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SHARP DILATION�TYPE INEQUALITIES

WITH FIXED PARAMETER OF CONVEXITY

Abstract� Sharp upper bounds for large and small deviations and
dilation�type inequalities are considered for probability distributions sat�
isfying convexity conditions of the Brunn�Minkowski kind�

�� Introduction

Given a Borel subset A of a �Borel� convex set K in Rn and a number
� � ��� ��� de	ne

A� �

�
x � A �

mes�A ��	

mes��	
� 
� �� for any interval � � K� such that x � �

�
�

We use mes to denote the one
dimensional Lebesgue measure of a set on
the line along the interval � � Rn� For example� if A is the complement
in K to a centrally symmetric� open� convex set B � K� then A� 
K n ��

�
� ��B is the complement to the dilated set B�

In this note we consider sharp relations between the measures of these
sets� i�e�� between ��A� and ��A��� where � is a Borel measure on Rn

with a 	xed parameter of convexity� Such relations belong to the family of
inequalities of dilation
type� As a basic example� let us recall the following
theorem� recently established in ����� If K is a convex body� then

jAj � jA�j
� jKj���� �����

where j � j denotes the n
dimensional volume� More generally� for any
log
concave probability measure �� supported on K� it was shown that

��A� � ��A��
�� �����

While ����� is sharp to serve all dimensions n� it may still be sharpened
for any 	xed dimension� Namely� as we will see� the actual sharp relation
is

jAj��n � � jA�j
��n � ��� �� jKj��n� �����

Supported in part by NSF grants DMS������ DMS����
���

��
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which becomes ����� in the limit as n � �� Although it is not clear
whether one can go in the opposit direction� the di�erence between �����
and ����� seems to be very similar to that between the Brunn�Minkowski
inequality and its log
concave variant�
In fact� both ����� and ����� represent particular cases of a more general

inequality� involving a certain parameter of convexity� We will say that a
probability measure � on Rn is �
concave� where �� � � � �� if for all
non
empty Borel subsets A�B of Rn and t � ��� ���

e��tA � ��� t�B� � �t��A�� � ��� t���B������� �����

where tA� �� � t�B denotes the Minkowski average fta� ��� t�b � a �
A� b � Bg� The expression� appearing on the right
hand side of ������ is
understood as ��A�t��B���t when �  �� and as minf��A�� ��B�g when
�  ���
Note the inequality ����� is getting stronger� as � increases� so the case

�  �� is the weakest one� describing the class of the so
called convex
�according to the terminology of C� Borell ��� or hyperbolic probability
measures �the latter is suggested V� D� Milman�� Thus� the normalized
Lebesgue measure on an arbitrary convex body is �

n

 concave� while the

case �  � corresponds to the family of log
concave measures� The stan

dard n
dimensional Cauchy distribution is �
concave for �  ��� Actual

ly� in Probability Theory many interesting multidimensional �or in	nite
dimensional� distributions are �
concave with � � �� cf� e�g� ��� for more
examples� A full description and comprehensive study of basic properties
of �
concave probabality distributions was performed by C� Borell ������
cf� also H� J� Brascamp and E� H� Lieb ����
Our aim is to prove�

Theorem ���� Let � be ��concave onRn� �� � � � �� with supporting

convex set K� For any Borel set A in K and for all � � ��� ��� such that

��A�� � ��

��A� � ����A��
� � ��� ������ � �����

The inequality ����� may equivalently be stated �on functions�� which
seems more convenient for various applications� Namely� with every Borel
measurable function f on Rn we associate its �modulus of regularity�

�f �	�  sup
x�y�Rn

mesft � ��� �� � j f�tx����t�y� j � 	 jf�x�jg� � � 	 � ��

The behaviour of �f near zero is connected with probabilities of large and
small deviations of f � More precisely� we have a functional inequality of
recursive type�
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Theorem ���� Let � be a ��concave probability measure on Rn� �� �
� � �� Given � � 
 � ess sup jf j� for all 	 � ��� ���

�fjf j � 
	g � �� �fjf j � 
g� � ��� ������� �����

where �  �f �	��

Let us brie�y describe some known results in this direction� By virtue
of localization in the class of log
concave measures� for A the complement
to the Euclidean ball� or equivalently� for f the Euclidean norm� the in

equalities ����������� were established by L� Lov�asz and M� Simonovits
����� Their argument was extended by O� Gu�edon ���� to cover the case of
an arbitrary norm with respect to �
concave probability measures with
� � �� Note any norm f�x�  kxk has a simple modulus of regularity
�f �	� 

��
��� � and then ����������� take an explicit form� which is inde


pendent of the norm� In the case of non
positive �� the distrubution of
the norms was already considered by C� Borell ���� who found an elegant
application of ������ leading to large deviation bounds� However� they did
not contain information on the extremal situations�
Using a transportation argument� somewhat weaker forms of ������

����� and ������ including suitable functional formulations� similar to
������ were derived in ������ The transport approach� interesting in itself�
goes back to the work of H� Knothe ���� about certain generalizations of
the Brunn�Minkowski inequality� J� Bourgain ��� developed it to study
large deviations of polynomials over high
dimensional convex bodies� As
it turned out� basic ideas in this approach may properly be adapted to the
full range in the hierarchy of convex measures and allow one to involve
general functionals rather than polynomials� only�
It is� however� not known whether one may reach sharp dilation
type

inequalities by virtue of suitable transference plans� even in dimension
one� Instead� here we apply the Lov�asz�Simonovits localization lemma
and with some modi	cations involve the arguments� proposed in ����
for the log
concave case in dimension one� The localization approach�
originating in the bisection method of L� E� Payne and H� F� Weinberger
���� and developed in ��� ��� ���� has proved to be a powerful tool in
numeruous applications� especially when one studies extremal situations
in multidimensional integral and measure relations� See also ��� �� for
recent developments�
The paper is organized as follows� In section � we discuss alternative �or

dual� variants of dilation
type inequalities� They are used in section � to
perform reduction to dimension one� In sections � we isolate and provide
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more details for the basic geometric argument of ����� which allows us to
considerably simplify dilation
type inequalities on the line� As we will see�
it is applicable to the larger class of all unimodal distributions� However�
the �
concavity is used in the rearrangement procedure� which we discuss
separately in section �� In section �� 	nal steps are done in the proof of
Theorem ���� Here for every 	xed � and � we also describe extremal
measures and the sets� for which ����� turns into an equality� The proof
of Theorem ��� together with some immediate applications are given in
section �� The particular case of the norms is discussed in section ��

�� General remarks on dilation

In the de	niton of A�� by the intervals � we may understand closed
intervals �a� b�� connecting arbitrary points a� b in K� Let us note the
requirement �x � �� may equivalently be replaced by a formally weaker
property that x is one of the endpoints of �� In the sequel� we equip every
� with a uniform distribution m� �understood as the Dirac measure�
when the endpoints coincide��
For any Borel set A� the function

��x� y� 

Z
�A dm�x�y� 

�Z
�

�A�tx� ��� t�y� dt� x� y � K�

is Borel measurable on K 	K� so the complement of A� in A�

A nA�  fx � A � ��x� y� � �� �� for some y � Ag�

represents the x
projection of a Borel set in Rn 	 Rn� Therefore� both
AnA� and A� are universally measurable� and we may freely speak about
the measures of these sets�
Let us also explain why A� is closed for the sets A� that are closed

in K� If xn � x� yn � y in K� then lim supn�� �A�txn � �� � t�yn� �
�A�tx� �� � t�y�� by closeness of A� so lim supn�� ��xn� yn� � ��x� y��
by the Lebesgue dominated convergence theorem� This means that � is
upper
semicontinuous on K 	K� and thus A� represents the intersection
over all y � K of the closed sets fx � A � ��x� y� � �� �g�
By the very de	niton� A�  A� when �  �� If �  � and A� is non


empty� K nA must be a null set in the sense of the Lebesgue measure m
on K �of the appropriate dimension�� Indeed� in that case� taking a point

x � A�� we get
R �
� �KnA�tx � sy� dt  �� for all y in K� Integrating this
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equality over m�dy� yields m��K nA�  � for a measure m�� equivalent to
m� Hence� m�K nA�  �� as well� and thus� ��A�  � for any probability
measure � on K� absolutely continuous with respect to m� In both cases�
the inequality ����� is ful	lled automatically� so it su�ces to consider the
values � � � � ��
Inequalities like in Theorem ��� may be stated in terms of an opposite

operation� representing a certain dilation or enlargements of sets� Namely�
given a Borel measurable set B � K and � � ��� ��� de	ne

B� 
�

m��B	��

� �

The union is running over all intervals � � K� such that m��B� � �� In
particular� it is running over all singletons in B� so B� contains B�
Put A  K n B� For any point x in K� the property x �� A� means

that� for some interval � � K� containing x� we have m��A� � � � ��
that is� m��B� � �� which in turn is equivalent to saying that � � B��
Therefore� x �� A� 
 x � B�� and thus we have the dual relations

K nA�  �K nA�� and K nB�  �K nB�� � �����

We can now reformulate Theorem ��� by involving dilated sets� In

terms of B  K n A� inequalty ����� is solved as ��B�� � R
��	
� ���B���

where

R
��	
� �t�  R��	�t�  ��

�
�� � t�� � �� � ��

�

����
� �����

If � � �� the above expression is well
de	ned and represents a strictly
concave� increasing function in t � ��� ��� For �  �� it is understood in
the limit sense as

R��	�t�  �� ��� t����� � � t � ��

which is also strictly concave and increasing� If � � � � �� R��	�t� is de

	ned to be the right
hand side of ����� for � � t � ���������� �when the
expression makes sense� and we put R��	�t�  � on the remaining subin

terval of ��� ��� In all cases� R��	 is a concave� continuous� non
decreasing
function on ��� �� with R��	���  � and R��	���  ��
Thus� we have�

Theorem ���� Let � be a ��concave probability measure on Rn� �� �
� � �� with supporting convex set K� For any Borel set B in K� and for

all � � ��� ���

��B�� � R
��	
� ���B��� �����
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The equivalence of Theorem ��� and ��� is obvious for � � �� Note�
if ��A��  �� then ��B��  �� and ����� is immediate� If ��A�� � � and
� � � � �� the inequality ����� implies ��A� � �� � ������ so ��B� �
�� ��� ������ Hence� we arrive at ����� with R��	 de	ned in ����� when
rewriting ����� in terms ofB  KnA� Similarly� one can go in the opposite
direction from ����� to ������
For example� on the real line for the Lebesgue measure � on the unit

interval K  ��� ��� we have �  �� and ����� becomes

��B�� � min

�
�

�
��B�� �

�
�

�� Convex measures� Reduction to dimension one

It is time to look at the in	nitesimal description of convex measures
and explain why extremal situations in Theorems ������� are already
attained in dimension one�
As was shown by C� Borell ���� any convex probability measure � on

Rn has an a�ne supporting subspace L� where it is absolutely continuous
with respect to Lebesgue measure on L� In this case� one may de	ne the
dimension of the measure� dim���� to be the dimension of L� For any
�
concave measure �� it is necessary that � � �

dim�L	 � unless � is a delta


measure� More precisely� when L  Rn� the following characterization
holds�

Lemma ���� Let �� � � � �
n � An absolutely continuous probability

measure � on Rn is ��concave if and only if it is concentrated on an open

convex set K in Rn and has there a positive density p� which satis�es for

all t � ��� �� and x� y � K�

p�tx� ��� t�y� � �tp�x���n	 � ��� t�p�y���n	�����n	� �����

where ��n�  �
���n �

The inequality ����� may be viewed as a particular case of the Brunn�
Minkowski
type inequality ������ stated for parallepipeds A and B with
in	nitely small sides�
The family of all full
dimensional convex measures � on Rn is de


scribed by ����� with ��n�  � �
n � If �  �� the right
hand side of ����� is

understood as p�x�tp�y���t� so the log
concavity of the measure amounts
to the log
concavity of its density �this characterization was essentially
discovered by A� Pr�ekopa ������ The case �  �

n
is only possible when p
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is constant� i�e�� when K is bounded and � represents the uniform distri

bution in K� Note� if � � �� � has to be compactly supported�
Let us mention one important� although elementary property of �


concave probability measures� If ��V � � � for a convex set V in Rn� then
the normalized restriction �V of � to this set is also �
concave� Moreover�
if we have a decreasing sequence Vm of convex sets with ��Vm� � ��
shrinking to a non
degenerate segment �  �a� b�� and if �Vm is convergent
weakly to a probability measure  on �� then  will be �
concave� as well�
Relaxing a de	nition� introduced in ����� let us call this one
dimensional
measure a �
needle� We will need�

Lemma ���� Let � be a ��concave absolutely continuous probability

measure� supported on an open convex set K in Rn ��� � � � �
n ��

Given lower�semicontinuous ��integrable functions u and v on K� such

that Z
u d� � ��

Z
v d� � �� �����

there is a ��needle � supported on some interval � � K� such thatZ
u d � ��

Z
v d � �� �����

The lemma may be viewed as a weakened variant of the localization
lemma of L� Lov�asz and M� Simonovits ����� The latter states that� if
u and v have positive integrals over K with respect to the Lebesgue
measure� thenZ

�

u�x� ��x�n�� dx � ��

Z
�

v�x� ��x�n�� dx � � �����

for some points a� b � K and some non
negative a�ne function � on
the interval �  �a� b� �where the integrals are one
dimensional�� This
statement may be applied to the functions u�x�p�x�� v�x�p�x�� with p�x�
the density of �� Then the conclusion ����� turns into ����� for the measure
 on � with density p�x���x�n��� up to a normalizing constant� The �

concavity of  follows from Lemma���� or alternatively� from the property
that  may be constructed as a �
needle �like in the original proof of the
localization lemma��
Now� we are prepared to show how to reduce Theorem ��� to dimension

one� It will be more convenient to consider the inequality ����� in the
equivalent Theorem ����
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Lemma ���� Let �� � � � �� and assume for any � � ��� �� and any

open set B in ��� ��� the inequality

��B�� � R
��	
� ���B�� �����

holds with respect to an arbitrary ��concave probability measure� sup�

ported on ��� ��� Then� it remains to hold for any � � ��� �� and any Borel

set B of K with respect to an arbitrary ��concave probability measure �
on Rn� supported on a convex set K�

Proof� Note that the family of all �
concave probability measures on Rn

and the inequality ����� itself are invariant under a�ne transformations
of the space� Therefore� if ����� holds on ������ it remains to hold on an
arbitrary interval �a� b� � Rn�
In the proof of ������ without loss of generality� we may assume � is

full
dimensional� like in Lemma ���� with an open supporting convex set
K in Rn�
First assume B represents a 	nite union of open balls� contained in K�

so that the boundary of A� has the Lebesgue measure zero� Let F denote
the closure of B� in K� Fix an arbitrary t � ��� ��� By the continuity of

the functions R
��	
� � the statement of the theorem may be written as the

implication ��B� � t � ��F � � R
��	
� �t�� If this were not true� we would

have Z
��B � t� d� � ��

Z
�R��	

� �t�� �F � d� � ��

which is the condition ����� for u  �B � t and v  R
��	
� �t� � �F � Since

these functions are lower
semicontinuous on K� we may apply Lemma
���� For some �
needle � supported on an interval �a� b� � K� we have

������ which implies �F � � R
��	
� ��B��� But by the one
dimensional case

of ������ ��B� �a� b���� � R
��	
� ��B� �a� b���� where the �
enlargement is

applied on �a� b�� Since �B � �a� b��� � F � we arrive at the contradiction�
Thus� ����� is obtained for 	nite unions of open balls� Hence� it can

be extended automatically for countable unions of open balls� i�e�� for
all open sets B in K� To get ����� in the class of all Borel sets� we may
assumeB is compact �since the measures of compact sets approximate the
measure of any Borel set from below�� Then choose a decreasing sequence
of open sets Gk� such that each of them is representable as a 	nite number
of open balls of radius smaller than ��k� is contained in K together with
their boundary� and contains B� In particular� ��k
�Gk  B� so that
��Gk�  ��B�� as k ���
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Let � � �� � � and take an arbitrary open� convex set K� with a
compact closure� such that G� � K� � K� Note it always exists� since
G� has a compact closure in K� and moreover one may approximate K
from below by such sets K�� Now� given x � K�� the property x �� B�

means that m�x�y��B�  infk�� m�x�y��Gk� � �� for any y � K� In that
case� there is k� such that m�x�y��Gk� � ��� or in other words� the sets

Vk�x�  fy � K � m�x�y��Gk� � ��g� k  �� �� � � ��

cover K� Note the boundaries of Gk do not contain non
degenerate inter

vals� so the functions of the form y � m�x�y��Gk� are continuous on K�
Therefore� all Vk�x� are open� and by the compactness of clos�K�� in K�
the set K� is contained in Vk�x� for some k  k�x�� Thus� with such an
index� for any y � K�� we have m�x�y��Gk� � ��� so the point x lies in the
complement of the set

G��

k �K��  fx � K� � m�x�y��Gk� � ��� for some y � K�g�

Equivalently� for all points x � K�� we have got the inclusionG��

k�x	�K�� �

B� � which implies ��k
�G
��

k �K�� � B� and

��B�� � lim
k��

��G��

k �K���� �����

On the other hand� let �� denote the normalized restriction of � to K��
By ������ applied to Gk in the space �K�� ����

���G
��

k �K��� � R
��	
�� ����Gk�� � R

��	
�� ����B��� �����

Combining ����� with ����� and approximatingK by K� so that ��K�� �

�� we obtain that ��B�� � R
��	
�� ���B��� It remains to let �

�  � and use

the contunuity of R��	
� with respect to ��

�� Unimodal distributions

In view of Lemma ���� for the proof of Theorem ��� we may focus on
one
dimensional dilation
type inequalities� restricted to closed sets� Thus�
let � be a probability measure on the unit interval K  ��� ��� We are
interested in relations of the form

��F � � ����F���� �����
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where � � � � � is a 	xed parameter� � is a given function� and F is an
arbitrary closed set in ��� ��� Recall that

F� �

�
x � F �

jF ��j

j�j
� 
� �� for any interval � � ���
	� such that x � �

�
�

In this section� we ignore any convexity hypothesis about the measure�
and instead assume more generally that � is unimodal in the sense that
it has a positive continuous density p� non
decreasing on ���m� and non

increasing on �m� ��� for some m � ��� ��� Note that monotone continuous
densitites provide simple examples� where m  � or m  �� Our purpose
is to reduce ����� to a special inequality for subintervals of ������ More
precisely� here we isolate and give more details for an argument� proposed
in ���� in the proof of Theorem ��� for log
concave measures�
Namely� given � � � � �� let � � ��� ��� ��� �� be a concave function�

satisfying ����  � and ��u� � �u������� for � � u � � �or� equivalently�
����� � ��� De	ne  �u�  ���� u� � ��� u��

Proposition ���� Assume� for any interval �a� b� � ��� ��� such that

p�a�  p�b�� and any measurable set E � �a� b� with jEj � ��� ��j�a� b�j�
we have

��E� �  ���a� b��� �����

Then � satis�es ����� for any closed set F in ��� ��� such that F� is non�

empty�

As a basic example in Proposition ���� one may consider special func

tions

���u�  ��u
� � ��� ������

with parameters �� � � � � and � � � � �� These functions are
increasing with respect �� so the largest one corresponds to �  �� when
���u�  �u � �� � �� and  ��u�  �� � ��u� More generally� we assume
� � �� or  �  ��
Let us return to ������ Since F� is closed� its complement !F�  ��� ��nF

may be represented as the union of at most countably many open disjoint
intervals Ij � First we prove�

Lemma ���� If � � ��� ��� ��� �� is concave with ����  �� the inequality
����� will be ful�lled for any closed F � ��� ��� such that F� is non�empty�

as long as� for each j�

��F � Ij� �  ���Ij ��� �����
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Proof� Rewrite ����� as ��F �� ��F�� � ����F���� ��F��� that is� as

��F � !F�� �  ��� !F���� �����

where !F�  ��� �� n F � By the assumption�  is concave� as well�  � ��
 ���  �� which implies that  �u��u is non
increasing and therefore
 �u��u�� �  �u��� �u��� for all u�� u� � �� u��u� � �� By continuity
of  � this inequality can be extended to in	nite sequences� namely�

 

�X
j

uj

�
�
X
j

 �uj�� �����

whenever uj � ��
P

j uj � �� We may exclude the trivial case F�  ��� ���

Then !F� is non
empty� so that there is at least one Ij � Starting from �����
and using ������ we get that

��F � !F�� 
X
j

��F � Ij� �
X
j

 ���Ij�� �  

�X
j

��Ij�

�
  ��� !F����

and we arrive at the desired inequality ������

Proof of Proposition ���� By a certain approximation� we may consid

er only a non
trivial situation� where p����  p����  � and � � m � ��
with the assumption that p is increasing on ���m� and is decreasing on
�m� ���
By Lemma ���� we need to verify ����� for a single interval Ij � We have

to distinguish between the two possible cases� Let us call the interval Ij
regular� if it does not contain the point m of maximum of the density
p� Otherwise� we call it exceptional� If it exists� it is unique and then
we assign it the index j  � �while the remaining intervals� if they are
present� have indices j � ���

Regular case� Let Ij  �a� b�� so either � � a � b � m or m � a �
b � �� In the 	rst case we have b � F�� which implies jF � �x� b�j �
��� �� j�x� b�j� that is�

Z
F

��x�b	�t� dt � ��� ��

bZ
a

��x�b	�t� dt� �����

for all x � �a� b�� In particular�

jF � �a� b�j � ��� �� j�a� b�j� �����
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The inequality ����� may be generalized by replacing the indicator func

tion ��x�b	 with an arbitrary non
negative� non
decreasing function f
on �a� b�� Indeed� assuming without loss of generality that f is left

continuous� we have f�t�  f�a�� �

R
��x�b	�t� df�x�� so� by ������������

Z
F��a�b	

f�t� dt  f�a�� jF � �a� b�j�

Z 	

�

Z
F��a�b	

��x�b	�t� dt

�
� df�x�

� f�a�� �� � �� j�a� b�j� ��� ��

Z 	
�

bZ
a

��x�b	�t� dt

�
� df�x�

 ��� ��

bZ
a

f�t� dt�

Applying it to f  p� we obtain ��F � �a� b�� � �� � ����a� b� 
 ����a� b��� so ����� is ful	lled� A similar argument works for m � a �
b � ��

Exceptional case� Now consider I�  �a� b� with � � a � m � b � ��
We need to derive ����� for this interval� that is�

��F � I�� �  ���I���� �����

Without loss of generality� we may assume p�b� � p�a�� This automati

cally implies a � �� since otherwise p�b� � p�a�  �� which implies b  ��
and then we would arrive at the trivial case I�  ��� ��� Note we still have
������
If p�b�  p�a�� we may apply the assumption ����� to E  F � �a� b��
If p�b� � p�a�� let c � �a� b� be the unique point� such that p�c�  p�a��

In this case we will strengthen ����� by modifying F on the interval
�a� b� as follows� Take an arbitrary closed part of F � �a� c� of Lebesgue
measure �  jF � �a� c�j � �� � ��j�a� c�j and replace it with a subset of
�c� b� n F of the same measure� using the points of �c� b� n F as close to c
as possible �in case � is greater than the measure �� of the set �c� b� n F �
we will just 	ll the whole interval �c� b� and may forget about the lost
measure�� Let F � be the resulting set� Clearly� inside �c� b� it has the form
F �� �c� b�  �c� b��� �F � �b�� b��� for some b� � �c� b�� We claim that in the
interval c � x � b

jF � � �c� x�j � ��� ��j�c� x�j� �����
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In case � � ��� we have F � � �c� x�  �c� x�� and there is nothing to prove�
So let � � ��� Since a � F�� for all x � �c� b��

jF � �a� x�j � ��� ��j�a� x�j� ������

As long as x stays within the interval �c� b��� we still have F � � �c� x� 
�c� x�� As soon as x leavs �c� b��� again by ������ and according to the form
of F ��

jF � � �c� x�j  jF � � �c� b��j� jF � �b�� x�j

 jF � �c� b��j� �� jF � �b�� x�j

 jF � �a� c�j� jF � �c� b��j� jF � �b�� x�j � ��� ��j�a� c�j

 jF � �a� x�j � ��� ��j�a� c�j � ��� ��j�c� x�j�

Thus ����� is proved� Now� starting from ����� and recalling that the
density p is non
increasing on �c� b�� we may conclude similarly to the
regular case that

��F � � �c� b�� � ��� �����c� b��� ������

To see that ����� will be strengthened after replacement of F with F ��
write

��F � I��  ��F � � I�� � ���F n F �� � �a� c��� ���F � n F � � �c� b���

By the construction� �  j�F nF ����a� c�j � j�F �nF ���c� b�j� In addition�
all values of the density p on �a� c� majorize all values of p on �c� b��
Therefore�

���F n F �� � �a� c�� � ���F � n F � � �c� b���

so ��F � I�� � ��F � � I��� Thus� we are reduced to show that

��F � � I�� �  ���I���� ������

Write ��F �� I��  ��F � � �a� c��� ��F � � �c� b��� For the second term we
have ������� which gives ��F � � �c� b�� �  ���c� b��� By the construction�
jF �� �a� c�j  ��� ��j�a� c�j� so we may apply the assumption ����� to the
interval �a� c� and the set E  F � � �a� c�� which gives ��F � � �a� c�� �
 ���a� c�� for the 	rst term� Adding the two estimates� we obtain �������
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�� Rerarrangement

Proposition ��� essentially simpli	es the one
dimensional problem on
	nding sharp dilation
type inequalities� Indeed� to verify the inequality
����� for a given unimodal probability measure �� it su�ces to consider
only the sets E of a simple structure� namely� of the form �a� c�� �c� b��
and �a� c� � �c� b�� for some c � �a� b�� However� in the class of �
concave
measures� Proposition ��� may further be simpli	ed by reducing it to the
measures with monotone densities� In this section we discuss such a type
of reduction�
First� let us recall that� given two �real
valued� measurable functions

p and q� de	ned on a 	nite interval �a� b�� q represents a decreasing rear

rangement of p� if

�� q is non
increasing on �a� b��
�� p and q are equidistributed on �a� b� with respect to Lebesgue mea


sure�

The latter means that� for all t � R�

mesfx � �a� b� � p�x� � tg  mesfx � �a� b� � q�x� � tg�

Similarly one de	nes an increasing rearrangement� The decreasing"incre

asing rearrangement is unique� if we additionally require that it is left or
right
continuous� And it is unique� if a continuous decreasing"increasing
rearrangement exists�
Now� given a probability measure � on ����� with density p� de	ne the

decreasing rearrangement �� to be the probability measure on ����� with
density q  p�� a decreasing rearrangement of p�
Let us see how to reformulate Proposition ��� in terms of ��� Again�

consider only a non
trivial situation� where p����  p����  � and
� � m � �� with the assumption that p is increasing on ���m� and is
decreasing on �m� ��� Within all measurable sets E � �a� b� with a 	xed
Lebesgue measure jEj� the quantity ��E� 

R
E
p�x� dx is minimized�

when p takes as small values on E as possible� Therefore� modulo zero
this set should be of the form E  fx � �a� b� � p�x� � �g� for some
� � �p�a��maxp �� Due to the assumption p�a�  p�b��

E  fx � ��� �� � p�a� � p�x� � �g�

Since p and p� are equidistributed� it has the same Lebesgue measure as

E�  fx � ��� �� � p�a� � p��x� � �g  �b�� a���
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where the unique points a�� b� are de	ned by p�a��  p�a�� p�b��  ��
Note that � � b� � a� � �� Similarly� the interval ��� a��  fx � ��� �� �
p�a� � p��x�g has the same length as the interval fx � ��� �� � p�a� �
p�x�g  �a� b�� Finally�

��E�� 

�Z
�

p��x��fp�a	�p��x	�	gdx 

�Z
�

p�x��fp�a	�p�x	�	gdx  ��E��

Thus� what we have is that�

�� E � �a� b� � ��� ��� E� � ��� a�� � ��� ���
�� jEj  jE�j� j�a� b�j  j��� a��j�
�� ��E�  ���E���
�� E�  �b�� a��� with � � b� � a� � ��

Recall that � � ��� �� was 	xed in a advance� Clearly� the worst situa

tion in Proposition ��� is when jEj  �� � ��j�a� b�j� which is equivalent
to jE�j  j�b�� a��j  ��� ��j��� a��j� Hence� one may assume b�  �a��

Now� as before� let � � ��� �� � ��� �� be a concave function� such
that ����  �� ��u� � �u � �� � ��� for � � u � �� De	ne  �u� 
���� u�� �� � u�� Thus� the above discussion leads to�

Proposition 	��� Let � be a unimodal probability measure on ��� ���
such that its decreasing rearrangement satis�es

����a� a� �  ������ a��� � � a � �� �����

Then� for any closed set F in ��� ��� such that F� is non�empty�

��F � � ����F���� �����

Therefore� if � is going to serve all measures in ����� from some family�
which is closed under the rearrangement operation � � ��� we will be
reduced to a simpler condition ����� in comparison with ������ That the
basic example of interest is included in our scheme is described by�

Proposition 	��� Given �� � � � �� if � is a ��concave probability

measure on the line with the supporting interval ��� ��� then �� is ��
concave� as well�

For the proof� we apply the characterization of the �
concavity� given
in Lemma ��� for dimension one� It is natural to use the following ter

minology� A positive function p on the 	nite interval �a� b� will be called
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�
concave� where �� � � � ��� if for all t � ��� �� and x� y � �a� b��

p�tx� �� � t�y� � �tp�x�� � ��� t�p�x������

with the usual convention for the values �  ��� �����
For example� the above inequality becomes p�tx � �� � t�y� �

maxfp�x�� p�y�g� when �  ��� which means that p must be a con

stant� The case �  �� describes the so
called quasi
concave functions�
The usual concavity corresponds to �  ��
By Lemma ���� Proposition ��� immediately follows from�

Lemma 	��� If p is ��concave� then its decreasing rearrangement is ��
concave�

Proof� We may assume �a� b�  ��� ��� Introduce the �right
continuous�
distribution function F of p under the Lebesgue measure 
 on ������ Then�
the left
continuous increasing rearrangement of p may be de	ned as the
�inverse�

F���s�  minfx � R � F �x� � sg� � � s � ��

while the right
continuous decreasing rearrangement is de	ned as p��s� 
F����� s��
It follows from the Brunn
Minkowski inequality in dimension one that

any concave function p on ��� �� has a concave decreasing rearrangement
p�� Indeed� if p is constant� there is nothing to prove� In the other case�
introduce the family of open� non
empty intervals

A�t�  fx � ��� �� � f�x� � tg� t � t� � maxp�

By concavity� �A�t�� �����A�s� � A��t������s�� for any � � ��� ���
so

� jA�t�j� ��� �� jA�s�j � jA��t� ��� ��s�j�

This means that the function � � F is concave on the half
axis t � t��
It is also decreasing in t� � t � t�� where t�  inf p� Hence� the same
properties are ful	lled for the inverse function q� acting from �r� �� to
�t�� t��� where r  jfx � ��� �� � p�x�  t�gj� In case r � �� we extend
it to the remaining subinterval ��� r� by q  t�� and then q becomes
a non
increasing concave function on ��� ��� Finally� for any s � �r� ���
� � F �t�  s 
 t  F���� � s�� which means that q is a continuous�
decreasing rearrangement of p� Thus� Lemma ��� is veri	ed for �  ��
Similarly� any convex p has a convex increasing rearrangement�
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Now� we need the following elementary observation� Let p � ��� ��� �
be a measurable function� with values in an interval � � R� closed�
open� or semi
open� with left or right
continuous decreasing or increasing
rearrangement p�� Then� for any increasing continuous function T on ��

T �f��  T �f���

where T �f�� denotes respectively the left"right
continuous decreasing or
increasing rearrangement of T �f�� If T is decreasing� then �decreasing�
should be interchanged with �increasing� in the type of rearrangement�

Let � � � � ��� By the very de	nition� if p is �
concave� then T �f�
is concave� where T �x�  x�� Hence� its decreasing rearrangement T �p��

is concave� as well� But T �p��  T �p��� so T �p�� is concave� The latter
means that p� is �
concave�

Now� let �� � � � �� If p is �
concave� then T �p� is convex� where
T �x�  x�� Hence� its increasing rearrangement T �p�� is convex� as well�
But T �p��  T �p��� where we should interchange monotonicity� that is�
where p� denotes a decreasing rearrangement� Thus� T �p�� is convex and
decreasing� The latter means that p� is �
concave�

�� Proof of Theorem ���

In view of Lemma ��� and Propositions �������� in the class of all �

concave probability measures � onRn� we have reduced the dilation
type
inequalities ��A� � ����A��� to the smaller class of measures that are
supported on the unit interval ����� of the real line and have decreasing
densities on it� However� this reduction does not say anything about ex

treme measures for an optimal choice of �� Moreover� cases of equality
may be attained for �#s� which are not compactly supported� To get some
guess on the potential extreme measures� one may look once more at the
Borell description of the �
concavity in dimension one� given in Lemma
����

Let � be an absolutely continuous probability measure� supported on
some interval ��� c� � ������� 	nite or not� and having there a positive�
continuous density p� One may associate with it the function I�t� 
p�F���t��� where F�� � ��� �� � ��� c� is the inverse to the distribution
function F �x�  ���� x�� � � x � c� Note the measure may uniquely be
reconstructed in terms of the associated function with the help of the
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identity

F���t� 

tZ
�

ds

I�s�
� � � t � ��

So� one possible way to express some properties of � is to use I� For
example� it may be shown by virtue of Lemma ��� �cf� ���� that� given
�� � � � �� � � �� the measure � is �
concave� if and only if the
function I������	 is concave on ������ �The case �  � corresponds to the
concavity of I� and the case �  �� corresponds to the concavity of
log I�� Therefore� the measures� for which the function I������	 is a�ne�
may play a special role in a number of extremal problems about general
�
concave measures�
Namely� introduce a �
concave probability measure �� on the positive

half
axis ������ by requiring that its associated function is

I��t�  ��� t����� � � t � ��

Its distribution function is given by

F��x�  �� ��� �x���k� � � x � c��

More precisely� when � � � � �� �� is supported on the 	nite interval
��� �

�
�� If �  �� we obtain a uniform distribution on the unit interval

��� ��� When �� � � � �� �� is not supported on a 	nite interval� so
that c�  ��� If �  �� we obtain the one
sided exponential distribution
with density p�x�  e�x�
If � � �� the tails ��F��x� behave at in	nity like x�
� where �  � �

� �
For example� if �  ��� �� represents the Pareto distribution with tails
�� F��x� 

�
x��

� x � ��

One important� although obvious property of such measures is that�
for all a � ��� c�� and � � ��� ���

����a� c��  ������a� c���� �����

where
���u�  ��u

� � �� � ������� � � u � ��

as before� Indeed� if for simplicity � � ��

������a� c��� ����� F��a��  ����� � �a�����

�� ��� �a� � ��� ������  ��� � �a����

�� F���a�  ����a� c���
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Moreover� recall the de	nition of the �
operation and apply it to K 
��� c� � ������ with A  ��a� c�� � � a � c� Then we see that

A�  ��a� c��  �a� c��

It means that ����� describes an extremal situation in the dilation
type
inequality

��A� � �����A����

Our next step should be to extend ����� to arbitrary �one
sided� �

concave � in the form of an inequality�

Lemma 
��� Let � be a ��concave probability measure with a support�

ing interval ��� c� � ������� For all � � a � c and � � � � ��

���a� c� � �����a� c��� �����

Proof� Introduce the �unique� increasing map T � ��� c��� ��� c�� which
transforms �� into �� First we show that it is a concave function� Note
T may be de	ned explicitly by the equality

F��x�  F �T �x��� � � x � c��

where F is the distribution function of �� restricted to ��� c�� By the
Brunn
Minkowski
type inequality ����� for the measure �� applied to the
intervals A  �a� c�� B  �b� c� with � � a� b � c� for any t � ��� ���
s  �� t�

�� F �ta� sb� � �t��� F �a��� � s�� � F �b�������

 �t��� F �T ������ � s�� � F �T ������ ����

 �t��� F�����
� � s��� F�����

� ������ F��t�� s���

where �� � � ��� c�� satisfy T ���  a� T ���  b� Thus� F �ta � sb� �
F��t�� s��� and applying F�� to the both sides� we obtain that

tT ��� � sT ���  ta � sb � T �t�� s���

Thus� T is concave� Since T ����  �� the concavity implies that

T ��a� � �T �a�� �����

for all a � ��� c� and � � ��� ���
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Now� let us return to the identity ����� and rewrite it in terms of a
random variable X� with the distribution �k� namely� as

Prf�a � X� � c�g  ���Prfa � X� � c�g��

Equivalently�

PrfT ��a� � T �X�� � T �c���g  ���PrfT �a� � T �X�� � T �c���g��

Since X  T �X�� has the distribution �� and c  T �c����

PrfT ��a� � X � cg  ���PrfT �a� � X � cg��

By ������ the latter implies Prf�T �a� � X � cg � ���PrfT �a� � X �
cg�� Replacing T �a� with a new variable� say a� we arrive at ������ and
the lemma follows�

Proof of Theorem ���� Let � be as in Lemma ���� In terms of the
function  ��u�  ����� u�� ��� u�� the inequality ����� takes the form

���a� a� �  ������ a��� � � a � c�

Therefore� there has been ful	lled the condition ����� in Proposition ���
with    � for the class of all �
concave �� supported on the interval
������ As a result� for any closed set F in ��� ��� such that F� is non
empty�
we have that ��F � � ����F���� It remains to apply Lemma ����

�� Functional form� Large and small deviations

Let f be a Borel measurable function on Rn� By the very de	nition of
the �f 
function� we have the inclusion fx � R

n � jf�x�j � 
g � F� with
�  �f �	�� 
 � �� 	 � ��� ��� where

F  fx � Rn � jf�x�j � 
	g�

To see this� assume jf�x�j � 
� Since the property jf�tx���� t�y�j � 
	
implies jf�tx� ��� t�y�j � 	jf�x�j� we have

mesft � ��� �� � jf�tx � �� � t�y�j � 
	g �

mesft � ��� �� � jf�tx� ��� t�y�j � 	jf�x�jg � ��

Hence� mesft � ��� �� � jf�tx� ��� t�yj � 
	g � �� �� which means that
x � F��
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As a result� Theorem ��� immediately yields the functional Theorem
���� If � is a �
concave probability measure on Rn� �� � � � �� and
� � 
 � ess sup jf j� then for all 	 � ��� ���

�fjf j � 
	g � �� �fjf j � 
g� � ��� �������

where �  �f �	��
Moreover� if � is supported on a convex set K in Rn� bounded or

not� we also obtain ����� for the functions f de	ned on K �rather than
on the whole space�� Then in the de	nition of �f the supremum should
be taken over all points x� y � K� Note also if � � �� the assumption

 � ess sup jf j may be removed�
Conversely� an application of ����� to the functions� taking at most

three values will return us to the geometric inequality ����� of Theorem
���� see ��� for more details� Thus� ����� may be viewed as a natural
functional form of ������
FromTheorem ��� one easily derives a sharp bound on large deviations

of f in terms of the associated modulus of regularity and the parameter
of the convexity of the measure�

Corollary ���� Given a Borel measurable function f on Rn� let m � �
be a median for jf j with respect to a ��concave probability measure � on

Rn� �� � � � �� For all h � ��

�fjf j � mhg �

�
� �

��� � �

�f �
�
h
�

����
� �����

When �  �� the right
hand side is understood as limit at zero� that
is�

�fjf j � mhg � �����f �
�

h
	� �����

If � � �� the inequality ����� may be simpli	ed as

�fjf j � mhg � Ck �f ���h�
���� �����

with constant C�  ���� � ������ Note C� �
�
� � as ����� As easy to

see� we also have a uniform bound� such as� for example� C� � � in the
region � � ���

For the proof of ������ apply ����� to 
  mh and 	  �
h
� Then �fjf j �


	g � �
� � and letting P  �fjf j � 
g� we get �

� � ��P � � �� � �������
It remains to solve this inequality in terms of P � Note when � � ��
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necessarily �
� � ��� ����� or �����

� � ��� so the right
hand side of �����
makes sense�

Corollary ��� is useless� when �f �	� is not getting small� as 	 approaches
zero� Nevertheless� a bound similar to ����� continuous to hold in case
� � lim�	� �f �	� � ��

Corollary ���� Let f be a Borel measurable function on Rn� such that

�f �	�� � ��� for some 	�� �� � ��� ��� Then� with respect to any ��concave
probability measure � on Rn with � � ��

�fjf j � mhg � Ch�	� h � �� �����

where m � � is a ��median for jf j� and where C and � are positive

constants depending on �� 	�� and ��� only�

Indeed� put u�
�  �fjf j � 
g� v  u�� By ������ v�
	�� � ��v�
� �
��� ���� for all 
 � �� The repeated use of this inequality leads to

v�
	i�� � �i�v�
� � ��� �i��� i � � �integer��

Choosing 
  m	�i� � we have v�
	
i
��  u�m�� � ���� so

u�m	�i� � �

�
� �

��� � �

�i�

����
�

which is a recursive analogue of the large deviation bound ������ Now�
choosing large valus of i� it is easy to complete the argument with the

exponent �  � log�����	
� log�����	

�

Now� let us turn to the problem of small deviations� As turns out� they
may also be studied on the basis of Theorem ����

Corollary ���� Let f be a Borel measurable function on Rn� and let

m � � be a median for jf j with respect to a ��concave probabilitymeasure

� on Rn� �� � � � �� Then�

�fjf j � m	g � C� �f �	�� � � 	 � �� �����

with constant C� 
��k��
�� �

For the proof� one may assume � � � and m  �� From ����� with

  �� we obtain that �fjf j � 	g � ��x�� where ��x�  � � �� � x����

and x  ���� � �� �f �	�� Since this function is concave in x � ��� we
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have ��x� � ���� � �����x  ��k��
��

�f �	�� When �  �� ����� holds with
C�  lim���C�  log��

Combination of bounds on large and small deviations allows one to
establish a number of Khinchin
type inequalities� With this aim� when
f is a norm and � is log
concave� the inequality ����� was obtained by
R� Latala ���� �with a di�erent argument�� The present general bound
improves upon a similar result in ����

	� Dilation of convex bodies

Let � be a full
dimensional �
concave probability measure on Rn�
�� � � � �� Let f�x�  kxk be an arbitrary norm in Rn� generat

ed by a centrally symmetric� open� convex set B� so that

B  fx � Rn � kxk � �g�

In terms of the �
operation� applied with respect to the whole space
K  Rn� if A  fx � Rn � kxk � �g is the complement to B� then� as it
was alredy noticed�

A�  Rn n

�
�

�
� �

�
B 

�
x � Rn � kxk �

�

�
� �

�
�

which is the complement to the dilated set B� Hence� one can apply The

orems ������� to these sets� or alternatively� Theorem ��� to the function
f � Since �  �f �	� 

��
��� � by ����� with 
  h and 	  �

h �h � ��� we get
that

�fkxk � �g � �� �fkxk � hg� � ��� �������

so
�� ��B� � �� ��� ��hB��� � ��� �������

where �  �
h�� � Here� the condition that � is full
dimensional may be

removed� and we arrive at�

Corollary ���� Given a ��concave probability measure � on Rn� �� �
� � �� for any symmetric� convex set B in Rn and for all h � ��

�� ��B� �

�
�

h� �
��� ��hB��� �

h� �

h� �

����
� �����

When �  �� the above reads as � � ��B� � �� � ��hB�����h��	� or
equivalently�

�� ��hB� � ��� ��B���h��	��� �����
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which is due to L� Lov�asz and M� Simonovits ���� in case of Euclidean
balls B� O� Gu�edon ���� extended this inequality to general B and also
found a precise relation in the case � � �� Namely� then ����� is solved in
terms of �� ��hB� as

�� ��hB� � max���
�
h� �

�
�� � ��B��� �

h� �

�
� �

�
� �����

As for the range � � �� in this case the above expression is simpli	ed as

�� ��hB� �

�
h� �

�
�� � ��B��� �

h� �

�

����
� �����

Thus� ����� is a natural form� uniting all the three cases in ������������
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