2/p

≤ 2
(
E|f (x) − f (y)|p)(p−2)/p‖w2‖p/2.

Hence, since Ef = 0, ‖f ‖2
p ≤ (E|f (x) − f (y)|p)2/p ≤ p2

2 ‖w2‖p/2 and (4.3) fol-
lows.

As for (4.4), the argument below essentially appears in the paper [1] by Aida and
Stroock within the scheme of the usual logarithmic Sobolev inequality. Namely,
apply (4.2) to g = |f |p/2, so that |∇g| ≤ p

2 |f |p/2−1 and

Ent(|f |p) ≤ p2

2

∫
|f |p−2w2 dμ.(4.5)
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By Hölder’s inequality, E|f |p−2w2 ≤ (E|f |p)1−2/p(Ewp)2/p = ‖f ‖p−2
p ‖w‖2

p .
Hence, from (4.5),

d

dp
‖f ‖2

p = 2‖f ‖2
p

Entμ(|f |p)

p2E|f |p ≤ ‖w‖2
p,

and after integration ‖f ‖2
p − ‖f ‖2

2 ≤ (p − 2)‖w‖2
p . Since (4.2) is stronger

than (4.1), we also have ‖f ‖2 ≤ ‖w‖2 ≤ ‖w‖p . The two bounds imply ‖f ‖2
p ≤

(p − 1)‖w‖2
p which is the result. �

In further applications, Theorem 4.1 will be used through the following conse-
quence.

COROLLARY 4.2. Assume ‖w‖p ≤ C for some p ≥ 2. Under (4.1), for any f

on R
n with ‖f ‖Lip ≤ 1,

∫
f dμ = 0,

μ(|f | ≥ t) ≤
⎧⎨
⎩

2e−t/Ce, if 0 ≤ t ≤ t1,

2
(

Cp

t

)p

, if t ≥ t1,

where t1 = Cep. Moreover, under (4.2), in the interval 0 ≤ t < t0, t0 = C
√

ep,

μ(|f | ≥ t) ≤ 2e−t2/2C2e.

Thus, if C is of order 1 and p is large, we still have an exponential bound on
a long interval with length proportional to p, like in the presence of the usual
Poincaré-type inequality, and a Gaussian bound on an interval with length propor-
tional to

√
p, like in the case of the usual logarithmic Sobolev inequality.

PROOF OF COROLLARY 4.2. By Theorem 4.1, if 2 ≤ q ≤ p, we have ‖f ‖q ≤
Cq , that is, E|f |q ≤ (Cq)q , where the expectation is with respect to μ. In
the range 0 ≤ q ≤ 2, we may use ‖f ‖q ≤ ‖f ‖2 ≤ ‖w‖2 ≤ C, which implies
E|f |q ≤ 2(Cq)q . Indeed, on the positive half-axis q > 0, the function q → 2qq

is minimized at q = 1/e, with minimum value 2e−1/e > 1. Now, by Chebyshev’s
inequality, for any 0 < q ≤ p and t > 0,

μ(|f | ≥ t) ≤ E|f |q
tq

≤ 2
(

Cq

t

)q

.(4.6)

Substituing s = t/C, write μ(|f | ≥ t) ≤ 2e−ϕ(q), where ϕ(q) = q log s − q logq .
This function is concave on (0,+∞) and attains its maximum ϕ(q0) = s/e =
t/(Ce) at the point q0 = s/e = t/Ce. Hence, if q0 ≤ p, that is, if t ≤ Cep,

μ(|f | ≥ t) ≤ 2e−ϕ(q0) = 2e−t/Ce.

In case q0 ≥ p, that is, when t ≥ Cep, just use (4.6) with (optimal) value q = p.



WEIGHTED POINCARÉ-TYPE INEQUALITIES 421

Similarly, under (4.2), if 2 ≤ q ≤ p, we have E|f |q ≤ (C
√

q)q . If 0 ≤ q ≤ 2,
use ‖f ‖q ≤ C (by the weighted Poincaré) to get E|f |q ≤ 2(C

√
q)q , where we

have applied 2qq/2 ≥ 2e−1/4e > 1. Hence, by Chebyshev’s inequality,

μ(|f | ≥ t) ≤ E|f |q
tq

≤ 2
(

C
√

q

t

)q

= 2e−ϕ(q)/2

with the same ϕ, corresponding to s = t2/s2. It remains to optimize over q ∈ (0,p]
and the proof is complete. �

The interval [t0, t1] ⊂ (0,+∞), where the tail of f admits an exponential
bound, can be replaced by the whole half-axis under stronger moment hypothe-
ses on the weight function. In particular, we have the following result:

COROLLARY 4.3. Under (4.2), assume
∫

ew2/α dμ ≤ 2 for some α > 0. Given
that ‖f ‖Lip ≤ 1 and

∫
f dμ = 0, for all t > 0,

μ(|f | ≥ t) ≤ 2e−t/Kα,(4.7)

where K is a positive universal constant.

Indeed, the moment assumption on w is equivalent to ‖w‖p ≤ K1
√

p with an
arbitrary p ≥ 1, up to some constant K1. Hence, by Theorem 4.1, ‖f ‖p ≤ K1p,
which in turn is equivalent to (4.7) up to some constant K .

We now illustrate Theorem 4.1 and its Corollary 4.2 on the example of the
generalized Cauchy distributions. To better see the role of the dimension, rescale
the coordinates and consider the image ν̃β of νβ under the map x → √

2β − nx.
The probability measure ν̃β has density

dν̃β(x)

dx
= 1

Z

(
1 + |x|2

2β − n

)−β

,

up to some normalizing factor Z, so that when β grows to infinity, these mea-
sures approach the standard Gaussian distribution γn on R

n. (Therefore, one may
expect that some properties of ν̃β with sufficiently large β do not depend on the
dimension, similarly to the case of the Gaussian measure.)

For the measure ν̃β , the weighted Poincaré-type and the weighted logarithmic
Sobolev inequalities in Theorems 3.1 and 3.4 take the form

Varν̃β
(g) ≤ Cβ

β − n/2

β − 1

∫
|∇g(x)|2

(
1 + |x|2

2β − n

)
dν̃β(x),(4.8)

Entν̃β
(g2) ≤ 2

β − n/2

β − 1

∫
|∇g(x)|2

(
1 + |x|2

2β − n

)2

dν̃β(x),(4.9)

for every bounded smooth g on R
n, whenever β ≥ n (β > 1). Assume β ≥ n + 1,

so that β ≥ 2. In that case, Cβ ≤ (
√

2 + √
3)2 < 10 and the constant in (4.8) is
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bounded by 10β−n/2
β−1 < 15. Hence, ν̃β shares the weighted Poincaré-type inequal-

ity with the weight function w(x)2 = 15(1 + |x|2
2β−n

). To bound its Lp-norms, we
use a general elementary formula

∫
Rn

(
1 + |x|2

r2

)−a

dx = nωnr
n

2

�(n/2)�(a − n/2)

�(a)

with parameters a > n/2, r > 0 (where ωn denotes the volume of the Euclidean
unit ball in R

n). Let p = 2q with q a positive integer. If q < α ≡ β − n/2, then
∫

Rn

(
1 + |x|2

2β − n

)q

dν̃β(x) = (β − 1) · · · (β − q)

(α − 1) · · · (α − q)
≤

(
β − q

α − q

)q

.(4.10)

If q ≤ β − 3
4n, then β−q

α−q
≤ 3, and (4.10) gives ‖w‖p ≤ √

45 < 7. Hence, by the

first part of Corollary 4.2 with the parameters p = 2[β − 3
4n] and C = 7, for any f

on R
n such that ‖f ‖Lip ≤ 1 and

∫
f dν̃β = 0,

ν̃β(|f | ≥ t) ≤
⎧⎨
⎩

2e−t/7e, if 0 ≤ t ≤ t1,

2
(

7p

t

)p

, if t ≥ t1,

where t1 = 7e[β − 3
4n]. Note that, in view of the assumption β ≥ n + 1, the values

of p and t1 are as large as at least a factor of n.

Now consider the weight function w(x)2 = β−n/2
β−1 (1 + |x|2

2β−n
)2 appearing

in (4.9). Again, if 1 ≤ q ≤ β − 3
4n, from (4.10) with q = p we get ‖w‖p ≤

3
√

3/2 < 4. Hence, by involving the second part of Corollary 4.2 with the pa-
rameters p = [β − 3

4n] and C = 4 we arrive at the following conclusion:

COROLLARY 4.4. If β ≥ n+1, for any function f on R
n such that ‖f ‖Lip ≤ 1

and
∫

f dν̃β = 0,

ν̃β(|f | ≥ t) ≤

⎧⎪⎪⎨
⎪⎪⎩

2e−t2/32e, if 0 ≤ t < t0,
2e−t/7e, if t0 ≤ t ≤ t1,

2
(

7p

t

)p

, if t ≥ t1,

where p = 2[β − 3
4n], t0 = 4

√
e[β − 3

4n] and t1 = 7e[β − 3
4n].

Thus, on an interval of length at least
√

n (and even larger when β increases),
we obtain a Gaussian decay for the tail functions. At the expense of the numerical
constants in the Gaussian and exponential bounds of Corollary 4.4, the assumption
β ≥ n+1 may be weakened to β ≥ c(n+1) with 1

2 < c < 1, and then the resulting
intervals and bounds will involve also the parameter c, although they cannot be
made uniform in c. If β = n+1

2 +o(n) and β− n+1
2 → +∞, the previous arguments

should work as well, but we are going to be led to more sophisticated estimates.
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5. Weighted Cheeger and Poincaré-type. As the Cauchy distributions share
the weighted Poincaré-type inequalities and the associated concentration phenom-
ena, one may ask whether these properties extend to more general families of prob-
ability distributions. Of particular interest is the family of κ-concave measures in
the hierarchy of convex measures as described in the Introduction. As a result,
it turns out to be possible to choose, up to multiplicative constants, the common
weight function 1 + |x|2 for these measures to satisfy a weighted Poincaré-type
inequality. The conclusion will be reached by means of a stronger Cheeger-type
isoperimetric inequality of independent interest.

Namely, let μ be a probability measure on R
n with density

p(x) = V (x)−β, β > n,(5.1)

where V is an arbitrary positive convex function on R
n, possibly taking an infinite

value. Denote by r the unique positive number such that μ(|x| ≤ r) = 2/3, that is,
the μ-quantile of order 2/3 for the Euclidean norm. Then we have:

THEOREM 5.1. For some universal constant C, the measure μ satisfies the
weighted Poincaré-type inequality

Varμ(g) ≤ C
β − n + 1

β − n

∫
|∇g(x)|2(r2 + |x|2) dμ(x)(5.2)

for all bounded smooth functions g on R
n.

Note, however, that one may lose some information on the correct asymptotics
in the constant in front of the integral. For example, when μ = νβ is the Cauchy
distribution with parameter β > n, a factor of order 1/β is absent on the right-hand
side of (5.2) with respect to (3.1).

As a main point in the proof of Theorem 5.1, recall, as discussed in the Intro-
duction, that any measure μ with density of the form (5.1) satisfies the Brunn–
Minkowski-type inequality

μ
(
tA + (1 − t)B

) ≥ [tμ(A)κ + (1 − t)μ(B)κ ]1/κ(5.3)

for all t ∈ (0,1) and for all Borel measurable sets A,B ⊂ R
n with κ = −1/(β −n).

PROOF OF THEOREM 5.1. The first step consists in the stronger weighted
Cheeger-type inequality∫

|g|dμ ≤ D

∫
|∇g(x)|(r + |x|) dμ(x)(5.4)

with positive constants D and r , where g is an arbitrary smooth function on R
n

with μ-median zero. Splitting g into the positive and negative parts, one may as-
sume g is nonnegative. Moreover, (5.4) is equivalent to its particular case where g

approximates the characteristic function of an arbitrary “nice” set A ⊂ R
n with
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measure 0 < μ(A) ≤ 1/2 (cf. [24]). For example, it is enough to consider the
sets A that are representable as a finite union of closed balls, contained in the open
supporting set of μ. Then (5.4) reduces to the isoperimetric-type inequality

μ(A) ≤ Dν+(A),(5.5)

where ν+(A) denotes the perimeter of the set A with respect to the measure
dν(x) = (r + |x|) dμ(x), namely

ν+(A) = lim
ε↓0

ν(A + εB1) − ν(A)

ε
=

∫
∂A

p(x)(r + |x|) dHn−1(x),

where B1 is the unit Euclidean ball with centre at the origin and where Hn−1
denotes the Lebesgue measure on the boundary ∂A of the set A.

Introduce also the μ-perimeter μ+(A) = ∫
∂A p(x) dHn−1(x). Note that, for

Hn−1-almost all points x in ∂A, the outer normal unit vector nA(x) at x is well-
defined, and for any r > 0,

lim
ε↓0

μ((1 − ε)A + εBr) − μ(A)

ε
= rμ+(A) −

∫
∂A

〈nA(x), x〉p(x)dHn−1(x)

≤
∫
∂A

(r + |x|)p(x) dHn−1(x) = ν+(A).

On the other hand, the above left-hand side may be bounded by virtue of the geo-
metric inequality (5.3). Applying the latter to the sets A and B = Br (the Euclidean
ball of radius r), we get that

μ
(
(1 − ε)A + εBr

) − μ(A) ≥ [(1 − ε)μ(A)κ + εμ(Br)
κ ]1/κ − μ(A)

= − ε

κ
μ(A)1−κ [μ(A)κ − μ(Br)

κ ] + o(ε).

Letting ε → 0 and combining the two inequalities, we get

ν+(A) ≥ μ(A)1−κ μ(A)κ − μ(Br)
κ

−κ
.(5.6)

Put t = μ(A), pr = μ(Br), and assume 0 < t ≤ 1/2 < pr ≤ 1. To adapt (5.6)
to (5.5), we need a bound of the form tκ−pκ

r−κ
≥ cκ tκ with some positive constant cκ ,

which would give ν+(A) ≥ cκμ(A). Clearly, the value t = 1/2 is critical, so for
the optimal constant we have

ck = 1 − (2pr)
κ

−κ
≥ log(2pr)

1 − κ
.

Hence (5.5) and (5.4) hold true with arbitrary r > 0, such that μ(Br) > 1/2, in
which case we may put D = (1 − κ)/(log 2μ(Br)).

We now conclude the proof and reach the weighted Poincaré-type inequal-
ity (5.2). To this task, if g is an arbitrary nonnegative smooth function on R

n with
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μ-median zero, apply (5.4) to g2 to get with the help of the Cauchy-Schwarz in-
equality that∫

g2 dμ ≤ 4D2
∫

|∇g(x)|2(r +|x|)2 dμ(x) ≤ 8D2
∫

|∇g(x)|2(r2 +|x|2) dμ(x).

At this step the assumption that g is nonnegative may be removed, and when
μ(Br) ≥ 2/3, we arrive at the inequality (5.2) with constant C = 8D2 =
8/ log2(4

3). Theorem 5.1 is established in this way. �

The quantile r of order 2/3 in Theorem 5.1 may be replaced, up to numerical
constants, with the median and other quantiles. It may also be replaced with in-
tegral characteristics, such as the moments mq = (

∫ |x|q dμ(x))1/q , q > 0, since
by Chebyshev’s inequality, r ≤ Cmq for some C = C(q). For probability mea-
sures μ with densities (5.1), it was shown by Borell [8] that μ(|x| ≥ t) = O(t1/κ)

as t → +∞. This implies that mq are finite, whenever q < β −n. Moreover, as re-
cently shown in [5], the constant C can be made dependent on β , but independent
of q . That is, we always have r ≤ Cβm0 where

m0 = lim
q→0

mq = exp
∫

log |x|dμ(x)

is the geometric mean for the Euclidean norm under μ.

COROLLARY 5.2. Any convex probability measure μ on R
n with density (5.1)

satisfies the weighted Poincaré-type inequality

Varμ(g) ≤ Cβ

∫
|∇g(x)|2(m2

0 + |x|2) dμ(x)

for all bounded smooth functions g on R
n, where the constant Cβ depends on β ,

only.

In fact, with the help of a routine localization argument and a careful treatment
of the one-dimensional case, this inequality may be sharpened for κ = −1/(β −n)

approaching zero as

Varμ(g) ≤ Cκ

∫
|∇g(x)|2(m2

0 + κ2|x|2) dμ(x)(5.7)

with some Cκ continuously depending on κ ≤ 0. A slight advantage of this form is
that the limit case κ = 0 involves the usual Poincaré-type inequality for an arbitrary
log-concave probability measure μ, namely

Varμ(g) ≤ C0m
2
0

∫
|∇g(x)|2 dμ(x).

In an equivalent form, the latter was obtained in 1995 by Kannan, Lovász and
Simonovits [15] by virtue of the localization lemma of [19], compare [4]. Another
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motivation to gain a small factor in front of |x|2 in (5.7) is that we may then apply
Proposition 3.3. The latter implies that, if κ0 < κ < 0,

inf
c∈R

∫ |g(x) − c|2
m2

0 + κ2|x|2 dμ(x) ≤ Cκ

∫
|∇g|2 dμ,

where κ0 is a numerical constant and Cκ continuously depends on κ . It would be
interesting to explore whether this property holds true for the whole range of κ .
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