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SHARP DILATION-TYPE INEQUALITIES
WITH FIXED PARAMETER OF CONVEXITY

ABSTRACT. Sharp upper bounds for large and small deviations and
dilation-type inequalities are considered for probability distributions sat-
isfying convexity conditions of the Brunn—Minkowski kind.

1. INTRODUCTION

Given a Borel subset A of a (Borel) convex set K in R™ and a number

8 € [0, 1], define

mes(A N A)

As = A
8 {x € mes(A)

> 1 -6, for any interval A C K, such that = € A}.

We use mes to denote the one-dimensional Lebesgue measure of a set on
the line along the interval A C R”. For example, if A is the complement
in K to a centrally symmetric, open, convex set B C K, then As; =
K\ (% — 1)B is the complement to the dilated set B.

In this note we consider sharp relations between the measures of these
sets, i.e., between p(A) and pu(Ajs), where p is a Borel measure on R”
with a fixed parameter of convexity. Such relations belong to the family of
inequalities of dilation-type. As a basic example, let us recall the following
theorem, recently established in [15]: If K is a convex body, then

4] > 4] [, (1.1)
where | - | denotes the n-dimensional volume. More generally, for any
log-concave probability measure p, supported on K, it was shown that

W(A) > u(As)’. (1:2)

While (1.1) is sharp to serve all dimensions n, it may still be sharpened
for any fixed dimension. Namely, as we will see, the actual sharp relation
is

AT > 6 AT (1= 6)

K|Ym (1.3)
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which becomes (1.1) in the limit as n — oo. Although it is not clear
whether one can go in the opposit direction, the difference between (1.1)
and (1.3) seems to be very similar to that between the Brunn-Minkowski
inequality and its log-concave variant.

In fact, both (1.2) and (1.3) represent particular cases of a more general
inequality, involving a certain parameter of convexity. We will say that a
probability measure g on R”™ is k-concave, where —oco < & < 1, if for all
non-empty Borel subsets A, B of R"” and ¢ € (0, 1),

LA+ (1= 0B) > (tu(A) + (L= Ou(BY )", (14)
where tA 4+ (1 — ¢)B denotes the Minkowski average {ta + (1 — )b :a €
A, b € B}. The expression, appearing on the right-hand side of (1.4), is
understood as p(A)'pu(B)' =" when k = 0, and as min{u(A), p(B)} when
K= —00.

Note the inequality (1.4) is getting stronger, as & increases, so the case
Kk = —oo 18 the weakest one, describing the class of the so-called convex
(according to the terminology of C. Borell [3] or hyperbolic probability
measures (the latter is suggested V. D. Milman). Thus, the normalized
Lebesgue measure on an arbitrary convex body is %— concave, while the
case £ = 0 corresponds to the family of log-concave measures. The stan-
dard n-dimensional Cauchy distribution is k-concave for K = —1. Actual-
ly, in Probability Theory many interesting multidimensional (or infinite
dimensional) distributions are k-concave with x < 0, cf. e.g. [3] for more
examples. A full description and comprehensive study of basic properties
of k-concave probabality distributions was performed by C. Borell [3-4];
cf. also H. J. Brascamp and E. H. Lieb [6].

Our aim is to prove:

Theorem 1.1. Let pu be k-concave on R", —oo < & < 1, with supporting
convex set K. For any Borel set A in K and for all § € [0, 1], such that
pu(As) >0,
p(A) > (Bp(As)" + (1= 6)". (1.5)
The inequality (1.5) may equivalently be stated “on functions”, which
seems more convenient for various applications. Namely, with every Borel
measurable function f on R” we associate its “modulus of regularity”
5(2) = sup mes{t € (0,1): | f(ta+(1-)p)| <= |f@)]), 0<e<1.
z,yeRm
The behaviour of §; near zero is connected with probabilities of large and
small deviations of f. More precisely, we have a functional inequality of
recursive type:
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Theorem 1.2. Let u be a k-concave probability measure on R”, —co <
k < 1. Given 0 < A < esssup |f|, for all ¢ € (0,1),

Wl > A = Gallf] = A} + (- )=, (1.6)
where § = 6;(¢).

Let us briefly describe some known results in this direction. By virtue
of localization in the class of log-concave measures, for A the complement
to the Euclidean ball, or equivalently, for f the Euclidean norm, the in-
equalities (1.5)—(1.6) were established by L. Lovasz and M. Simonovits
[14]. Their argument was extended by O. Guédon [10] to cover the case of
an arbitrary norm with respect to k-concave probability measures with

k > 0. Note any norm f(x) = ||z|| has a simple modulus of regularity
8e(e) = %, and then (1.5)—(1.6) take an explicit form, which is inde-

pendent of the norm. In the case of non-positive k, the distrubution of
the norms was already considered by C. Borell [3], who found an elegant
application of (1.4), leading to large deviation bounds. However, they did
not contain information on the extremal situations.

Using a transportation argument, somewhat weaker forms of (1.2)-
(1.3) and (1.5), including suitable functional formulations, similar to
(1.6), were derived in [1-2]. The transport approach, interesting in itself,
goes back to the work of H. Knothe [12] about certain generalizations of
the Brunn—Minkowski inequality. J. Bourgain [5] developed it to study
large deviations of polynomials over high-dimensional convex bodies. As
it turned out, basic i1deas in this approach may properly be adapted to the
full range in the hierarchy of convex measures and allow one to involve
general functionals rather than polynomials, only.

It is, however, not known whether one may reach sharp dilation-type
inequalities by virtue of suitable transference plans, even in dimension
one. Instead, here we apply the Lovasz—Simonovits localization lemma
and with some modifications involve the arguments, proposed in [15]
for the log-concave case in dimension one. The localization approach,
originating in the bisection method of L. E. Payne and H. F. Weinberger
[16] and developed in [9, 14, 11], has proved to be a powerful tool in
numeruous applications, especially when one studies extremal situations
in multidimensional integral and measure relations. See also [7, 8] for
recent developments.

The paper is organized as follows. In section 2 we discuss alternative (or
dual) variants of dilation-type inequalities. They are used in section 3 to
perform reduction to dimension one. In sections 4 we isolate and provide
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more details for the basic geometric argument of [15], which allows us to
considerably simplify dilation-type inequalities on the line. As we will see,
it is applicable to the larger class of all unimodal distributions. However,
the xk-concavity is used in the rearrangement procedure, which we discuss
separately in section 5. In section 6, final steps are done in the proof of
Theorem 1.1. Here for every fixed x and é we also describe extremal
measures and the sets, for which (1.5) turns into an equality. The proof
of Theorem 1.2 together with some immediate applications are given in
section 7. The particular case of the norms is discussed in section 8.

2. GENERAL REMARKS ON DILATION

In the definiton of As, by the intervals A we may understand closed
intervals [a,b], connecting arbitrary points a,b in K. Let us note the
requirement “xr € A” may equivalently be replaced by a formally weaker
property that x is one of the endpoints of A. In the sequel, we equip every
A with a uniform distribution ma (understood as the Dirac measure,
when the endpoints coincide).

For any Borel set A, the function

1

Pz, y) :/1A dmig ) :/1A(tx—|—(1—t)y)dt, x,y € K,
0

is Borel measurable on K x K, so the complement of A5 in A,
AN As={z € A:¢(x,y) <1—6 forsome ye A},

represents the xz-projection of a Borel set in R™ x R”™. Therefore, both
A\ As and As are universally measurable, and we may freely speak about
the measures of these sets.

Let us also explain why As is closed for the sets A, that are closed
in K. If , — &, yp — y in K, then limsup,_, ., 1a(te, + (1 — t)y,) <
1a(te 4+ (1 —t)y), by closeness of A, so limsup,,_, ., ¥(zn,yn) < ¥(z,y),
by the Lebesgue dominated convergence theorem. This means that ¥ is
upper-semicontinuous on A X K, and thus As represents the intersection
over all y € K of the closed sets {# € 4 : ¢(x,y) > 1 -4},

By the very definiton, 45 = A, when é = 1. If 6 = 0 and Aj is non-
empty, K \ A must be a null set in the sense of the Lebesgue measure m
on K (of the appropriate dimension). Indeed, in that case, taking a point

xr € As, we get fol Liya(te 4+ sy)dt = 0, for all y in K. Integrating this
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equality over m(dy) yields m/(K\ 4) = 0 for a measure 1/, equivalent to
m. Hence, m(K \ A) = 0, as well, and thus, u(A4) = 1 for any probability
measure g on K, absolutely continuous with respect to m. In both cases,
the inequality (1.5) is fulfilled automatically, so it suffices to consider the
values 0 < 6 < 1.

Inequalities like in Theorem 1.1 may be stated in terms of an opposite
operation, representing a certain dilation or enlargements of sets. Namely,
given a Borel measurable set B C K and § € [0, 1), define

Bf = U A

mA(B)>6

The union is running over all intervals A C K, such that ma(B) > 6. In
particular, it is running over all singletons in B, so B® contains B.

Put A = K\ B. For any point 2 in K, the property « ¢ A; means
that, for some interval A C K, containing z, we have ma(A4) < 1 — 8,
that is, ma(B) > 6, which in turn is equivalent to saying that A C B’.
Therefore, x ¢ As < x € B%, and thus we have the dual relations

K\A4s;=(K\A4)" and K\B°=(K\B);. (2.1)
We can now reformulate Theorem 1.1 by involving dilated sets. In

terms of B = K \ A, inequalty (1.5) is solved as u(B®) > REQ&)(/J(B)),
where

(1—1)c —(1—8)]""
; .

If & < 0, the above expression 1s well-defined and represents a strictly
concave, increasing function in ¢ € [0,1]. For k = 0, it is understood in
the limit sense as

RO =1-(1-0 o0<t<1,

R ()= R®@t)y=1- (2.2)

which is also strictly concave and increasing. If 0 < & < 1, R(“)(t) is de-
fined to be the right-hand side of (2.2) for 0 < ¢ < 1—(1—6)1/“ (when the
expression makes sense) and we put R(*)(¢) = 1 on the remaining subin-
terval of [0, 1]. In all cases, R™) is a concave, continuous, non-decreasing
function on [0, 1] with R(®*)(0) = 0 and R(®)(1) = 1.
Thus, we have:

Theorem 2.1. Let u be a k-concave probability measure on R”, —co <
k& < 1, with supporting convex set K. For any Borel set B in K, and for
all 6 € (0,1),

u(B') = B (u(B)). (2.3)
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The equivalence of Theorem 1.1 and 2.1 is obvious for k < 0. Note,
if p(As) =0, then pu(B?) = 1, and (2.3) is immediate. If u(As) > 0 and
0 < x < 1, the inequality (1.5) implies u(A) > (1 — 6)Y/%, so u(B) <
1 — (1= 6)*. Hence, we arrive at (2.3) with R"®) defined in (2.2) when
rewriting (1.5) in terms of B = K\ A. Similarly, one can go in the opposite
direction from (2.3) to (1.5).

For example, on the real line for the Lebesgue measure p on the unit
interval K = (0,1), we have x = 1, and (2.3) becomes

u(8) 2 min{ (8.1},

3. CONVEX MEASURES. REDUCTION TO DIMENSION ONE

It 1s time to look at the infinitesimal description of convex measures
and explain why extremal situations in Theorems 1.1-2.1 are already
attained in dimension one.

As was shown by C. Borell [4], any convex probability measure p on
R"” has an affine supporting subspace L, where it is absolutely continuous
with respect to Lebesgue measure on L. In this case, one may define the
dimension of the measure, dim(y), to be the dimension of L. For any
K-concave measure p, 1t is necessary that £ < m, unless i 1s a delta-
measure. More precisely, when L = R”  the following characterization

holds.

Lemma 3.1. Let —o0 < k < % An absolutely continuous probability
measure p on R is k-concave if and only if it is concentrated on an open
convex set K in R"™ and has there a positive density p, which satisfies for
allt € (0,1) and z,y € K,

plte + (1= 1)y) > (tp(a) ™) + (1 = t)p(y)=)=, - (3.1)

where k(n) = —=£

1—rn"

The inequality (3.1) may be viewed as a particular case of the Brunn—
Minkowski-type inequality (1.4), stated for parallepipeds A and B with
infinitely small sides.

The family of all full-dimensional convex measures g on R” is de-
scribed by (3.1) with k(n) = —%. If k = 0, the right-hand side of (3.1) is
understood as p(z)'p(y)' =, so the log-concavity of the measure amounts
to the log-concavity of its density (this characterization was essentially
discovered by A. Prékopa [17]). The case k = % is only possible when p



60 S. G. BOBKOV, F. L. NAZAROV

is constant, i.e., when K is bounded and p represents the uniform distri-
bution in K. Note, if kK > 0, u has to be compactly supported.

Let us mention one important, although elementary property of &-
concave probability measures. If y(V) > 0 for a convex set V in R", then
the normalized restriction py of p to this set is also k-concave. Moreover,
if we have a decreasing sequence V,, of convex sets with u(Vy,) > 0,
shrinking to a non-degenerate segment A = [a, b], and if py,, is convergent
weakly to a probability measure v on A, then v will be k-concave, as well.
Relaxing a definition, introduced in [11], let us call this one-dimensional
measure a p-needle. We will need:

Lemma 3.2. Let y be a k-concave absolutely continuous probability
measure, supported on an open convex set K in R" (—oo < k < %)
Given lower-semicontinuous p-integrable functions w and v on K, such
that

/udu>0, /vdu>0, (3.2)

there is a p-needle v, supported on some interval A C K, such that

/udu>0, /vdi/>0. (3.3)

The lemma may be viewed as a weakened variant of the localization
lemma of L. Lovész and M. Simonovits [14]. The latter states that, if
u and v have positive integrals over K with respect to the Lebesgue
measure, then

/u(x) £x)" "t de > 0, /v(a:) Lx)" " de >0 (3.4)

A A

for some points a,b € K and some non-negative affine function ¢ on
the interval A = [a,b] (where the integrals are one-dimensional). This
statement may be applied to the functions u(z)p(x), v(z)p(x), with p(z)
the density of . Then the conclusion (3.4) turns into (3.3) for the measure
v on A with density p(x)¢(z)"~!, up to a normalizing constant. The &-
concavity of v follows from Lemma 2.1, or alternatively, from the property
that v may be constructed as a p-needle (like in the original proof of the
localization lemma).

Now, we are prepared to show how to reduce Theorem 1.1 to dimension
one. It will be more convenient to consider the inequality (2.3) in the
equivalent Theorem 2.1.
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Lemma 3.3. Let —oco < k < 1, and assume for any é € (0,1) and any
open set B in (0, 1), the inequality

n(B*) > R (u(B)) (3.5)

holds with respect to an arbitrary k-concave probability measure, sup-
ported on (0, 1). Then, it remains to hold for any 6 € (0,1) and any Borel
set B of K with respect to an arbitrary k-concave probability measure p
on R, supported on a convex set K.

Proof. Note that the family of all x-concave probability measures on R"
and the inequality (3.5) itself are invariant under affine transformations
of the space. Therefore, if (3.5) holds on (0,1), it remains to hold on an
arbitrary interval (a,b) C R"™.

In the proof of (3.5), without loss of generality, we may assume p is
full-dimensional, like in Lemma 3.1, with an open supporting convex set
K in R".

First assume B represents a finite union of open balls, contained in K,
so that the boundary of A® has the Lebesgue measure zero. Let F' denote
the closure of B? in K. Fix an arbitrary ¢ € (0, 1). By the continuity of

the functions Rg), the statement of the theorem may be written as the

implication p(B) >t = pu(F) > Rg)(t). If this were not true, we would
have

/(13 —t)du >0, /(Rff)(t) —1p)du >0,

which is the condition (3.2) for v = 1 — ¢ and v = Rg)(t) — 1. Since
these functions are lower-semicontinuous on K, we may apply Lemma
3.2: For some p-needle v, supported on an interval (a,b) C K, we have
(3.3), which implies v(F') < RE;&)(I/(B)). But by the one-dimensional case
of (3.5), v((BN(a,b))?) > R%é)(V(Bﬂ (a,b))), where the é-enlargement is
applied on (a,b). Since (BN (a, b))’ C F, we arrive at the contradiction.

Thus, (3.5) is obtained for finite unions of open balls. Hence, it can
be extended automatically for countable unions of open balls, 1.e., for
all open sets B in K. To get (3.5) in the class of all Borel sets, we may
assume B is compact (since the measures of compact sets approximate the
measure of any Borel set from below). Then choose a decreasing sequence
of open sets Gy, such that each of them is representable as a finite number
of open balls of radius smaller than 1/k, is contained in K together with

their boundary, and contains B. In particular, N{Z,Gy = B, so that
w(Gy) | u(B), as k — oo.



62 S. G. BOBKOV, F. L. NAZAROV

Let 6§ < & < 1 and take an arbitrary open, convex set K; with a
compact closure, such that G5 C K; C K. Note it always exists, since
(G1 has a compact closure in K, and moreover one may approximate K
from below by such sets K;. Now, given * € Ky, the property « ¢ B’
means that mp, ,1(B) = infy>1 mpe ,)(Gr) < 6, for any y € K. In that
case, there is k, such that mp, ,1(Gr) < &', or in other words, the sets

Vk(x):{yEK:m[x’y](Gk)<6’}, k=1,2,...,

cover K. Note the boundaries of GG;; do not contain non-degenerate inter-
vals, so the functions of the form y — m, ,1(Gy) are continuous on K.
Therefore, all Vi (z) are open, and by the compactness of clos(K1) in K,
the set K is contained in V() for some k = k(z). Thus, with such an
index, for any y € K1, we have my, ,1(G}1) < &, so the point x lies in the
complement of the set

Gil(Kl) ={x € K1 :mp y)(Gr) > &', for some y € K1 }.

Equivalently, for all points z € K1, we have got the inclusion Gil(x)(Kl) C
B®, which implies N3, G4 (K,) C B® and

n(B') > lim p(Gf (K)). (3.6)

On the other hand, let 1 denote the normalized restriction of p to Kj.
By (3.5), applied to G} in the space (K1, p1),

Gy (K1) > Ry (11 (Gr)) > R (B)). (3.7)

Combining (3.6) with (3.7) and approximating K by K; so that p(K1) T
1, we obtain that p(B%) > R(;)(u(B)). It remains to let & | 6 and use
the contunuity of R(;) with respect to é.

4. UNIMODAL DISTRIBUTIONS

In view of Lemma 3.3, for the proof of Theorem 1.1 we may focus on
one-dimensional dilation-type inequalities, restricted to closed sets. Thus,
let s be a probability measure on the unit interval K = (0,1). We are
interested in relations of the form

u(F) > o(u(Fs)), (4.1)



SHARP DILATION-TYPE INEQUALITIES 63

where 0 < § < 1 18 a fixed parameter, ¢ is a given function, and F' is an
arbitrary closed set in (0, 1). Recall that

[FnA|
1A

Fs = {x eF: >1—§, for any interval A C (0,1), such that z € A}.
In this section, we ignore any convexity hypothesis about the measure,
and instead assume more generally that p is unimodal in the sense that
it has a positive continuous density p, non-decreasing on (0, m] and non-
increasing on [m, 1), for some m € [0, 1]. Note that monotone continuous
densitites provide simple examples, where m = 0 or m = 1. Our purpose
is to reduce (4.1) to a special inequality for subintervals of (0,1). More
precisely, here we isolate and give more details for an argument, proposed
in [15] in the proof of Theorem 1.1 for log-concave measures.

Namely, given 0 < 8 < 1, let ¢ : [0,1] — [0, 1] be a concave function,
satisfying ¢(1) = 1 and ¢(u) < du+(1-6), for 0 < u < 1 (or, equivalently,
¢'(1) < 6). Define ®(u) = p(1 —u) — (1 — u).

Proposition 4.1. Assume, for any interval (a,b) C (0,1), such that
p(a) = p(b), and any measurable set E C (a,b) with |E| > (1 —46)|(a,b)|,
we have

W(E) > D(u(a,b)). (4.2)

Then i satisfies (4.1) for any closed set F' in (0,1), such that Fj is non-
empty.

As a basic example in Proposition 4.1, one may consider special func-
tions

pr(u) = (8u” + (1 - 8)H/"

with parameters —oco < & < 1 and 0 < 8 < 1. These functions are
increasing with respect &, so the largest one corresponds to kK = 1, when
e1(u) = bu+ (1 —6) and ®1(u) = (1 — §)u. More generally, we assume
p<ppor® <Py

Let us return to (4.1). Since Fj is closed, its complement Fs = (0, 1)\ F'
may be represented as the union of at most countably many open disjoint
intervals I;. First we prove:

Lemma 4.2. If :[0,1] — [0, 1] is concave with ¢(1) = 1, the inequality
(4.1) will be fulfilled for any closed F' C (0, 1), such that Fs is non-empty,
as long as, for each j,

WFNL) > (u(l)). (4.3)
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Proof. Rewrite (4.1) as p(F) — pu(Fs) > @(u(Fs)) — p(Fs), that is, as

u(F N Fy) > ®(u(Fy)), (4.4)

where Fis = (0,1)\ F. By the assumption, ® is concave, as well, ® > 0,
$(0) = 0, which implies that ®(u)/u is non-increasing and therefore
D(ug+us) < P(uy)+P(uz), for all uy, us > 0, ug +uz < 1. By continuity
of @, this inequality can be extended to infinite sequences, namely,

(L) < Lo (45)
J J
whenever u; > 0, Z]' u; < 1. We may exclude the trivial case F5 = (0, 1).

Then Fj is non-empty, so that there is at least one I;. Starting from (4.3)
and using (4.5), we get that

p(F N Fy) = ZﬂFﬂ[ >Z<I> ><I)<Z/,L ) (n(Fs)),

and we arrive at the desired inequality (4.4).

Proof of Proposition 4.1. By a certain approximation, we may consid-
er only a non-trivial situation, where p(O—I—) =p(l-)=0and 0 <m < 1,
with the assumption that p is increasing on (0,m] and is decreasing on
[m, 1).

By Lemma 4.2, we need to verify (4.3) for a single interval I;. We have
to distinguish between the two possible cases. Let us call the interval [;
regular, if it does not contain the point m of maximum of the density
p. Otherwise, we call it exceptional. If 1t exists, it is unique and then
we assign it the index j = 0 (while the remaining intervals, if they are
present, have indices j > 1).

Regular case. Let I; = (a,b), so either 0 < a <b<morm<a<
b < 1. In the first case we have b € Fs, which implies |F' N (#,b)] >
(1 =48)|(x,b)], that is.

b

J1eowa = -9 [1epwa, (16)

F a

for all # € [a,b]. In particular,
PO (D) > (1- 6) (@, )] (47)



SHARP DILATION-TYPE INEQUALITIES 65

The inequality (4.6) may be generalized by replacing the indicator func-
tion 1(; ) with an arbitrary non-negative, non-decreasing function f
on (a,b). Indeed, assuming without loss of generality that f is left-
continuous, we have f(t) = f(a—)+ [ 1(z)(t) df(x), so, by (4.6)—(4.7),

| rwa=rarn@ol+ [ | ] end] de
Fn(a,b) Fn(a,b)
b

> fa-) (1= 0@+ (1=0) [ | [1an0d] #)

- (1—6)/f(t) dt.

Applying it to f = p, we obtain u(F N (a,b)) > (1 — &) pla,b) =
®;(p(a, b)), so (4.3) is fulfilled. A similar argument works for m < a <
b<1.

Frceptional case. Now consider Iy = (a,b) with 0 < a<m < b < 1.
We need to derive (4.3) for this interval, that is,

u(F 0 Io) > B(u(1o)). (4.8)

Without loss of generality, we may assume p(b) <
cally implies a > 0, since otherwise p(b) < p(a) =
and then we would arrive at the trivial case Iy = (
(4.7).

If p(b) = p(a), we may apply the assumption (4.2) to ' = F'N (a,b).

If p(b) < p(a), let ¢ € (a, b) be the unique point, such that p(c) = p(a).
In this case we will strengthen (4.8) by modifying F' on the interval
(a,b) as follows. Take an arbitrary closed part of F'N (a,c) of Lebesgue
measure £ = [F'N(a,c)] — (1 — é)|(a, )| and replace it with a subset of
(¢, b)\ F of the same measure, using the points of (¢,b) \ F' as close to ¢
as possible (in case £ is greater than the measure ¢ of the set (¢,b)\ F,
we will just fill the whole interval (e,b) and may forget about the lost
measure). Let F’ be the resulting set. Clearly, inside (¢, b) it has the form
F'ne,b) = (e, YU (FNY,b)), for some b’ € [¢,b]. We claim that in the
interval ¢ <2 <b

—_~

p(a). This automati-
which implies b = 0,
1). Note we still have

0,
0,

/0 (e,2)] 2 (1= )| (e ). (4.9)
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In case £ > ¢/, we have F' N (e, 2) = (¢, ), and there is nothing to prove.
So let ¢ < #. Since a € F, for all z € [¢, ],

[N (e, z)] > (1= 6)[(a, x)]. (4.10)

As long as x stays within the interval (¢, b’), we still have F'' N (¢, 2) =
(¢, x). As soon as x leavs (¢, b)), again by (4.10) and according to the form
of F’,

[F' N (c,z)| = |F' N (c,b)]+|F N, )
=[F (e, b))+ 0+ N, o)
=|Fn(a, )|+ |FN(c,b)+|F NG, z)|—(1-8)|(a,c)
=Fn(a,z)| = (1=9)[(a,c)] = (1-0)l(c,2)l.

Thus (4.9) is proved. Now, starting from (4.9) and recalling that the
density p is non-increasing on (c¢,b), we may conclude similarly to the
regular case that

H(E' 1 (e,8)) > (1= 8) p((e. ). (4.11)

To see that (4.8) will be strengthened after replacement of F' with F”,
write

W(F A1) = p(F' 0 1)+ p((F \ F') A1 (a,)) = p((F/\ F) N (e, ).

By the construction, £ = [(F\F')N(a,c)| > [(F'\F)N(e,b)|. In addition,
all values of the density p on (a,¢) majorize all values of p on (e, b).
Therefore,

p(F\F')N(a,c)) > p((F'\ F) N (c, b)),
so u(FN1Iy) > p(F'NIy). Thus, we are reduced to show that
WP 010} > B(u(To)). (112)

Write u(F' N 1p) = p(F' N(a,e))+ p(F' N(e,b)). For the second term we
have (4.11), which gives u(F’ N (e, b)) > ®(p(c,b)). By the construction,
|F'N(a, )| = (1—96)|(a, c)|, so we may apply the assumption (4.2) to the
interval (a,c¢) and the set £ = F' N (a,c), which gives u(F' N (a,c)) >
D(p(a,c)) for the first term. Adding the two estimates, we obtain (4.12).
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5. RERARRANGEMENT

Proposition 4.1 essentially simplifies the one-dimensional problem on
finding sharp dilation-type inequalities. Indeed, to verify the inequality
(4.2) for a given unimodal probability measure y, it suffices to consider
only the sets E of a simple structure, namely, of the form (a,c¢), (¢, ),
and (a,¢) U (c,b), for some ¢ € (a,b). However, in the class of x-concave
measures, Proposition 4.1 may further be simplified by reducing it to the
measures with monotone densities. In this section we discuss such a type
of reduction.

First, let us recall that, given two (real-valued) measurable functions
p and ¢, defined on a finite interval (a, b), q represents a decreasing rear-
rangement of p, if

1) ¢ is non-increasing on (a, b);

2) p and ¢ are equidistributed on (a, b) with respect to Lebesgue mea-
sure.

The latter means that, for allt € R,
mes{z € (a,b) : p(x) >t} = mes{x € (a,b) : q(x) > t}.

Similarly one defines an increasing rearrangement. The decreasing/incre-
asing rearrangement is unique, if we additionally require that it is left or
right-continuous. And it is unique, if a continuous decreasing/increasing
rearrangement exists.

Now, given a probability measure z on (0,1) with density p, define the
decreasing rearrangement p* to be the probability measure on (0,1) with
density ¢ = p*, a decreasing rearrangement of p.

Let us see how to reformulate Proposition 4.1 in terms of p*. Again,
consider only a non-trivial situation, where p(0+) = p(1—) = 0 and
0 < m < 1, with the assumption that p is increasing on (0, m] and is
decreasing on [m, 1). Within all measurable sets E C (a,b) with a fixed
Lebesgue measure |E|, the quantity u(E) = [, p(x)dz is minimized,
when p takes as small values on E as possible. Therefore, modulo zero
this set should be of the form £ = {# € (a,b) : p(x) < f}, for some
3 € (p(a), maxp]. Due to the assumption p(a) = p(b),

E={ze€(0,1):pla) < plx) < B}
Since p and p* are equidistributed, it has the same Lebesgue measure as

Er={x e (0,1): pla) <p(x) < B} = (b7, "),
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where the unique points a*, b* are defined by p(a*) =
Note that 0 < b* < @* < 1. Similarly, the interval (0,¢*) = {x € (0,1
pla) < p*(x)} has the same length as the interval {x € (0,1) : p(a)
p(z)} = (a,b). Finally,

1 1
p(E™) = /p*(x)l{p<a><p*<x><@}dr = /P(x)l{p<a><p<x><@}dl° = u(E).
0 0

Thus, what we have 1s that:

1) EC(a,b) C(0,1), E* C (0,a") C (0,1);
2) || = ||, |(a,b)] = (0, a")];

3) p(E) = p™(E7);

4) B* = (b",a%), with 0 < 0" < a® < 1.

Recall that é € (0,1) was fixed in a advance. Clearly, the worst situa-
tion in Proposition 4.1 is when |E| = (1 — §)|(a, b)|, which is equivalent
to |E*] = |(b*,a*)| = (1 — §)|(0,a*)|. Hence, one may assume b* = éa*.

Now, as before, let ¢ : [0,1] — [0,1] be a concave function, such
that (1) = 1, o(u) < du+ (1 =4¢), for 0 < u < 1. Define ®(u) =
¢(1 —u) — (1 — w). Thus, the above discussion leads to:

Proposition 5.1. Let yu be a unimodal probability measure on (0, 1),
such that its decreasing rearrangement satisfies

W (ba,a) > ®(p*(0,a)), 0<a<l. (5.1)
Then, for any closed set F' in (0,1), such that Fs is non-empty,

p(F) > o(u(Fs)). (5.2)

Therefore, if ¢ is going to serve all measures in (5.2) from some family,
which 1s closed under the rearrangement operation g — p*, we will be
reduced to a simpler condition (5.1) in comparison with (4.2). That the
basic example of interest is included in our scheme is described by:

Proposition 5.2. Given —oco < k < 1, if p is a k-concave probability
measure on the line with the supporting interval (0,1), then p* is k-
concave, as well,

For the proof, we apply the characterization of the x-concavity, given
in Lemma 3.1 for dimension one. It is natural to use the following ter-
minology. A positive function p on the finite interval (a,b) will be called
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k-concave, where —oo < & < 400, if for all ¢ € (0,1) and »,y € (a,b),

plte + (1= 0)y) > (tp(e)" + (L= t)p(x)*)/"

with the usual convention for the values kK = —o0, 0, +00.

For example, the above inequality becomes p(tz + (1 — t)y) >
max{p(z),p(y)}, when & = 400, which means that p must be a con-
stant. The case k = —oo describes the so-called quasi-concave functions.
The usual concavity corresponds to k = 1.

By Lemma 3.1, Proposition 5.2 immediately follows from:

Lemma 5.3. If p is k-concave, then its decreasing rearrangement is k-
concave.

Proof. We may assume (a,b) = (0, 1). Introduce the (right-continuous)
distribution function F' of p under the Lebesgue measure A on (0,1). Then,
the left-continuous increasing rearrangement of p may be defined as the
“inverse”

F~Ys)=min{fr eR: F(z)>s}, 0<s<I,

while the right-continuous decreasing rearrangement is defined as p*(s) =
F=1 (1 —s).

It follows from the Brunn-Minkowski inequality in dimension one that
any concave function p on (0, 1) has a concave decreasing rearrangement
p*. Indeed, if p is constant, there is nothing to prove. In the other case,
introduce the family of open, non-empty intervals

Ay ={z € (0,1): f(») >}, t<t, =maxp.

By concavity, aA(t) + (1 — a)A(s) C A(at+ (1 — «)s), for any a € (0, 1),
50

a A+ (1 - a) [A(s)] < [A(at + (1 = a)s)|.

This means that the function 1 — F' 1s concave on the half-axis ¢ < ¢;.
It is also decreasing in ¢y < ¢t < t1, where ¢y = inf p. Hence, the same
properties are fulfilled for the inverse function ¢, acting from (r,1) to
(to,t1), where r = [{z € (0,1) : p(x) = t1}|. In case r > 0, we extend
it to the remaining subinterval (0,7] by ¢ = t;, and then ¢ becomes
a non-increasing concave function on (0,1). Finally, for any s € (r, 1),
1—F(t) = s &t = F~}1 — s), which means that ¢ is a continuous,
decreasing rearrangement of p. Thus, Lemma 5.3 is verified for x = 1.
Similarly, any convex p has a convex increasing rearrangement.
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Now, we need the following elementary observation. Let p : (0,1) — A
be a measurable function, with values in an interval A C R, closed,
open, or semi-open, with left or right-continuous decreasing or increasing
rearrangement p*. Then, for any increasing continuous function 7" on A,

where T(f)* denotes respectively the left/right-continuous decreasing or
increasing rearrangement of T'(f). If T is decreasing, then “decreasing”
should be interchanged with “increasing” in the type of rearrangement.

Let 0 < k& < 400. By the very definition, if p is k-concave, then T(f)
is concave, where T'(z) = z". Hence, its decreasing rearrangement T'(p)*
is concave, as well. But T'(p)* = T(p*), so T(p*) is concave. The latter
means that p* is k-concave.

Now, let —oo < &k < 0. If p is k-concave, then T'(p) is convex, where
T(x) = x*. Hence, its increasing rearrangement 7'(p)* is convex, as well.
But T(p)* = T(p*), where we should interchange monotonicity, that is,
where p* denotes a decreasing rearrangement. Thus, T(p*) is convex and
decreasing. The latter means that p* 1s k-concave.

6. PRooF OF THEOREM 1.1

In view of Lemma 3.3 and Propositions 5.1-5.2, in the class of all x-
concave probability measures p on R”, we have reduced the dilation-type
inequalities p(A) > ¢(1(As)) to the smaller class of measures that are
supported on the unit interval (0,1) of the real line and have decreasing
densities on it. However, this reduction does not say anything about ex-
treme measures for an optimal choice of . Moreover, cases of equality
may be attained for p’s, which are not compactly supported. To get some
guess on the potential extreme measures, one may look once more at the
Borell description of the x-concavity in dimension one, given in Lemma

3.1.

Let g be an absolutely continuous probability measure, supported on
some interval (0,¢) C (0, +00), finite or not, and having there a positive,
continuous density p. One may associate with it the function I(¥) =
p(F~1(t)), where F=1 :(0,1) — (0,¢) is the inverse to the distribution
function F(z) = p(0,2), 0 < & < ¢. Note the measure may uniquely be
reconstructed in terms of the associated function with the help of the
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identity
1
d
F_l(t):/T;’ 0<t<l.

So, one possible way to express some properties of u is to use I. For
example, it may be shown by virtue of Lemma 3.1 (cf. [2]) that, given
—o0 < k < 1, kK # 0, the measure u is k-concave, if and only if the
function I'/(1=%) is concave on (0,1). (The case & = 0 corresponds to the
concavity of I, and the case k = —oo corresponds to the concavity of
log I). Therefore, the measures, for which the function IV (1=%) ig affine,
may play a special role in a number of extremal problems about general
K-concave measures.

Namely, introduce a k-concave probability measure p,, on the positive
half-axis (0, 4+00) by requiring that its associated function is

Lty =1-t" o0<t<l.
Its distribution function is given by
Fn(l‘)zl—(l—lﬁ?l‘)l/k, 0<z<cy.

More precisely, when 0 < & < 1, uy 1s supported on the finite interval
(0, %) If Kk = 1, we obtain a uniform distribution on the unit interval
(0,1). When —o0 < & < 0, p1,; is not supported on a finite interval, so
that ¢, = 400. If kK = 0, we obtain the one-sided exponential distribution
with density p(z) = e~ 7.

If & < 0, the tails 1 — Fj;(z) behave at infinity like =%, where o = —%.
For example, if kK = —1, p, represents the Pareto distribution with tails

1—Fn(l‘):x1?,l‘>0.

One important, although obvious property of such measures is that,

for all a € (0,¢,) and § € (0, 1),
pr(da, cx) = pr(ps(a, cq)), (6.1)

where

pr(u) = (Bu" + (1=8)"" 0<u<l,
as before. Indeed, if for simplicity « # 0,
prlpnla,ex) =pa(l = Fula)) = (1 = ra)'/")
=(6(1—ka)+(1—6N* = (1 —kéa)'/”
=1—Fy(ba) = px(ba,cy).
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Moreover, recall the definition of the §-operation and apply it to K =
(0,¢) C (0,+00) with A = (8a,¢), 0 < a < ¢. Then we see that

As = (8a,¢)s = [a, c).

It means that (6.1) describes an extremal situation in the dilation-type
inequality

#(A) > ox(p(As)).

Our next step should be to extend (6.1) to arbitrary “one-sided” «-
concave g in the form of an inequality.

Lemma 6.1. Let pu be a k-concave probability measure with a support-
ing interval (0,¢) C (0,+00). Forall 0 < a < c and 0 < § < 1,

u(6a, ) > pe(pla,c)). (6.2)

Proof. Introduce the (unique) increasing map 7" : (0, ¢, ) — (0, ¢), which
transforms p, into p. First we show that it is a concave function. Note
T may be defined explicitly by the equality

Fo(z) = F(T(»), 0<az<ecy,

where F' is the distribution function of p, restricted to (0,¢). By the
Brunn-Minkowski-type inequality (1.4) for the measure u, applied to the
intervals A = (a,¢), B = (b,¢) with 0 < a,b < ¢, for any ¢ € (0,1),
s=1-—1,

(1= F(a)" + (1 = F(B)]]"/"
(1= F(T(@)))" +s(1 — F(T(8)))"]"/"
(1= Fu(@)® + s(1 = Fu(B)" 1" =1 = Fu(ta+ s8),

where o, 3 € (0,¢,) satisfy T(«) = a, T(F) = b. Thus, F(ta + sb) <
Fyo(ta + sP3), and applying F =1 to the both sides, we obtain that

tT () + sT(B) =ta + sb < T(ta + sf).
Thus, T is concave. Since T(04) = 0, the concavity implies that
T(8a) > 6T (a), (6.3)

for all @ € (0,¢) and 6§ € (0, 1).
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Now, let us return to the identity (6.1) and rewrite it in terms of a
random variable X, with the distribution pj, namely, as

Pr{éa < X, < ¢y} = ¢p(Pr{a < Xy < ex}).
Equivalently,
Pr{T(6a) < T(Xx) < T(cx—)} = px(Pr{T(a) < T(Xx) < T(cx—)}).
Since X = T(X,) has the distribution g, and ¢ = T(¢cx—),
Pr{T(ba) < X < ¢} = px(Pr{T(a) < X < ¢}).

By (6.3), the latter implies Pr{67T'(a) < X < ¢} > ¢x(Pr{T(a) < X <
¢}). Replacing T'(a) with a new variable, say a, we arrive at (6.2), and
the lemma follows.

Proof of Theorem 1.1. Let p be as in Lemma 6.1. In terms of the
function ®,(u) = ¢, (1 —u) — (1 — u), the inequality (6.2) takes the form

pulba,a) > . (p(0,a)), 0<a<e.

Therefore, there has been fulfilled the condition (5.1) in Proposition 5.1
with ® = ®, for the class of all k-concave i, supported on the interval
(0,1). As a result, for any closed set F'in (0, 1), such that Fs is non-empty,
we have that p(F) > ¢(p(Fs)). It remains to apply Lemma 3.3.

7. FUNCTIONAL FORM. LARGE AND SMALL DEVIATIONS

Let f be a Borel measurable function on R”. By the very definition of
the §;-function, we have the inclusion {x € R" : |f(x)| > A} C Fs with
§=126¢(c), A>0,¢€(0,1), where

F={zeR":|f(x)] > Ae}.
To see this, assume |f(z)] > A. Since the property |f(tz+ (1 —1)y)| < Ae
implies |f(tz + (1 — t)y)| < e|f(x)], we have

mes{t € (0,1) : |f(tx + (1 - )y)| < Ae} <
mes{t € (0, 1) : | f(ta+ (1 - )| < el f(@)]} < 6.

Hence, mes{t € (0,1) : |f(tz+ (1 —)y| > Ae} > 1 =4, which means that
x € Fjs.
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As a result, Theorem 1.1 immediately yields the functional Theorem
1.2: If p is a k-concave probability measure on R”, —co < & < 1, and
0 < A < ess sup |f], then for all € € (0, 1),

p{IF] > Ae} = (u{lf1 =AY+ (1= 8)M/",
where § = 8¢ (¢).

Moreover, if p 1s supported on a convex set K in R”, bounded or
not, we also obtain (7.1) for the functions f defined on K (rather than
on the whole space). Then in the definition of é; the supremum should
be taken over all points z,y € K. Note also if & < 0, the assumption
A < ess sup | f| may be removed.

Conversely, an application of (7.1) to the functions, taking at most
three values will return us to the geometric inequality (1.5) of Theorem
1.1; see [2] for more details. Thus, (7.1) may be viewed as a natural
functional form of (1.5).

From Theorem 1.2 one easily derives a sharp bound on large deviations
of f in terms of the associated modulus of regularity and the parameter
of the convexity of the measure.

Corollary 7.1. Given a Borel measurable function f on R”, let m > 0
be a median for | f| with respect to a k-concave probability measure p on
R”, —oco < k< 1. For all h > 1,

27 - 1] UK. (7.2)

8 (3)

When &« = 0, the right-hand side is understood as limit at zero, that

W{1f] = mh} < [1+

s,

p{|f] > mh} < 27000, (7.3)
If k < 0, the inequality (7.2) may be simplified as
pllf] > mh} < Cudp(1/n) e (7.0

with constant C, = (27% — 1)!/*. Note C,, — %, as k — —o00. As easy to

see, we also have a uniform bound, such as, for example, C; < 1 in the
region £ < —1.

For the proof of (7.2), apply (7.1) to A = mh and ¢ = +. Then p{|f| >
Ae} < %, and letting P = p{|f] > A}, we get % > (6PF 4 (1 — &)Y/~
It remains to solve this inequality in terms of P. Note when & > 0,
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necessarily % > (1=6)Y% or 2_;_1 > —1, so the right-hand side of (7.2)
malkes sense.

Corollary 7.1 is useless, when 6 (¢) is not getting small, as ¢ approaches
zero. Nevertheless, a bound similar to (7.2) continuous to hold in case
0< limalo (Sf(E) < 1.

Corollary 7.2. Let f be a Borel measurable function on R, such that
8¢(c0) < 8y, for some gq, &y € (0,1). Then, with respect to any k-concave
probability measure y on R” with k < 0,

pW{|f| > mhy < Ch™%, h>1, (7.5)

where m > 0 is a p-median for |f|, and where C' and [ are positive
constants depending on &, €g, and 8y, only.

Indeed, put u(A) = pf{|f] > A}, v = u®. By (7.1), v(Aeo) < Spv(A) +
(1 = ép), for all A > 0. The repeated use of this inequality leads to

v(Ael) < Shv(A) + (1 —65), > 1 (integer).

Choosing A = meai, we have v(Aeh) = u(m)® > 275 so

» 9=x _ 17"

u(meg ") < [1 + - ] ,
b6

which is a recursive analogue of the large deviation bound (7.2). Now,

choosing large valus of 7, it is easy to complete the argument with the

exponent § = tog(1/8a)

"k log(1/e0) "
Now, let us turn to the problem of small deviations. As turns out, they
may also be studied on the basis of Theorem 1.2.

Corollary 7.3. Let f be a Borel measurable function on R, and let
m > 0 be a median for | f| with respect to a k-concave probability measure
pon R" —oo <k < 1. Then,

pllfl < me} < Cyb4(e), 0<e<1, (7.6)

27k_1

with constant Cy = =—

For the proof, one may assume x # 0 and m = 1. From (7.1) with
A =1, we obtain that u{|f| < e} < ¢(x), where ¢(x) = 1 — (1 + x)/*

and ¢ = (277 — 1) 6¢(¢). Since this function is concave in & > —1, we
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have ¢(z) < ¢(0) + ¢’'(0)x = Tf—;l 8¢(¢). When « = 0, (7.8) holds with
CO = hHl,.;_,o C,Q = log 2.

Combination of bounds on large and small deviations allows one to
establish a number of Khinchin-type inequalities. With this aim, when
fis a norm and pu is log-concave, the inequality (7.6) was obtained by
R. Latala [13] (with a different argument). The present general bound
improves upon a similar result in [2].

&. DILATION OF CONVEX BODIES

Let p be a full-dimensional k-concave probability measure on R”,
—o0 < & < 1. Let f(x) = ||z|| be an arbitrary norm in R”, generat-
ed by a centrally symmetric, open, convex set B, so that

B={xeR":||z|| < 1}.

In terms of the é-operation, applied with respect to the whole space
K=R"if A={z e R":||z|| > 1} is the complement to B, then, as it
was alredy noticed,

2 2

which is the complement to the dilated set B. Hence, one can apply The-
orems 1.1-2.1 to these sets, or alternatively, Theorem 7.1 to the function
f.Since 6 = 6¢(e) = £, by (7.1) with A = h and e = & (h > 1), we get
that
plllell > 1} > (@ pfllell > A} + (1= )7,
S0
L= pu(B) > (8(1 = u(hB))" + (1 - &))",

hZ?. Here, the condition that g is full-dimensional may be

removed, and we arrive at:

where 6 =

Corollary 8.1. Given a k-concave probability measure y on R, —oco <
k < 1, for any symmetric, convex set B in R™ and for all h > 1,

h—1 1/k

1— u(B) > -
p(B) W1

— | h+1
When k = 0, the above reads as 1 — pu(B) > (1 — u(hB))z/(h‘H), or

equivalently,

(1 - p(hB))" + (8.1)

L= u(hB) < (1= p(B)+/?, (8.2)
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which is due to L. Lovdsz and M. Simonovits [14] in case of Euclidean
balls B. O. Guédon [10] extended this inequality to general B and also
found a precise relation in the case £ > 0. Namely, then (8.1) is solved in
terms of 1 — p(hB) as

h+1 h—1
1= u(hB) < maxl/“{% (1 n(B)" - =, o}. (8.3)
As for the range £ < 0, in this case the above expression 1s simplified as
h+1 . h—17Y"
LBy < Loy - s

Thus, (8.1) is a natural form, uniting all the three cases in (8.2)-(8.4).
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