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Preface

During the second half of the XXth century one could observe an interesting
development in the infinite dimensional analysis slowly moving it from the ”exper-
imental science” based on interesting examples to a brink of becoming something
more than that. In particular during its last decade we have experienced a con-
siderable progress in the domain of coercive inequalities and isoperimetry; as a
starting point to explore the related literature we suggest [A-B-C-F-G-M-R-S],
[G-Z] and [L5], as they contain an extensive overview and a comprehensive list
of references. For the purposes of this work we would like to recall two important
inequalities: the so called Logarithmic Sobolev Inequality of [G1] and Isoperimetric
Functional Inequality introduced in [B2]. The first one in plain language is simply
an estimate of the relative entropy in terms of the Fisher entropy. Alternatively,
from the perspective of application to control the ergodicity of Markov semigroup
generated by the Dirichlet operator, we could think of the relative density as given
by a square of a function divided by a normalisation constant and in this setting
the upper bound in question is given by the Dirichlet form as follows

(LS2) Ent (|f |2) ≤ c

∫ ∑
i

|∇if |2 dµ.

The Isoperimetric Functional Inequality is a bound on the value of an isoperimetric
function I computed at the point equal to the expectation of a positive bounded
by 1 function f by an expectation of the length of a vector which first component
equals to the composition of I with f and the other components are given by the
components of the gradient of f scaled by a constant

(IFI2) I (µf) ≤
∫ √

I (f)2 + c
∑

i

|∇if |2 dµ.

By an appropriate approximation of a characteristic function the right hand side
converges to the surface measure of the set whereas the limit of the left hand side
is simply equal to the value of the isoperimetric function at the volume of the set
in question; this provides justification for the name of the inequality. The first key
point is that both of these inequalities have tensorisation property, (i.e. if they
hold in two measure spaces, then the product of the measures also satisfies them).
The second important common point is that both of them involve the same l2-norm
on the tangent space. Naturally given a variety of probability measures one may
like to ask for an optimal information; that is for inequalities reflecting possibly
precisely properties of a given measure. It is certainly well known that in finite
dimensions the isoperimetric functions may be different for different families of the
measures. In our work we would like to emphasise the role of the metric on the
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8 PREFACE

tangent space showing in particular that nonequivalent in infinite dimensions lq-
metrics are associated to qualitatively different families of measures.

In brief the results and organisation of the paper is as follows. The first part
is devoted to the study of the following relative entropy bounds

(LSq) Ent (|f |q) ≤ c

∫ ∑
i

|∇if |q dµ.

with q ∈ (1, 2). In Section 1, after a brief introduction, we indicate that LSq is inti-
mately related to a faster decay of the tails of the corresponding distributions and
on an abstract level via Herbst arguments one can obtain a suitable exponential
bounds. Section 2 describes the q-Poincaré inequality- the first abstract conse-
quence of our coercive inequality- as well as a certain improvement on the lower
bound of the spectral gap in finite dimension. In Section 3 we show that similarly
as in [B-G1] for LS2 also when in the extended region of the parameter q one can
think of LSq as a Poincaré inequality with respect to a suitable Orlicz space. This
section contains also an analog of the so called Rothaus lemma (on improvements
of an inequality involving additionally Lq norm of the function on its right hand
side provided q-Poincaré is known). Sections 4 and 5 specialise to the probability
measures on the real line providing essentially optimal bounds for the constants in
the q-Poincaré and q-Log Sobolev inequality. The ideas involved here are based
on utillisation of Hardy inequalities and the Orlicz norms. These results naturally
extend the ones of [B-G1]. An easy application of these results shows that for ex-
ample measures with density (exp−xp)/Z , with p ∈ (2,∞) being the Hölder dual
to q, satisfy LSq. Hence by the product property we recover the similar result of
[B-L] which proof was essentially based on the Prekopa-Leindler inequality involv-
ing strong concavity properties of the log of the density. Additionally, in Section 5,
we provide a class of examples of measures on the real line with smooth densities for
which LSq is true although the conditions of [B-L] are infinitely violated; this class
of examples goes in the spirit of [G-R], ([A-B-C-F-G-M-R-S]). We come back
to exponential bounds in Section 6 providing its more optimal version, generalising
the one of [B-G1] and allowing unbounded gradients of the random variables. In
this section we indicate also that such bounds together with the Rothaus lemma
can be used to show LSq in finite dimensions for measures with highly singular
densities. Section 7 contains a proof of the LSq for Gibbs measures with super-
Gaussian tails, (that is such that distribution of the natural coordinate functions
decay faster than Gaussian’s), associated to a local specification (i.e. an a’priori
given family of regular conditional expectations with respect to complements of
some finite dimensional sigma algebras) which satisfies a strong mixing condition.
This result is obtained by a suitable adaptation of the technology developed in the
past for LS2 and nicely confirms the robustness of the original ideas. Naturally
one can be interested what, if any, consequences one can derive from LSq for some
family of Markov semigroups. Some preliminary results on this subject the reader
can find in Section 8. In particular, confining to arbitrary but finite dimensions,
we show that the semigroup generated by the ordinary Dirichlet operator is ultra-
contractive. Additionally we present there also some ergodicity estimates for the
semigroups generated by the nonlinear Laplacians, (in particular obtaining an al-
gebraic entropy decay which in the limit q → 2 recovers the well known exponential
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decay of entropy associated with the LS2). Sections 9 - 13 concern the high dimen-
sional asymptotics of the isoperimetric problem for convex bodies with the uniform
measure and its dependence on the underlying metric. The key result provides a
lower bound for so called Sobolev constant in dependence on the intrinsic charac-
teristic of the convex body involving inner metric and the dimension of the space.
The proof utilises a great localisation technique of [K-L-S] which for convex bodies
allows to reduce the problem to a suitable one dimensional problem. As a corollary
of the estimates, by employing arguments based on the coarea formula, in Section
14 one obtains the Classical Sobolev inequality. This precise asymptotics together
with some appropriate limiting arguments allow us to recover in Section 15 the LSq

inequality. Thus in the sense we have proved the equivalence of the LSq and the
infinite dimensional asymptotics of the isoperimetric problem. Finally in Section
16 we consider the following functional isoperimetric inequality IFIq introduced in
[Z1]

(IFI2) U (µf) ≤
∫

q

√
U (f)q + c

∑
i

|∇if |q dµ.

As shown in [Z1] it has a product property. Moreover, by a suitable choice of the
isoperimetric function U , in natural way it reflects known isoperimetric properties
of the finite dimensional restrictions of the measures with super Gaussian tails.
In this section we show the implication IFIq =⇒ LSq generalizing the known case
q = 2. (We remark that in the case q = 2 the converse inequality was also proved in
[Fo]; though at this point of time the semigroup technique does not seem to admit
the necessary generalisation.)

These are the results, but at this point it may be proper to indicate where all
that could be going how that could be useful. Certainly further deeper understand-
ing the relation between the metric properties and isoperitmetry as well as coercive
and functional isoperimetric inequalities would be useful and interesting. While
in the above we have mentioned only the super Gaussian tails, we should mention
that there exist also some results for the measures with sub Gaussian tails (that
is with decay between exponential and the Gaussian). In particular an interesting
inequality which has a product property was proved in [L-O] providing a bound for
a difference between the square of L2 and the square of Lr norm (for any r ∈ [1, 2))
in terms of the Dirichlet form. As showed by the authors such bound allows to
recover the correct exponential bounds; (for an earlier work involving generalized
Poincaré inequalities in some other context see [Be] and for the product property
in a more general setting see [L3], [Lie]). Later, it was demonstrated in the epi-
log to [G-Z] that their inequality extend to a large class of Gibbs measures with
sub Gaussian tails. Alternative results involving the same class of measures and
bounds of entropy by higher order differential expressions were proven in [Z2] fol-
lowing natural link with classical Sobolev inequalities for probability measures of
[Ros]. Understanding properly all interconnections as well as the isoperimetry in
this case remains still a challegenge. One should hope that plentiful of interesting
things may follow this research in terms of understanding the new classes of infinite
dimensional equations involving nonlinear as well as differential operators of higher
order.





CHAPTER 1

Introduction and notations

Let (Ω, µ) denote a probability space, and assume there is an operator Γ defined
on some algebra A of measurable functions on Ω with the following properties:

1) for any f ∈ A, Γ(f) is a non-negative measurable function on Ω;

2) for all f ∈ A and smooth functions u on R, u(f) ∈ A and Γ(u(f)) =
|u′(f)|Γ(f).
Introduce the entropy functional:

Ent (g) =
∫
g log g dµ−

∫
g dµ log

∫
g dµ.

It is well defined for all measurable g ≥ 0 and then it is finite if and only if so is
the integral

∫
g log(1 + g) dµ.

One says that (Ω, µ,Γ) satisfies a logarithmic Sobolev inequality, for short LSI
with constant c ≥ 0 if, for all f ∈ A,

(1.0.1) Ent (|f |2) ≤ c

∫
Γ(f)2 dµ.

The definition is similar to the one considered in [A-M-S].
For example, when Ω is a metric space with metric d, the “modulus of the

gradient” comes naturally via the identity

Γ(f) (x) = |∇f(x)| = lim sup
d(x,y)→0+

|f(x)− f(y)|
d(x, y)

with the convention that Γ(f) (x) = 0 at isolated points x in Ω. In this case, we may
define Γ on the class A of all Lipschitz functions f , i.e., such that ‖f‖Lip < ∞, or
for a larger class of all locally Lipschitz functions (i.e., Lipschitz in a neighbourhood
of any point).

Moreover, in case of the Euclidean space Ω = Rn with the usual Euclidean
metric d(x, y) = |x − y|, we clearly have Γ(f)(x) = |∇f(x)| at each point x ∈ Rn

where f is differentiable and has gradient ∇f(x). Since locally Lipschitz functions
are differentiable almost everywhere (with respect to Lebesgue measure), we then
arrive in (1.1) at the usual definition of logarithmic Sobolev inequalities.

More generally, given a number p ∈ (1,+∞], we may equip Rn with `p-metric
d(x, y) = ‖x − y‖p = (

∑n
i=1 |xi − yi|p)

1/p, and then we obtain another important
modulus of gradient,

Γ(f)(x) = |∇f(x)|q =

(
n∑

i=1

∣∣∣∣ ∂∂xi
f(x)

∣∣∣∣q
)1/q

,

where q = p
p−1 is conjugate to p.

11



12 1. INTRODUCTION AND NOTATIONS

Actually, already the one-dimensional case contains a number of open problems.
One of questions of interest is to determine whether or not, a given probability
measure µ satisfies LSI with some finite c. In the case of the real line Ω = R, the
answer is known [B-G1], and we recall the obtained characterization.

Let F (x) = µ((−∞, x]), x ∈ R, denote the distribution function of µ, and let
p be the density of the absolutely continuous part of µ with respect to Lebesgue
measure. Let m denote a median of µ. Set

D0 = sup
x<m

(
F (x) log

1
F (x)

) ∫ m

x

1
p(t)

dt,

D1 = sup
x>m

(
(1− F (x)) log

1
1− F (x)

) ∫ x

m

1
p(t)

dt,

defining D0 and D1 to be zero in case µ((−∞,m)) = 0 or µ((m,+∞)) = 0, respec-
tively.

Theorem 1.1. The measure µ satisfies the log-Sobolev inequality (1.1) with
some constant c if and only if D0 +D1 < +∞. In this case, the optimal value of c
satisfies

K0(D0 +D1) ≤ c ≤ K1(D0 +D1),
where K0 and K1 are certain absolute positive constants.

Due to the tensorization property, the log-Sobolev inequality (1.1) can be ex-
tended to product spaces without any loss in constant. In high-dimensional spaces
it can be used to recover various concentration phenomena, dependently on which
classes A and gradients Γ are involved in (1.1). On the other hand, it is a powerful
tool in the study of hypercontractivity of semi-groups (cf. [G1], [G2]). However,
more specific and delicate properties of certain measures suggest to consider some-
what different forms of log-Sobolev inequalities. In particular, inequalities

(1.0.2) Ent ( |f |q) ≤ c

∫
Γ(f)q dµ,

with (necessarily) some q ∈ [1, 2], may serve as a certain sharpening of (1.1), de-
scribing more accurately the behaviour of distributions of Lipschitz functions. For
example, as shown by O. Rothaus [R], the particular case q = 1 reduces (1.2) on a
Riemannian manifold to a certain isoperimetric inequality.

Definition 1.2. For short, in what follows (1.2) is called LSq-inequality and
if a measure µ satisfies it with a given coefficient c ∈ (0,∞) we denote that by
µ ∈ LSq(c) .

Let us recall an argument which relates LSq-inequality to deviations of “Lip-
schitz” functions from their means and therefore to the concentration of measure.
The idea goes back to an unpublished letter by I. Herbst (of mid 70s), and only
in late 80s it was reanimated and developed in the works [A-M-S] and [L2,3]). Let
1 < q ≤ 2 and assume g is a bounded function in A such that

∫
g dµ = 0 and

Γ(g) ≤ 1 µ-a.e. We may apply (1.2) to the function f = eλg/q, λ ≥ 0: due to the
axiom 2), it belongs to A and, moreover, Γ(f)q ≤ (λ

q )q eλg. Write the Laplace trans-
form on g as

∫
eλg dµ = eλv(λ) for some function v which is clearly smooth in λ > 0

and satisfies v(0+) = 0 (since g has µ-mean zero). Thus, the right hand side of (1.2)
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does not exceed c (λ
q )q eλv(λ). On the other hand, Ent (eλg) = λ2v′(λ)

∫
eλg dµ, so

λ2v′(λ) ≤ c (λ
q )q and

v(λ) =
∫ λ

0

v′(t) dt ≤ c

qq

∫ λ

0

tq−2 dt =
c

qq(q − 1)
λq−1.

Thus, we have obtained the following bound on the Laplace transform:

(1.0.3)
∫
eλg dµ ≤ exp

{
c

qq(q − 1)
λq

}
, λ > 0.

Now, given a number h > 0, by Chebyshev’s inequality and (1.3), we get

µ{g ≥ h} ≤ e−λh

∫
eλg dµ ≤ exp

{
λh− c

qq(q − 1)
λq

}
, λ > 0.

Optimization over all λ leads to the one-sided estimate µ{g ≥ h} ≤ exp{− (q−1)p

cp−1 hp},
where p is conjugate to q. Applying it to −g, we obtain a similar estimate. Hence,
we arrive at the following important conclusion:

Theorem 1.3. Under LSq, 1 < q ≤ 2, for every bounded function g ∈ A with
mean a =

∫
g dµ, such that Γ(g) ≤ 1 µ-a.e.,

(1.0.4) µ{|g − a| ≥ h} ≤ 2 exp
{
− (q − 1)p

cp−1
hp

}
, h > 0,

where p = q
q−1 .

The main feature of the inequality (1.4) is that, in case q < 2, it indicates a
much stronger decay of the tails of g in comparison with the classical “Gaussian”
case q = 2. Of course, in the reasonable situation such as an abstract probabil-
ity metric space, the assumption on boundedness of g can be removed (via usual
approximations). Thus, (1.4) remains to hold for unbounded Lipschitz g, as well.
Moreover, application of (1.4) to functions of the form dist(A, x) leads to certain
concentration inequalities often complementing or illustrating the so-called concen-
tration of measure phenomenon (cf. e.g. [L4,5]). As for (1.3), one may wonder
whether or not it is possible to replace the Lipschitz condition by a more flexible
property of the modulus of gradient; we will concern this question in section 6.

LSq inequalities (1.2), together with deviation inequality (1.4), are known to
hold for probability measures on Rn with sufficiently “convex” densities, cf. [B-L].
Here we will mainly specialize on the question of characterization of µ on the real
line R which thus satisfy the inequality

Ent (|f |q) ≤ c

∫ +∞

−∞
|f ′(x)|q dµ(x)

in the class of all smooth functions f , or equivalently, locally Lipschitz f , up to
some constant c.

The proof of Theorem 1.1 given in [B-G1] uses a particular L2-case of result of
M. Artola, G. Talenti and G. Tomaselli on Hardy-type inequalities with weights on
the real line (cf. [Mu], [M2]). Here we have to use it in the full volume involving Lq

spaces. A non-trivial point is that the general case requires a more careful analysis
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of possible behaviour of the entropy functional Ent (|f |q) and of what is connected
with it,

(1.0.5) Lq(f) = sup
a∈R

Ent (|f + a|q).

Indeed, the log-Sobolev inequality (1.1) may formally be strengthened as

Lq(f) ≤ c

∫
Γ(f)q dµ.

Note that, when f is bounded, Ent (|f+a|q) is of order aq−2 Var(f), for large values
of a (where Var(f) denotes variance of f with respect to µ). So, in case q > 2,
Lq(f) = +∞ and thus (1.2) can never hold. In the case 1 ≤ q < 2, we have
Ent (|f + a|q) → 0, as |a| → +∞, and so we cannot derive from (1.2) a Poincaré-
type inequality similarly to the case q = 2. This is a typical example illustrating
some features of these more general inequalities.



CHAPTER 2

Poincaré-type inequalities

Here, in the setting of a probability metric space (Ω, d, µ), we deduce from (1.2)
a corresponding Poincaré-type inequality:

Theorem 2.1. Under LSq-inequality with constant c, for any locally Lipschitz
function f on Ω, we have the following Poincaré type inequality called later on
SGq-inequality

(2.0.1)
∫ ∣∣∣∣f − ∫ f dµ

∣∣∣∣q dµ ≤ 4c
log 2

∫
|∇f |q dµ.

More precisely, as soon as |∇f | ∈ Lq(µ), we have f ∈ Lq(µ), and (2.1) holds true.

Recall that |∇f(x)| = lim supd(x,y)→0+
|f(x)−f(y)|

d(x,y) . In particular, this definition
is applied on the real line, so f does not need to be differentiable everywhere
(correspondingly, we understand partial derivatives ∂f(x,y)

∂y for functions defined on
the product space Ω×R).

For the proof of (2.1), we need a general

Lemma 2.2. For any non-negative measurable function g on Ω,

(2.0.2) Ent (g) ≥ − logµ{g > 0}
∫
g dµ.

Proof. The distribution of g under µ represents a probability measure on the
positive half-axis [0,+∞) and may be written as (1−α)δ0+αν where α = µ{g > 0}
and where ν is concentrated on (0,+∞). In terms of a random variable, say ξ,
having the distribution ν, we thus may write∫

g dµ =
∫ +∞

0

x d ((1− α)δ0 + αν) = αE ξ,∫
g log g dµ =

∫ +∞

0

x log x d ((1− α)δ0 + αν) = αE ξ log ξ,

so,

Ent (g) = αE ξ log ξ − (αE ξ) log(αE ξ)
= αEnt (ξ)− α logαE ξ ≥ − logα (αE ξ).

Proof of Theorem 2.1. Let f be a locally Lipschitz function from Lq(Ω, µ).
Without loss of generality, assume that zero is a median of f , i.e., µ{f > 0} ≤ 1

2

and µ{f < 0} ≤ 1
2 . First assume that µ{f = 0} = 0.

Set f+ = max(f, 0), f− = max(−f, 0). These functions are also locally Lip-
schitz, and we can apply to them the log-Sobolev inequality (1.2). The moduli

15



16 2. POINCARÉ-TYPE INEQUALITIES

of gradients of f+ and f− are respectively vanishing on the open sets {f < 0},
{f > 0} and coincide with |∇f | on {f > 0}, {f < 0}. Since µ{f = 0} = 0, the
further application of (2.2) to g = (f+)q and g = (f−)q gives respectively

c

∫
{f>0}

|∇f |q dµ ≥ Ent
(
(f+)q

)
≥ log 2

∫
{f>0}

(f+)q dµ,

c

∫
{f<0}

|∇f |q dµ ≥ Ent
(
(f−)q

)
≥ log 2

∫
{f<0}

(f−)q dµ.

Summing these yields

c

∫
|∇f |q dµ ≥ log 2

∫
|f |q dµ = log 2 ‖f‖q

q.

But ‖f −E f‖q ≤ ‖f‖q + ‖f‖1 ≤ 2‖f‖q, so ‖f −E f‖q
q ≤ 2q‖f‖q

q ≤ 4‖f‖q
q, and this

is what we need.
Note that, with a similar argument, we could proceed without the assumption

µ{f = 0} = 0 and gain the double constant in (2.1) by using the estimates |∇f+| ≤
|∇f |, |∇f−| ≤ |∇f | which hold true on the whole space Ω. There is another simple
way to avoid this assumption which however saves the same constant.

Namely, let ξ be a random variable with mean zero and whose distribution, say,
ν satisfies on the real line LSq (1.2) with constant cq. For example, the measure
ν may have density of the form const e−|x|

p

where p is conjugate to q. Hence, the
distribution νε of the random variable εξ satisfies LSq with constant cqεq. By the
tensorization property of entropy, the log-Sobolev inequality (1.2) implies

Ent µ⊗νε
(|g(x, y)|q) ≤ c

∫
R

∫
Ω

|∇xg(x, y)|q dµ(x)dνε(y) +

cqε
q

∫
R

∫
Ω

|∂yg(x, y)|q dµ(x)dνε(y)

where g is now locally Lipschitz on the product space Ω × R equipped with the
product measure µ⊗νε. Thus, the product probability space (Ω×R, µ⊗νε) satisfies
LSq with respect to the (non-canonical) gradient functional

Γεg(x, y) = (c |∇xg(x, y)|q + cqε
q |∂yg(x, y)|q)1/q

.

Now, given a locally Lipschitz function f from Lq(Ω, µ), the function g(x, y) =
f(x)+y is also locally Lipschitz, belongs to Lq(Ω×R, µ⊗νε), and is equidistributed,
under µ⊗νε, with f+εξ where ξ is viewed as being independent of f . In particular,
g has a smooth positive density on the whole line, so the median m of g is uniquely
determined and, moreover, µ ⊗ νε{g = m} = 0. The functional Γε enjoys many
properties of the modulus of gradient, at least in part concerning the function g.
Namely, Γεg

+ = Γεg on {g > 0}, Γεg
+ = 0 on {g < 0}, and similarly for g−.

Therefore, one can repeat the previous argument and thus arrive, according to
(2.1) and the first step, at

E
∫ ∣∣∣∣(f(x) + εξ)−

∫
f dµ

∣∣∣∣q dµ(x) ≤ 4
log 2

∫
(Γεg)q dµ⊗ νε

=
4

log 2

∫
R

∫
Ω

(c |∇xf(x)|q + cqε
q) dµ(x)dνε(y)

=
4

log 2

(
c

∫
Ω

|∇f |q dµ+ cqε
q

)
.
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It remains to let ε→ 0. Proposition 2.1 is now proved.

It will also be useful to note that any Poincaré-type inequality in Lq space with
q ∈ [1, 2),

(2.0.3)
∫ ∣∣∣∣f − ∫ f dµ

∣∣∣∣q dµ ≤ Cq

∫
|∇f |q dµ,

holding true in the class of all locally Lipschitz functions f on Ω, is stronger than
the usual spectral gap,

(2.0.4)
∫ ∣∣∣∣f − ∫ f dµ

∣∣∣∣2 dµ ≤ C2

∫
|∇f |2 dµ.

Namely, we have:

Proposition 2.3. For any q ∈ [1, 2], the optimal constants in (2.3) - (2.4) are
connected by

C
1/2
2 ≤ 6C1/q

q .

Remark 2.4. Since we are still dealing here with the abstract probability
metric space (Ω, d, µ), the modulus of gradient has unique sense and should not be
mixed in case, for example, Ω = Rn or Ω = R∞ with other natural gradients such
as ‖∇f‖q in (2.3).

Proof of Proposition 2.3. Let 1 ≤ q < 2. First we transform (2.3) to an
analogue with the median in the place of the mean. Let f be a locally Lipschitz
function in Lq(µ) such that its µ-mean is zero. Thus, by (2.3),

(2.0.5)
∫
|f |q dµ ≤ Cq

∫
|∇f |q dµ.

Denote by m = m(f) its median so that µ{f ≤ m} ≥ 1
2 and µ{f ≥ m} ≥ 1

2 .
Assume for definiteness that m > 0. Since by Chebyshev’s inequality µ{f ≥ m} ≤
‖f‖q

q/m
q, we may conclude that mq ≤ 2 ‖f‖q

q. Thus, in general,

|m| ≤ 21/q ‖f‖q.

Hence, ‖f −m‖q ≤
(
1 + 21/q

)
‖f‖q, and by (2.5),

(2.0.6)
∫
|f −m(f)|q dµ ≤

(
1 + 21/q

)q

Cq

∫
|∇f |q dµ.

This inequality is translation invariant, so it holds true for all locally Lipschitz
functions in Lq(µ). Now, take such a function and assume moreover that f is
square integrable, and that m(f) = 0. Assume that µ{f = 0} = 0 and consider
the locally Lipschitz functions f+ = max(f, 0), f− = max(−f, 0). As in the proof
of Proposition 2.1, let us note once more that the moduli of gradients of f+ and
f− are respectively vanishing on the open sets {f < 0}, {f > 0} and coincide with
|∇f | on {f > 0}, {f < 0}. Since m(f+) = m(f−) = 0, the application of (2.6) to
(f+)2/q and (f−)2/q gives respectively∫

{f>0}
|f |2 dµ ≤

(
1 + 21/q

)q

Cq

(
2
q

)q ∫
{f>0}

|f |2−q |∇f |q dµ,∫
{f<0}

|f |2 dµ ≤
(
1 + 21/q

)q

Cq

(
2
q

)q ∫
{f<0}

|f |2−q |∇f |q dµ.
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Summing these yields

(2.0.7)
∫
|f |2 dµ ≤ Cq

(
2 (1 + 21/q)

q

)q ∫
|f |2−q |∇f |q dµ.

Since the conjugate of 2
q is 2

2−q , the latter integral can be estimated with the help of
Hölder’s inequality by ‖ |f |2−q ‖2/(2−q) ‖ |∇f |q ‖2/q = ‖f‖2−q

2 ‖∇f‖q
2. Hence, (2.7)

implies ∫
|f |2 dµ ≤ C2/q

q

(
2 (1 + 21/q)

q

)2 ∫
|∇f |2 dµ.

Since
∫ ∣∣f − ∫ f dµ∣∣2 dµ ≤ ∫ |f |2 dµ, we arrive at∫ ∣∣∣∣f − ∫ f dµ

∣∣∣∣2 dµ ≤ C2/q
q

(
2 (1 + 21/q)

q

)2 ∫
|∇f |2 dµ

where the assumption that the function f has median zero may already be omitted.
The assumption that µ{f = m(f)} = 0 can be omitted by an argument used in the
proof of Proposition 2.1. Thus, we arrived at the claim (2.4) with constant

C
1/2
2 ≤ 2 (1 + 21/q)

q
C1/q

q ≤ 6C1/q
q .

Combining Propositions 2.1 and 2.3, we may conclude that LSq with constant
c implies the usual Poincaré inequality with constant C2 ≤ 36 ( 4c

log 2 )2/q. This
spectral gap can actually be improved. Indeed, when assuming in the proof of
Proposition 2.1 that f has median zero, we derived a Poincaré-type inequality (2.1)
with a better constant, ∫

|f |q dµ ≤ c

log 2

∫
|∇f |q dµ.

And under the same assumption, in the proof of Proposition 2.3 we deduced from
the latter inequality the following one:∫

|f |2 dµ ≤
(

c

log 2

)2/q (2
q

)2 ∫
|∇f |2 dµ.

The constant is maximized at q = 1, and this leads to

Corollary 2.5. Under LSq-inequality with constant c, for any locally Lipschitz
function f on Ω, ∫ ∣∣∣∣f − ∫ f dµ

∣∣∣∣2 dµ ≤ 9 c2/q

∫
|∇f |2 dµ.



CHAPTER 3

Entropy and Orlicz spaces

In order to further explore LSq-inequalities, one has to bring the attention to
some delicate properties, although yet general, of the entropy functional. In this
section, we collect mainly those of them which connect this functional with norm
in Orlicz space.

Given a Young function N : R → [0,+∞), i.e., an even, convex function with
N(0) = 0, N(x) > 0 for x > 0, the Orlicz space LN = LN (Ω, µ) consists of all
measurable functions f such that

‖f‖N = inf
{
λ > 0 :

∫
N(f/λ) dµ ≤ 1

}
< +∞.

Any Young function N strictly increases on [0,+∞) so an inverse N−1 : [0,+∞) →
[0,+∞) exists. When N(x) = |x|q (1 ≤ q < +∞), LN is the usual Lebesgue space
with norm ‖f‖q. We will consider the Orlicz norms for the two Young functions

Nq(x) = |x|q log(1 + |x|q) and Ψ(x) = |x| log(1 + |x|).

Eventually, we will obtain here the following characterization.

Proposition 3.1. Let 1 ≤ q ≤ 2. In the class of all locally Lipschitz integrable
functions on a probability metric space (Ω, d, µ), the LSq-inequality with constant c
is equivalent to

(3.0.1)
∥∥∥∥f − ∫ f dµ

∥∥∥∥q

Nq

≤ C

∫
|∇f |q dµ.

Moreover, the optimal constants there satisfy 1
7 C ≤ c ≤ 16C.

Thus, up to a numerical constant, LSq can be expressed as a certain Poincaré-
type inequality in the Orlicz space LNq (Ω, µ).

We start with observations in the setting of a general probability space (Ω, µ).

Lemma 3.2. For any function f ∈ LNq
(µ), q ≥ 1,

‖f‖q
q ≤

5
4
‖f‖q

Nq
.

Proof. The optimal constant is attained at f = 1 and thus equals Ψ−1(1) < 5
4 .

Lemma 3.3. For any function f ∈ LNq
(µ), q ≥ 1,

‖f‖q
Nq

≤ Ent (|f |q) + ‖f‖q
q.

19
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Proof. We may assume ‖f‖q = 1 so that Ent (|f |q) =
∫
|f |q log |f |q dµ. Using

x log(1 + x) ≤ x log x+ 1, valid for all x ≥ 0, we get∫
Nq(f) dµ ≤ Ent (|f |q) + 1 ≡ α.

As follows from the definition, for all t ∈ [0, 1] and x ∈ R, Nq(tx) ≤ tqNq(x).
Hence, applying this to t = 1

α , we have∫
Nq

(
f

α1/q

)
dµ ≤ 1

α

∫
Nq(f) dµ ≤ 1

which means that ‖f‖Nq
≤ α1/q.

Lemma 3.4. For any function f ∈ LNq
(µ), q ≥ 1,

Ent (|f |q) ≤ e+ 1
e

‖f‖q
Nq
.

Proof. We may now assume that ‖f‖Nq = 1 so that
∫
|f |q log(1+ |f |q) dµ = 1.

Put g = |f |q. The function −x log x attains its maximum at x = 1/e equal to 1/e.
Therefore,

Ent (g) ≤
∫
g log g dµ+

1
e
≤
∫
g log(1 + g) dµ+

1
e

=
e+ 1
e

.

Remark 3.5. Combining Lemma 3.2 with Lemma 3.4, and recalling Lemma
3.3, we may write a two-sided estimate

1
3
(
Ent (|f |q) + ‖f‖q

q

)
≤ ‖f‖q

Nq
≤ Ent (|f |q) + ‖f‖q

q.

In the case q = 2, the proof of Proposition 3.1 is given in [B-G1]. One of the
steps of the proof is based on an important observation of O. S. Rothaus [R] who
showed, in the setting of an arbitrary probability space (Ω, µ), that

L2(f) = sup
a∈R

Ent (|f + a|)2 ≤ Ent (f2) + 2
∫
f2 dµ

whenever
∫
fdµ = 0. We need an appropriate generalization.

Lemma 3.6. For any function f ∈ LNq (Ω, µ), 1 ≤ q ≤ 2, such that
∫
f dµ = 0,

Lq(f) ≤ 16 ‖f‖q
Nq
.

Recall that, according to remark 3.5, ‖f‖q
Nq

is comparable with Ent (|f |q) +
‖f‖q

q.

Proof of Lemma 3.6. By homogeneity, assume ‖f‖Nq = 1
2 .

Using Rothaus’ estimate, we may write

Ent (|f + a|q) ≤ Ent

((
|f + a|

q
2 −

∫
|f + a|

q
2 dµ

)2
)

+ 2
∫ (

|f + a|
q
2 −

∫
|f + a|

q
2 dµ

)2

dµ.
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The expression under the integral sign in the second term can be written as(∫ (
|f(ω) + a|

q
2 − |f(ω′) + a|

q
2

)
dµ(ω′)

)2

,

and by Cauchy-Schwarz, it is bounded by∫ (
|f(ω) + a|

q
2 − |f(ω′) + a|

q
2

)2
dµ(ω′).

Since q ≤ 2, we may apply a simple inequality
∣∣ |x+ a|

q
2 − |y + a|

q
2
∣∣2≤ |x−y|q, valid

for all real x, y and a, and estimate the above integral by
∫
|f(ω)− f(ω′)|q dµ(ω′).

Thus, the second term does not exceed 2 ‖f(ω)−f(ω′)‖q
q ≤ 2·2q ‖f‖q

q ≤ 5
2 (according

to Lemma 3.2 and by the assumption that ‖f‖Nq = 1
2 ).

A similar argument applies to the first entropy term. Using a general inequality
Ent (g) ≤

∫
Ψ(g) dµ + 1

e and the property that Ψ is a Young function, this term
can be bounded by∫

Ψ

((
|f(ω) + a|

q
2 −

∫
|f(ω′) + a|

q
2 dµ(ω′)

)2
)
dµ(ω) +

1
e

≤
∫

Ψ
(∫

|f(ω)− f(ω′)|q dµ(ω′)
)
dµ(ω) +

1
e

≤
∫ ∫

Ψ(|f(ω)− f(ω′)|q) dµ(ω)dµ(ω′) +
1
e

=
∫ ∫

Nq(f(ω)− f(ω′)) dµ(ω)dµ(ω′) +
1
e
.

Since ‖f‖Nq
= 1

2 , we have ‖f(ω) − f(ω′)‖Nq
≤ ‖f(ω)‖Nq

+ ‖f(ω′)‖Nq
≤ 1, so the

last double integral is bounded by 1.
Combining the estimates for the both terms, we get

Ent (|f + a|q) ≤
(

1 +
1
e

)
+

5
2

=
(

1
e

+ 3.5
)
· 2q ‖f‖q

Nq
.

The constant does not exceed 16, and this finishes the proof.

Proof of Proposition 3.1. First assume the Poincaré-type inequality (3.1)
holds true with constant C. Then, by Lemma 3.6,

Ent (|f |q) ≤ Lq(f) ≤ 16
∥∥∥∥f − ∫ f dµ

∥∥∥∥q

Nq

≤ 16C
∫
|∇f |q dµ.

Hence, LSq holds true with c ≤ 16C. Conversely, start with LSq with constant c
and assume

∫
f dµ = 0. By Proposition 2.1, ‖f‖q

q ≤ 4c
log 2

∫
|∇f |q dµ. Therefore, by

Lemma 3.3,

‖f‖q
Nq

≤ Ent (|f |q) + ‖f‖q
q ≤

(
c+

4c
log 2

)∫
|∇f |q dµ.

Hence, C ≤ c+ 4c
log 2 ≤ 7c. Proposition 3.1 is now proved.





CHAPTER 4

LSq and Hardy-type inequalities on the line

When Ω = R, the Poincaré-type inequality (3.1) in the Orlicz space can further
be reduced to a Hardy-type inequality for the Orlicz space norm ‖ · ‖Ψ.

Let m = m(µ) denote a median of the probability measure µ on R. It is any
number such that µ{(−∞,m]} ≥ 1

2 and µ{[m,+∞)} ≥ 1
2 .

For functions f on R, we denote f0 = f 1(−∞,m] and f1 = f 1[m,+∞).

Proposition 4.1. Let 1 ≤ q ≤ 2. Assume that LSq-inequality holds true on
the line with constant c, i.e., for any smooth function f on R,

(4.0.1) Ent (|f |q) ≤ c

∫ ∞

−∞
|f ′(x)|q dµ(x).

Then, for any smooth function f on R with f(m) = 0,

(4.0.2) ‖ |f0|q ‖Ψ + ‖ |f1|q ‖Ψ ≤ d

∫ ∞

−∞
|f ′(x)|q dµ(x)

with d = 42 c. Conversely, (4.2) implies (4.1) with c = 144 d.

The inequality (4.2) as an equivalent form for logarithmic Sobolev inequalities
on the real line will be used in the next section to characterize probability measures
µ satisfying (4.1). The proof of Proposition 4.1 is given in this section.

Clearly, (4.1) as well (4.2) may be extended from the class of all smooth func-
tions to the class of all absolutely continuous functions (with the same condition
f(m) = 0 in the case of (4.2)).

To prove Proposition 4.1, we need an elementary general lemma.

Lemma 4.2. For any function f ∈ LNq
(Ω, µ), q ≥ 1,∥∥∥∥f − ∫ f dµ

∥∥∥∥
Nq

≤ 2 ‖f‖Nq .

Conversely, if 1 ≤ q ≤ 2 and f = 0 on some set A ⊂ Ω with µ(A) ≥ 1
2 , we also

have

‖f‖q
Nq

≤ 6
∥∥∥∥f − ∫ f dµ

∥∥∥∥q

Nq

.

Proof. As already noted in the proof of Lemma 3.2, the optimal constant in
the general inequality ‖f‖1 ≤ α ‖f‖Nq is attained at f = 1, so for all f we have
‖f‖1 ‖ 1 ‖Nq

≤ ‖f‖Nq
. Therefore,∥∥∥∥f − ∫ f dµ

∥∥∥∥
Nq

≤ ‖f‖Nq +
∥∥∥∥∫ f dµ

∥∥∥∥
Nq

= ‖f‖Nq + ‖f‖1 ‖ 1 ‖Nq ≤ 2 ‖f‖Nq .

23
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This proves the first inequality. In order to prove the second one, with some absolute
constant α, we first need to derive an inequality∣∣∣∣∫ f dµ

∣∣∣∣ ≤ α

∥∥∥∥f − ∫ f dµ

∥∥∥∥
Nq

valid in the class of all functions f in LNq
vanishing on the set A. Assuming that

a =
∫
f dµ 6= 0, the above is equivalent to∫

Nq

(
α (f − a)

a

)
dµ ≥ 1.

But on the set A, the function under the integral sign is just the constant Nq(α),
so it suffices to pick α satisfying Nq(α) ≥ 2. Consequently, we may take α =
N−1

q (2) =
(
Ψ−1(2)

)1/q. Now,

‖f‖Nq
≤
∥∥∥∥f − ∫ f dµ

∥∥∥∥
Nq

+
∥∥∥∥∫ f dµ

∥∥∥∥
Nq

≤

(
1 +

(
Ψ−1(2)
Ψ−1(1)

)1/q
)∥∥∥∥f − ∫ f dµ

∥∥∥∥
Nq

.

It remains to note that Ψ−1(1) > 1, Ψ−1(2) < 2, so
(

1 +
(

Ψ−1(2)
Ψ−1(1)

)1/q
)q

<(
1 + 21/q

)q
< 6, for all q ∈ [1, 2].

Proof of Proposition 4.1. First we derive (4.2) from (4.1). By Proposition
3.1, for any smooth function f from LNq

(R, µ),∥∥∥∥f − ∫ f dµ

∥∥∥∥q

Nq

≤ 7c
∫ ∞

−∞
|f ′(x)|q dµ(x).

Applying it to f0 and f1, we get∥∥∥∥f0 − ∫ f0 dµ

∥∥∥∥q

Nq

≤ 7c
∫

(−∞,m)

|f ′(x)|q dµ(x),

∥∥∥∥f1 − ∫ f1 dµ

∥∥∥∥q

Nq

≤ 7c
∫

(m,+∞)

|f ′(x)|q dµ(x).

Applying the second inequality of Lemma 4.2 and the general identity ‖g‖q
Nq

=
‖ |g|q ‖Ψ, we get

‖ |f0|q ‖Ψ ≤ 42 c
∫

(−∞,m)

|f ′(x)|q dµ(x),

‖ |f1|q ‖Ψ ≤ 42 c
∫

(m,+∞)

|f ′(x)|q dµ(x).

Adding these inequalities, we obtain (4.2) with d = 42c.

To derive (4.1) from (4.2), first assume that f(m) = 0. Since f = f0 + f1,∥∥∥∥f − ∫ f dµ

∥∥∥∥
Nq

≤
∥∥∥∥f0 − ∫ f0 dµ

∥∥∥∥
Nq

+
∥∥∥∥f1 − ∫ f1 dµ

∥∥∥∥
Nq

.
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On the other hand, by Lemma 3.2,
∣∣∫ f0 dµ ∣∣ ≤ ( 5

4

)1/q ‖f0‖Nq and similarly for f1.
Hence,∥∥∥∥f − ∫ f dµ

∥∥∥∥q

Nq

≤

(
1 +

(
5
4

)1/q
)q (

‖f0‖Nq
+ ‖f1‖Nq

)q
≤ q

(
1 +

(
5
4

)1/q
)q (

‖f0‖q
Nq

+ ‖f1‖q
Nq

)
≤ 9

(
‖f0‖q

Nq
+ ‖f1‖q

Nq

)
= 9 ( ‖ |f0|q ‖Ψ + ‖ |f1|q ‖Ψ) .

By the assumption (4.2) applied to f0 and f1, we thus get∥∥∥∥f − ∫ f dµ

∥∥∥∥q

Nq

≤ 9d
∫ +∞

−∞
|f ′(x)|q dµ(x).

This inequality is invariant under translations f → f + const, so it holds without
the condition f(m) = 0. At last, by Proposition 3.1, it implies that

Ent (|f |q) ≤ 16 · 9d
∫ +∞

−∞
|f ′(x)|qdµ(x),

and Proposition 4.1 follows.





CHAPTER 5

Probability measures satisfying LSq-inequalities on
the real line

Using Proposition 4.1, we will give in this section a direct characterization
of probability measures µ on the real line R satisfying the logarithmic Sobolev
inequality

(5.0.1) Ent (|f |q) ≤ c

∫ +∞

−∞
|f ′(x)|q dµ(x)

with some (finite) constant c for all smooth functions f on R. This part is very
similar to the case q = 2 studied in [B-G1]: the basic tool is the following theorem
due to M. Artola, G. Talenti and G. Tomaselli (cf. [Mu]) on the optimal constant
Aq = Aq(ν, λ) in the Hardy-type inequality with weights∫ +∞

0

|f(x)|q dν(x) ≤ Aq

∫ +∞

0

|f ′(x)|q dλ(x).

Here f is supposed to be an arbitrary smooth function on [0,+∞) such that f(0) =
0, and ν and λ are (non-negative) Borel measures on [0,+∞). Denote by pλ = pλ(x)
the absolutely continuous component of λ with respect to Lebesgue measure, and
define the constant Bq = Bq(ν, λ) as follows:

Bq(ν, λ) = sup
x>0

ν([x,+∞))
(∫ x

0

dt

pλ(t)1/(q−1)

)q−1

.

Theorem 5.1. ([Mu], [M2]) For any q ∈ [1,+∞), Bq ≤ Aq ≤ qq

(q−1)q−1 Bq.

The quantity qq

(q−1)q−1 represents an increasing function in q, so, in the range
of interest 1 ≤ q ≤ 2, it is bounded by 4.

Theorem 5.1 has the following natural generalization. Consider a Borel measure
ν on [0,+∞) and a Banach space (X, ‖·‖) of Borel measurable functions on [0,+∞)
(with usual factorization with respect to measure ν) such that

1) f ≤ |g| ν-a.e., g ∈ X implies f ∈ X and ‖f‖ ≤ ‖g‖, for all Borel measurable
functions f ;

2) any pointwise non-decreasing sequence fn of non-negative functions in X
converging pointwise to a function f ∈ X satisfies ‖fn‖ → ‖f‖.

By property 1), X is an ideal Banach space, and property 2) is called order
semi continuity of the norm (cf. [K-A]). For an ideal Banach space X, the last
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property is equivalent to a representation of the norm in X in the form

(5.0.2) ‖f‖ = sup
g∈G

∫ +∞

0

|f(x)|g(x) dν(x),

for some family G of non-negative Borel measurable functions g on [0,+∞). This
statement holds in the setting of an abstract probability space (Ω, ν) ([K-A], p.190).

For these Banach spaces X, one immediately obtains by Theorem 5.1:

Corollary 5.2. Let Aq = Aq(X,λ) be the optimal constant in the inequality

(5.0.3) ‖ |f |q ‖ ≤ Aq

∫ +∞

0

|f ′(x)|q dλ(x),

where f ∈ X is an arbitrary smooth function such that f(0) = 0. Then, Bq ≤ Aq ≤
qq

(q−1)q−1Bq, where

Bq = Bq(X,λ) = sup
x>0

‖1[x,+∞) ‖
(∫ x

0

dt

pλ(t)1/(q−1)

)q−1

.

Indeed, the measures νg(dx) = g(x)ν(dx) satisfy Bq(νg, λ) ≤ Aq(νg, λ) ≤
4Bq(νg, λ). Using the definitions (5.2) and (5.3), we get

Aq(X,λ) = sup
g∈G

Aq(νg, λ), Bq(X,λ) = sup
g∈G

Bq(νg, λ),

hence, Bq(X,λ) ≤ Aq(X,λ) ≤ qq

(q−1)q−1Bq(X,λ).
In particular, one may apply Corollary 5.2 to the Orlicz spaceX = LΨ(ν) which

of course satisfies the properties 1) and 2) above. Recall that Ψ(x) = |x| log(1+|x|).
For indicator functions, we get by definition of the Orlicz norm

‖1[x,+∞) ‖Ψ =
1

Ψ−1
(

1
ν([x,+∞))

) ,
where Ψ−1 denotes the inverse function. Consequently, the optimal constant Aq in
(5.3) for the norm ‖ · ‖ = ‖ · ‖Ψ and for the range 1 ≤ q ≤ 2 can be estimated as
follows:

sup
x>0

1

Ψ−1
(

1
ν([x,+∞))

) (∫ x

0

dt

pλ(t)1/(q−1)

)q−1

≤ Aq

≤ 4 sup
x>0

1

Ψ−1
(

1
ν([x,+∞))

) (∫ x

0

dt

pλ(t)1/(q−1)

)q−1

.

In case ν((0,+∞)) ≤ 1
2 , the marginal sides of these inequalities can be simplified

by noting that, for any x > 0, the number t = 1
ν([x,+∞)) satisfies t ≥ 1

2 . But in this
range, we have t

2 log t ≤ Ψ−1(t) ≤ 2t
log t , and so

1
2

sup
x>0

ν([x,+∞)) log
1

ν([x,+∞))

(∫ x

0

dt

pλ(t)1/(q−1)

)q−1

≤ Aq

(5.0.4)≤ 8 sup
x>0

ν([x,+∞)) log
1

ν([x,+∞))

(∫ x

0

dt

pλ(t)1/(q−1)

)q−1
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Using Proposition 4.1, we are ready to formulate and to prove the main result
of this section.

Let µ be a Borel probability measure on R with distribution function F (x) =
µ((−∞, x]), and density function p = p(x), x ∈ R, for its absolutely continuous
part with respect to Lebesgue measure. Denote by m a median of µ. Define

D0(q) = sup
x<m

F (x) log
1

F (x)

(∫ m

x

dt

p(t)1/(q−1)

)q−1

,

D1(q) = sup
x>m

(1− F (x)) log
1

1− F (x)

(∫ x

m

dt

p(t)1/(q−1)

)q−1

.

defining D0(q) and D1(q) to be zero in case µ((−∞,m)) = 0 or µ((m,+∞)) = 0,
respectively.

Theorem 5.3. Let 1 ≤ q ≤ 2. For some positive absolute constants K0 and
K1, the optimal value of c in the logarithmic Sobolev inequality (5.1) satisfies

K0 (D0(q) +D1(q)) ≤ c ≤ K1 (D0(q) +D1(q)).

Proof. Without loss of generality, let m = 0. The inequality (4.2) may be
divided into the two inequalities:

(5.0.5) ‖ |f0|q ‖Ψ ≤ d0

∫ 0

−∞
|f ′0(x)|q dµ(x),

(5.0.6) ‖ |f1|q ‖Ψ ≤ d1

∫ +∞

0

|f ′1(x)|q dµ(x),

where f0 and f1 are arbitrary smooth functions defined on (−∞, 0] and [0,+∞),
respectively, with f0(0) = f1(0) = 0. More precisely, the optimal constants in
(5.5)-(5.6) are connected with the optimal constant d in (4.2) by

d = max{d0, d1}.
Now, according to (5.4) with ν = λ being the restriction of µ to [0,+∞), we have,
for the optimal constant d1,

(5.0.7)
1
2
D1 ≤ d1 ≤ 8D1.

Here we also used an obvious fact that the supremum in the definition of D1 will
not change if one replaces the expression µ([x,+∞)) by µ((x,+∞)). Similarly, for
the optimal constant d0, we have

(5.0.8)
1
2
D0 ≤ d0 ≤ 8D0.

By Proposition 4.1, (5.1) implies both (5.5) and (5.6) with di = 42 c. Hence, by
(5.7)–(5.8), we get

1
2

max(D0, D1) ≤ 42 c.

Therefore, D0 + D1 ≤ 168 c which implies Theorem 5.3 with K0 = 1/168. On
the other hand, again by Proposition 4.2, c ≤ 144 d = 144 max(d0, d1), so, c ≤
144 · 8 max(D0, D1) ≤ 1152(D0 + D1). Thus, one may choose K1 = 1152 which
proves Theorem 5.3.
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A natural question arising in connection with Theorem 5.3 is how to determine
whether or not D0(q) +D1(q) is finite in terms of simple conditions on the density
p of the measure µ. In the case q = 2 this question was studied in [G-R], ([A-B-C-
F-G-M-R-S]), and here we follow similar arguments to settle the general case.

Assume the density has the form p(x) = e−U(x) for a twice continuously dif-
ferentiable function U : R → R (for short, U ∈ C2(R)). We need the following
elementary lemma appearing in [A-B-C-F-G-M-R-S], see pp. 107–109, as a corollary
of a more general Proposition 6.4.1 (with further reference to [V-P]).

Lemma 5.4. Given a function U ∈ C2(R) such that U ′(x) > 0 in x ≥ M for
some real M , and U ′′(x)

(U ′(x))2 → 0, as x→ +∞, we have, for all m ∈ R,

lim
x→+∞

(
U ′(x) e−U(x)

∫ x

m

eU(t) dt

)
= 1, lim

x→+∞

(
U ′(x) eU(x)

∫ x

m

e−U(t) dt

)
= 1.

Applying this lemma to p(x) = e−U(x), we obtain that, as x→ +∞:

1) the function 1− F (x) =
∫ x

m
e−U(t) dt is equivalent to e−U(x)

U ′(x) ;

2) the function log 1
1−F (x) is equivalent to U(x) + logU ′(x);

3)
(∫ x

m
p(t)−1/(q−1) dt

)q−1
=
(∫ x

m
eU(t)/(q−1) dt

)q−1
is equivalent to (q−1)q−1 eU(x)

(U ′(x))q−1 .

Collecting these asymptotics together, we obtain that the function

(1− F (x)) log
1

1− F (x)

(∫ x

m

dt

p(t)1/(q−1)

)q−1

,

appearing in the definition of D1(q), is equivalent to (q − 1)q−1 U(x)+log U ′(x)
U ′(x)q . We

can now summarize (also taking into account an analogous description of the asymp-
totics near the point −∞):

Theorem 5.5. Let µ be an absolutely continuous probability measure on R
with density p(x) = e−U(x) where U ∈ C2(R). Assume that

a) U ′(x) > 0 if x ≥M and U ′(x) < 0 in x ≤ −M , for some real M ;

b) U ′′(x)
U ′(x)2 → 0, as |x| → ∞.

Then, given q ∈ (1, 2], the measure µ satisfies the logarithmic Sobolev inequality
(5.1) with some finite c if and only if

(5.0.9) lim sup
|x|→∞

U(x) + log |U ′(x)|
|U ′(x)|q

< +∞.

As an immediate consequence, we get:

Corollary 5.6. Given q ∈ (1, 2], the probability measure µ on R with density
p(x) = const e−|x|

p

satisfies (5.1) if and only if p ≥ q
q−1 .

The measure µ, with U(x) = |x|p + C, is log-concave, and moreover it has
convexity power p (if p ≥ 2). So, Corollary 5.6 can be proved by a different
method, for example, on the basis of Brunn-Minkowski’s inequality (cf. [B-L]).
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However, Theorem 5.5 allows one to produce a variety of measures which satisfy
the logarithmic Sobolev inequality (5.1) but which are not log-concave. Here is one
possible example (in a spirit of [A-B-C-F-G-M-R-S]).

Example 5.7. Let U be an even function of class C2(R) of the form

U(x) = |x|p + α(x) cosx+ C

such that α(x) = |x|p−1−δ for |x| > 1, where p > 2 and δ ∈ (0, 1) are fixed
parameters. For x > 1 we have:

U ′(x) = pxp−1 + (p− 1− δ)xp−2−δ cosx− xp−1−δ sinx,

hence U ′(x) is equivalent to pxp−1, as x→ +∞ (the first term dominates). Next,

U ′′(x) = p(p− 1)xp−2 + (p− 1− δ)(p− 2− δ)xp−3−δ cosx

− 2(p− 1− δ)xp−2−δ sinx − xp−1−δ cosx.

Now, the last term is of most importance, or, more precisely, we have
U ′′(x)
xp−1−δ

= − cosx+O(x−(1−δ)), as x→ +∞.

Therefore, U ′′(x) oscillates and attains any values between −∞ to +∞ as the vari-
able x varies along the positive half-axis. Thus, roughly speaking, the corresponding
measure µ is very far from being log-concave. On the other hand,

U ′′(x)
U ′(x)2

= O(x−(p−1+δ)),

and the property (5.9) is true whenever p ≥ q
q−1 . Hence, for such p the measure µ

satisfies the logarithmic Sobolev inequality (5.1).

Remark 5.8. On the basis of Theorem 5.1 and Lemma 5.4 one can easily
study the Poincaré-type inequality on the real line,

(5.0.10)
∫ +∞

−∞

∣∣∣∣ f − ∫ +∞

−∞
f dµ

∣∣∣∣q dµ ≤ cq

∫ +∞

−∞
|f ′(x)|q dµ(x),

where q > 1 is a parameter, and where f is an arbitrary µ-integrable absolutely
continuous function on R (now, there is no need to restrict ourselves to the bound
q ≤ 2). Under the assumptions a) and b) of Theorem 5.5, we arrive at the following
conclusion: the measure µ satisfies (5.10) with some finite cq if and only if

lim sup
|x|→∞

1
|U ′(x)|q

< +∞.

Although it resembles (5.9), this property does not depend on q (!) Therefore, all
Poincaré-type inequalities (5.10) are equivalent to each other up to constants cq (of
course, under the above regularity assumptions on the density p).





CHAPTER 6

Exponential integrability and perturbation of
measures

Let us return to the abstract situation and to Theorem 1.3 considered in the
introductory section. Thus, assume we are given the triple (Ω, µ,Γ) satisfying LSq-
inequality

(6.0.1) Ent (|f |q) ≤ c

∫
Γ(f)q dµ

for every function f ∈ A (i.e., from the domain of Γ). As before, here q is a given
parameter, 1 < q ≤ 2. We are going to generalize Theorem 1.3 by removing the
boundedness assumption on the modulus of gradient.

Theorem 6.1. Under (6.1), for every bounded function g ∈ A with µ-mean
zero,

(6.0.2)
∫
eg dµ ≤

∫
ecpq−q Γ(g)q

dµ,

where p = q
q−1 is conjugate to q.

As in Theorem 1.3, if we are dealing with probability metric spaces satisfying
(6.1), the estimate (6.2) easily extends to non-bounded integrable, locally Lipschitz
g. Thus, if Γ(g)q has finite exponential moments, then so does g. Of course, this
property cannot be reached on the basis of Theorem 1.3 or the bound (1.3) on the
Laplace transform,

(6.0.3)
∫
eλg dµ ≤ exp

{
c

qq(q − 1)
λq

}
, λ > 0.

Note that, if Γ(g) ≤ 1 as in (6.3), the estimate (6.2) yields somewhat different:∫
eλg dµ ≤ exp

{
cp

qq
λq

}
, λ > 0.

Here the constant in the exponent p
qq = q

qq(q−1) is q ≤ 2 times worse than that in
(6.3). Hence, Theorem 1.3 still has a small advantage over Theorem 6.1 in case
Γ(g) ≤ 1.

Proof of Theorem 6.1. The argument is similar to the one given in [B-G1]
for the particular case q = 2. Given a number α > 0, define β > 0 by

(6.0.4)
∫
eα Γ(g)q

dµ = eβ .

33
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We use the following well-known representation for the entropy functional: for every
measurable, bounded function w ≥ 0 on Ω,

(6.0.5) Ent (w) = supR
eh dµ≤1

∫
whdµ.

Here the supremum may be taken over all measurable bounded function h on Ω
such that

∫
eh dµ ≤ 1.

Let w = eg and let h = αΓ(g)q − β so that, by (6.4),
∫
eh dµ = 1. Hence, by

(6.5), we get ∫
eg (αΓ(g)q − β) dµ ≤ Ent (eg).

On the other hand, by the log-Sobolev inequality (6.1) with f = eg/q,

(6.0.6) Ent (eg) ≤ c

qq

∫
Γ(g)q eg dµ.

Combining the both estimates gives(
α− c

qq

)∫
Γ(g)q eg dµ ≤ β

∫
eg dµ.

Assuming α > c
qq , the left hand side can further be estimated from below by

applying once more (6.6). Then we get

Ent (eg) ≤ Cβ

∫
eg dµ, C =

1
αqq

c − 1
.

Now, given λ ∈ [0, 1], let us write this inequality for the function λg in the place of
g. Then,

(6.0.7) Ent (eλg) ≤ Cβ(λ)
∫
eλg dµ, C =

1
αqq

c − 1
,

where β(λ) should be defined according to (6.4) as∫
eαλq Γ(g)q

dµ = eβ(λ).

Since λ ∈ [0, 1], by Hölder’s inequality,
∫
eαλq Γ(g)q

dµ ≤
(∫
eα Γ(g)q

dµ
)λq

, so β(λ) ≤
βλq, where recall that β(1) = β. Therefore, from (6.7),

(6.0.8) Ent (eλg) ≤ Cβ λq

∫
eλg dµ, C =

1
αqq

c − 1
.

Now we can proceed as in the proof of Theorem 1.3. Write the Laplace transform
on g as

∫
eλg dµ = eλv(λ). The function v is smooth in λ > 0 and satisfies v(0+) =

0 in view of the assumption that g has µ-mean zero. Recall that Ent (eλg) =
λ2v′(λ)

∫
eλg dµ. Hence, by (6.8), λ2v′(λ) ≤ Cβ λq and

v(λ) =
∫ λ

0

v′(t) dt ≤ Cβ

∫ λ

0

tq−2 dt =
Cβ

q − 1
λq−1.

Thus, we have obtained the estimate
∫
eλg dµ ≤ exp{ Cβ

q−1 λ
q} which for λ = 1

becomes (recalling the definition of β and C)

(6.0.9)
∫
eg dµ ≤ e

Cβ
q−1 =

(∫
eα Γ(g)q

dµ

) C
q−1

=
(∫

eα Γ(g)q

dµ

) 1

(q−1)( αqq

c
−1)

.
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It remains to equalize

(q − 1)
(
αqq

c
− 1
)

= 1

from which we easily find that α = cp
qq . For this value (6.9) coincides with (6.2),

and this proves Theorem 6.1.

Next we briefly investigate which perturbation of measures preserve LSq-inequality.
This will be useful for further purposes.

First of all we mention that following the idea [H-S] in the general setting one
has

Proposition 6.2. Suppose µ ∈ LSq(c) and let dµρ ≡ ρdµ for some strictly pos-
itive bounded density ρ. Then µρ ∈ LSq(c′) with c′ ≡ c exp {sup(log ρ)− inf(log ρ)} .

For the proof it is sufficient to notice that the nonlinear expression in µρ can
be achieved as an infimum of expectation of nonnegative function as follows

µρf
q log

fq

µfq
= inf

t>0
µρ (fq log fq − fq log t− fq + t)

Now we can remove the density ρ and use µ ∈ LSq(c) and finally replace the
expectation µ|∇f |qq by the one we need. The total price for these operations equals
to the exponential of sup log ρ−inf log ρ. (We mention that in certain situation when
more structure is available Proposition 6.2 can be strengthened, see e.g. [G-Z].
Naturally similar arguments works directly for the related Poincaré inequality SGq.)

The second perturbation formula applies to the situation in which we have a
local gradient and involves unbounded and possibly locally singular perturbations
to which Theorem 5.5 does not apply. This includes for example perturbations
where

log ρ =
∑

j

ajV (ω − bj) + const

with a singular function V , (singularity may be possibly growing with the dimension
of the space), and certain infinite sequences of points aj and bj .

Proposition 6.3. Suppose µ ∈ LSq(c) and let dµρ ≡ ρdµ for a positive density
ρ. If

µρ

(
exp

{
2q−1q−qc

ε
|∇ log ρ|qq

})
<∞

for some constant ε ∈ (0, 1) and µρ satisfies SGq with a constant m′ ∈ (0,∞), then
µρ ∈ LSq(c′) for some c′ ∈ (0,∞).

Proof. Inserting ρ1/qf , defined with bounded smooth cylinder function f
normalized so that µρ|f |q = 1, into LSq(c) for the measure µ after simple arguments
(utilizing the Leibnitz rule for the local gradient) one arrives at the following bound

(6.0.10) µρ|f |q log |f |q ≤ 2q−1cµρ|∇f |qq + 2q−1q−qcµρ(|f |q|∇ log ρ|qq)
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Next utilizing Young inequality ab ≤ a log a+ 2eb , (as e.g. in [L6]), we bound the
second term on the right hand side of (6.0.10) as follows

2q−1q−qcµρ(|f |q|∇ log ρ|qq) ≤ εµρ|f |q log |f |q + 2µρ

(
exp

{
2q−1q−qc

ε
|∇ log ρ|qq

})
with arbitrary ε ∈ (0, 1). Inserting this into (6.0.10), after simple transformations
we arrive at

(6.0.11) µρ|f |q log |f |q ≤ 2q−1c

1− ε
µρ|∇f |qq +

2
1− ε

µρ

(
exp

{
2q−1q−qc

ε
|∇ log ρ|qq

})
To complete the proof it is sufficient to use the adaptation of Rothaus lemma proven
in Section 3 together with the assumed SGq for the perturbed measure. Finally,
after this stage we can relax our initial assumption µρ|f |q = 1.



CHAPTER 7

LSq-inequalities for Gibbs measures with Super
Gaussian Tails.

In this section we show that LSq is satisfied for a large class of nontrivial infinite
dimensional measure. Our arguments generalize the ones developed to show LS2

and to keep the size of this section reasonable we concentrate only on the aspects
which require modification. (We refer to [G-Z] for a comprehensive description of
LS2 case.)

For the present purposes it is convenient to define the infinite dimensional mea-
sures by introducing an a’priori given family of its regular conditional expectations
which are given in terms of compatible family of probability kernels involving es-
sentially finite dimensional integration as follows. For ω ∈ RZd

and a finite set
Λ ⊂⊂ Zd we define

(7.0.1) Eω
Λ(f) ≡ δω

(∫
f e−UΛdνr,Λ∫
e−UΛdνr,Λ

)
where νr,Λ ≡ ⊗i∈Λνr(dxi) and

(7.0.2) UΛ ≡
∑

X∩Λ6=∅

ΦX

where ΦX(ω) ≡ ψX(ωX) for a twice continuously differentiable function ψX on
RX and ωX ≡ (ωi)i∈X ; δω denotes the point mass concentrated at ω ∈ RZd

.
Such family called a local specification can be defined for any measure νr(dy) ≡
α−1

r e−|y|
r

dy , r ∈ (1,∞), on R and the interaction Φ ≡ {ΦX}X⊂⊂Zd such that for
any Λ ⊂⊂ Zd one has

(7.0.3) 0 <
∫
e−UΛdνr,Λ <∞

For simplicity we assume that

||Φ|| ≡ sup
i∈Zd

∑
X⊂⊂ZdX3i,|X|>1

|X| · ||ΦX ||∞ <∞

although as one can see our results hold true in greater generality. By the very
definition of the local specification Eω

Λ(f) is measurable with respect the smallest
σ-algebra generated by the coordinate functions

{
ωi : i ∈ Zd \ Λ

}
and one has the

following compatibility condition satisfied for any Λ̃ ⊂ Λ

Eω
Λ

(
E·eΛ(f)

)
= Eω

Λ(f)

for any bounded measurable function f.

37
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In this section we restrict ourselves to the case of super - Gaussian tails, that
is we assume that r ∈ (2,∞). Under this condition simple perturbation arguments
(mentioned in the previous section) show that EΛ inherits the LSq property with
some finite constant, that is in shorthand notation

EΛ ∈ LSq(CΛ)

with some finite constant CΛ ∈ (0,∞).
Later on we assume that local specification satisfies a mixing condition as the

one assumed in the proof of the LS2 and which can be formulated (in a strong form)
as follows

Strong Mixing Condition

|EΛ ((f − EΛf)(g − EΛg))| ≤ A(∇f,∇g)e−M dist(Λf ,Λg)

where M ∈ (0,∞) and A(∇f,∇g) are constants independent of a finite set Λ ⊂⊂
Zd and dist(Λf ,Λg) is the Euclidean distance between smallest sets Λf and Λg

such that f and g are measurable with respect to smallest σ-algebra generated by
coordinate functions {ωi : i ∈ Λf} and {ωi : i ∈ Λg}, respectively; (see e.g. [G-Z]).

We mention that for example such condition is satisfied under the Dobrushin
uniqueness ([G-Z]). Let µ be a Gibbs measure for the local specification {EΛ}Λ⊂⊂Zd

that is we have

µEΛf = µf

for any bounded measurable function f ; here and later on we use the notation
µf ≡

∫
fdµ.

We will prove that under suitable conditions on the local specification, the
Gibbs measure satisfies LSq . To show this, we note first that under our general
assumption this inequality is true for any kernel EΛ , (one apply here similar per-
turbation lemma as used in case of LS2, see e.g. [G-Z]). The idea of the proof is
to use a suitable telescopic representation of relative entropy associated to an ap-
propriate sequence of transition matrices (or conditional expectations) as follows.
Given a sequence of transition matrices, En, n ∈ N such that

(7.0.4) µEnF = µF

for a probability measure µ, we set fn ≡ (Enf
q
n−1)

1
q , with f0 ≡ f for a nonnegative

function f . Assuming that

(7.0.5) lim
n→∞

fn = µf

we note that

(7.0.6) µfq log
fq

µfq
=
∑
n∈N

µ

(
Enf

q
n−1 log

fq
n−1

Enf
q
n−1

)
Hence, if with some constant C ∈ (0,∞) independent of n ∈ N one has

(7.0.7) Enf
q
n−1 log

fq
n−1

Enf
q
n−1

≤ C En|∇nfn−1|q
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(with a gradient ∇n associated to the integration variables of En), using (7.0.6)
and (7.0.4), we obtain

(7.0.8) µfq log
fq

µfq
≤ C

∑
n∈N

µ |∇nfn−1|q

Since fn−1 ≡ (En−1f
q
n−2)

1
q , if the probability measures En−1 do not depend on the

n-th variables (as in the product case), by Minkowski inequality one gets

(7.0.9) |∇nfn−1|q ≤ En−1|∇nfn−2|q

and by induction, (if Ek , k ≤ n−1 , are independent of the differentiation variable
in question), one arrives at

(7.0.10) |∇nfn−1|q ≤ En−1|∇nfn−2|q ≤ En−1...E1|∇nf |q

Thus combining (7.0.8) - (7.0.10), we arrive at

Theorem 7.1. (Product property of LSq) If µ ≡ ⊗n∈Nµn with µ ∈ LSq(C),
then

(7.0.11) µfq log
fq

µfq
≤ C

∑
n∈N

µ |∇nf |q

If En−1 depends on the n-th variable, (as we would need to have to be able to
include the Gibbs and PCA measures), we use similar arguments as described in
[G-Z]. One introduces En−1 defined as an appropriate product and/or convolution
of probability kernels E∆+j associated to suitable translations of a finite cube ∆.
To estimate |∇nfn−1|q it is necessary to get an estimate on |∇i(EΛF

q)
1
q | defined

for a finite set Λ ⊂ Zd. One notes that for i /∈ Λ , we have

(7.0.12) |∇i(EΛF
q)

1
q | = |1

q
(EΛF

q)
1
q−1∇i(EΛF

q)|

Using the definition of EΛ as a perturbation of a product measure we can compute
the derivative on the right hand side as follows

(7.0.13) |∇i(EΛF
q)| = |EΛ(F q (−∇iUΛ + EΛ∇iUΛ)) + qEΛ(F q−1∇iF )|

Since the covariance vanishes if one of the involved functions is a constant, setting
Fs ≡ sF + (1− s)EΛF , we get

|EΛ(F q (−∇iUΛ + EΛ∇iUΛ) | = |
∫ 1

0

ds
d

ds
EΛ (F q

s (−∇iUΛ + EΛ∇iUΛ)) |

≤ q (EΛF
q
s | − ∇iUΛ + EΛ∇iUΛ|p)

1
p (EΛ |F − EΛF |q)

1
q

≤ q varΛ(∇iUΛ) sups∈[0,1] (EΛF
q
s )

1
p (EΛ |F − EΛF |q)

1
q

Now using the Lq spectral gap inequality for the measure EΛ, (which follows from
LSq by general arguments of Proposition 2.1), we arrive at
(7.0.14)
|EΛ(F q (−∇iUΛ + EΛ∇iUΛ) | ≤
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≤ q (EΛF
q)1−

1
q

2
(

4CΛ

log 2

) 1
q

varΛ(∇iUΛ)
∑
j∈Λ

(EΛ |∇jF |q)
1
q


Combining (7.0.12) - (7.0.14), via simple arguments (similar to the ones used in
[G-Z] for the case of LS2), one arrives at a bound of the following form

(7.0.15) |∇i(EΛF
q)

1
q | ≤ |(EΛ|∇iF |q)

1
q + C ′ varΛ(∇iUΛ)

∑
j∈Λ

(EΛ|∇jF |q)
1
q

with some positive constant C ′ and varΛ(∇iUΛ) denoting the total variation of
∇iUΛ with respect to the coordinates indexed by points in the finite set Λ. Note
that in case i ∈ Λ , the derivative on the right hand side vanishes by definition
of our kernel EΛ. If varΛ(∇iUΛ) is sufficiently small, the inequality (7.0.15) is
sufficient to complete the proof of LSq for the Gibbs measure µ. However if the
local specification satisfies the strong mixing property, this smallness requirement
can be essentially weakened.

To take the full advantage of mixing, one may follow the same inductive idea
of conditioning as used in the case of LS2 inequalities (see e.g. [G-Z]) to show
appropriate relations for the present case. That is given a finite set Λ we choose
a subset Λ̃ ⊂ Λ and then using the compatibility property of kernels we note first
that

|∇i(EΛF
q)

1
q | = |∇i(EΛEeΛF q)

1
q | ≡ |∇i(EΛF̃

q)
1
q |

Next we apply the above arguments with the function F̃ where by a proper choice of
the set Λ̃, (so that F̃ is localised possibly far from ∇iUΛ), we can take the advantage
of the mixing condition. Finite iteration of this procedure result with the improved
sweeping out relations of the form

(Sweeping out relations)

(7.0.16) |∇i(EΛF
q)

1
q | ≤ |(EΛ|∇iF |q)

1
q +

∑
j∈Λ

Cij(EΛ|∇jF |q)
1
q

where Cij ∈ [0,∞) decay in a suitable way with the growth of dist(i, j) (see [G-Z]
for details).

Using the sweeping out relations one shows the following contraction bound
involving the transitions matrices

(7.0.17) |∇(En−1g
q)

1
q |qq ≤ λEn−1|∇g|qq

with a constant λ ∈ (0, 1) independent of n ∈ N , where |∇g|qq ≡
∑

j |∇jg|q. With
g = fn−2 and the help of simple induction, this yields

(7.0.18) |∇(En−1fn−2)
1
q |qq ≤ λn−1En−1|∇f |qq

Application of (7.0.18) together with (7.0.11) implies the following LSq inequality

µfq log
fq

µfq
≤ Cq

1− λ
µ|∇f |qq

This completes the proof of the following result.
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Theorem 7.2. (LSq for Gibbs measures) Let µ be a Gibbs measure correspond-
ing to the local specification {EΛ}Λ⊂⊂Zd defined by (7.0.1)-(7.0.3) with the reference
product measure with super-Gaussian tails. If the local specification satisfies the
mixing condition, then there is a constant cq ∈ (0,∞) such that

(LSq(µ)) Entµ (f) ≤ cq · µ|∇f
1
q |qq

for all nonnegative functions f for which the right hand side is finite.

Remark 7.3. We also remark that essentially the same arguments work also
in the case of PCA measures. The case of perturbations by unbounded potentials
can also be included, though they require lengthy and technically slightly more
involved description.

The above theorem generalises a result of [B-L] where a corresponding result
was proven under a very strong log-concavity assumptions of the finite dimensional
measures. That is, for a probability measure having a density exp(−V )/Z with
respect to a finite dimensional Lebesgue measure with

V (x) + V (y)− 2V (
x+ y

2
) ≥ const ||x− y||p

for any x and y, such probability measure satisfies LSq (with dual norm on the
tangent space).

We remark that in the considered case of local specification with super Gauss-
ian tails the following Generalised Nash inequality was proved in [Z2] for the corre-
sponding Gibbs measures following natural adaptation of classical Sobolev inequal-
ity for probability measures by [Ros]

(GNq) µf2 log
f2

µf2
≤ C

2q

qq

∑
j

(
µ|∇jf |2

) q
2
(
µ(f − µf)2

) 2−q
2

It was proved there that such inequality produces the correct exponential bounds
for Lipschitz function.

The following result explains the relation of GNq inequality and LSq

Theorem 7.4. Suppose r ∈ [2,∞) and 1
r + 1

q = 1 . If LSq is satisfied with a
coefficient C ∈ (0,∞) and the following spectral gap inequality holds

(SG2) µ(f − µf)2 ≤ m−1µ|∇f |22
with some constant m ∈ (0,∞) , then the Generalised Nash inequality (GNq)is true
with some constant C ∈ (0,∞) for all nonnegative functions f for which the right
hand side is finite.

Remark 7.5. Note that, although SG2 follows from SGq in finite dimension
(and the last is an abstract consequence of LSq), in infinite dimensional setting we
need to be more careful as lq and l2 norms are not equivalent.

We also remark that if dimension of the underlying space is finite, then GNq,
q ∈ (1, 2), implies LS2 . But in infinite dimensional situation this is in general not
true.
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Proof of Theorem 7.4. Suppose LSq is satisfied with q ∈ (1, 2). Then
substituting f

2
q one gets

(7.0.19) µf2 log
f2

µf2
≤ Cµ|∇f

2
q |qq = Cµ

∑
j

|∇jf
2
q |q

We have

µ
∑

j

|∇jf
2
q |q =

2q

qq
µ

f2−q

∑
j

|∇jf |q


Since q ≤ 2 and using Hölder inequality, we get

(7.0.20) µ
∑

j

|∇jf
2
q |q ≤ 2q

qq

(
µ|∇f |2q

) q
2
(
µf2

) 2−q
2 ≤ 2q

qq

∑
j

(
µ|∇jf |2

) q
2
(
µf2

) 2−q
2

Next note that

(7.0.21) µf2 log
f2

µf2
≤ µ(f − µf)2 log

(f − µf)2

µ(f − µf)2
+ 2µ(f − µf)2

and, if the Poincaré inequality is true, we have

µ(f − µf)2 =
(
µ(f − µf)2

) q
2
(
µ(f − µf)2

) 2−q
2(7.0.22)

≤
(
m−1µ|∇f |22

) q
2
(
µ(f − µf)2

) 2−q
2

Thus applying (7.0.19) - (7.0.20) with |f − µf | instead of f to estimate the first
term on the right hand side of (7.0.21) and using (7.0.22) to estimate the second
one, we arrive at the following bound

µf2 log
f2

µf2
≤
(

2q

qq
C + 2m− q

2

)∑
j

(
µ|∇jf |2

) q
2
(
µ(f − µf)2

) 2−q
2

�



CHAPTER 8

LSq-inequalities and Markov semigroups

In this section we discuss consequences of LSq for the semigroups preserving
the related measure. The first result provides a relation to the ultracontractivity
property of a semigroup generated by a Dirichlet operator satisfying

µ(fLf) = −µ|∇f |22
The result holds in a general setting including both discrete as well as continuous
spaces.

Theorem 8.1. Suppose the dimension of the underlying space is finite and
assume that r ∈ (2,∞) and 1

r + 1
q = 1 . If LSq is satisfied , then the following

inequality is true for any p ∈ (2,∞) with generator L corresponding to the L2 -
Dirichlet form

(GLSq) µfp log
fp

µfp
≤ −pε(p) µ

(
fp−1Lf

)
+ pη(p) µfp

where
ε(p) ≡ a

(p−1)p
−δ and η(p) ≡ bp−2+δq/(2−q)

with some constants a, b ∈ (0,∞) and δ ∈ (0, 2−q
q ) , for all nonnegative functions

f for which the right hand side is finite.
Therefore the semigroup Pt ≡ etL is ultracontractive, that is for any p ∈ [1,∞)

and t > 0 the operator Pt : Lp −→ L∞ is bounded.

Proof. If the dimension of the space is finite, by similar arguments as in the
proof of Theorem 7.4 , one gets

µf2 log
f2

µf2
≤ C ′

(
µ|∇f |22

) q
2
(
µf2

) 2−q
2

and hence for any constant α ∈ (0,∞) we have

µf2 log
f2

µf2
≤ C ′

q

2
α µ|∇f |22 + C ′

2− q

q
α−

q
2−q µf2

Substituting f
p
2 , with p ∈ (2,∞) , and using the well known inequality

µ|∇f
p
2 |22 ≤ − p2

4(p− 1)
µ
(
fp−1Lf

)
for the Dirichlet generator L , we get , with appropriate constants a, b ∈ (0,∞)
independent of p , the following bound

µfp log
fp

µfp
≤ −a p2

4(p− 1)
α µ

(
fp−1Lf

)
+ bα−

q
2−q µfp
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We will choose
α ≡ α(p) ≡ p−δ

with some δ ∈ (0, 2−q
q ) and with this choice we have the following inequality

µfp log
fp

µfp
≤ −pε(p) µ

(
fp−1Lf

)
+ pη(p) µfp

where
ε(p) ≡ a p1−δ

4(p−1) and η(p) ≡ bp−1+ δq
2−q

It is not difficult to check that∫∞
2
p−1ε(p)dp <∞ and

∫∞
2
p−1η(p)dp <∞

which following [G1] implies the ultracontractivity of the semigroup Pt = etL .

Remark 8.2. We recall following [D-S] (see also [D] and [Ros]) that in finite
dimensions the distributions with super-Gaussian tails define Dirichlet generators
of ultracontractive semigroups.

8.1. Ergodicity for nonlinear semigroups

Let Tt ≡ etL be a semigroup with generator L defined by

L ≡
∑

j

Lj

where Lj satisfies

µ (gLj(f)) = −µ (∇jg · vj(|∇jf |)∇jf)

with a nonnegative function vj .

Theorem 8.3. (L2 ergodicity) If the following Spectral Gap inequality is sat-
isfied

(SG) m · µ|g − µg|q ≤
∑

j

µ
(
vj(|∇jg|) · |∇jg|2

)
with some constants q ∈ (1,∞) and m ∈ (0,∞) , then following estimate is true

(8.1.1) µ(Ttf − µf)2 ≤ D · t−β

with some constants D,β ∈ (0,∞) for all nonnegative functions f in. ◦

Remark 8.4. Recall that by Theorem 2.1, SGq follows from LSq, (but if the
dimension of the underlying space is infinite SGq does not imply SG2).

Proof. Let ft ≡ Ttf , for a smooth bounded function f such that µf = 0 .
We have formally

(8.1.2)
d

dt
µf2

t = 2µftLft = −2
∑

j

µ
(
vj(|∇jft|) · |∇jft|2

)
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(Since a’priori the question whether ft is in the domain of L may be problematic,
one may need to use here appropriate approximation arguments.) If the following
spectral gap inequality is satisfied

m · µ|g − µg|q ≤
∑

j

µ
(
vj(|∇jg|) · |∇jg|2

)
then one has

(8.1.3)
d

dt
µf2

t ≤ −2m · µ|ft|q

Suppose q ≤ 2 , then we use Hölder inequality to get the following bound

µ|ft|2 ≤ (µfq
t )

1
u

(
µf

(2−s)w
t

) 1
w ≤ (µfq

t )
1
u

(
µf (2−s)w

) 1
w

with arbitrary s ∈ (0, 2) and u,w ∈ (1,∞) satisfying su = q , 1
u + 1

w = 1 . Hence
we have

(8.1.4)

 µ|ft|2(
µf (2−s)w

) 1
w

u

≤ µfq
t

We use this to bound the right hand side of (8.1.3) as follows

(8.1.5)
d

dt
µf2

t ≤ −2m ·

 µ|ft|2(
µf (2−s)w

) 1
w

u

Solving this differential inequality, we arrive at

µf2
t ≤

(µf2
)1−u

+ 2m(u− 1) ·

 1(
µf (2−s)w

) 1
w

u

t

− 1
u−1

(8.1.6)

≤

((
µf (2−s)w

) u
w

2m(u− 1)

) 1
u−1

· t−
1

u−1

whence the bound follows.

Theorem 8.5. (Ergodicity in the Entropy Sense) Suppose

µ (fL(f)) ≡ −
∑
j∈Λ

µ (∇jf · vj(|∇jf |)∇jf)

with vj(y) ≥ |y|κ−2 for some κ ≥ 2. If the following LSq inequality is satisfied

(LSq) Entµ (f) ≤ qqC · µ|∇f
1
q |qq

with q ∈ (1, 2), 1
q + 1

κ = 1, and some constant C ∈ (0,∞) and |Λ| < ∞, then
following estimate is true

(8.1.7) Entµ(ft) ≤ |Λ|C−
κ

κ−q

(
κ− q

q

) q
κ−q

· t−
q

κ−q

for all nonnegative functions f .
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Proof. Let ft ≡ Ttf ≡ etL , for a smooth bounded function f ≥ 0 . Setting
St ≡ Entµ(ft), we have

(8.1.8)
d

dt
St = µLft log

ft

µft
= −

∑
j

µ
(
f−1

t vj(|∇jft|) · |∇jft|2
)

If vj(y) ≥ |y|κ−2 , then we have

(8.1.9) µ
(
f−1

t vj(|∇jft|) · |∇jft|2
)
≥ (1− 1

κ
)−κ · µ|∇jf

1− 1
κ

t |κ

Thus , if 1− 1
κ = 1

q , with q ∈ (1, 2) , we have

(8.1.10)
d

dt
St ≤ −qκ ·

∑
j

µ|∇jf
1
q

t |κ

Since 1 < q ≤ κ , we can use Hölder inequality for lp(Λ) norms to get

(8.1.11)
d

dt
St ≤ −qκ|Λ|1−

κ
q ·

∑
j

µ|∇jf
1
q

t |q
κ

q

If now the following LSq inequality is satisfied

Entµ(g) ≤ qqC
∑

j

µ|∇jg
1
q |q

then using (8.1.11), we obtain

(8.1.12)
d

dt
St ≤ −|Λ|1−

κ
q C−

κ
q · S

κ
q

t

Solving this differential inequality one arrives at the following bound

(8.1.13) St ≤
(
S
−κ−q

q

0 + |Λ|1−
κ
q C−

κ
q (
κ

q
− 1) · t

)− q
κ−q

which implies (8.1.7).

Remark 8.6. We remark that as q −→ 2 the right hand side of (8.1.13)
converges to the known exponential decay of entropy which is independent of Λ.



CHAPTER 9

Isoperimetry

Given a convex body K in Rn (a convex, compact, n-dimensional set with
non-empty interior), denote by µ the corresponding normalised Lebesgue measure,
that is, the uniform distribution on K. Thus, it has density

dµ(x)
dx

=
1K(x)

voln(K)
, x ∈ Rn,

with respect to Lebesgue measure on Rn, where we use 1K to denote the indicator
function of a set K. The canonical relative isoperimetric problem for K is to
minimise the quantity µ(A + hB2) provided that µ(A) and h > 0 are fixed (A is
a Borel subset of Rn and B2 is the unit Euclidean ball with centre at the origin).
Another, formally weaker problem asks how to minimise the relative µ-perimeter

(9.0.1) µ+
2 (A) = lim inf

h↓0

µ(A+ hB2)− µ(A)
h

,

that is, how to find the so-called isoperimetric function for µ,

Iµ(t) = inf
µ(A)=t

µ+(A), 0 < t < 1.

The problem makes sense for any probability measure µ on Rn and is of a large
interest in Analysis and Probability.

Furthermore, we often obtain a different interesting problem when considering
a different enlargement of sets by replacing the ball B2 with other convex bodies
B in Rn such as for example Bp, the unit balls with respect to `pmetric, (1 ≤ p ≤
+∞). Appropriately, one should understand the notion of the perimeter and of the
isoperimetric function.

Even in the traditional situation (the case of a convex body and of the Euclidean
distance), the isoperimetric problem seems to be very far from being solved. One
usually tries to study suitable families of convex bodies or some isoperimetric-type
inequalities such as of the Cheeger-type

(9.0.2) µ+
2 (A) ≥ c min{µ(A), 1− µ(A)}, A ⊂ Rn Borel.

The optimal value in such an inequality,

c(K) = inf
0<t≤ 1

2

Iµ(t)
t

,

was introduced in 1969 by J. Cheeger [C] and since then it is called Cheeger’s
isoperimetric constant. Thus, it has to be estimated from below in terms of K or
in terms of µ in the general measure case. In 1995, R. Kannan, L. Lovász, and

47
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M. Simonovits [K-L-S] developed a localization technique which led to a number of
interesting estimates for this quantity. In particular, they proved the bound

(9.0.3) c(K) ≥ c0∫
|x| dµ(x)

with some universal constant c0. A different approach, based on the application
of Prékopa-Leindler’s theorem, was later suggested in [B3]. A weak point of this
bound is that the dimension n is essentially involved in the right hand side of (1.3)
and therefore one may not hope, for example, to reach on this way the concentration
of measure phenomenon: in the simplest case of the unit Euclidean ball K = B2,
the Cheeger constant is of order

√
n, while the right hand side of (9.0.3) is close to

a constant, as n tends to infinity. The same holds for all other convex bodies K
which are brought in isotropic position.

Apparently this negative observation stimulated the authors of [K-L-S] to look
for other better feeling the geometry of a convex body quantities . At the end of
their paper, they introduced a quantity

χ(K) =
∫
χK(x) dµ(x)

where χK(x) denotes the length of the longest interval in K with centre at x ∈ K,
that is,

(9.0.4) χK(x) = diam ((K − x) ∩ (x−K)).

Using it they derived the following isoperimetric inequality

(9.0.5) µ(A)(1− µ(A)) ≤ χ(K)µ+(A),

which is equivalent, up to a universal factor, to the bound

(9.0.6) c(K) ≥ 1
2χ(K)

.

For the Euclidean balls, both sides of (9.0.6) are now of the same order. One
should however emphasize that (9.0.6) remains inappropriate for some canonical
cases. According to [K-L-S], (9.0.6) is not good for the regular simplex (and clearly
for `1-ball K = B1, as well). Another “negative” example is given by the unit
`∞-ball K = [−1, 1]n when the Cheeger constant c(K) is of order 1. In this case,
χ2

K(x) =
∑

i(1− |xi|)2, so χ(K) is of order 1√
n
.

The question of what is really essential to effectively estimate the isoperimetric
function Iµ and, in particular, the Cheeger constant c(K) is still open. There is
however a striking hypothesis suggested in the same paper [K-L-S] which says the
following: if we consider the inequality (9.0.2) in the class of all half-spaces A of Rn,
the corresponding optimal constant c should be equivalent to c(K) up to universal
factors. The same can be conjectured for general log-concave probability measures
µ on Rn. For example, the hypothesis is true in the class of product log-concave
measures; this was shown in [B-H1] with the help of a suitable induction argument
going back to [B2].

Although, too little is known about sharp bounds in the general case, the K-
L-S theorem (9.0.5)-(9.0.6) seems to be well adapted to study uniformly convex
bodies and uniformly convex probability measures. The isoperimetric problem for
such measures was first investigated in the 1987 paper by M. Gromov and V. D.
Milman [G-M]. They introduced a special kind of localization allowing to work on
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the sphere of a uniformly convex Banach space; see also [A]. For various localization
arguments, we can refer the reader to the recent works [F-G] and [N-S-V].

Let us return to the isoperimetric inequality (9.0.2) and write it as the relation

Iµ(t) ≥ c min{t, 1− t}, 0 < t < 1.

How sharp is it in general ? It is well known that, in the body case, the isoperimetric
function Iµ(t) for small t resembles very much the function c t(n−1)/n. Therefore
one also considers (especially in Riemannian Geometry, cf. [Cr], [Li]) the so-called
Sobolev constant

sn(K) = inf
0<t≤ 1

2

Iµ(t)

t
n−1

n

.

It turns out that this more sensitive quantity (in comparison with c(K)) can also be
related to the geometric characteristic χ(K), and we have the following refinement
of (9.0.6):

Theorem 9.1. For any convex body K in Rn,

(9.0.7) sn(K) ≥ 1
Cχ(K)

,

where C > 0 is a numerical constant.

The proof uses a localization argument of [K-L-S] which we discuss in the next
section. To be more precise, assume n ≥ 2 and define another quantity

χn(K) =
(∫

χK(x)
n

n−1 dµ(x)
)n−1

n

= ‖χK ‖
L

n
n−1 (K,µ)

.

With this quantity we have the following result.

Theorem 9.2. Given a convex body K in Rn with the normalised Lebesgue
measure µ on it, for all Borel A ⊂ Rn,

(9.0.8) µ(A)
n−1

n (1− µ(A)) ≤ 4χn(K)µ+(A).

In particular,

(9.0.9) sn(K) ≥ 1
8χn(K)

.

These estimates remain to hold with respect to any norm on Rn with the corre-
sponding notion of the diameter in (9.0.4) and of the perimeter in (9.0.1).

As we will see, in the Euclidean case, χn(K) ≤ Cχ(K), for some universal
constant C, so Theorem 9.2 is more general. We will illustrate the bound (9.0.9)
on the example of uniformly convex bodies in Rn.

Let us also mention a well known relationship of the Sobolev constants with
Sobolev-type inequalities (which is due to V. G. Maz’ja [M1], cf. also [M2], [B-Z]).
The combination of the coarea formula with (9.0.8) allows one easily to deduce:

Corollary 9.3. For any convex body K in Rn, and every smooth function f
on Rn with

∫
K
f(x) dx = 0, with respect to any norm ‖ · ‖ on Rn,

(9.0.10)
(∫

K

|f(x)|
n

n−1 dµ(x)
)n−1

n

≤ Cχn(K)
∫

K

‖∇f(x)‖∗ dµ(x),
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where ‖ · ‖∗ is the dual norm and C is a numerical constant.



CHAPTER 10

The localization argument

The localization argument of [K-L-S] can be applied to a variety of multidimen-
sional geometric inequalities. In particular, it can be applied to (9.0.8). With the
following lemma due to L. Lovász and M. Simonovits [L-S] it can be then reduced
to a certain analytic problem in dimension one.

Lemma 10.1. Let u and v be two lower semi-continuous, integrable functions
on Rn such that ∫

Rn

u(x) dx > 0,
∫
Rn

v(x) dx > 0.

Then for some points a, b ∈ Rn and some affine function ` : (0, 1) → (0,+∞),∫ 1

0

u((1− t)a+ tb) `(t)n−1 dt > 0,
∫ 1

0

v((1− t)a+ tb) `(t)n−1 dt > 0.

Recall that a function is lower semi-continuous, if it can be represented as a
pointwise limit of an increasing sequence of continuous functions. For example, the
indicator function of an open set is lower semi-continuous. Lemma 10.1 implies:

Lemma 10.2. Let α, β > 0 and let u1, u2, u3, u4 be continuous, non-negative
functions defined on a convex body K in Rn and such that, for all a, b ∈ K and for
any affine function ` : (0, 1) → (0,+∞),(∫ 1

0

u1((1− t)a+ tb) `(t)n−1 dt

)α(∫ 1

0

u2((1− t)a+ tb) `(t)n−1 dt

)β

(10.0.1)

≤
(∫ 1

0

u3((1− t)a+ tb) `(t)n−1 dt

)α(∫ 1

0

u4((1− t)a+ tb) `(t)n−1 dt

)β

.

Then,

(10.0.2)
(∫

K

u1(x) dx
)α(∫

K

u2(x) dx
)β

≤
(∫

K

u3(x)
)α(∫

K

u4(x) dx
)β

.

Lemma 10.2 is formulated in [K-L-S] in a slightly different way in terms of the
so-called exponential needles. The corresponding arguments are as follows.

Without loss of generality, let the functions uj be strictly positive so that all
the considered integrals (including one dimensional) do not vanish. By considering
an ε-interior of K and then letting ε ↓ 0, we may also assume that K is open and
bounded.
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Now, assuming the contrary to (10.0.2), one can take a number A > 0 such
that (∫

K
u1∫

K
u3

)α

> A >

(∫
K
u4∫

K
u2

)β

,

or equivalently,∫
Rn

(u1 −A1/αu3) 1K > 0,
∫
Rn

(A1/βu2 − u4) 1K > 0.

The functions under the integral sign are lower semi-continuous, so, by Lemma
10.1, one can find a segment (a, b) ⊂ Rn and a positive affine function ` on (a, b)
such that∫

(a,b)

(u1 −A1/αu3) `n−1 1K > 0,
∫

(a,b)

(A1/βu2 − u4) `n−1 1K > 0,

where the integrals are understood with respect to Lebesgue measure on (a, b). In
terms of the interval (a′, b′) = (a, b) ∩K ⊂ K, we have∫

(a′,b′)

(u1 −A1/αu3) `n−1 > 0,
∫

(a′,b′)

(A1/βu2 − u4) `n−1 > 0.

Since again these two inequalities may be written as(∫
(a′,b′)

u1 `
n−1∫

(a′,b′)
u3 `n−1

)α

> A >

(∫
(a′,b′)

u4 `
n−1∫

(a′,b′)
u2 `n−1

)β

,

we obtain a contradiction with (10.0.1).

Clearly (using suitable approximation), Lemma 10.2 remains to hold for many
discontinuous functions involving, for example, indicator functions of “regular” sub-
sets of Rn. To derive (9.0.5), Kannan, Lovász, and Simonovits considered the
inequality of the form

(10.0.3) µ(A)µ(B) ≤
∫

K

χK(x) dµ(x)
µ(C)
h

, h > 0,

where A,B,C is an arbitrary partition of K into non-empty “regular” subsets such
that dist(A,B) = h. Since it is of the form (10.0.2) with

α = β = 1, u1 = 1A, u2 = 1B , u3 = χK , u4 =
1C

h
,

we are reduced to the corresponding inequality (10.0.1) for dimension one. On the
other hand, fixing a set A, taking B = K \ (A + hB2), C = K \ (A ∪ B), and
letting h tend to zero, the inequality (10.0.3) will turn unto the bound (9.0.5) for
the Cheeger constant.

Similarly and better for our purposes, one may study an inequality of the form

(10.0.4) c µ(A)
n−1

n µ(B) ≤
(∫

K

χK(x)
n

n−1 dµ(x)
)n−1

n µ(C)
h

,

which for small h becomes the desired inequality (9.0.8) of Theorem 9.2 (the con-
stant c > 0 has to be precised later on the basis of a certain one dimensional
problem). Again, we are in position to apply Lemma 10.2 with

α =
n− 1
n

, β = 1, u1 = 1A, u2 = c 1B , u3 = χ
n

n−1
K , u4 =

1C

h
,
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so we are reduced to the particular case of (10.0.1) which can be written as follows

(10.0.5) c µ`(A)
n−1

n µ`(B) ≤

(∫
(a,b)

χK(x)
n

n−1 dµ`(x)

)n−1
n

µ`(C)
h

.

Here, ` is a positive, affine function defined on a segment (a, b) ⊂ K, and µ` denotes
the measure on (a, b) with density `n−1 with respect to Lebesgue measure on (a, b).
Recall that, (because the distance is determined by the norm ‖ · ‖ in Rn), we have

h = dist(A,B) = inf{ ‖a− b‖ : a ∈ A, b ∈ B},

χK(x) = 2 max{ ‖u‖ : x± u ∈ K, u ∈ Rn}.

The inequality (10.0.5) will formally become stronger, if the sets A,B,C are re-
placed respectively by A ∩ (a, b), B ∩ (a, b), C ∩ (a, b): in this case the distance h
will only become larger. Therefore, in (10.0.5) it suffices to consider partitions of
(a, b). Moreover, the inequality will formally be strengthened if we replace χK by
the smaller function

χ(a,b)(x) = 2 sup{ ‖u‖ : x± u ∈ (a, b), u ∈ Rn}, x ∈ (a, b).

Thus, (10.0.5) is reduced to the form

(10.0.6) c µ`(A)
n−1

n µ`(B) ≤

(∫
(a,b)

χ(a,b)(x)
n

n−1 dµ`(x)

)n−1
n

µ`(C)
h

,

where A,B,C is an arbitrary “regular” partition of the segment (a, b) such that
h = dist(A,B).

This problem, where the set K has been eliminated, is already a purely one
dimensional problem. For convenience, it may be formulated on the segment (0, 1)
of the real line using the parametrisation of (a, b) by the map xt = a + t(b − a),
0 < t < 1. Then, ‖xt − xs‖ = ‖b− a‖ |t− s|, so

h = ‖b− a‖dist(A′, B′),

where A′ = {t ∈ (0, 1) : xt ∈ A}, B′ = {t ∈ (0, 1) : xt ∈ B}, and where we use
the usual distance on the real line. On the hand, the vector u appearing in the
definition of χ(a,b) has to be of the form s(b − a), for some s ∈ R. Therefore, as
easy to see,

xt + u ∈ (a, b) and xt − u ∈ (a, b) ⇐⇒ |s| < min{t, 1− t}.

Consequently, χ(a,b)(xt) = ‖b−a‖ min{t, 1− t}. Introducing C ′ = {t ∈ (0, 1) : xt ∈
C} and the measure µ′` on (0, 1) – pre-image of µ` under the parametrisation map,
we can thus rewrite (10.0.6) as

c µ′`(A
′)

n−1
n µ′`(B

′) ≤
(∫ 1

0

(min{t, 1− t})
n

n−1 dµ′`(t)
)n−1

n µ`(C ′)
dist(A′, B′)

.

Finally, note that, up to a numerical constant, the measure µ′` has density `(xt)n−1

and that `(xt) is an affine and positive function in t ∈ (0, 1). Thus we conclude
with:
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Corollary 10.3. Given c > 0 and h > 0, the multidimensional inequality
(10.0.4) is equivalent to the property that

(10.0.7) c µ`(A)
n−1

n µ`(B) ≤
(∫ 1

0

(min{t, 1− t})
n

n−1 dµ`(t)
)n−1

n µ`(C)
h

,

where A,B,C is a partition of (0, 1) with dist(A,B) = h, where ` is a affine,
positive function on (0, 1), and µ` is a measure on (0, 1) with density `n−1.

The above argument showed that (10.0.7) implies (10.0.4). In turn, choosing
infinitesimally small truncated cones K in (10.0.4), one obtains in the limit (10.0.7).

Note that the inequality (10.0.7) is homogeneous with respect to `, so we may
always assume that µ` is a probability measure, that is,

∫ 1

0
`(t)n−1 dt = 1.
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Infinitesimal version

To prove Theorem 9.2, we are now faced with the one dimensional problem
(10.0.7) where finding an optimal (or some) constant c does seem a much simpler,
although not yet immediate, task. Recall that the inequality (10.0.4) yields the de-
sired result by letting h→ 0. Similarly, we would obtain a simpler one dimensional
inequality by letting h → 0 in (10.0.7). This would potentially simplify our task,
but then, can we return back? That is, will we obtain an equivalent inequality? An
affirmative answer is given in the following:

Proposition 11.1. In the setting of an arbitrary probability metric space (M,ρ, µ),
for any α ∈ [ 12 , 1] and c > 0, the inequality of the form

(11.0.1) c µ(A)α µ(B) ≤ µ(C)
h

,

where A,B,C is an arbitrary partition of M into Borel measurable subsets such
that h = dist(A,B), is equivalent to its infinitesimal version obtained by letting
h→ 0,

(11.0.2) c µ(A)α (1− µ(A)) ≤ µ+(A), A ⊂M Borel.

In the general case, the perimeter is defined similarly to (9.0.1) as

µ+(A) = lim inf
h↓0

µ(Ah)− µ(A)
h

,

where Ah = {x ∈ M : ρ(x, a) < h, for some a ∈ A} is the open h-neighbourhood
of A with respect to ρ. With this notations, and since the right hand side of (11.0.1)
is continuous in h, one can put in (11.0.1) B = M \Ah, C = Ah \A, and then the
inequality itself will take the form

µ(Ah) ≥ µ(A) + c · hµ(A)α

1 + c · hµ(A)α
, A ⊂M Borel.

In the sequel (throughout this section), since the parameter c may be absorbed by
the variable h, we assume c = 1, so that (11.0.1) has the form

(11.0.3) µ(Ah) ≥ Lh(µ(A)), h > 0,

for the family

Lh(p) =
p+ hpα

1 + hpα
, 0 < p < 1.

In turn, write (11.0.2) as

(11.0.4) µ+(A) ≥ I(µ(A)), 0 < µ(A) < 1,

55
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for
I(p) = pαq, 0 < p < 1, q = 1− p.

It is well known, (cf. e.g. [B-H2], [L]), that given a continuous non-negative function
I on (0,1), the isoperimetric inequality (11.0.4) can be “integrated over h” and
equivalently be written as

(11.0.5) µ(Ah) ≥ Rh(µ(A)), h > 0, µ(A) > 0,

for a suitable semi-group {Rh}h≥0. Namely, one can associate with I a distribution
function on the real line, F = F (x), x ∈ R, defined via its inverse by

F−1(p) =
∫ p

1/2

dt

I(t)
, 0 < p < 1.

It has median at zero and, as a measure, F is concentrated on the interval (a, b) ⊂ R,
finite or not, with

a = −
∫ 1/2

0

dt

I(t)
, b =

∫ 1

1/2

dt

I(t)
.

In our concrete case, a is finite (if α < 1), while b = +∞; although this will not
matter later. What is important for us is that one can take in (11.0.5)

(11.0.6) Rh(p) = F (F−1(p) + h), 0 ≤ p ≤ 1.

Here, by continuity, Rh(0) = F (a+ h), Rh(1) = 1.
Recalling (11.0.3), and in view of the equivalence of (11.0.4) and (11.0.5),

Proposition 11.1 will be implied by:

Proposition 11.2. For I(p) = pαq with 1
2 ≤ α ≤ 1, we have Rh(p) ≥ Lh(p),

for all h > 0 and p ∈ [0, 1].

For the convenience, we divide the proof into several steps. First we state one
crucial property of the family Lh. Clearly, these functions bijectively act from [0, 1]
onto itself.

Lemma 11.3. For all h1, h2 ≥ 0 and p ∈ [0, 1],

(11.0.7) Lh1+h2(p) ≤ Lh1(Lh2(p)).

Proof. Indeed, using Lh(p) = 1− q
1+hpα , the property (11.0.7) is just

1− Lh2(p)
1 + h1Lh2(p)α

≤ q

1 + (h1 + h2)pα
,

that is,
(1− Lh2(p))(1 + (h1 + h2)pα) ≤ q (1 + h1Lh2(p)

α).
This inequality is affine with respect to h1, so the cases h1 = 0 and h1 = +∞ have
to be considered, only. When h1 = 0, we obtain equality (by the definition of Lh).
Letting h1 → +∞, we are reduced to

(1−Lh2(p))p
α ≤ qLh2(p)

α ⇐⇒ pαq

1 + h2pα
≤ qLh2(p)

α ⇐⇒ p

(1 + h2pα)1/α
≤ Lh2(p).

Replacing h2 by h and using the definition of Lh, we arrive at

(11.0.8) p (1 + hpα)
1
α−1 ≤ p+ hpα.
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Note that, due to the assumption α ∈ [ 12 , 1], the left hand side represents a non-
decreasing, concave function in h ≥ 0, while the right hand side is affine. Hence,
it suffices to consider the behaviour of both sides near zero. When h = 0, (11.0.8)
turns into equality, while the corresponding derivatives at h = 0 turn the inequality
into p ( 1

α − 1) ≤ 1 which is true. Thus, the property (11.0.7) is verified.

In contrast with (11.0.7), it follows immediately from the definition (11.0.6)
that:

Lemma 11.4. For all h1, h2 ≥ 0 and p ∈ [0, 1], Rh1+h2(p) = Rh1(Rh2(p)).

Lemma 11.5. For I(p) = pαq with 1
2 ≤ α ≤ 1, there exist 0 < p0 < p1 < 1

and h0 > 0 such that

(11.0.9) Rh(p) ≥ Lh(p),

whenever h ∈ [0, h0] and p ∈ [0, p0] ∪ [p1, 1].

Proof. We may assume 1
2 < α < 1 to simplify the argument in some details.

The function I(p) = pαq is concave on (0,1), so F has log-concave density f(x) =
F ′(x) on the supporting interval (a, b). Recall that, according to the definition of
F ,

f(F−1(p)) = I(p) = pαq, 0 < p < 1.
Clearly, the density f is smooth on (a, b). Formally differentiating the above equal-
ity, we get

(11.0.10) f ′(F−1(p)) = I(p)I ′(p) = p2α−1q (αq − p), 0 < p < 1.

Further differentiation of J(p) = f ′(F−1(p)) gives

J ′(p) = p2α−2 ((α+ 1)(2α+ 1)p2 − 2α(2α+ 1)p+ α(2α− 1)).

Thus, for small p, J ′(p) behaves like α(2α− 1)p2α−2 > 0, so

J ′(0+) = +∞, J ′(1−) = 1.

Hence, J(p) increases near p = 0 and near p = 1, and the same is true for the
function f ′(x) near x = a and x = +∞.

For a fixed p ∈ (0, 1), write Taylor’s expansion for Rh(p) = F (F−1(p) + h) as
a function of h up to the quadratic term:

Rh(p) = p+ I(p)h+ f ′(F−1(p) + w)
h2

2
, 0 < w < h.

If p is sufficiently close to 1, or if p and h are sufficiently close to 0, by the above
mentioned monotonicity,

Rh(p) ≥ p+ I(p)h+ f ′(F−1(p))
h2

2
.

Therefore, by (11.0.10) and since Lh(p) = 1− q
1+hpα , (11.0.9) would be implied by

p+ I(p)h+ I(p) I ′(p)
h2

2
≥ 1− q

1 + hpα
.

Subtracting p and dividing by I(p)h, this inequality becomes 1 + I ′(p) h
2 ≥

1
1+hpα ,

or, − 1
2 I

′(p) ≤ pα

1+hpα . For small p, this bound is immediate, since I increases near
zero. To treat the other case, rewrite the bound as 1

2 (p − αq) ≤ p
1+hpα . This
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inequality is readily fulfilled for sufficiently small q and h (independently of each
other). Hence Lemma 11.5 follows.

Proof of Proposition 11.2. Given t ∈ (0, 1), define

∆ = {h ≥ 0 : Rh(p) ≥ Lth(p), for all p ∈ [0, 1]}.
If we show that ∆ = [0,+∞), then letting t → 1 will give the desired inequality
(11.0.9). For any h1, h2 ∈ ∆ and p ∈ [0, 1], by Lemmas 11.3 and 11.4,

Rh1+h2(p) = Rh1(Rh2(p)) ≥ Lth1(Lth2(p)) ≥ Lt(h1+h2)(p).

Hence, h1 + h2 ∈ ∆, so ∆ + ∆ = ∆. Therefore, it suffices to show that ∆ contains
all sufficiently small h > 0. By Lemma 11.5, in the inequality Rh(p) ≥ Lth(p), it
remains to consider the values p0 ≤ p ≤ p1, only. Writing the Taylor’s expansion
over h ↓ 0 for the functions Rh(p) and Lth(p) we have:

(11.0.11) Rh(p) = p+ I(p)h+O(h2), Lh(p) = p+ tI(p)h+O(h2).

Here both constants in O(h2) are uniform in p, since the corresponding second
derivatives are bounded. Indeed, by (11.0.10), f ′ is bounded, so is d2Rh(p)

dh2 =
f ′(F−1(p) + h). In addition,

d2Lh(p)
dh2

= − 2p2αq

(1 + hpα)3

is evidently bounded. But I(p) is separated from zero on [p0.p1], so, for small h > 0,
the inequality Rh(p) ≥ Lth(p) immediately follows from (11.0.11).
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Proof of Theorem 9.2

Now we can return to the one dimensional inequality (10.0.7) and apply Propo-
sition 11.1 to rewrite (10.0.7) in the infinitesimal form as

(12.0.1) c µ`(A)α (1− µ`(A)) ≤
(∫ 1

0

(min{t, 1− t})1/α dµ`(t)
)α

µ+
` (A).

Here A is an arbitrary Borel subset of (0,1) and α = n−1
n . Note that 1

2 ≤ α < 1, for
any integer n ≥ 2. Since L1/α-norm majorizes L1-norm, (12.1) can be strengthened
as

(12.0.2) c µ`(A)α (1− µ`(A)) ≤
∫ 1

0

min{t, 1− t} dµ`(t) µ+
` (A)

(remaining equivalent up to a numerical factor). Note that, in terms of the dis-
tribution function F (t) = µ`[0, t], 0 ≤ t ≤ 1, the above integral has a simple
representation

(12.0.3)
∫ 1

0

min{t, 1− t} dµ`(t) =
∫ 1/2

0

(
F

(
t+

1
2

)
− F (t)

)
dt.

Thus, we are dealing in (12.0.2) with an inequality on the real line of the form

(12.0.4) c̄ λ(A)α (1− λ(A)) ≤ λ+(A)

for special probability measures λ = µ` (the new constant c̄ temporarily absorbs the
other factor in (12.0.2) independent of A). Since the non-negative functions of the
form `n−1 on [0,1] extended to the whole line by zero outside [0, 1] are log-concave,
the measures µ` are log-concave in the sense of Prékopa (cf. [Pr], [Bor2]). The
isoperimetric problem for any log-concave measure λ on R has a simple solution:
the perimeter λ+(A) attains minimum within all Borel measurable sets A with
prescribed value of λ(A) either for a half-axis A = (−∞, x], or for A = [x,+∞); see
[B1] for details. Equivalently, in terms of the distribution function F (x) = λ(−∞, x]
and its density f , we have a simple representation for the isoperimetric function of
such a measure,

(12.0.5) Iλ(p) = min{f(F−1(p)), f(F−1(q))}, 0 < p < 1, q = 1− p,

where F−1 is the corresponding inverse function. Therefore, the inequality (12.0.4)
is needed to verify on half-axes, only, and the optimal value of c̄ comes from

(12.0.6) c̄ pαq ≤ Iλ(p)

with the right hand side described in (12.0.5).
So, let us find an analytic expression for the isoperimetric function in case

λ = µ`. Since Iλ(p) is always symmetric about the point p = 1
2 , and since the

59
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integral in (12.0.2) is invariant under the transformation t→ 1− t, we may assume
that `(t) is non-decreasing in t and thus has the form

`(t) = const (r + t)

with necessarily r ≥ 0. In view of the condition µ`[0, 1] = 1, the distribution and
density functions of this measure are given by

(12.0.7) Fr(t) =
(r + t)n − rn

(r + 1)n − rn
, fr(t) =

n

(r + 1)n − rn
(r + t)n−1 (0 < t < 1),

where r is a non-negative parameter. From this, as it is easy to see,

fr(F−1
r (p)) =

n

(r + 1)n − rn
(p(r + 1)n + qrn)α.

Given x, y ≥ 0, the quantity (xp+yq)α

pαq = (x + y
q )α 1

q attains minimum for q = 1,
when it equals x+ y. In particular,

inf
0<p<1

(p(r + 1)n + qrn)α

pαq
= inf

0<p<1

(q(r + 1)n + prn)α

pαq
= ((r + 1)n + rn)α.

Hence, by (12.0.5), the optimal constant in (12.0.6) for the isoperimetric function
Iλ of µ` satisfies

(12.0.8) c̄ = n
((r + 1)n + rn)α

(r + 1)n − rn
≥ n

(r + 1)n−1

(r + 1)n − rn
.

Now, according to (12.0.7),
(12.0.9)∫ 1/2

0

(
Fr

(
t+

1
2

)
− Fr(t)

)
dt =

1
n+ 1

(r + 1)n+1 − 2(r + 1
2 )n+1 + rn+1

(r + 1)n − rn
.

Recalling (12.0.2)-(12.0.3) and applying (12.0.8)-(12.0.9), we may summarize:

Lemma 12.1. The inequality (12.0.1) for the measure µ` defined in (12.0.7)
with parameter r ≥ 0 holds true with

(12.0.10) c =
n

n+ 1
(r + 1)n−1

(
(r + 1)n+1 − 2 (r + 1

2 )n+1 + rn+1
)

((r + 1)n − rn)2
.

At last, we are ready to complete the proof of Theorem 9.2.

Proof of Theorem 9.2. It remains to estimate from below by a numerical
constant the right hand side of (12.0.10). So, let us look at the inequality of the
form

(12.0.11) (r+ 1)n−1

(
(r + 1)n+1 − 2

(
r +

1
2

)n+1

+ rn+1

)
≥ Dn ((r+ 1)n − rn)2.

Note that both sides represent certain polynomials of degree 2(n − 1). More pre-
cisely, according to Newton’s binomial formula,

((r + 1)n − rn)2 =
n∑

i=1

n∑
j=1

Ci
nC

j
n r2n−(i+j),
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where Ci
n = n!

i!(n−i)! are usual binomial coefficients. Writing (r+1)n−1 =
∑n

i=1 C
i−1
n−1 r

n−i

and noting that

(r+ 1)n+1− 2
(
r +

1
2

)n+1

+ rn+1 =
n∑

j=1

Cj+1
n+1

(
1− 1

2j

)
rn−j ≥ 1

2

n∑
j=1

Cj+1
n+1 r

n−j .

we see that (12.0.11) is implied by

(12.0.12)
n∑

i=1

n∑
j=1

Ci−1
n−1C

j+1
n+1 r

2n−(i+j) ≥ 2Dn

 n∑
i=1

n∑
j=1

Ci
nC

j
n r2n−(i+j)

 .

Let us compare here the coefficients Aij = Ci−1
n−1C

j+1
n+1 with Bij = Ci

nC
j
n. We have

in general Aij = i
j+1

n+1
n Bij , so

Aii =
i

i+ 1
n+ 1
n

Bii ≥ 1
2
n+ 1
n

Bii, 1 ≤ i ≤ n.

In view of Bij = Bji, for the case 1 ≤ i 6= j ≤ n we also have

Aij +Aji =
(

i

j + 1
+

j

i+ 1

)
n+ 1
n

Bij +Bji

2
≥ 1

2
n+ 1
n

(Bij +Bji),

because one of the fractions i
j+1 , j

i+1 is greater or equal to 1. This shows that
(12.0.12) holds true with 2Dn = 1

2
n+1

n . Therefore, by Lemma 12.1, we may take
c = 1

4 in (12.0.1) and Theorem 9.2 is now proved.





CHAPTER 13

Euclidean distance (proof of Theorem 9.1)

Since n
n−1 ≤ 2, in order to derive Theorem 9.1 from Theorem 9.2, it will be

sufficient to establish a Khichine-type inequality for the functions χK . As we will
see, it holds true with respect to any log-concave measure.

Proposition 13.1. For any convex body K in Rn and every log-concave prob-
ability measure λ concentrated on K,

(13.0.1)
(∫

χ2
K dλ

)1/2

≤ C

∫
χK dλ,

where C is a numerical constant.

Proof. Log-concavity of a measure λ on Rn means (cf. [Bor2]) that, for all
t, s > 0 with t + s = 1 and for all non-empty Borel subsets A,B,C of Rn with
tA+ sB ⊂ C,

λ(C) ≥ λ(A)tλ(B)s.

The uniform distribution λ = µ on K possesses this property due to Brunn-
Minkowski inequality (cf. e.g. [B-Z]).

By (9.0.4) for the distance given by the Euclidean norm | • | in Rn, for any
x ∈ K one has

χK(x) = 2 max{|u| : x± u ∈ K, u ∈ Rn}.
For given x, y ∈ K, let the vectors u, v ∈ Rn be the maximizers in this definition.
Since for all t, s > 0 with t+ s = 1, necessarily tx+ sy ± (tu± sv) ∈ K, we get

χ2
K(tx+ sy) ≥ 4 |tu± sv|2 = 4

(
t2|u|2 ± 2ts 〈u, v〉+ s2|v|2

)
.

Choosing appropriately the sign on the right hand side, we obtain

(13.0.2) χ2
K(tx+ sy) ≥ t2χ2

K(x) + s2χ2
K(y), x, y ∈ K, t, s > 0, t+ s = 1.

Let D = maxx∈K χ2
K(x) (clearly, the function χK is continuous, so the maximum

is attained at some point), and let ξ = χ2
K be considered as a random variable on

the probability space (K,λ) so that∫
χ2

K dλ = E ξ =
∫ D

0

λ{ξ ≥ a} da,∫
χK dλ = E ξ1/2 =

∫ D

0

λ{ξ ≥ a} da1/2.

For any a ∈ [0, D], define the set A(a) = {x ∈ K : ξ(x) ≥ a}. By (13.0.2), for all
a, b ∈ [0, D], we have tA(a) + sA(b) ⊂ A(t2a+ s2b). Hence, by the log-concavity of
λ, the function under the integral sign, f(a) = λ(A(a)), possesses the property

(13.0.3) f(t2a+ s2b) ≥ f(a)tf(b)s, 0 ≤ a, b ≤ D, t, s > 0, t+ s = 1.
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The inequality remains to hold if we extend f by zero to the interval (D,+∞).
Note also that f(0) = 1 and that f will be non-increasing and left continuous on
[0,+∞). The last mentioned properties ensure that there exists a maximal number
m ∈ [0.D] such that f(m) ≥ 1

e . Hence,

E ξ1/2 ≥
∫ m

0

f(a) da1/2 ≥ 1
e
m1/2,

and

(13.0.4) m ≤ e2
(
E ξ1/2

)2

.

On the other hand, let us apply (13.0.3) with b = 0, a = a0
t2 , r = 1

t2 where a0 > m
is a fixed parameter. Then we get

f(a0r) ≤ f(a0)
√

r ≤ e−
√

r, r > 1,

so

E ξ =
∫ a0

0

f(a) da+ a0

∫ +∞

1

f(a0r) dr ≤ a0 + a0

∫ +∞

1

e−
√

r dr =
(

1 +
4
e

)
a0.

Letting a0 ↓ m, we get E ξ ≤ (1 + 4
e )m which together with (13.0.4) yields

E ξ ≤ (e2 + 4e) (E ξ1/2)2.

This is just the desired estimate (13.0.1) with C =
√
e2 + 4e.

Remark 13.2. The property (13.0.2) is very close to the description of χ2
K

as a concave function. For example, in case of the unit Euclidean ball K = B2,
the function χ2

K(x) = 1 − |x|2 is indeed concave. Khinchine-type inequalities for
such functions were investigated by L. Berwald who showed (cf. [Ber] and [Bor1]
for another proof), that for all p > q > 0, within the class of all convex bodies K
in Rn and all concave functions g on K, the ratio

‖ g ‖Lp(K,µ)

‖ g ‖Lq(K,µ)

is maximized in case of the simplex K = {x ∈ Rn
+ : x1+· · ·+xn ≤ 1} and the linear

function g(x) = x1. Here, µ denotes the uniform measure on K. In particular, this
result implies a Khinchine-type inequality

(13.0.5) ‖ g ‖L2(K,µ) ≤
√

2 ‖ g ‖L1(K,µ).



CHAPTER 14

Uniformly convex bodies

Let K be a symmetric about the origin, convex body in Rn. We are going
to examine the bound (9.0.9) for the Sobolev constant sn(K) with respect to the
canonical metric generated by the norm

‖x‖ = min{λ ≥ 0 : x ∈ λK}, x ∈ Rn.

Being restricted to K, this metric is called the inner metric for K.
Note that in general, for any x ∈ K, the assumptions x± u ∈ K imply u ∈ K,

so χK(x) ≤ 1. Hence, by Theorem 9.2,

Proposition 14.1. The Sobolev constant sn(K) defined with respect to the
inner metric on K satisfies

(14.0.1) sn(K) ≥ c.

with some universal constant c ≥ 1
2 independent of K.

Actually, the bound (9.0.9) yields c = 1
8 , and the improvement can be reached

using a different argument. Recall the classical Brunn-Minkowski inequality (cf.
e.g. [B-Z]): for all t ∈ (0, 1) and all non-empty Borel sets A,B ⊂ Rn,

voln(tA+ (1− t)B) ≥
(
t voln(A)1/n + (1− t) voln(B)1/n

)n

.

Hence, the uniform probability measure µ on K possesses the same property:

µ(tA+ (1− t)B) ≥
(
t µ(A)1/n + (1− t)µ(B)1/n

)n

.

Applying it to the couple (A,K) and to the couple (K \A,K), we get

µ(tA+ (1− t)K) ≥
(
tp1/n + 1− t

)n

,

µ(t(K \A) + (1− t)K) ≥
(
tq1/n + 1− t

)n

,

where p = µ(A), q = 1 − p. Adding the last two inequalities and letting t → 1, in
the limit we obtain:

Proposition 14.2. For every Borel subset A of K of measure µ(A) = p,

(14.0.2) µ+(A) ≥ n

2

(
p

n−1
n + q

n−1
n − 1

)
, q = 1− p.

Here, the perimeter is understood as in (9.0.1) with B2 replaced by K. To be
more precise, in the above argument one has to assume that A is smooth enough,
and then one may easily extend (14.0.2) from smooth sets to all Borel measurable.
In a slightly different form, the argument appeared in [B3]; the present formulation
with similar proof is given by F. Barthe [Bar].
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Letting n→∞ in (14.0.2) , we obtain a dimension free bound

µ+(A) ≥ 1
2

(
p log

1
p

+ q log
1
q

)
, q = 1− p.

Actually, this inequality remains to hold for any log-concave probability measure
concentrated on K ([B3]). Clearly, it implies that the Cheeger constant c(K) is
separated from zero; nevertheless, (14.0.2) contains more information concerning
the behaviour of the isoperimetric function Iµ(p) near zero. For example, we have:

Corollary 14.3. For any n ∈ N

n

2
≤ lim inf

p→0

Iµ(p)
p(n−1)/n

≤ lim sup
p→0

Iµ(p)
p(n−1)/n

≤ n.

Here, the first inequality immediately follows from (14.0.2). In order to see
the third one, it suffices to consider the set A = p1/nK in which case µ+(A) =
np(n−1)/n. Hence, Iµ(p) ≤ np(n−1)/n, for all p ∈ (0, 1).

Proof of Proposition 14.1. We need to check that (14.0.2) implies the
inequality (14.0.1) with constant c = 1

2 . Let α = n−1
n so that n = 1

1−α . Rewrite
the (desired) inequality 1

2(1−α) (pα + qα − 1) ≥ cpα as

(14.0.3)
1

2(1− α)

(
1− 1− qα

pα

)
≥ c, 0 < p ≤ 1

2
.

By direct differentiation, one sees that the function p→ 1−qα

pα is increasing on (0, 1).
Hence, the left hand side of (14.0.3) is minimized as p = 1

2 , and we are reduced to
an ≡ n (1− 2−1/n) ≥ c. The sequence an is increasing, so c = a1 = 1

2 .
Proposition 14.1 is proved.

As turns out, in spaces of large dimension, the Sobolev constant sn(K) can be
much larger, and the inequality (14.0.1) can be considerably sharpened for “suffi-
ciently” convex bodies K.

A convex, symmetric about the origin body K in Rn is called uniformly convex,
if the corresponding modulus of convexity,

δK(ε) = inf
{

1−
∥∥∥∥x+ y

2

∥∥∥∥ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≤ ε

}
,

is positive for each ε > 0. Here as before, the norm in Rn is inner for K. The
Banach space (Rn, ‖ · ‖) is said to have a modulus of convexity of power p ≥ 2 with
constant C > 0, if δK(ε) ≥ Cεp, for every ε ∈ (0, 2]. Equivalently (cf. e.g. [P]), for
all x, y ∈ Rn,

(14.0.4)
‖x‖p + ‖y‖p

2
−
∥∥∥∥x+ y

2

∥∥∥∥p

≥ κp ‖x− y‖p,

for some κ > 0. For example (cf. [L-T]), the unit `p-ball K = Bp with p ≥ 2
satisfies (14.0.4) with optimal κ = 1

2 .
Under the assumption (14.0.4), the characteristic χn(K) may easily be esti-

mated in terms of the constant κ. Indeed, for x ∈ K, let x± u ∈ K with maximal
possible value of ‖u‖ (equal to 1

2 χK(x)). Since ‖x±u‖ ≤ 1, application of (14.0.4)
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to x+u and x−u (in the place of x and y, respectively) gives 1−‖x‖p ≥ κp 2p‖u‖p.
Consequently, we get:

Lemma 14.4. Under (14.0.4), for all x ∈ K,

(14.0.5) χK(x) ≤ 1
κ

(1− ‖x‖p)1/p
.

To apply (9.0.9), we may use the above bound which leads to computing the
norm ‖ g ‖

L
n

n−1 (K,µ)
for the function g(x) = (1− ‖x‖p)1/p. To a little simplify the

task, let us note that g is concave on K and apply Berwald’s inequality (13.0.5).
With (14.0.5), we then get

(14.0.6) χn(K) ≤ 1
κ
‖ g ‖

L
n

n−1 (K,µ)
≤
√

2
κ
‖ g ‖L1(K,µ).

Now, ∫
K

(1− ‖x‖p)1/p dµ(x) =
∫ 1

0

(1− tp)1/p dtn =
Γ(n

p + 1)Γ( 1
p + 1)

Γ(n+1
p + 1)

.

Therefore, by (14.0.6) and Theorem 9.2,

(14.0.7) sn(K) ≥ κ

8
√

2

Γ(n+1
p + 1)

Γ(n
p + 1)Γ( 1

p + 1)
.

One may also apply Stirling’s formula, to develop the right hand side of (14.0.7):

Proposition 14.6. Let K be a symmetric convex body in Rn satisfying the
property (14.0.4) with parameters p ≥ 2 and κ > 0. Then, with respect to the inner
metric in K, the Sobolev constant satisfies

(14.0.8) sn(K) ≥ cn,p n
1/p κ,

for some double indexed sequence such that cn,p → c, as n→∞ and p
n → 0 (where

c is a positive universal constant).

In particular, for unit `p-balls K = Bp with p ≥ 2, we have sn(Bp) ≥ cn,p n
1/p.





CHAPTER 15

From Isoperimetry to LSq-inequalities

To illustrate what can happen for l∞ ball (when Dirichlet boundary are in-
volved), we utilise an idea of [Z3] as follows. First we recall that for the nth Carte-
sian product of the unit intervals one has the following Classical Sobolev inequality
with Dirichlet boundary conditions for the product measure νn on [0, 1]n.

(15.0.1)
(∫

|f |
n

n−1 dνn

)n−1
n

≤ 1
n

n∑
i=1

∫
|∇if | dνn

Using (15.0.1), for any q ∈ (1,∞) with the help of Holder inequality, we obtain

(15.0.2)
(∫

|f |
n

n−1 dνn

)n−1
n

≤ 1
n1/q

∫
|∇f |q dνn

where |∇f |q denotes the lq norm of the gradient. We note that if f is nonnegative,
with p ∈ (1,∞) such that 1

p + 1
q = 1, using the differentialtion rules and the Young

inequality we get
1

n1/q
|∇f |q = p

1
p f

1
p · 1

n1/q
qp−

1
p |∇f

1
q |q ≤ f +

1
n

(q − 1)q−1|∇f |qq

Inserting this into (15.0.2) and performing simple algebraic transformations, we
obtain the following relation

‖f‖ n
n−1

− ‖f‖1
1
n

≤ (q − 1)q−1

∫
|∇f

1
q |qq dνn

Hence passing to the limit with n −→ ∞ and replacing f by fq, we arrive at the
following LSq-inequality

Entν(fq) ≤ (q − 1)q−1

∫
|∇f |qq dν

with the infinte dimensional product measure ν on [0, 1]N. (Note that the limiting
procedure involves in fact also a sequence of functions, as we need to preserve the
Dirichlet condition all time on the way.)
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CHAPTER 16

Isoperimetric Functional Inequalities

The following functional inequality was first introduced in [B2] for the two
point measure and via central limit theorem extended to the standard Gaussian
measure

(IFI2) I(µf) ≤ µ
(
I(f)2 + C|∇f |22

) 1
2

with the Gaussian isoperimetric function I ≡γ(Φ−1(x)), given by Φ′(x) = γ(x) ≡
exp(−x2/2)/

√
2π and some constant C ∈ (0,∞) for any function 0 ≤ f ≤ 1 for

which the right hand side is finite. One of the key properties of (IFI2) is the product
property which makes it suitable for the infinite dimensional analysis.

The result of [B2] was later extended in a number of directions including
[Ba-L], [B-G2], [Fo], [Z1],... and others, expanding greatly the set of measures
for which it holds true.

To recover the isoperimetric information from (IFI2), we note that the function
I is (concave, symmetric around 1/2 and) vanishing at 0 and 1. Therefore one can
use a suitable approximation of the characteristic function of a set A to obtain the
following relation

(ISO2) I(µ(A)) ≤ Cµ+
2 (A)

where the surface measure µ+
2 corresponds formally to a suitable metric for which

the natural length of the gradient of a Lipschitz function is |∇f |2.
The inequality (IFI2) is in general stronger than (ISO2). However, following

([B2]) it is interesting to see by the following direct computation that using (ISO2)
with some extra information one can derive (IFI2) in the Gaussian case. Namely
if (ISO2) is satisfied for the γ⊗2, with γ ≡ γdx and C = 1, then for A = {x ≤
Φ−1(f(y))}, defined with a smooth function 0 ≤ f ≤ 1, one gets

(16.0.1) µ(A) =
∫ ∫

1{x≤Φ−1(f(y))}γ(dx)γ(dy) =
∫
f(y)γ(dy)

and choosing natural parametrisation (x,Φ−1(f(x))) of the boundary ∂A and using
the definition of µ+

2 (∂A) together with elementary calculus we obtain

µ+
2 (∂A) =

∫
γ
(
Φ−1(f)

)√
1 + |∇Φ−1(f)|2 γ(dx)

=
∫
I(f)

√
1 +

1
I(f)2

|∇f |2(x) γ(dx) =
∫ √

I(f)2 + |∇f |2 γ(dx)(16.0.2)

Thus the relations (16.0.1) and (16.0.2) together with (ISO) imply (IFI2).
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One of the key features of (IFI2) is the product property which makes it suitable
for infinite dimensional analysis. As shown in [Z1] the following natural generali-
sation of this inequality has also the product property

(IFIq) U(µf) ≤ µ
(
U(f)q + C|∇f |qq

) 1
q

with a (concave) function U defined on the unit interval and vanishing at 0 and 1,
where C ∈ (0,∞) is independent of a function 0 ≤ f ≤ 1 for which the right hand
side make sense.

In this section we consider a function U(x) ≡ ϕ(F−1(x)) where F−1 is the
inverse of the distribution function associated to the density ϕ(z) = α−1

r e−|z|
r

dz ≡
ϕr(z) with αr ≡

∫
R e

−|z|rdz being a normalisation factor and r ∈ (1,∞). The choice
of U is motivated by the fact that in dimension one this is the right isoperimetric
function for the measure νr(dz) ≡ ϕr(z)dz, [B-H2]. Here, for q ∈ (1, 2] we choose
r ∈ [2,∞) such that 1

r + 1
q = 1 and show that in this case IFIq implies LSq, extending

the known result for q = 2 (see e.g. [Ba-L];. we remark also that for that index
q = 2 the converse implication was shown recently by the semigroup technique in
[Fo]).

We begin from the following lemma in which (as well as later on) we use a
simplified notation ν(dz) ≡ ϕ(z)dz ≡ νr(dz) .

Lemma 16.1.
(i) For y < 0 , we have

(16.0.3) r−1|y|−r+1(1− q−1|y|−r)ϕ(y) ≤ F (y) ≤ r−1|y|−r+1ϕ(y)

where q−1 + r−1 = 1 .
(ii) For x 6= 1

2 , we have

U ′(x) = −r|F−1(x)|r−1sign(F−1(x))

and

(16.0.4) U(x)U ′′(x) = −r
2

q
|F−1(x)|r−2

(iii)

(16.0.5) lim
x−→0+

U(x)

x
(
log 1

x

)1/q
= r

Proof of (iii). We note that

(16.0.6) lim
x−→0+

U(x)

x
(
log 1

x

)1/q
= lim

y−→−∞

ϕ(y)

F (y)
(
log 1

F (y)

)1/q

Using (16.0.3) and the fact that the function x
(
log 1

x

)1/q is increasing for small
x , we have

F (y)
(

log
1

F (y)

)1/q

≤ r−1|y|−r+1ϕ(y)
(

log
1

r−1|y|−r+1ϕ(y)

)1/q
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≤ r−1|y|−r+1ϕ(y)
(
|y|r +

∣∣∣∣log
1

r−1|y|−r+1α−1
r

∣∣∣∣)1/q

≤ r−1ϕ(y)

(
|y|−r+1+r/q + |y|−r+1

(∣∣∣∣log
1

r−1|y|−r+1α−1
r

∣∣∣∣)1/q
)

Hence using the fact that 1
r + 1

q = 1 , we get

F (y)
(

log
1

F (y)

)1/q

≤ r−1ϕ(y)

(
1 + |y|−r+1

(∣∣∣∣log
1

r−1|y|−r+1α−1
r

∣∣∣∣)1/q
)

Thus

ϕ(y)

F (y)
(
log 1

F (y)

)1/q
≥ r

(
1 + |y|−r+1

(∣∣∣∣log
1

r−1|y|−r+1α−1
r

∣∣∣∣)1/q
)−1

−→y−→∞ r

Similar arguments using the lower bound (16.0.3) for the distribution F allows us
to get the upper bound converging to r as y goes to −∞ . This ends the proof of
(iii) .

�

Recall that given a probability measure µ and a nonnegative measurable func-
tion f we define the relative entropy as follows

Entµ (f) ≡ µ

(
f log

f

µf

)

Proposition 16.2. Suppose r ∈ [2,∞) and 1
r + 1

q = 1 . Then there is a
constant A ∈ [r,∞) such that the function

ξ(x) ≡ Uq(x)/xq−1 −Ax log
1
x

is convex on [0, 1
2 ] and therefore for any probability measure µ and any measurable

function 0 ≤ f ≤ 1
2 we have

(16.0.7) Uq(µf)/(µf)q−1 − µ
(
Uq(f)/fq−1

)
≤ A Entµ (f)

Moreover, for any function 0 ≤ f ≤ 1 , we have

(16.0.8) lim
ε−→0+

1
ε

(
Uq(εµf)/(εµf)q−1 − µ

(
Uq(εf)/(εf)q−1

))
= rEntµ (f)

Proof. The inequality (16.0.7) follows by Jensen inequality from the convexity
of the function ξ . To prove the convexity of ξ we note that

ξ′(x) ≡ qUq−1(x)U ′(x)/xq−1 − (q − 1)Uq(x)/xq −A log
1
x

+A

and hence

ξ′′(x) ≡ q(q − 1)Uq−2(x)(U ′(x))2/xq−1 − 2q(q − 1)Uq−1(x)U ′(x)/xq

− q(q − 1)Uq(x)/xq+1 + qUq−1(x)U ′′(x)/xq−1 +
A

x
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and therefore

ξ′′(x) ≡ q(q − 1)Uq−2/xq−1 (U ′(x)− U(x)/x)2(16.0.9)

+
[
qUq−1(x)U ′′(x)/xq−1 +

A

x

]
Thus we need to show that the second term on the right hand side of (16.0.9) is
nonnegative. To this end we note that, choosing x = F (y) and using (16.0.4) we
have
(16.0.10)

qUq−1(x)U ′′(x)/xq−1 +
A

x
= qUq−2(x)(−r(r − 1)|F−1(x)|r−2)/xq−1 +

A

x
=

qϕ(y)q−2(−r
2

q
|y|r−2)/(F (y)q−1) +

A

F (y)
=

1
F (y)

[
A− r2|y|r−2ϕ(y)q−2/(F (y)q−2)

]
Next, for y ≤ −1 we use the lower bound from (16.0.3) to see that

r2|y|r−2/((r−1|y|−r+1(1− q−1|y|−r))q−2) = rq|y|r−2+(r−1)(q−2)/(1− q−1|y|−r)q−2)

= rq/(1− q−1|y|−r)q−2) ≤ r2qr

where in the last line we have taken into the account that (r−1)(q−1) = 1 (because
r and q are dual to each other). On the other hand if r ≥ 2 , one has that

sup
y∈[−1,0]

|y|r−2ϕ(y)q−2/(F (y)q−2) <∞

Hence choosing A ≡ max (r2qr, supy∈[−1,0] |y|r−2ϕ(y)q−2/(F (y)q−2)) we get ξ(x) ≥
0 for all x ∈ [1, 1

2 ] .
The relation (16.0.8) follows from (16.0.7) and (16.0.5) .

Assuming we are given a natural gradient ∇f ≡ (∇jf)j∈R , with coordinates
∇jf indexed by a countable set R, we define its lq norm |∇f |q as follows

|∇f |qq ≡
∑

j

|∇jf |q

Theorem 16.3. Suppose r ∈ [2,∞) and 1
r + 1

q = 1 and let U(x) ≡ ϕ(F−1(x))
with ϕ = ϕr = F ′. If there is a constant C ∈ (0,∞) such that

(IFIq) U(µf) ≤ µ
(
U(f)q + C|∇f |qq

) 1
q

for any function 0 ≤ f ≤ 1
2 for which |∇f |q is integrable, then there is a constant

C ′ ∈ (0,∞) such that

(LSq) µfq log
fq

µfq
≤ C ′µ|∇f |qq

for all nonnegative functions f for which the right hand side is finite.

Proof. Given a function f for which |∇f |qq is µ integrable, we define a function
G(λ, z) of nonnengative arguments λ, z ∈ [0,∞), by

G(λ, z) ≡ µ
[
λqfq + zq

(
U(f)q + C|∇f |qq

)] 1
q − [λq (µf)q + zq U(µf)q]

1
q
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with some C ∈ (0,∞) . For later purposes we note that G(λ, z) is continuous in
its domain and uniformly continuous in an open neighbourhood of the origin. Its
derivative with respect to zq for λ > 0 is given by

∂

∂zq
G(λ, z) = µ

(
U(f)q + C|∇f |qq

)
[λqfq + zq (U(f)q + C|∇f |qq)]1−

1
q

− U(µf)q

[λq (µf)q + zqU(µf)q]1−
1
q

In particular at z = 0 we have

(16.0.11) λ
q
r
∂

∂zq
G(λ, z = 0) =

(
µ

(
U(f)q

fq−1

)
− U(µf)q

(µf)q−1

)
+ qqCµ|∇f

1
q |qq

To show implication IFIq =⇒ LSq , we note that by Minkowski inequality one gets
(16.0.12)

G(λ, z) ≥
[
λq (µf)q + zq

(
µ
(
U(f)q + C|∇f |qq

) 1
q

)q] 1
q

− [λq (µf)q + zq U(µf)q]
1
q

Thus if IFIq is satisfied, the function G(λ, z) is nonnegative and equal to zero for
z = 0. This implies that its derivative with respect to zq at z = 0 and λ > 0, is
also nonnegative and using the formula (16.0.11) we have

(16.0.13)
U(µf)q

(µf)q−1 − µ

(
U(f)q

fq−1

)
≤ qqCµ|∇f

1
q |qq

We replace f by εf and divide both sides by ε . Passing with ε to 0 and using
(16.0.8) we conclude that the following inequality is true

(16.0.14) Entµ (f) ≤ r−1qqCµ|∇f
1
q |qq

For nonnegative functions f this is equivalent to LSq . This ends the proof.
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[F-G] Fradelizi, M., and Guédon, O., The extreme points of subsets of s - concave

probabilities and a geometric localization theorem. Discrete Comput. Geom.

31 (2004), No.2, 327–335.
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36, 5 (2000), 647-689.

[G-M] Gromov, M., and Milman, V. D., Generalization of the spherical isoperi-

metric inequality to uniformly convex Banach spaces. Compositio Math. 62
(1987), No.3, 263–282.

[G1] Gross, L., Logarithmic Sobolev inequalities. Amer. J. Math. 97 (1975), 1061–

1083.
[G2] Gross, L., Logarithmic Sobolev inequalities and contractivity properties of

semigroups. Varenna, 1992. Lecture Notes in Math. 1563 (1993), 54–88.

[G-R] Gentil, I., and Roberto, C., Spectral gap for spin systems: some non-convex
phase examples. J. Func. Anal. 180 (2001), 66 - 84.

[G-Z] Guionnet A., and Zegarlinski B., Lectures on Logarithmic Sobolev Inequal-

ities, IHP Course 98, pp 1-134 in Seminare de Probabilite XXVI, Lecture
Notes in Mathematics 1801, Springer 2003.

[H-S] Holley, R., and Stroock, D.W., Logarithmic Sobolev inequalities and stochas-
tic Ising models. J. Stat. Phys. 46 (1987) 1159-1194 .

[K-L-S] Kannan, R., Lovász, L., and Simonovits, M., Isoperimetric problems for

convex bodies and a localization lemma. Discrete Comput. Geom., 13 (1995),
No.3-4, 541–559.

[K-A] Kantorovich, L.V., and Akilov, G.P., Functional Analysis. Pergamon Press,

Oxford, 1982.
[L-O] Latala R. and Oleszkiewicz K., Between Sobolev and Poincaré, in Geometric
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manifold. Ann. scient. Éc. Norm. Sup., Ser. 4, 13 (1980), 451–469.
[Lie] Lieb, E.H., Some convexity and subadditivity properties of entropy. Bull.

Amer. Math. Soc. 81 (1975), 1-13.

[L-T] Lindenstrauss, J., and Tzafriri, L., Classical Banach spaces II, Springer,
1979.

[L-S] Lovász, L., and Simonovits, M., Random walks in a convex body and an

improved volume algorithm. Random Structures Algorithms 4 (1993), No.4,
359–412.

[M1] Maz’ja, V. G., Classes of domains and embedding theorems for function

spaces. Dokl. Akad. Nauk SSSR 133, 527–530 (Russian); translated as Soviet
Math. Dokl. 1 (1960), 882–885.

[M2] Maz’ja, V. G., Sobolev spaces. Springer Series in Soviet Mathematics.

Springer-Verlag, Berlin, 1985. xix+486 pp.
[Mu] Muckenhoupt, B., Hardy’s inequality with weights. Studia Math. XLIV

(1972), 31–38.

[N-S-V] Nazarov, F., Sodin, M., and Volberg, A., The geometric KLS lemma, dimen-
sion free estimates for the distribution of values of polynomials and distri-

bution of zeroes of random analytic functions. Algebra i Analiz 14 (2002),
No.2, 214–234 (Russian); English translation: St. Petersburg Math. J. 14

(2003), No.2, 351–366.

[P] Pisier, G., Martingales with values in uniformly convex spaces. Israel J.
Math. 20 (1975), 326–350.
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