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An application of global bifurcation to the existence of

nonnegative solutions of nonlinear Sturm-Liouville

problem

Jacek Gulgowski
Institute of Mathematics

Uniwersity of Gdańsk
ul. Wita Stwosza 57, 80-952 Gdańsk

Abstract

In this paper we apply the global bifuraction theorem to the proof of the
existence of nonnegative solutions of boundary value problems

(∗)
{
u′′ + ϕ(t, u(t), u′(t)) = 0 for t ∈ (a, b)
l(u) = 0,

where ϕ : [a, b]×R
k ×R

k → R
k and l : C1([a, b],Rk) → R

k ×R
k are continuous,

and l represents Sturm-Liouville boundary conditions.
With a problem (*) we will associate the map

f : (0,+∞) × C1([a, b],Rk) → C1([a, b],Rk)

such that if f(1, u) = 0 then u is solution of (∗).
The existence of (1, u) ∈ (0,+∞) × C1([a, b],Rk), such that f(1, u) = 0,

will be shown by proving the existence of connected component C of the set of
nontrivial zeros of f , such that its projection to the interval (0,+∞) contains
numbers λ1 ∈ (0, 1) and λ2 ∈ (1,+∞).

In the last section we will give an example referring to well known existence
theorems for second order boundary value problems, for ordinary differential
equations of second order.

1 Existence theorems

In this paper we will need the following notations. For x = (x1, ..., xk) ∈ R
k we

write |x| =
∑k

i=1 |xi|. We call x nonnegative (and write x ≥ 0) when xj ≥ 0 for
j = 1, ..., k. Let p : R

k → R
k be given by p(x1, ..., xk) = (|x1|, ..., |xk |). Let ‖ · ‖0

be the supremum norm in C[a, b] and ‖ · ‖k be the norm in C1([a, b],Rk) given by
‖u‖k =

∑k
i=1(‖ui‖0 + ‖u′i‖0) for u = (u1, ..., uk) ∈ C1([a, b],Rk).

1



2 Jacek Gulgowski

In this section we will give the sufficient conditions for the existence of the
nonnegative solution of the boundary value problems

(1.1)
{
u′′(t) + ϕ(t, u(t), u′(t)) = 0 for t ∈ (a, b)
l(u) = 0,

where ϕ : [a, b] × R
k × R

k → R
k is continuous and l : C1([a, b],Rk) → R

k × R
k is

given by l(u1, ..., uk) = (l1(u1), ..., lk(uk)), where

lj(uj) = (uj(a) sinαj − u′j(a) cosαj , uj(b) sin βj + u′j(b) cos βj),

and αj, βj ∈ [0, π2 ], (j = 1, ..., k).
Before we state the existence theorems, we must refer to some of the spectral

properties of the linear problem

(1.2)
{
u′′(t) + λu(t) = 0 for t ∈ (a, b)
l(u) = 0.

It is obvious that µ ∈ R is the eigenvalue of (1.2) if and only if there exists
j ∈ {1, ..., k} such that µ is the eigenvalue of the scalar problem

(1.2)j

{
u′′j (t) + λuj(t) = 0 for t ∈ (a, b)
lj(uj) = 0.

It is well known (cf [H, CL]), that there exists exactly one eigenvalue µj ∈ R of
(1.2)j , for which there exists the eigenvector vµj , such that vµj (t) > 0 for t ∈ (a, b),
and then µj ≥ 0. Let us observe that then uµj = (0, ..., vµj , ...0) is the eigenvector
of (1.2) associated with eigenvalue µj.
The set of eigenvalues of (1.2), for which there exists nonnegative eigenvector, is
nonempty and contains at most k-elements. Let us denote those eigenvalues by
µ1 < ... < µN , N ≤ k.

Before we state the theorems let us assume that continuous map ϕ : [a, b]×R
k×

R
k → R

k satisfies two conditions

(1.3) ∃w0,w1,w2∈R∀t∈[a,b]∀x∈Rk∀y∈Rk |ϕ(t, x, y)| ≤ w0 + w1|x| + w2|y|;

(1.4) ∀t∈[a,b]∀y∈Rk∀x∈∂[0,+∞)kϕ(t, x, y) ≥ 0;

Theorem 1 Let A,B ∈ R be real constants satisfying A < µ1 < µN < B and
w ∈ R

k. Let continuous ϕ : [a, b] × R
k × R

k → R
k satisfies (1.3), (1.4) and

(1.5) ∃r0>0∀t∈[a,b]∀x∈[0,+∞)k∀y∈Rk |x| + |y| ≤ r0 ⇒ ϕ(t, x, y) ≤ Ax;

(1.6) ∃R0>0∀t∈[a,b]∀x∈[0,+∞)k∀y∈Rk |x| + |y| ≥ R0 ⇒ Bx+ w ≤ ϕ(t, x, y).

Then there exists nonnegative solution of Sturm-Liouville problem (1.1).
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Theorem 2 Let A,B ∈ R be real constants satisfying A < µ1 < µN < B and
w ∈ R

k. Let continuous ϕ : [a, b] × R
k × R

k → R
k satisfies (1.3), (1.4) and

(1.7) ∃r0>0∀t∈[a,b]∀x∈[0,+∞)k∀y∈Rk |x| + |y| ≤ r0 ⇒ ϕ(t, x, y) ≥ Bx;

(1.8) ∃R0>0∀t∈[a,b]∀x∈[0,+∞)k∀y∈Rk |x| + |y| ≥ R0 ⇒ ϕ(t, x, y) ≤ w +Ax.

Then there exists the nonnegative solution of Sturm-Liouville problem (1.1).

The main tool used in this paper is the global bifurcation theorem given below;
which is the consequence of the generalization of the Rabinowitz global bifurcation
alternative (cf. [R], [CH], [G]). We need some notation to state the theorem. Let
F : (0,+∞) × C1([a, b],Rk) → C1([a, b],Rk) be a completely continuous map such
that F (·, 0) = 0 and let f : (0,+∞) × C1([a, b],Rk) → C1([a, b],Rk) be given by
f(λ, u) = u− F (λ, u).

The point (λ0, 0) ∈ (0,+∞) × C1([a, b],Rk) is a bifurcation point of the map
f if for all open U ⊂ (0,+∞) × C1([a, b],Rk) satisfying (λ0, 0) ∈ U there exists
(λ, u) ∈ U , such that u �= 0 and f(λ, u) = 0. We will denote the set of all bifurcation
points of f by Bf . Let Rf ⊂ (0,+∞) × C1([a, b],Rk) be a closure of the set of
nontrivial solutions of the equation f(λ, u) = 0, i.e.

Rf = {(λ, u) ∈ (0,+∞) × C1([a, b],Rk) : f(λ, u) = 0 ∧ u �= 0}.

For each (µ0, 0) ∈ Bf being the isolated point in the set Bf , we may define bifurcation
index of f in µ0 by

s[f, µ0] = deg(f(µ0 + ε0, ·),K(0, r), 0) − deg(f(µ0 − ε0, ·),K(0, r), 0),

for ε0 > 0 and r > 0 sufficiently small.

Theorem A If Bf ⊂
N⋃
j=1

{(µj , 0)}, s[f, µ1] �= 0 and s[f, µj] = 0 for j = 2, ..., N ,

then there exists a connected component C ⊂ Rf such that (µ1, 0) ∈ C and C is not
compact.

2 Global bifurcation of nonlinear boundary value prob-
lems

It is well known that with the boundary value problem

(2.1)
{
u′′(t) + µu(t) + h(t) = 0
l(u) = 0,
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where µ is not the eigenvalue of the linear problem (1.2), we may associate the
continuous map Tµ : C([a, b],Rk) → C1([a, b],Rk), such that Tµ(h) = u iff u ∈
C2([a, b],Rk) is solution of (2.1). This map has the following properties (cf. [H, CL,
P])
(2.2) For continuous Φ : (0,+∞) × C1([a, b],Rk) → C([a, b],Rk) such that for
bounded sets B ⊂ (0,+∞) × C1([a, b],Rk) the set Φ(B) ⊂ C([a, b],Rk) is bounded,
the superposition Tµ ◦ Φ : (0,+∞) × C1([a, b],Rk) → C1([a, b],Rk) is completely
continuous.
(2.3) For u, v ∈ C([a, b],Rk) we have 〈Tµu, v〉 = 〈u, Tµv〉, where

〈u, v〉 =
b∫
a

k∑
i=1

ui(t)vi(t)dt.

(2.4) (maximum principle) Let µ ≤ 0 and u, h ∈ C([a, b],Rk) satisfy u = Tµh and
h ≥ 0. Then we have u ≥ 0.

Now let us move to the calculation of bifurcation index for the specific map

Lemma 2.5 Assume that m > 0, µ ≤ 0, µ < α2
j + β2

j for j = 1, ..., k. Let Φ :
(0,+∞) × C1([a, b],Rk) → C([a, b],Rk) be continuous and there exists r0 > 0, such
that Φ(λ, u) = λmp(u) for λ ∈ (0,+∞) and ‖u‖k ≤ r0. Assume that f : (0,+∞) ×
C1([a, b],Rk) → C1([a, b],Rk) is given by f(λ, u) = u − TµΦ(λ, u). Then Bf =
{(µj−µ

m , 0)|j = 1, ..., N} and s[f, µ1−µ
m ] = −1, s[f, µj−µ

m ] = 0 for j = 2, ..., N .

Proof. Let us observe that if f(λ, u) = 0 for ‖u‖k ≤ r0, then by (2.4) we have u ≥ 0
and p(u) = u. Hence

{
u′′(t) + µu(t) + λmu(t) = 0 for t ∈ (a, b)
l(u) = 0,

and if u �= 0, then there exists j ∈ {1, ..., N}, such that mλ+ µ = µj. This implies
that Bf ⊂ {(µj−µ

m , 0)|j = 1, ..., N}. On the other hand (µj−µ
m , 0) ∈ Bf because for

r ∈ (0, r0] the pair (µj−µ
m , r

uµj

‖uµj
‖k

) is the solution of f(λ, u) = 0.

Let us now calculate the bifurcation indices s[f, µj−µ
m ], j = 1, ..., N . Let λ0 ∈

(0, µ1−µ
m ) be fixed. We will show that f(λ0, ·) : K(0, r0) → C1([a, b],Rk) may be

joined by homotopy with the identity map.
Let the homotopy be given by h(t, u) = u −mλ0tTµp(u). Let us observe that

(λ0t, 0) �∈ Bf for t ∈ [0, 1]. That is why we have no nontrivial zeros of h(t, u) = 0.
Hence by homotopy property of topological degree we have deg(f(λ0, ·),K(0, r0), 0) =
1.

Assume now that λ0 > µ1−µ
m and λ0 �= µj−µ

m for j = 2, ..., N . We will show
that for such λ0 the map f(λ0, ·) may be joined by homotopy on K(0, r0) with
f1 : K(0, r0) → C1([a, b],Rk) given by

f1(u) = f(λ0, u) − uµ1 ,
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where (µ1, uµ1) is the solution of (1.2), such that uµ1 ≥ 0, uµ1 �= 0. Let us first
observe that Tµuµ1 = 1

µ1−µuµ1 .

The homotopy h : [0, 1] ×K(0, r0) → C1([a, b],Rk) is given by

h(τ, u) = f(λ0, u) − τuµ1 .

Assume now that for ‖u‖k ≤ r0 and τ ∈ (0, 1] there is h(τ, u) = 0, and

u− λ0mTµp(u) − τuµ1 = 0

u− Tµ(λ0mp(u) + τ(µ1 − µ)uµ1) = 0

Because λ0mp(u) + τ(µ1 − µ)uµ1 ≥ 0, by (2.4) there is u ≥ 0, and p(u) = u.
Since we have u = λ0mTµu+ τuµ1 and also

〈u, uµ1〉 = λ0m〈Tµu, uµ1〉 + τ〈uµ1 , uµ1〉 = λ0m〈u, Tµuµ1〉 + τ〈uµ1 , uµ1〉 =

=
λ0m

µ1 − µ
〈u, Tµuµ1〉 + τ〈uµ1 , uµ1〉.

That is why
µ1 − µ−mλ0

µ1 − µ
〈u, uµ1〉 = τ〈uµ1 , uµ1〉 > 0.

Because uµ1 ≥ 0 and u ≥ 0, it must be also µ1 − µ > mλ0, what contradicts the
assumption λ0 >

µ1−µ
m .

If τ = 0, then h(τ, ·) = f(λ0, ·), and

h(0, u) = 0 ⇔ f(λ0, u) = 0.

Because λ0 �= µj−µ
m for j = 1, ..., N ,

f(λ0, u) = 0 ⇒ u = 0.

Hence the homotopy h nas no nontrivial zeroes. Also h(1, ·) has no zeroes at all and
that is why, by the homotopy property of topological degree,

deg(f(λ0, ·),K(0, r0), 0) = 0.

Hence we have s[f, µ1−µ
m ] = −1, and s[f, µj−µ

m ] = 0 for j = 2, ..., N .
Below we have the consequence of the lemma 2.5 and theorem A.

Corollary 2.6 Let f : (0,+∞) × C1([a, b],Rk) → C1([a, b],Rk) satisfies assump-
tions of lemma 2.5. Then there exists noncompact component C ⊂ Rf such that
(µ1−µ

m , 0) ∈ C.
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At the end of this section we will prove a few lemmas, which will be useful in
the next two sections.

First let us make the observation that for any v ∈ C1([a, b],Rk) such that v ≥
0, v �= 0 there exists such eigenvalue µj (j = 1, ..., N) and corresponding eigenvector
uµj ≥ 0 that 〈v, uµj 〉 > 0.

Lemma 2.7 Let M > 0 be fixed. Assume that ϕ : [a, b] × R
k × R

k × (0,M) →
R
k is continuous and satsifes (1.3) uniformly with respect to λ ∈ (0,M), and Φ :

(0,+∞) × C1([a, b],Rk) → C([a, b],Rk) is Niemytskii operator associated with φ,
given by [Φ(λ, u)](t) = ϕ(t, u(t), u′(t), λ).

Assume additionally that {(λn, un)} ⊂ (0,M) × C1([a, b],Rk) is the sequence
of solutions of equation u − TµΦ(λ, u) = 0, such that ‖un‖k → +∞, un ≥ 0 and
λn → λ0 ∈ R. Then we have two theses:
(2.7.1) If there exist constants R0 > 0, B > 0, µ ≤ 0 and w ∈ R

k such that

∀t∈[a,b]∀x∈[0,+∞)k∀y∈Rk∀λ∈(0,M)|x| + |y| ≥ R0 ⇒ ϕ(t, x, y, λ) ≥ λBx+ w,

then

λ0 ∈
[
0,
µN − µ

B

]
.

(2.7.2) If there exist constants R0 > 0, A > 0, µ ≤ 0 and w ∈ R
k such that

∀t∈[a,b]∀x∈[0,+∞)k∀y∈Rk∀λ∈(0,M)|x| + |y| ≥ R0 ⇒ ϕ(t, x, y, λ) ≤ λAx+ w,

then

λ0 ∈
[
µ1 − µ

A
,+∞

)
.

Proof. Assume that ‖un‖k ≥ R0. Then

|ϕ(t, un(t), u′n(t), λ)|
‖un‖k ≤ w0

R0
+ w1 + w2 for t ∈ [a, b].

for n ∈ N, hence by (2.2) the sequence
{
Tµ

(
Φ(λ,un)
‖un‖k

)}
contains convergent subse-

quence. Because vn = Tµ

(
Φ(λn,un)
‖un‖k

)
, where vn = un

‖un‖k
, there exists the subsequence

{vψ(n)} ⊂ {vn} converging to v0 ∈ C1([a, b],Rk), ‖v0‖k = 1, v0 ≥ 0.
There is no loss in generality in assuming that vn → v0

Proof 2.7.1. Let us observe that there exists constant γ ∈ R
k such that for

u ∈ C1([a, b],Rk), u ≥ 0, λ ∈ (0,M) there is

ϕ(t, u(t), u′(t), λ) ≥ λBu(t) + γ,

for t ∈ [a, b].
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Then for solution (µj, uµj ) of (1.2), such that 〈v0, uµj 〉 > 0 we have

〈vn, uµj 〉 = 〈TµΦ(λn, un)
‖un‖k , uµj 〉 = 〈Φ(λn, un)

‖un‖k , Tµuµj 〉 ≥

≥ λnB

µj − µ
〈vn, uµj 〉 +

γ

‖un‖k

∫ b

a
uµj (t)dt.

Letting n→ +∞ we have

〈v0, uµj 〉 ≥
λ0B

µj − µ
〈v0, uµj 〉 ≥

λ0B

µN − µ
〈v0, uµj 〉.

Because (µN − µ − λ0B)〈v0, uµj 〉 ≥ 0 and 〈v0, uµj 〉 > 0 there is λ0 ≤ µN−µ
B , what

finishes the proof.

Proof 2.7.2. Let us observe that there exists a constant γ ∈ R
k, such that for

u ≥ 0, u ∈ C1([a, b],Rk), λ ∈ (0,M) we have

ϕ(t, u(t), u′(t), λ) ≤ λAu(t) + γ

for t ∈ [a, b].
For such solution (µj , uµj ) of (1.2), that 〈v0, uµj 〉 > 0 we have

〈vn, uµj 〉 = 〈TµΦ(λn, un)
‖un‖k , uµj 〉 = 〈Φ(λn, un)

‖un‖k , Tµuµj 〉 ≤

≤ λnA

µj − µ
〈vn, uµj 〉 +

γ

‖un‖k

∫ b

a
uµj (t)dt.

Letting n→ +∞ we have

〈v0, uµj 〉 ≤
λ0A

µj − µ
〈v0, uµj 〉.

Because (µj − µ− λ0A)〈v0, uµj 〉 ≤ 0 and 〈v0, vµj 〉 > 0, we have λ0 ≥ µj−µ
A ≥ µ1−µ

A ,
what finishes the proof.

Lemma 2.8 Suppose that continuous Φ : (0,+∞) × C1([a, b],Rk) → C([a, b],Rk)
satisfies condition

(2.9) ∀λ∈(0,+∞)∀u∈C1([a,b],Rk)∀t∈[a,b]∀j∈{1,...,k}uj(t) < 0 ⇒ [Φ(λ, u)]j(t) ≥ 0.

Then
∀u∈C1([a,b],Rk)u = TµΦ(λ, u) ⇒ u ≥ 0.
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Proof. Let u ∈ C1([a, b],Rk), u = (u1, ..., uk). Let us fix any j ∈ {1, ..., k}.
Let t0 ∈ [a, b] be a number such that uj(t0) = inft∈[a,b] uj(t). Assume contrary
to our claim that uj(t0) < 0. Because uj is continuous there exists an interval
[c0, d0] ⊂ [a, b], such that for t ∈ [c0, d0] uj(t) ≤ 0. Let [c, b] ⊂ [a, b] be the maximal
interval having this property.

Let us observe that u′′j (t) = −µuj(t)− [Φ(λ, u)]j(t) ≤ 0 for t ∈ [c, d]. This is why
u′j(t) ≥ u′j(t0) = 0 for t ∈ [c, t0] and u′j(t) ≤ u′j(t0) = 0 for t ∈ [t0, d]. This implies
uj(c) ≤ uj(t0) and uj(d) ≤ uj(t0).

Hence uj(c) < 0 and from the selection of c it must be c = a and, similarly,
b = d.

That is why [Φ(λ, u)]j ≥ 0, and u′′j (t) = −[Φ(λ, u)]j(t) ≤ 0, l(u) = 0 and by (2.4)
we have uj ≥ 0 what contradicts the assumption uj(t0) < 0.

3 Proof of theorem 1

Let H : R
1 → R

1 be given by

H(x) =
{
x for x ≥ 0
0 for x < 0.

Let rk : R
k → [0,+∞)k be a continuous retraction given by

rk(x1, ..., xk) = (H(x1), ...,H(x2)).

Let A,B ∈ R be constants satisfying assumptions of theorem 1. Let us fix
µ < min{0, A} and denote Aµ = A− µ > 0 and Bµ = B − µ.

For continuous map ϕ : [a, b] × R
k × R

k → R
k we will define the continuous

ϕ̃ : [a, b] × R
k × R

k → R
k by

ϕ̃(t, x, y) =
{
ϕ(t, x, y) − µx for x ∈ [0,+∞)k

Aµrk(−x) + ϕ(t, rk(x), y) − µrk(x) for x �∈ [0,+∞)k.

Let us observe that ϕ̃(t, x, y) ≥ 0 for x ∈ R
k \ (0,+∞)k.

Let r0 > 0 be a constant given in (1.5) and let

U1 = K(0, r0) and U2 = C1([a, b],Rk) \K(0,
r0
2

).

Sets U1, U2 form the open cover of C1([a, b],Rk). Let {η1, η2} be the continuous
partition of unity associated with cover {U1, U2}.

Let ν1, ν2 be real positive numbers such that µN−µ
Aµ

< ν1 < ν2. Let ψ1, ψ2 be
a continuous partition of unity associated with open cover {(0, ν2), (ν1,+∞)} of
interval (0,+∞).
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The maps Φ1,Φ2,Φ : (0,+∞) × C1([a, b],Rk) → C([a, b],Rk) are given by:

Φ1(λ, u) = λη1(u)Aµp(u) + λη2(u)Φ̃(u),

where Φ̃ : C1([a, b],Rk) → C([a, b],Rk) is Niemytskii operator for ϕ̃;

Φ2(λ, u) = λη1(u)Aµp(u) + λη2(u)Bµp(u);

Φ(λ, u) = ψ1(λ)Φ1(λ, u) + ψ2(λ)Φ2(λ, u).

Let us observe that for λ > ν2 there is Φ(λ, u) = Φ2(λ, u), and for λ < ν1 we
have Φ(λ, u) = Φ1(λ, u). It may be seen also that for ‖u‖k ≤ r0

2 and any λ > 0 it is
Φ(λ, u) = λAµp(u).

Let f : (0,+∞) × C1([a, b],Rk) → C1([a, b],Rk) be given by

f(λ, u) = u− Tµ(Φ(λ, u)).

By (2.2) the map [Tµ ◦Φ] : (0,+∞)×C1([a, b],Rk) → C1([a, b],Rk) is completely
continuous. By corollary 2.6 there exists a component C ⊂ (0,+∞) ×C1([a, b],Rk)
of Rf , such that (µ1−µ

Aµ
, 0) ∈ C and C is not compact.

Let us observe that the map Φ satsifies (2.9). It is obvious considering that for
uj(t0) �∈ [0,+∞)k there is ϕ̃(t0, u(t0), u′(t0)) ≥ 0. Hence by lemma 2.8 if f(λ, u) = 0,
then u ≥ 0.

The map f is such that, if f(λ, u) = 0, ‖u‖k ≥ r0 and λ ∈ (0, ν1], then (λ, u) is
the solution of boudary value problem

(3.1)
{
u′′(t) + µu(t) + λ(ϕ(t, u(t), u′(t)) − µu(t)) = 0 for t ∈ [a, b]
l(u) = 0

such that u ≥ 0.
We will show that there exists no nontrivial solution of f(λ, u) = 0 for λ > ν2.

First observe that for λ > ν2 we have

Φ(λ, u) = Φ2(λ, u) ≥ λAµp(u).

Let us now assume, contrary to our claim, that for (λ, u) ∈ (ν2,+∞)×C1([a, b],Rk)
such that f(λ, u) = 0 we have, u ≥ 0 and u �= 0. For (µj , uµj ) being the solution of
(1.2) and such that 〈u, uµj 〉 > 0, we have

〈u, uµj 〉 = 〈TµΦ(λ, u), uµj 〉 = 〈Φ(λ, u), Tµuµj 〉 =

=
1

µj − µ
〈Φ(λ, u), uµj 〉 ≥

λAµ
µj − µ

〈u, uµj 〉

and
(µj − µ− λAµ)〈u, uµj 〉 ≥ 0,
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implying λ ≤ µj−µ
Aµ

< ν2.
This contradiction proves that C ⊂ (0, ν2] × C1([a, b],Rk).
Now we are going to show that there exists u ∈ C1([a, b],Rk), such that (1, u) ∈

C. Because (µ1−µ
Aµ

, 0) ∈ C, µ1−µ
Aµ

> 1, and C is connected it is enough to show that
there exists (λ∗, u) ∈ C such that λ∗ < 1.

The component C is not compact hence there exists the sequence {(λn, un)} ⊂ C
such that λn → 0 or ‖un‖k → +∞.

If λn → 0 then of course there exists (λ∗, u) ∈ C such that λ∗ < 1. Thus it is
enough to investigate the case of ‖un‖k → +∞. Without loss of generality we may
assume that λn → λ0 ∈ [0, ν2]. Taking in the lemma 2.7 the constant M = ν2 we
have, by (2.7.1),

λ0 ∈ [0,
µN − µ

Bµ
] ⊂ [0, 1),

That is why there exists (λ∗, u) ∈ C such that λ∗ < 1.
We have just shown that there exists u ∈ C1([a, b],Rk), such that (1, u) ∈ C.

We are going to prove that then we have ‖u‖k > r0. Because 1 < ν1 it is Φ(1, u) =
Φ1(1, u).

Assume contrary to our claim that ‖u‖k ≤ r0. Then Φ̃(u) ≤ Aµu and

Φ1(1, u)(t) = η1(u)Aµu(t) + η2(u)Φ̃(u)(t) ≤ Aµu(t)

and for appropriate (µj , uµj ) we have 〈u, uµj 〉 > 0 and

〈u, uµj 〉 = 〈TµΦ(1, u), uµj 〉 =
1

µj − µ
〈Φ(1, u), uµj 〉 ≤

Aµ
µj − µ

〈u, uµj 〉.

Then Aµ ≥ µj − µ ≥ µ1 − µ what contradicts our assumption.
So we have f(1, u) = 0 and ‖u‖k ≥ r0. By (3.1) the function u is nonnegative

solution of (1.1).

4 Proof of theorem 2

Let us define continuous map ϕ̃ : [a, b] × R
k × R

k → R
k by

ϕ̃(t, x, y) =
{
ϕ(t, x, y) − µx for x ∈ [0,+∞)k

Bµrk(−x) + ϕ(t, rk(x), y) − µrk(x) for x �∈ [0,+∞)k.

Then ϕ̃(t, x, y) ≥ 0 for x ∈ R
k \ (0,+∞)k.

Let r0 > 0 be a constant given in (1.7) and let

U1 = K(0, r0) and U2 = C1([a, b],Rk) \K(0,
r0
2

).

Sets U1, U2 form the open cover of the C1([a, b],Rk). Let {η1, η2} be a cotinuous
partition of unity associtaed with cover {U1, U2}.
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Let Φ : (0,+∞) × C1([a, b],Rk) → C([a, b],Rk) be given by

Φ(λ, u) = λη1(u)Bµp(u) + λη2(u)Φ̃(u),

where Φ̃ : C1([a, b],Rk) → C([a, b],Rk) is Niemytskii operator for ϕ̃.
Let f : (0,+∞) × C1([a, b],Rk) → C1([a, b],Rk) be given by

f(λ, u) = u− Tµ(Φ(λ, u)).

Let us observe that the map [Tµ ◦ Φ] : (0,+∞) × C1([a, b],Rk) → C1([a, b],Rk)
is completely continuous.

By corollary 2.6 there exists connected component C ⊂ (0,+∞) ×C1([a, b],Rk)
of Rf , such that (µ1−µ

Bµ
, 0) ∈ C and C is not compact.

We will prove that the component C is unbounded. If, assuming the opposite,
C was bounded, then because it is not compact, there would exist the sequence
{(λn, un)} ⊂ C such that λn → 0 and un �= 0. Then un = TµΦ(λn, un) and un
contains the subsequence converging to u0 ∈ C1([a, b],Rk). Letting n → +∞ we
have Φ(λn, un) → 0 and u0 = 0. Thus for almost all n ∈ N η2(un) = 0 and η1(un) = 1
and un = λnBµTµp(un). If un �= 0, then it must be λn ∈ {µj−µ

Bµ
: j ∈ 1, ..., N}. This

contradicts λn → 0 and proves that, the component C is unbounded.
Let us observe that Φ satisfies (2.9). Hence if f(λ, u) = 0, then, by lemma 2.8,

u ≥ 0.
The map f is such that, if f(λ, u) = 0, ‖u‖k ≥ r0, then (λ, u) satsifies

(4.1)
{
u′′(t) + µu(t) + λ(ϕ(t, u(t), u′(t)) − µu(t)) = 0 for t ∈ [a, b]
l(u) = 0

and u ≥ 0.
Now we are going to show that there exists u ∈ C1([a, b],Rk), such that (1, u) ∈

C.
Because (µ1−µ

Bµ
, 0) ∈ C and µ1−µ

Bµ
< 1 and C is connected, it is enough to show

that there exists (λ∗, u) ∈ C such that λ∗ > 1.
Because C is not bounded then there exists the sequence {(λn, un)} ⊂ C such

that λn → +∞ or ‖un‖k → +∞.
If λn → +∞, then there exists (λ∗, u) ∈ C satisfying λ∗ > 1. So it is enough to

investigate the case of ‖un‖k → +∞ assuming, contrary to our claim, that {λn} ⊂
(0, 1]. We may assume that λn → λ0 ∈ [0, 1]. Taking in lemma 2.7 constant M = 1
we have, by (2.7.2),

λ0 ∈ [
µ1 − µ

Aµ
,+∞) ⊂ (1,+∞),

The contradiction implies, that there exists (λ∗, u) ∈ C such that λ∗ > 1.
So we have shown that there exists u ∈ C1([a, b],Rk), such that (1, u) ∈ C. Now

we will prove that ‖u‖k > r0.
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Assume contrary to our claim that ‖u‖k ≤ r0. Then

Φ(1, u)(t) ≥ η1(u)Bµu(t) + η2(u)Φ̃(u)(t) = Bµu(t)

and for appropriate (µj , uµj ) we have 〈u, uµj 〉 > 0. Then

〈u, uµj 〉 = 〈TµΦ(1, u), uµj 〉 =
1

µj − µ
〈Φ(1, u), uµj 〉 ≥

Bµ
µj − µ

〈u, uµj 〉.

So Bµ ≤ µj − µ ≤ µN − µ, what contradicts our assumption.
Hence f(1, u) = 0 and ‖u‖1 ≥ r0. By (4.1) u is nonegative solution of (1.1).

5 The example

In [GGL] authors studied nonlinear boundary value problem for systems of differen-
tial equations of second order. Below we are going to give two of such results. In the
sequel we denote 〈x, y〉k =

∑k
j=1 xjyj, where x = (x1, ..., xk), y = (y1, ..., yk) ∈ R

k.

Theorem 5.1 Let f : [0, 1] × R
k × R

k → R
k be continuous and assume

(5.2) There exists M ≥ 0 such that 〈x, f(t, x, y)〉k ≥ 0, for all |x| > M and all
x, y ∈ R

k such that 〈x, y〉k = 0.
(5.3) The equation can be listed in such a way that for the j-th equation there exist
functions Aj(t, x, y1, ..., yj−1), Bj(t, x, y1, ..., yj−1) ≥ 0 and bounded for (t, x, y1, ..., yj−1)
in bounded subsets of [0, 1] × {y ∈ R

k : |y| ≤M} × R
j−1, such that

|fj(t, x, y)| ≤ Aj(t, x, y1, ..., yj−1)y2
j +Bj(t, x, y1, ..., yj−1).

Then there exists at least one solution of the problem

(5.4)
{
u′′(t) = f(t, u(t), u′(t)) for t ∈ (0, 1)
u(0) = u(1) = 0.

Theorem 5.5 Suppose f : [0, 1]×R
k×R

k → R
k is given by f(t, x, y) = f1(t, x, y)+

f2(t, x, y), where f1, f2 : [0, 1] × R
k × R

k → R
k are continuous. Then there exists at

least one solution to the Picard problem (5.4) provided:
(5.6) |f2(t, x, y)| ≤ B(1+|x|α+|y|β), where B ∈ (0,+∞), 0 ≤ α, β < 1 are constants;

(5.7) 〈x, f1(t, x, y)〉k ≥ 0;
(5.8) for (t, x) in bounded subsets of [0, 1] × R

k the function f1(t, x, y) is bounded.

Below we will give the example of the Picard problem, which does not satisfy
(5.2). Then we will show that for this example the righthand side of the equation
may not be decomposed into the sum of functions satisfying (5.6) and (5.7).
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Before we state the example, let us observe that the only eigenvalue of the
Dirichlet problem {

u′′(t) + λu(t) = 0
u(0) = u(1) = 0,

for which there exists the nonegative eigenvector, is µ0 = π2.

Example 5.9 Let ϕ : [0, 1] × R
2 × R

2 → R
2 be given by

ϕ(t, x1, x2, y1, y2) =

= (B11x1 +B12x2, B21x1 +B22x2)p(|x| + |y|) + (A1x1, A2x2)q(|x| + |y|),
where B11, B22 > π2, B12, B21 ≥ 0, 0 ≤ A1, A2 < π2; p, q : [0,+∞) → [0,+∞) are
continuous and such that p(0) = 1, lims→+∞ sp(s) = 0, q(0) = 0 and lims→+∞ q(s) =
1.

Let us observe that ϕ satsifies the assumption (1.3). Also for (x1, x2) ∈ [0,+∞)2

we have ϕ(t, x1, x2, y1, y2) ≥ 0; so (1.4) is satsified as well. Now we will show that
ϕ satsifies (1.7) and (1.8), too.

For |x| + |y| small enough we have

(B11x1 +B12x2)p(|x| + |y|) +A1x1q(|x| + |y|) ≥ B11x1p(|x| + |y|) ≥ βx1 > π2x1

(B21x1 +B22x2)p(|x| + |y|) +A2x2q(|x| + |y|) ≥ B22x2p(|x| + |y|) ≥ βx2 > π2x2

for the constant β = 1
2(π2 + min{B11, B22}).

On the other hand, because functions (B11x1 +B12x2)p(|x| + |y|) and (B21x1 +
B22x2)p(|x| + |y|) are limited, we have for |x| + |y| large

(B11x1 +B12x2)p(|x| + |y|) +A1x1q(|x| + |y|) ≤ αx1 + w1 < π2x1 + w1

(B21x1 +B22x2)p(|x| + |y|) +A2x2q(|x| + |y|) ≤ αx2 + w1 < π2x1 + w2,

for the constant α = 1
2(π2 + max{A1, A2}).

That is why ϕ satsifies all assumptions of theorem 2. Now let f : [0, 1]×R
2×R

2 →
R

2 be given by f(t, x, y) = −ϕ(t, x, y). Let us observe that if x = (x1, x2) ∈
[0,+∞)2, then for the large |x| there is q(|x| + |y|) > 0 and

〈x, f(t, x, y)〉2 =

= −
(
B11x

2
1 + (B12 +B21)x1x2 +B22x

2
2

)
p(|x|+ |y|)− (A1x

2
1 +A2x

2
2)q(|x|+ |y|) < 0.

So condition (5.2) is not satsified for any M ≥ 0.
Now let us take any decomposition f(t, x, y) = f1(t, x, y) + f2(t, x, y) such that

f2 satsifies (5.6). Then f1 = f − f2 and let us take any x1 ∈ [0,+∞), x = (x1, 0)
and y = (0, 0). So we have

〈x, f1(t, x, y)〉2 = −B11x
2
1p(|x1|) −A1x

2
1q(|x1|) − 〈x, f2(t, x, y)〉2
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Let us observe that

A1x
2
1q(|x1|) + 〈x, f2(t, x, y)〉2 ≥ A1x

2
1q(|x1|) − x1B(1 + |x1|α) > 0

for large x1. That is why 〈x, f1(t, x, y)〉2 < 0 for some (x, y) ∈ R
2 ×R

2, so condition
(5.7) is not satisfed.

As a conclusion let us observe that, by the theorem 2, there exists the nonnega-
tive solution of (5.4), where f = −ϕ, whereas assumptions of theorems 5.1 and 5.5
are not satsified.
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SOLVABILITY OF QUASILINEAR ELLIPTIC
SECOND ORDER DIFFERENTIAL EQUATIONS IN R

n WITHOUT
CONDITION AT INFINITY

GENNADY I. LAPTEV

Abstract. Solvability conditions for the equation

−
n!

i=1

DiAi(x, Du) + A0(x, u) = f(x), x ∈ Rn

are considered in the whole space Rn, n ≥ 2. A solution u(x) and the functions
f(x) and Ai(x, ξ) for i = 1, . . . , n and A0(x, u) may grow arbitrary as |x| →
∞. These functions satisfy the standard conditions of the theory of monotone
operators on the arguments ξ ∈ Rn and u ∈ R1. The method of monotone
operators is developed and an existence theorem is proved for the solutions u ∈
W 1,p

loc(Rn)∩L
q
loc(Rn)

, where q > p > 1.

1. Posing the problem and statement of the result

The paper deals with the existence of solutions to quasilinear elliptic second
order differential equations in the whole space R

n, n ≥ 2. The method of monotone
operators is used in combination with the method of compact operators. These
methods were developed in the 1960s by many authors (see [18, 12, 3]); they made it
possible to study wide classes of higher-order partial differential equations of elliptic
type in bounded domains or in unbounded domains under the condition that the
solution belongs to an appropriate Sobolev space Wm,p(Ω). The aplications of these
methods were summarized in monographs by Lions [11] and Skrypnik [16]. The
development of monotone operators method is countinued at the present time (see
for example [15, 6, 10]). The variation method for the equation ∆u = f(x, u) in
the whole space R

n was considered in the monograph [9]. A number of articles are
devoted to qualitative theory of positive solutions for elliptic equations in unbounded
domains and in the whole R

n (n ≥ 2), see [17, 13, 7, 8]. Existence theory of parabolic
coercive equations in unbounded domains without conditions at infinity has been
widely studied by many authors, see [1, 14, 5].

There are a few works for elliptic coercive equations in unbounded domains with-
out conditions at infinity. Brezis in [2] studied semilinear equations of the form
−∆u + |u|q−1u = f(x), q > 0, x ∈ R

n. Gladkov in [4]considered the Dirichlet
problem for the equation

−
n∑

i=1

(|uxi |αuxi)xi
+ c(x)u = f(x), x ∈ Ω,

15
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in unbounded domain Ω with a smooth compact boundary ∂Ω. Here α > 0, c(x) ∈
Lloc∞(Rn), c(x) ≥ 0, f(x) ∈ Lloc2(Rn).

This paper is devoted to the study of the solvability of equation

−
n∑

i=1

DiAi(x,Du) +A0(x, u) = f(x), x ∈ R
n. (1.1)

Here Di = ∂/∂xi (i = 1, . . . , n), Du = (D1u, . . . ,Dnu).
Let us list our assumptions concerning the functions involved in (1.1). We assume

that the functions Ai(x, ξ) for i = 1, . . . , n and A0(x, u) are defined for x ∈ R
n,

ξ ∈ R
n, u ∈ R

1 and satisfy the Carathéodory condition, that is, they are measurable
with respect to x ∈ R

n for all ξ ∈ R
n, u ∈ R

1 and continuous in ξ, u for almost all
x ∈ R

n. Moreover, they are subject to the following constraints.
(1A) Growth conditions. For i = 1, . . . , n we have

|Ai(x, ξ)| ≤ a1(x)|ξ|p−1 + b1(x) (x, ξ ∈ R
n),

where p > 1, p+ p′ = pp′, a1(x) ∈ Lloc∞(Rn), b1(x) ∈ Llocp′ (Rn); futhermore

|A0(x, u)| ≤ a0(x)|u|q−1 + b0(x) (x ∈ R
n, u ∈ R

1),

where q > p, q + q′ = qq′, a0(x) ∈ Lloc∞(Rn), b0(x) ∈ Llocq′ (Rn).
(2A) Monotonicity condition. For almost all x ∈ R

n and all ξ, η ∈ R
n we have

n∑
i=1

[Ai(x, ξ) −Ai(x, η)](ξi − ηi) > 0 (ξ �= η),

where ξ = (ξ1, . . . , ξn) and η = (η1, . . . , ηn).
(3A) Coercivity condition. For almost all x ∈ R

n and all ξ ∈ R
n and u ∈ R

1 we
have

n∑
i=1

Ai(x, ξ)ξi +A0(x, u)u ≥ a(x)|ξ|p + b(x)|u|q − g(x),

where a(x), b(x) ∈ Lloc∞(Rn); a(x), b(x) ≥ c(R) > 0 for |x| ≤ R; g(x) ∈ Lloc1(Rn).
(1f) There exist functions fi(x) ∈ Llocp′ (Rn) for i = 1, . . . , n and f0(x) ∈ Llocq′ (Rn)

such that

f(x) = −
n∑

i=1

Difi(x) + f0(x)

in the sense of distributions.
Hereafter we use the traditional notations for spaces of summable functions. Let

us recall them. Let Ω be a bounded domain in R
n. All measurable functions u(x),

x ∈ Ω, with finite norm

‖u‖p
Lp(Ω) =

∫
Ω
|u(x)|p dx, 1 ≤ p <∞,

form the Banach space Lp(Ω). All measurable functions u(x), x ∈ R
n, with finite

norm ‖u‖Lp(Ω) for any bounded domain Ω ⊂ R
n form the space Llocp(Rn) which is
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not Banach one. The Sobolev space W 1,p(Ω) consists of all measurable functions
u(x), x ∈ Ω, which have measurable in Ω partial derivatives Du(x) with finite norm

‖u‖p
W 1,p(Ω)

=
∫

Ω
|Du|p dx+

∫
Ω
|u|p dx. (1.2)

We say that u(x) ∈W 1,p
loc(Rn) if the function u(x) is defined for almost all x ∈ R

n

and u(x) ∈ W 1,p(Ω) for any bounded domain Ω ⊂ R
n. Let C∞

0 (Ω) be a set of
infinitely differentiable functions with compact suppot in Ω. Closure of C∞

0 (Ω) with
respect to the norm (1.2) forms the Banach space W 1,p

0 (Ω). The norm in W 1,p
0 (Ω)

is equivalent to the next one

‖u‖
W 1,p

0 (Ω)
=
∫

Ω
|Du|p dx.

The duality between the space Lp(Ω) and its dual Lp′(Ω) we denote by (f, u) =∫
Ω f(x)u(x) dx, where f ∈ Lp′(Ω), u ∈ Lp(Ω). The same notion is used for the

duality between the space W 1,p
0 (Ω) and its dual (W 1,p

0 (Ω))∗ = W−1,p′(Ω).

Definition 1.1. Let u(x) ∈W 1,p
loc(Rn)∩Llocq(Rn)

. The function u(x) is called a solution
to the equation (1.1) if for any bounded domain Ω ⊂ R

n with smooth boundary and
any function ψ(x) ∈W 1,p

0 (Ω) ∩ Lq(Ω) the following equality holds∫
Ω

(
n∑

i=1

Ai(x,Du)Diψ +A0(x, u)ψ

)
dx =

∫
Ω

(
n∑

i=1

fiDiψ + f0ψ

)
dx.

The main result of this paper is as the follow.

Theorem 1.1. Assume that conditions (1A)–(3A) and (1f) are satisfied. Then the
equation (1.1) has a solution in the sense of Definition 1.1.

2. Approximation by bounded domains

We denote by BR an open ball of the radius R > 0 centered at the origin of R
n,

i.e. BR = {x ∈ R
n : |x| < R}, with boundary ∂BR = {x ∈ R

n : |x| = R}. We
approximate the equation (1.1) by the Dirichlet problems

ARu ≡ −
n∑

i=1

DiAi(x,Du) +A0(x, u) = f(x), x ∈ BR,

u(x) = 0, x ∈ ∂BR.

(2.1)

Conditions on the functions Ai(x, ξ) for i = 1, . . . , n, A0(x, u) and f(x) are the
same as in (1A)–(3A) and (1f) but now all these functions we consider on the ball
BR only. So the functions Ai(x, ξ) for i = 1, . . . , n and A0(x, u) are defined for
x ∈ BR, ξ ∈ R

n, u ∈ R
1 and satisfy the Carathéodory condition. They are subject

to the following constraints.
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(1AR) There exist constants C1R and C0R such that the following inequalities
hold for x ∈ BR, ξ ∈ R

n and u ∈ R
1:

|Ai(x, ξ)| ≤ C1R|ξ|p−1 + b1(x), b1(x) ∈ Lp′(BR),

|A0(x, u)| ≤ C0R|u|q−1 + b0(x), b0(x) ∈ Lq′(BR).

(2AR) For almost all x ∈ BR and all ξ, η ∈ R
n we have

n∑
i=1

[Ai(x, ξ) −Ai(x, η)](ξi − ηi) > 0 (ξ �= η).

(3AR) There exists a constant cR > 0 such that for all x ∈ BR, ξ ∈ R
n, u ∈ R

1

we have
n∑

i=1

Ai(x, ξ)ξi +A0(x, u)u ≥ cR(|ξ|p + |u|q) − g(x),

where g(x) ∈ L1(BR).
(1fR) There exist functions fi(x) ∈ Lp′(BR) for i = 1, . . . , n and f0(x) ∈ Lq′(BR)

such that we have f(x) = −∑n
i=1Difi(x) + f0(x).

Throughout, we denote positive and, in general, different constants depending
only on the parameters of the problem under consideration by c and C.

Let us introduce the space XR = W 1,p
0 (BR) ∩ Lq(BR) with the norm

‖u‖XR
=
(∫

BR

|Du|p dx
)1/p

+
(∫

BR

|u|q dx
)1/q

. (2.2)

It is well known that XR is a separable reflexive Banach space with a dual space
X∗

R = W−1,p′(BR)+Lq′(BR). We define an operator AR : XR → X∗
R by the formula

for u, v ∈ XR:

(ARu, v) =
∫

BR

n∑
i=1

Ai(x,Du)Div dx+
∫

BR

A0(x, u)v dx. (2.3)

It is known that the operator AR : XR → X∗
R under the conditions (1AR)–(3AR)

is bounded coercive continuous and that a function f(x) under condition (1fR) is
an element of the space X∗

R. The equation (2.1) may be written in the operator
form ARu = f , where f ∈ X∗

R. We are looking for a function u ∈ X such that the
identity ARu = f holds in the space X∗.

Recall the following definition. Let X be a real reflexive Banach space and let
X∗ denotes its dual space with a duality (f, u), where f ∈ X∗, u ∈ X. A mapping
A : X → X∗ possesses (M)-property (or it is type M) if for each sequence {uk}
converging weakly to u ∈ X from the conditions as k → ∞

Auk ⇀ f (in X∗), lim sup(Auk, uk) ≤ (f, u) (2.4)

we have the equality Au = f .
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We may write the conditions (2.4) in the form

lim sup
k→∞

(Auk, uk − u) = lim sup
k→∞

(Auk, uk) − lim
k→∞

(Auk, u)

= lim sup
k→∞

(Auk, uk) − (f, u) ≤ 0.

It is easy to see that an operator A : X → X∗ possesses (M)-property if from the
conditions as k → ∞

uk ⇀ u (in X), lim sup(Auk, uk − u) ≤ 0 (2.5)

we have that Auk ⇀ Au in X∗.
The main assertion of this section is as follow.

Theorem 2.1. The operator AR : XR → X∗
R defined by (2.3) under conditions

(1AR)-(3AR) possesses (M)-property.

Proof of the theorem consists of a few lemmas. We suppose that a sequence {uk}
convergering weakly to u ∈ XR is given.

Lemma 2.1. There exists a subsequence of the sequence {uk} which we denote also
by {uk}, such that, for some wi ∈ Lp′(BR) (i = 1, . . . , n) and w0 ∈ Lq′(BR) we have
the following convergence relations as k → ∞:

a) Ai(x,Duk) ⇀ wi in Lp′(BR) for i = 1, . . . , n,

b) A0(x, uk) ⇀ w0 in Lq′(BR).

Proof. If a sequence {uk} converges weakly to u ∈ XR then it is bounded uniformly:
‖uk‖XR

≤ C with a unique constant C for all k ∈ N. It follows from (2.2) that∫
BR

|Duk|p dx+
∫

BR

|uk|q dx ≤ C (k ∈ N). (2.6)

By growth condition (1AR), for i = 1, . . . , n we have

|Ai(x,Duk)| ≤ C1R|Duk|p−1 + b1(x).

Raising to the power p′ = p
p−1 and integrating over BR we obtain∫

BR

|Ai(x,Duk)|p′ dx ≤ c

(
Cp′

1R

∫
BR

|Duk|p dx+
∫

BR

bp
′

1 (x) dx
)

≤ C,

where C is independent of k ∈ N.
Analogously, by growth condition (1AR) we have

|A0(x, uk)| ≤ C0R|uk|q−1 + b0(x).

Rasing to the power q′ and integrating over BR we obtain∫
BR

|A0(x, uk)|q′ dx ≤ c

(
Cq′

0R

∫
BR

|u|q dx+
∫

BR

bq
′

0 (x) dx
)

≤ C,

where C is independent of k ∈ N.
Now the assertions of the lemma are consequence of the reflexivity of the spaces

Lp′(BR) and Lq′(BR).
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Lemma 2.2. There exists a subsequence of the sequence {uk}, which we denote also
by {uk}, such that the following limit relations hold as k → ∞:

(a) uk → u in Lp(BR);

(b) uk(x) → u(x) a.e. in BR;

(c) A0(x, uk(x)) → A0(x, u(x)) a.e. in BR;

(d) A0(x, uk(x))uk(x) → A0(x, u(x))u(x) a.e. in BR.

Proof. Let us write the inequality (2.6) in the form

‖uk‖W 1,p
0 (BR) + ‖uk‖Lq(BR) ≤ C (k ∈ N).

We see that the sequence {uk} is uniformly bounded in the Sobolev space W 1,p
0 (BR),

which is compactly embedded in Lp(BR). Hence there exists a subsequence of the
sequence {uk}, which we denote also by {uk}, such that uk → u in Lp(BR) and
uk(x) → u(x) a.e. in BR. This proves two first assertions of the Lemma.

The rest assertions are the consequences of two first ones which completes the
proof.

Now, we suppose that the last inequality in (2.5) for the operator AR holds:

lim sup
k→∞

(ARuk, uk − u) ≤ 0,

or in the full form

lim sup
k→∞

∫
BR

(
n∑

i=1

Ai(x,Duk)(Diuk −Diu) +A0(x, uk)(uk − u)

)
dx ≤ 0. (2.7)

Let us introduce the functions defined for x ∈ BR:

Fk(x) =
n∑

i=1

(Ai(x,Duk) −Ai(x,Du))(Diuk −Diu);

Gk(x) =
n∑

i=1

Ai(x,Du)(Diuk −Diu);

Hk(x) = A0(x, uk)(uk − u).

Then we may write the condition (2.7) in the form

lim sup
k→∞

(∫
BR

Fk(x) dx+
∫

BR

Gk(x) dx +
∫

BR

Hk(x) dx
)

≤ 0. (2.8)

We find the limit of each term as k → ∞.

Lemma 2.3. If uk ⇀ u in XR as k → ∞, then

lim
k→∞

∫
Bk

Gk(x) dx = 0.
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Proof. As uk ⇀ u in XR (k → ∞), so Duk ⇀ Du in Lp(BR) and Du ∈ Lp(BR).
By growth condition (1AR) then Ai(x,Du) ∈ Lp′(BR) for i = 1, . . . , n. Therefore
as k → ∞ ∫

BR

Ai(x,Du)(Diuk −Diu) dx→ 0 (i = 1, . . . , n).

This is the required result.

Lemma 2.4. If uk ⇀ u in XR as k → ∞, then

lim inf
k→∞

∫
Bk

Hk(x) dx ≥ 0.

Proof. We know from Lemma 2.1(b) and Lemma 2.2(c) that A0(x, uk) ⇀ w0 in
Lq′(BR) and A0(x, uk(x)) → A0(x, u(x)) a.e. in BR. Comparing these convergences
we see that w0 = A0(x, u) and

A0(x, uk) ⇀ A0(x, u) in Lq′(BR). (2.9)

In particular

lim
k→∞

∫
BR

A0(x, uk(x))u(x) dx =
∫

BR

A0(x, u(x))u(x) dx. (2.10)

Suppose that ξ = 0 in coercive condition (3AR), then we have for all x ∈ BR and
u ∈ R

1:
A0(x, u)u ≥ cR|u|q − g(x) (cR > 0; g(x) ∈ L1(BR)).

Therefore the functions zk(x) = A0(x, uk(x))uk(x) + g(x) are nonnegative for all
x ∈ BR. By Fatue’s lemma and in view of Lemma 2.2(d) we have

lim inf
k→∞

∫
BR

A0(x, uk(x))uk(x) dx ≥
∫

BR

A0(x, u(x))u(x) dx. (2.11)

Subtracting (2.10) from (2.11) we get

lim inf
k→∞

∫
BR

A0(x, uk(x))(uk(x) − u(x)) dx ≥ 0.

This is the assertion of the lemma.

Lemma 2.5. Under conditions (2.5) for the operator AR : XR → X∗
R we have for

almost all x ∈ BR:

lim
k→∞

n∑
i=1

(
Ai(x,Duk(x)) −Ai(x,Du(x))

)(
Diuk(x) −Diu(x)

)
= 0.

Proof. Conditions (2.5) are equivalent to the inequality (2.8). Taking Lemmas 2.3
and 2.4 into account, we obtain from (2.8)

lim sup
k→∞

∫
Bk

Fk(x) dx ≤ 0.

However, Fk(x) ≥ 0 a.e. in BR by monotonicity condition (2AR). This shows
that there exists limk→∞ Fk(x) = 0 a.e. in BR, which in a more extended form can
be written as the assertion of the lemma.



22 GENNADY I. LAPTEV

Lemma 2.6. Under conditions (2.5) for the operator AR : XR → X∗
R we have that

Duk(x) → Du(x) as k → ∞ for almost all x ∈ BR.

Proof. We choose a point x ∈ BR such that: Du(x) and g(x) are well defined and
finite; the functions Ai(x, ξ) are continuous in ξ ∈ R

n for i = 1, . . . , n. Each of these
properties holds a.e. in BR, therefore their combination must also hold for almost
all x ∈ BR. For such a point we set ξk = Duk(x), and η = Du(x). We consider also
the number sequence

ϕk =
n∑

i=1

(Ai(x, ξk) −Ai(x, η))(ξki − ηi).

In view of Lemma 2.5 and the above notation we can assume that ϕk → 0 as
k → ∞. We are now in position to discuss the properties of the sequence ξk =
Duk(x). Assume that it is unbounded, that is, there exists a subsequence ξkm such
that |ξkm | → ∞ as m → ∞. Using the coercivity condition (3AR) for u = 0 we
obtain

ϕk =
n∑

i=1

(Ai(x, ξk) −Ai(x, η))(ξki
− ηi)

≥ cR|ξk|p − g(x) −
n∑

i=1

Ai(x, η)(ξki
− ηi) −

n∑
i=1

Ai(x, ξk)ηi.

As cR > 0, η is fixed and p > 1 it is evident that ϕkm → ∞ (m → ∞). This
contradicts the assumption ϕk → 0 as k → ∞, therefore the sequence ξk is uniformly
bounded. Let ξ be a limit point of it, that is, assume that ξkm → ξ as m→ ∞. The
functions Ai(x, ξ) are continuous in the last arguments, therefore

lim
m→∞ϕkm =

n∑
i=1

(Ai(x, ξ) −Ai(x, η))(ξi − ηi) = 0.

By monotonicity conditions (2AR) this is possible only for ξ = η. Hence each
limit point of the sequence {ξk} coincides with η = Du(x), which is equivalent to
the limit relation Duk(x) → Du(x) as k → ∞. By construction, this holds for
almost all x ∈ BR, as required.

Lemma 2.7. Under conditions (2.5) for the operator AR : XR → X∗
R we have as

k → ∞ for i = 1, . . . , n:

Ai(x,Duk) ⇀ Ai(x,Du) in Lp′(BR).

Proof. We know from Lemma 2.1(a) that Ai(x,Duk) ⇀ wi in Lp′(BR). It follows
from Lemma 2.6 that Ai(x,Duk(x)) → Ai(x,Du(x)) for almost all x ∈ BR. Com-
paring these convergences we see that wi = Ai(x, u(x)) and that the assertion of the
lemma holds.

Proof of the Theorem 2.1. Let the sequence {uk} with the conditions (2.5) for the
operator AR : XR → X∗

R is given. From Lemma 2.7 we have for any v ∈ XR as
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k → ∞: ∫
BR

n∑
i=1

Ai(x,Duk)Div dx→
∫

BR

n∑
i=1

Ai(x,Du)Div dx. (2.12)

From (2.9) if follows that as k → ∞∫
BR

A0(x, uk)v dx→
∫

BR

A0(x, u)v dx. (2.13)

Summarizing (2.12) and (2.13) we get as k → ∞∫
BR

(
n∑

i=1

Ai(x,Duk)Div +A0(x, uk)v

)
dx→

→
∫

BR

(
n∑

i=1

Ai(x,Du)Div +A0(x, u)v

)
dx,

or in the short form: (ARuk, v) → (ARu, v), v ∈ XR. In other words, if the condi-
tions (2.5) for the operator AR hold then ARuk ⇀ ARu as k → ∞. That is, the
operator AR : XR → X∗

R possesses (M)-property which proves Theorem 2.1.

Now we know that the operator AR : XR → X∗
R defined by (2.3) under conditions

(1AR)–(3AR) is bounded continuous coercive and possesses (M)-property. This is
enough for the following existence theorem which is found in [11], Theorem 2.1: for
each f ∈ X∗

R there exists u ∈ X such that ARu = f . We get the next assertion.

Theorem 2.2. The Dirichlet problem (2.1) has a solution u ∈ XR for any f ∈ X∗
R

as an equation ARu = f with the operator AR defined by (2.3) under conditions
(1AR)–(3AR) and (1fR).

3. Proof of Theorem 1.1

In vew of Theorem 2.2 for each R > 0 there exists a solution uR ∈ XR =
W 1,p

0 (BR) ∩ Lq(BR) of the boundary value problem (2.1), that is,

−
n∑

i=1

DiAi(x,DuR) +A0(x, uR) = −
n∑

i=1

Difi(x) + f0(x), |x| < R;

uR(x) = 0, |x| = R.

(3.1)

Let {uN} be a sequence of solutions of the problem (3.1) for R = N , N ∈ N, so
that for each N ∈ N we have∫

BN

n∑
i=1

Ai(x,DuN )Diψ dx+
∫

BN

A0(x, uN )ψ dx =
∫

BN

n∑
i=1

fDiψ dx+
∫

BN

f0ψ dx,

(3.2)

where ψ ∈ XR = W 1,p
0 (BR) ∩ Lq(BR), q > p > 1.

We fix a nonnegative function ϕ(x) ∈ C1
0 (Rn) and a number m ∈ N such that

suppϕ ⊂ Bm. For all N > m we define the functions ψ = uNϕ
s, where s = qp

q−p . It
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is evident that Diψ = (DiuN )ϕs + sϕs−1uNDiϕ. Using the condition suppψ ⊂ Bm

and therefore ψ(x) ≡ 0 for |x| ≥ m we obtain from (3.2) the identity for N > m:∫
Bm

n∑
i=1

Ai(x,DuN )(DiuN )ϕs dx+ s

∫
Bm

n∑
i=1

Ai(x,DuN )uNϕ
s−1Diϕdx

+
∫

Bm

A0(x, uN )uNϕ
s dx =

∫
Bm

n∑
i=1

fi(DiuN )ϕs dx

+ s

∫
Bm

n∑
i=1

fiuNϕ
s−1Diϕdx+

∫
Bm

f0uNϕ
s dx,

which we agree to write as

J1 + J2 + J3 = F1 + F2 + F3. (3.3)

Here we estimate each term. Notice the following inportant fact. We evaluate all
integrals over the set Bm where m is fixed, therefore we need conditions (1A)-(3A)
and (1f) for x ∈ Bm only, that is, for |x| < m. In other words, we may use the
conditions (1AR)–(3AR) from section 2 for R = m. For example, using coercivity
condition (3AR) for R = m we have for N > m

J1 + J3 =
∫

Bm

(
n∑

i=1

Ai(x,DuN )DiuN +A0(x, uN )uN

)
ϕs dx

≥ cm

∫
Bm

(|DuN |p + |uN |q)ϕs dx− Cm,

where constants cm > 0 and Cm =
∫
Bm

g(x)ϕs(x) dx do not depend on N ∈ N for
N > m.

Now let us estimate the integral J2:

|J2| ≤ s
n∑

i=1

∫
Bm

|Ai(x,DuN )|ϕs/p′ |uN |ϕs/q|Diϕ| dx.

By Hölder’s inequality for the exponents p′, q and s = qp
q−p we obtain

|J2| ≤ s

n∑
i=1

(∫
Bm

|Ai(x,DuN )|p′ϕs dx

)1/p′ (∫
Bm

|uN |qϕs dx

)1/q (∫
Bm

|Diϕ|s dx
)1/s

.

Finally, using Young’s inequality we have for any ε > 0

|J2| ≤ ε

n∑
i=1

∫
Bm

|Ai(x,DuN )|p′ϕs dx+ ε

∫
Bm

|uN |qϕs dx+ C(ε).

Here C(ε) is a continuous function defined for all ε > 0. Using the growth condition
(1AR) for R = m we get the inequality

|J2| ≤ εc

∫
Bm

(
Cp′

1m|DuN |p + bp
′

1 (x)
)
ϕs dx+ ε

∫
Bm

|uN |qϕs dx+ C(ε),
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where all constants are independent of N for N > m.
Next estimates are rather evident:

|F1| ≤
∫

Bm

n∑
i=1

|fiϕ
s/p′ | · |DiuN |ϕs/pdx

≤ ε

∫
Bm

|DuN |pϕs dx+ C(ε)
n∑

i=1

∫
Bm

|fi|p′ϕs dx;

|F2| ≤ s

∫
Bm

n∑
i=1

|fiϕ
s/p′ | · |uN |ϕs/q|Diϕ| dx

≤ ε

∫
Bm

|uN |qϕs dx+ C(ε)
n∑

i=1

(∫
Bm

|fi|p′ϕs dx+
∫

Bm

|Diϕ|s dx
)

;

|F3| ≤
∫

Bm

|f0ϕ
s/q′ | · |uNϕ

s/q| dx ≤ ε

∫
Bm

|uN |qϕs dx+ C(ε)
∫

Bm

|f0|q′ϕs dx.

Combining the above estimates of the individual terms in identity (3.3) we arrive
at the inequality:(

cm − ε(cCq′
1m + 1)

) ∫
Bm

|DuN |pϕs dx+ (cm − εc)
∫

Bm

|uN |qϕs dx

≤ Cm + εc

∫
Bm

bp
′

1 ϕ
s dx+ C(ε)

∫
Bm

(
n∑

i=1

|fi|p′ϕs + |f0|q′ϕs + |Dϕ|s
)
dx.

Clearly, if we choose sufficiently small ε > 0, then we get the following estimate
for all N > m: ∫

Bm

(|DuN |p + |uN |q)ϕs dx ≤ C(ε,m). (3.4)

Here the constant C(ε,m) depends on ε > 0 and m ∈ N, but it does not depend on
N ∈ N if N > m.

We take a special function ϕ ∈ C1
0 (Rn) so that ϕ(x) ≡ 1 for |x| ≤ m − 1 and

ϕ(x) ≡ 0 for |x| ≥ m− 1
2 . Then we may write the estimate (3.4) in the form∫

|x|≤m−1
(|DuN |p + |uN |q) dx ≤ C(m− 1), N > m. (3.5)

For the sake of simplicity let us change m − 1 on m. Using also the growth
conditions (1AR) for R = m we arrive at the following conclusion.

Lemma 3.1. The solutions uN of the boundary value problems (3.2) satisfy the
estimates for each fixes m ∈ N and all N > m+ 1:

‖DuN‖Lp(Bm) ≤ C(m); ‖uN‖Lq(Bm) ≤ C(m);

‖Ai(x,DuN )‖Lp′ (Bm) ≤ C(m); ‖A0(x, uN )‖Lq′ (Bm) ≤ C(m).

Here constant C(m) does not depend on N for N > m+ 1.
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Now we can construct a solution of the equation (1.1) step by step.
Step 1. Let m = 1. We introduce the Banach space Y1 = W 1,p(B1)∩Lq(B1) with

the norm
‖u‖Y1 = ‖Du‖Lp(B1) + ‖u‖Lq(B1).

From Lemma 3.1 we have the estimate ‖uN‖Y1 ≤ C(1) for N > 2. The space Y1

is reflexive for p, q > 1 so there exists a subset N(1) ⊂ N of natural numbers and
a function u(1)(x) defined in the ball B1 such that uk ⇀ u(1) in Y1 for k ∈ N(1)
as k → ∞. The space Y1 for q > p is compactly embedded in Lp(B1) so we may
suppose that for k ∈ N(1) as k → ∞:

(3.7)

uk(x) → u(1)(x) a.e. in B1.

Step 2. Let m = 2. From Lemma 3.1 we have the estimate ‖uN‖Y2 ≤ C(2) for
N > 3 where Y2 = W 1,p(B2) ∩ Lq(B2). This estimate we consider on the set N(1)
only, that is,

‖uk‖Y2 ≤ C(2), k ∈ N(1).

The space Y2 is reflexive and compactly embedded in Lp(B2) so there exists a
subset N(2) ⊂ N(1) and a function u(2)(x) defined in the ball B2 such that for
k ∈ N(2) as k → ∞ we have:

uk ⇀ u(2) in Y2; uk(x) → u(2) in Lp(B2);

uk(x) → u(2)(x) a.e. in B2.
(3.8)

The set N(2) is a subset of N(1), therefore the convergences (??) are correct for
k ∈ N(2). Comparing (??) and (3.8) we conclude that u(2)(x) = u(1)(x) for x ∈ B1.

Step m. For any m ∈ N we construct a space Ym = W 1,p(Bm) ∩ Lq(Bm), a set
N(m) ⊂ N(m − 1) and a function u(m)(x) defined in the ball Bm such that for
k ∈ N(m) as k → ∞ we have:

(3.11)

uk(x) → u(m)(x) a.e. in Bm;

Continuing the process we obtain a sequence of functions u(1)(x), u(2)(x), u(3)(x),
. . . with the properties:

u(m)(x) ∈W 1,p(Bm) ∩ Lq(Bm);

u(m)(x) = u(m−1)(x) for x ∈ Bm−1.
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The last properties shows that we have a unique function u(x) defined for all x ∈ R
n

and such that

u(x) = u(m)(x) for x ∈ Bm. (3.12)

In particular, we have

u(x) ∈W 1,p
loc(Rn)∩Lq

loc(Rn).

Next we show that the function u(x) defined by (3.12) satisfies the equality

∫
Ω

(
n∑

i=1

Ai(x,Du)Diψ +A0(x, u)ψ

)
dx = (f, ψ)

for any test function ψ(x) ∈W 1,p
0 (Ω) ∩Lq(Ω) with a compact support Ω ⊂ R

n. We
suppose that ψ(x) is extended by zero outside Ω and fix such a function ψ(x) and
a natural number m ∈ N with the property Ω ⊂ Bm, so that

ψ(x) ≡ 0 for |x| ≥ m, (3.13)

and ψ(x) ∈W 1,p
0 (Bm) ∩ Lq(Bm).

We consider the identity (3.2) for N > m. In view of (3.13) we may integrate
in (3.2) for x ∈ Bm only, so we have for N > m

∫
Bm

(
n∑

i=1

Ai(x,DuN )Diψ +A0(x, uN )ψ

)
dx = (f, ψ). (3.14)

For a fixed m ∈ N we introduce the subset N(m) ⊂ N from the construction of the
function u(x) and consider the identities (3.14) for k ∈ N(m) only:

∫
Bm

n∑
i=1

Ai(x,Duk)Diψ dx+
∫

Bm

A0(x, uk)ψ dx = (f, ψ). (3.15)

We know from (??) and (3.12) that for k ∈ N(m) as k → ∞ we have

uk(x) → u(m)(x) = u(x) a.e. in Bm

and therefore

A0(x, uk(x)) → A0(x, u(x)) a.e. in Bm. (3.16)

Comparing (3.16) with the estimate ‖A0(x, uk)‖Lq′ (Bm) ≤ C(m), from Lemma 3.1
we conclude that for k ∈ N(m) as k → ∞

A0(x, uk) ⇀ A0(x, u) in Lq′(Bm). (3.17)
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Let us take a function ϕ(x) ∈ C1
0 (Bm) and consider the functions ψ = (uk − u)ϕ

in identities (3.15). We get for k ∈ N(m)∫
Bm

n∑
i=1

Ai(a,Duk)(Diuk −Diu)ϕdx +
∫

Bm

A0(x, uk)(uk − u)ϕdx

= (f, (uk − u)ϕ) −
∫

Bm

n∑
i=1

Ai(x,Duk)(uk − u)Diϕdx. (3.18)

We know that uk ⇀ u in Ym = W 1,p(Bm) ∩ Lq(Bm), so for k ∈ N(m)

lim
k→∞

(f, (uk − u)ϕ) = 0. (3.19)

Now let us estimate last integral in (3.18).

Lemma 3.2. We have for k ∈ N(m)

lim
k→∞

∫
Bm

n∑
i=1

Ai(x,Duk)(uk − u)Diϕdx = 0.

Proof. Using Hölder’s inequality we have for k ∈ N(m) as k → ∞∣∣∣∣
∫

Bm

Ai(x,Duk)(uk − u)Diϕdx

∣∣∣∣
≤ max

|x|≤m
|Dϕ| · ‖Ai(x,Duk)‖Lp′ (Bm)‖uk − u‖Lp(Bm) → 0,

as it follows from Lemma 3.1 and relations (??).

Using (3.19) and Lemma 3.2 we get from (3.18) for k ∈ N(m)

lim
k→∞

(∫
Bm

n∑
i=1

Ai(x,Duk)(Diuk −Diu)ϕdx+
∫

Bm

A0(x, uk)(uk − u)ϕdx

)
= 0.

(3.20)

The relation (3.20) is analogous to the inequality (2.7). We represent (3.20) as
follows for k ∈ N(m):

lim
k→∞

[∫
Bm

n∑
i=1

(Ai(x,Duk) −Ai(x,Du))(Diuk −Diu)ϕdx

+
∫

Bm

n∑
i=1

Ai(x,Du)(Diuk −Diu)ϕdx +
∫

Bm

A0(x, uk)(uk − u)ϕdx

]
= 0.

It is evident that the factor ϕ(x) does not play an essential role for estimates,
hence proceeding as in Lemmas 2.3–2.5 we obtain the next assertions.

Lemma 3.3. We have for k ∈ N(m)

lim
k→∞

∫
Bm

n∑
i=1

Ai(x,Du)(Diuk −Diu)ϕdx = 0.
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Lemma 3.4. We have for k ∈ N(m) as k → ∞

lim inf
∫

Bm

A0(x, uk)(uk − u)ϕ(x) dx ≥ 0.

Lemma 3.5. We have for k ∈ N(m) and almost all x ∈ Bm

lim
k→∞

n∑
i=1

[Ai(x,Duk(x)) −Ai(x,Du(x))] (Diuk(x) −Diu(x))ϕ(x) = 0.

Now we choose a special function ϕ(x) ∈ C1
0 (Bm) with a property: ϕ(x) ≡ 1 for

x ∈ Ω, where Ω = suppψ and ψ(x) is a given function such that Ω ⊂ Bm. Then we
have from Lemma 3.5 that for k ∈ N(m) and almost all x ∈ Ω

lim
k→∞

n∑
i=1

[Ai(x,Duk(x)) −Ai(x,Du(x))] (Diuk(x) −Diu(x))ϕ(x) = 0. (3.21)

Using (3.21) and repeating the proof of Lemma 2.6 we obtain the next assertion.

Lemma 3.6. We have Duk(x) → Du(x) for k ∈ N(m) as k → ∞ for almost all
x ∈ Ω.

Lemma 3.7. We have for k ∈ N(m) as k → ∞ for i = 1, . . . , n:

Ai(x,Duk) ⇀ Ai(x,Du) in Lp′(Ω).

Proof. We know from Lemma 3.1 that ‖Ai(x,Duk)‖Lp′ (Ω) ≤ C(m). It follows from
Lemma 3.6 that Ai(x,Duk) → Ai(x,Du) for almost all x ∈ Ω as k → ∞, k ∈ N(m).
This is enough for the assertion of the Lemma.

Now we can finish the proof of Theorem 1.1. From Lemma 3.7 for a given test
function ψ(x) ∈W 1,p

0 (Ω) ∩ Lq(Ω) we have as k → ∞, k ∈ N(m):∫
Ω

n∑
i=1

Ai(x,Duk)Diψ dx→
∫

Ω

n∑
i=1

Ai(x,Du)Diψ dx. (3.22)

From (3.17) we have for k ∈ N(m) as k → ∞:∫
Ω
A0(x, uk)ψ dx→

∫
Ω
A0(x, u)ψ dx. (3.23)

Using limit relations (3.22) and (3.23) in the identities (3.15) we get for k ∈ N(m)
as k → ∞: ∫

Ω

(
n∑

i=1

Ai(x,Du)Diψ +A0(x, u)ψ

)
dx = (f, ψ).

This equality means that the function u(x) is a solution of the equation (1.1) in the
sense of Definition 1.1, which completes the proof of Theorem 1.1.
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4. Examples

In conclusion we present examples of the equations satisfying all the conditions
of the solvability Theorem 1.1. Consider the equation

−
n∑

i=1

Di

(
αi(x)|Diu|p−2Diu

)
+ α0(x)|u|q−2u = f(x). (4.1)

Here 1 < p < q are arbitrary exponents, the function f(x) is supposed to satisfy the
condition (1f) from section 1. The functions αi(x) > 0 for i = 0, 1, . . . , n are defined
for almost all x ∈ R

n and such that

αi(x), α−1
i (x) ∈ Lloc∞(Rn). (4.2)

It is easy to check all the conditions (1A)-(3A). So the equation (4.1) under the
conditions (4.2) has a solution u ∈W 1,p

loc(Rn)∩Lq
loc(Rn)

for any f(x) = −∑n
i=1Difi(x)+

f0(x), where fi ∈ Llocp′(Rn) and f0 ∈ Llocq′ (Rn).
For example the simplest case is the next one:

−
n∑

i=1

Di(|Diu|p−2Diu) + |u|q−2u = f(x).

The functions αi(x) (in (4.1)) for i = 0, 1, . . . , n may grow arbitrary as |x| → ∞.
For example we can solve the equation

−
n∑

i=1

Di(ex1+···+xn |Diu|p−2Diu) + e−|x|2|u|q−2u = f(x), x ∈ R
n.
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1 Introduction

Since Nadler [29] extended Banach’s contraction principle to set-valued contractions
in 1969, fixed point theory for set-valued mappings has been developed rapidly.
Like single-valued contractions, a lot of papers have been contributed to set-valued
contractions in which the constant contraction coefficient in Nadler’s theorem is
relaxed, but the existence of fixed points is still guaranteed. The relaxed coefficient
is a function defined in the underlying space. Due to the complexity of the images
which the map takes, there are still no effective ways to prove the existence of a
fixed point of a set-valued map of contractive type. For example, it is not easy to
treat a set-valued mapping of contractive type if the mapping takes closed bounded
(not necessarily compact) values (see Reich’s open problem in section 6).

Martin [27] first proved that a nonexpansive compact-valued self-mapping of a
closed bounded convex subset of a Hilbert space has a fixed point. This result was
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extended to a Banach space framework by Lami Dozo [22] in the case where the
space satisfies the Opial property [30] (e.g., lp for 1 < p < ∞) and by Lim [23] in the
case where the space is uniformly convex (e.g., both lp and Lp for 1 < p < ∞). But
it still remains an open question whether a nonexpansive set-valued self-mapping of
a closed bounded convex subset of a Hilbert space with closed bounded values has
a fixed point.

The technique of asymptotic centers introduced by Edelstein [10] has been shown
to be an effective tool in the existence theory for both single- and set-valued nonex-
pansive mappings. In a unifomly convex Banach space, the asymptotic center of a
bounded sequence with respect to a closed convex set consists of exactly one point.
Kirk and Massa [21] (partially) extended Lim’s fixed point theorem [23] to the case
where the underlying Banach space has the following property: The asymptotic
center of a bounded sequence with respect to a closed convex set is nonempty and
compact. This applies to a wider class of Banach spaces than the class of uniformly
convex Banach spaces (e.g., the class of Banach spaces which are k−uniformly ro-
tund in the sense of Sullivan [34]).

Another direction of the fixed point theory for set-valued mappings is the exis-
tence theory for nonself-mappings. Certain boundary conditions must then be sat-
isfied. Among these are the inward and the weakly inward conditions (See Section
4 for definitions). Assad and Kirk [1] considered those nonself-contractions which
keep the boundary of the domain in the domain. Lim [25] extended his own theo-
rem [23] to those compact-valued nonexpansive mappings which are weakly inward.
This result was independently regained by Xu [39] via using inequality techniques
in uniformly convex Banach spaces (Xu [37]). Kirk-Massa’s fixed point theorem is
extended to nonself-mappings recently by Xu ([38, 39]). One must also mention a
recent result by Lim [26] who proves that a weakly inward contraction which maps
a closed set of a Banach space into the collection of nonempty closed subsets of the
space has a fixed point. This result removes the assumptions that the values of the
map are required to be either compact or proximinal in previous works (Deimling
[8] and Xu [38, 39]).

The purpose of this paper is to give some recent results in the existence theory
for set-valued contractions and nonexpansive mappings in either metric or Banach
spaces. Some new results are also obtained and open problems are raised.

The paper is organized as follows. In Section 2 we introduce the notion of
Caristi’s selections and show that both contractions and generalized contractions
admit Caristi selections. In Section 3 we show that a directional set-valued contrac-
tion has a fixed point. Section 4 is devoted to nonexpansive set-valued mappings.
A new fixed point theorem for nonself-mappings is proved. In Section 5 we include
Lim’s recent fixed point theorem for nonself set-valued contractions. Finally in Sec-
tion 6 we present several open problems for set-valued contractions and nonexpansive
mappings.
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2 Caristi’s Selection

Let (M,d) be a complete metric space and let f : M → M be a mapping. We
say that f is a Caristi mapping if there exists a lower semicontinuous function
ϕ : M → R such that ϕ is bounded below and satisfies

d(x, f(x)) ≤ ϕ(x) − ϕ(f(x)), x ∈ M.

Lemma 2.1. (Caristi [4]) Any Caristi mapping of a complete metric space admits
a fixed point.

We introduce some notation. We denote by 2M the power set of M , by CB(M)
the family of nonempty closed bounded subsets of M , by K(M) the family of non-
empty compact subsets of M , and by H the Hausdorff metric on CB(M). Thus we
have for A,B ∈ CB(M),

H(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b,A)

}
,

where d(x,D) := inf{d(x, y) : y ∈ D} is the distance from a point x in M to a
subset D of M .

Let now T : M → CB(M) be a set-valued mapping. By a selection of T we
mean a (single-valued) mapping f : M → M such that

f(x) ∈ Tx, x ∈ M.

A selection f for T is said to be a Caristi selection for T if it is also a Caristi mapping.
Note that a Caristi selection may not be continuous. It is also immediately clear
that a Caristi set-valued mapping always admits a fixed point. The converse is
however not true. Namely, the existence of a fixed point of a set-valued mapping
does not guarantee the existence of a Caristi selection for the map. The following
is a counterexample.

Example. Let M = [0,∞) be equipped with the usual distance and let k > 1 be a
number. Let T : M → CB(M) be defined by

Tx := [kx, (k + 1)x], x ∈ M.

It is seen that 0 is the only fixed point of T and T (0) = {0}. We now show that T
fails to admit a Caristi selection. Suppose the contrary that f is a Caristi selection
for T . Then we have

|x − f(x)| ≤ ϕ(x) − ϕ(f(x)), x ∈ M, (2.1)

where ϕ : M → R is a lower semicontinuous function bounded below. Since kx ≤
f(x) ≤ (k + 1)x for x ≥ 0, we have by (2.1)

(k − 1)x ≤ ϕ(x) − ϕ(f(x)), x > 0. (2.2)
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Fix x > 0 and substitute f(x) for x in (2.2) to get

(k − 1)f(x) ≤ ϕ(f(x)) − ϕ(f2(x)).

Continue this way to obtain

(k − 1)fn(x) ≤ ϕ(fn(x)) − ϕ(fn+1(x)), n ≥ 0, (2.3)

where fn is the n-th composite of f . Summing up (2.3) yields (since ϕ is bounded
below)

∞∑
n=0

fn(x) < ∞.

In particular,
lim

n→∞ fn(x) = 0. (2.4)

On the other hand, however, it is easily seen that the sequence {fn(x)} is strictly
increasing and so (2.4) can not hold. This contradiction shows that f can not be a
Caristi selection for T .

Since a set-valued mapping does not always have a continuous selection ([29],
[19]), one would turn his attention to look for a Caristi selection. It is however
obvious that such a selection does not exist if the set-valued mapping is fixed point
free.

The next result shows that a set-valued contraction has a Caristi selection. Recall
that a set-valued mapping T : M → CB(M) is said to be a contraction if there exists
a number k ∈ [0, 1) such that

H(Tx, Ty) ≤ kd(x, y), x, y ∈ M.

Theorem 2.2. (cf. [18]) Let (M,d) be a complete metric space and T : M →
CB(M) a contraction. Then T admits a Caristi selection.

Proof. Let ε > 0 be small enouogh so that k + ε < 1 and define ϕ by

ϕ(x) :=
1
ε
d(x, Tx), x ∈ M.

It is immediately clear that ϕ is continuous. For any x ∈ M we can find some
f(x) ∈ Tx satsifying

d(x, f(x)) ≤ 1
k + ε

d(x, Tx). (2.5)

Obviously f is a selection for T . It remains to show that

d(x, f(x)) ≤ ϕ(x) − ϕ(f(x)), x ∈ M.
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Note that
d(f(x), T f(x)) ≤ H(Tx, Tf(x)) ≤ kd(x, f(x)). (2.6)

We calculate

d(x, f(x)) =
1
ε
[(k + ε)d(x, f(x)) − kd(x, f(x))]

≤ 1
ε
[d(x, T (x)) − d(f(x), T f(x))] (by (2.5)-(2.6))

= ϕ(x) − ϕ(f(x)).

Recall now that a set-valued mapping T : M → CB(M) is said to be a general-
ized contraction if there exists a function k : M → [0, 1) such that

H(Tx, Ty) ≤ k(x)d(x, y), x, y ∈ M. (2.7)

Theorem 2.3. Let (M,d) be a complete metric space and T : M → CB(M) a
generalized contraction. If the function k in (2.7) is continuous, then T admits a
Caristi selection.

Proof. Let

ε(x) :=
1 − k(x)

2
, x ∈ M.

Then k(x) + ε(x) = (k(x) + 1)/2 < 1 for x ∈ M . Define ϕ by

ϕ(x) :=
1

ε(x)
d(x, Tx), x ∈ M.

Since k is continuous, ϕ is continuous and bounded below (by 0). For any x ∈ M
we can find some f(x) ∈ Tx satsifying

d(x, f(x)) ≤ 1
k(x) + ε(x)

d(x, Tx). (2.8)

This f is a selection of T . In order to show that f is a Caristi selection for T , it
remains to show that

d(x, f(x)) ≤ ϕ(x) − ϕ(f(x)), x ∈ M.

Note that
d(f(x), T f(x)) ≤ H(Tx, Tf(x)) ≤ k(x)d(x, f(x)). (2.9)

We calculate

d(x, f(x)) =
1

ε(x)
[(k(x) + ε(x))d(x, f(x)) − k(x)d(x, f(x))]

≤ 1
ε(x)

[d(x, T (x)) − d(f(x), T f(x))] (by (2.8) − (2.9))

= ϕ(x) − ϕ(f(x)).
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3 Directional Set-Valued Contractions

Let (M,d) be a metric space. Given points x, y ∈ M , the open segment (x, y) defined
by x and y is the set of points z (if any) in M distinct from x and y and satisfying

d(x, z) + d(z, y) = d(x, y). (3.1)

The notion of directional (single-valued) contractions was introduced by Clarke [6].

Definition 3.1. A (single-valued) map f : M → M is said to be a directional
contraction provided f is continuous and there exists a number σ ∈ (0, 1) with the
following property: whenever v ∈ M is such that f(v) �= v, there exists w ∈ (v, f(v))
such that

d(f(v), f(w)) ≤ σd(v,w).

We next extend this notion to set-valued mappings.

Definition 3.2. A set-valued map T : M → CB(M) is said to be a directional
contraction provided T is upper semicontinuous with respect to the Hausdorff dis-
tance H and there exists a number σ ∈ (0, 1) with the following property: whenever
v ∈ M is such that v �∈ T (v) and u ∈ T (v), there exists w ∈ (v, u) such that

H(T (v), T (w)) ≤ σd(v,w). (3.2)

Clarke [6] shows that every directional single-valued contraction of a complete metric
space has a fixed point. We next extend Clarke’s result to the set-valued case. We
need Ekeland’s ε-Variational Principle [11, 12].

Lemma 3.3. (Ekeland’s ε-Variational Principle) Let (M,d) be a complete metric
space and let F : M → R ∪ {+∞} be a lower semicontinuous function which is
bounded below. If u is a point in M satisfying

F (u) < inf
M

F + ε

for some ε > 0, then, for every λ > 0 there exists a point v in M such that

(i) F (v) ≤ F (u).

(ii) d(u, v) ≤ λ.

(iii) For all w �= v in M , one has

F (v) < F (w) +
ε

λ
d(v,w).

Theorem 3.4. Let (M,d) be a complete metric space and T : M → K(M) be a
directional set-valued contraction. Then T has a fixed point.
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Proof. Let ϕ : M → R be defined by

ϕ(x) = d(x, Tx).

Since T is upper semicontinuous, ϕ is lower semicontinuous (and bounded below
obviously). By Lemma 3.3 (with ε = (1− σ)/2 and λ = 1), we have a point v in M
such that, for all w ∈ M one has

d(v, Tv) ≤ d(w, Tw) +
1 − σ

2
d(w, v). (3.3)

If v ∈ Tv, we are done. So suppose the contrary that v �∈ Tv. Noting that Tv is
compact, we can find a point u in Tv such that

d(v, u) = d(v, Tv). (3.4)

Since T is a directional contraction, we can also find a point w ∈ (u, v) such that

H(Tu, Tv) ≤ σd(v,w). (3.5)

Note that there holds

d(v,w) + d(w, u) = d(v, u). (3.6)

Note also the triangle inequality

d(w, Tw) ≤ d(w, Tu) + H(Tv, Tw). (3.7)

We calculate

0 ≤ σd(v,w) − H(Tv, Tw) (by (3.5))
≤ σd(v,w) − d(w, Tw) + d(w, Tv) (by (3.7))
≤ σd(v,w) − d(w, Tw) + d(w, u) (u ∈ Tv)
= (σ − 1)d(v,w) − d(w, Tw) + d(v, u) (by (3.6))
= (σ − 1)d(v,w) − d(w, Tw) + d(v, Tv) (by (3.4))

≤ σ − 1
2

d(v,w) (by (3.3)).

Since σ < 1, this implies w = v. This contradiction proves the theorem.
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4 Nonexpansive Set-Valued Mappings

Let X be a Banach space and E a nonempty closed convex subset of X. Recall
that K(E) is the family of nonempty compact subsets of E. We shall use Kc(E) to
denote the family of nonempty compact convex subsets of E. A set-valued mapping
T : E → K(X) is said to be nonexpansive if, for all x, y ∈ E,

H(Tx, Ty) ≤ ‖x − y‖.

Given a bounded sequence (xn) in X, the asymptotic radius and center of (xn) with
respect to E are defined respectively by

rE(xn) := inf
{

lim sup
n→∞

‖xn − x‖ : x ∈ E

}

and
AE(xn) :=

{
x ∈ E : lim sup

n→∞
‖xn − x‖ = rE(xn)

}
.

(The notion of asymptotic center was introduced by Edelstein [10].) Recall that the
inward set to E at a point x in E is defined as

IE(x) := {x + λ(y − x) : λ ≥ 1, y ∈ E}.

Recall also that a set-valued map T : E → K(X) is said to be inward provided, for
each x in E one has

Tx ⊂ IE(x).

T is weakly inward if, for each x in E one has

Tx ⊂ IE(x),

where IE(x) is the closure of IE(x).
Recall that a bounded sequence (xn) in X is called regular with respect to E if

rE(xn) = rE(xni) for all subsequences (xni) of (xn); while (xn) is called asymptoti-
cally uniform if AE(xn) = AE(xni) for all subsequences (xni) of (xn).

Lemma 4.1. ([24], [13]) Let (xn) and E be as above.

1. There always exists a subsequence of (xn) which is regular with respect to E;

2. If E is separable, then (xn) contains a subsequence which is asymptotically
uniform with respect to E.

One of the fundamental results in the fixed point theory for set-valued mappings
is the following theorem proved by Lim in 1974. The random version was proved by
Xu [36] in 1993.
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Theorem 4.2. (Lim [23]) If X is a uniformly convex Banach space and if E is
a nonempty closed bounded convex subset of X, then every nonexpansive set-valued
mapping T : E → K(E) has a fixed point.

One of the features of a uniformly convex Banach space X is that the asymptotic
center of any bounded sequence with respect to a closed convex subset of X consists
of one and only one point. Kirk and Massa [21] extended Theorem 4.2 in the sense
that the asymptotic center is allowed to contain more than one point (a compact
set, to be precise). However, T is in addition assumed to take convex values.

Theorem 4.3. (Kirk-Massa [21]) Let E be a nonempty closed bounded convex subset
of a Banach space X and T : E → Kc(E) a nonexpansive mapping. Suppose that
the asymptotic center in E of each bounded sequence of X is nonempty and compact.
Then T has a fixed point.

Both Theorems 4.2 and 4.3 have been extended to nonself mappings.

Theorem 4.4. (Lim [25] and Xu [38, 39]) Assume X is a uniformly convex Ba-
nach space, E is a closed bounded convex subset of X, and T : E → K(X) is a
nonexpansive weakly inward set-valued mapping. Then T has a fixed point.

Theorem 4.5. (Xu [38, 39]) Let E be a nonempty closed bounded convex subset of
a Banach space X and T : E → Kc(X) a nonexpansive inward set-valued mapping.
Suppose that the asymptotic center in E of each bounded sequence of X is nonempty
and compact. Then T has a fixed point.

Now recall that the modulus of noncompact convexity of a Banach space X is
defined as a function ∆X : [0, 2] → [0, 1] by

∆X(ε) := 1 − sup
{

inf
x∈A

‖x‖ : A ⊂ BX convex, α(A) ≥ ε

}
,

where BX is the closed unit ball of X and α(A) is the Kuratowski measure of
noncompactness of A; that is,

α(A) := inf{r > 0 : A can be covered with a finite family
of subsets of diameters less than r}.

Let
εX := sup{ε > 0 : ∆X(ε) = 0}.

It is known that the space X is nearly uniformly convex ([17], [14]) if and only if
εX = 0.
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Recall also that the Chebyshev radius of a bounded set E with respect to another
set G is defined by

r̃G(E) := inf

{
sup
y∈E

‖x − y‖ : x ∈ G

}
.

The following lemma establishes a connection, through the modulus ∆X of X, of the
asymptotic radius of a bounded sequence (xn) with respect to E and the Chebyshev
radius of the asymptotic center of the sequence (xn) with respect to E.

Lemma 4.6. (cf. Goebel-Kirk [14]) Let X be a reflexive Banach space, E a closed
convex subset of X, and (xn) a bounded sequence in E. Then

r̃E(AE(xn)) ≤ [
1 − ∆X(1−)

]
rE(xn),

where ∆X(1−) = limε→1− ∆X(ε).

We next recall the Hausdorff measure of noncompactness of a bounded subset A
of a Banach space X is defined by

χ(A) := inf{r > 0 : A can be covered with a finite family
of balls of radius less than r}.

Let γ be either α or χ. A set-valued map T : E → CB(X) is said to be γ-condensing
if, whenever A ⊂ E is such that γ(A) > 0, one has

γ(T (A)) < γ(A), (4.1)

where T (A) = ∪{Tx : x ∈ A}. If the nonstrict inequality ≤ holds in (4.1), then T
is said to be 1-γ-contractive.

Lemma 4.7. (cf [8]) Let X be a Banach space and E a closed bounded convex subset
of X. Let F : E → 2X be a set-valued mapping with nonempty closed convex values.
Then F has a fixed point if either one of the following conditions is satisfied:

1. F is a weakly inward contraction;

2. F is an upper semicontinuous γ-condensing mapping and satisfies the property:
F ∩ IE(x) �= ∅ for every x ∈ E.

Recently Dominguez Benavides and Lorenzo Ramirez proved the following in-
teresting result.

Theorem 4.8. ([9]) Let X be a Banach space such that εX < 1, E a nonempty
closed bounded convex subset of X, and T : E → Kc(E) a nonexpansive set-valued
mapping. Assume T is also 1-χ-contractive. Then T has a fixed point.
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The next result extends Theorem 4.8 to the nonself-mapping case.

Theorem 4.9. Let X be a Banach space such that εX < 1, E a nonempty closed
bounded convex subset of X, and T : E → Kc(X) a nonexpansive inward set-valued
mapping. Assume T is also 1-χ-contractive. Then T has a fixed point.

Proof. Fix an x0 ∈ E and define for each integer n ≥ 1 the contraction Tn : E →
Kc(X) by

Tn(x) :=
1
n

x0 +
(

1 − 1
n

)
Tx, x ∈ E.

Then Tn satisfies the inwardness condition, i.e., Tnx ⊂ IE(x) for all x ∈ E. Thus
by Lemma 4.7, Tn has a fixed point xn ∈ E. By Lemma 4.1, we may assume that
(xn) is regular. Let yn ∈ Txn be such that ‖xn−yn‖=dist(xn, Txn) → 0 as n → ∞.
Let (nα) be a universal subnet of (n) (see [20] for more details about universal nets)
and define a function g by

g(x) := lim
α

‖xnα − x‖, x ∈ E.

Let
A := {x ∈ E : g(x) = r},

where r = infx∈E g(x). Then by assumption (see Proposition 6 of [21]), A is non-
empty and compact. The key to the proof is that the inwardness of T on E implies
that

Tx ∩ IA(x) �= ∅, x ∈ A. (4.2)

Indeed, if x ∈ A, by compactness, we have for each n ≥ 1, some zn ∈ Tx such that

‖yn − zn‖ = d(yn, Tx) ≤ H(Txn, Tx) ≤ ‖xn − x‖. (4.3)

Let z = limα znα . Then z ∈ Tx. So in order to show (4.2), we only need to show
z ∈ IA(x). We notice that (4.3) implies

g(z) = lim
α

‖xnα − z‖ = lim
α

‖ynα − znα‖ ≤ lim
α

‖xnα − x‖.

Hence
g(z) ≤ g(x) = r. (4.4)

Furthermore, as Tx ⊂ IE(x), we have some λ ≥ 0 and v ∈ E such that

z = x + λ(v − x).

What we need to show is that v ∈ A. If λ ≤ 1, then by the convexity of E, z ∈ E
and hence by (4.4), z ∈ A ⊂ IA(x) and we are done. So assume λ > 1. Then we
can write

v = µz + (1 − µ)x with µ =
1
λ
∈ (0, 1).
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By the convexity of g, we have by (4.4),

g(v) ≤ µg(z) + (1 − µ)g(x) ≤ r.

Since v ∈ E, this implies v ∈ A. Hence z = x + λ(v − x) ∈ IA(x). Now we have
a nonexpansive mapping T : A → Kc(X) which satisfies the (boundary) condition
(4.2). For each n ≥ 1 we define another contraction Sn : A → Kc(X) by

Snx :=
1
n

x0 + (1 − 1
n

)Tx, x ∈ A,

where x0 ∈ A. Since (4.2) implies that Sn satisfies the same boundary condition;
i.e.,

Snx ∩ IA(x) �= ∅, x ∈ A.

Also by assumption we see that Sn is a continuous χ-condensing mapping. An
application of Lemma 4.7 yields a fixed point x1

n ∈ A of Sn. It is easy to see that

d(x1
n, Tx1

n) ≤ σ

n
, n ≥ 1,

where σ > 0 is a constant. Set A1 := AE(x1
n). Apply Lemma 4.6 to get

r̃E(A1) ≤ λrE(x1
n), (4.5)

where λ = 1 − ∆X(1−) < 1. Note that rE(x1
n) ≤ r̃E(A) as (x1

n) ⊂ A0 := A. We
obtain by (4.5)

r̃E(A1) ≤ λr̃E(A0). (4.6)

Now by induction we can construct, for each integer k ≥ 1, a sequence (xk
n) and a

nonempty subset Ak such that, for each k ≥ 1,

(1) (xk
n) ⊂ Ak−1;

(2) Ak = AE(xk
n);

(3) limn→∞ d(xk
n, Txk

n) = 0;

(4) r̃E(Ak) ≤ λkr̃E(A).

Pick a vk ∈ Ak for each k ≥ 1 to get a sequence (vk). Since

‖vk+1 − vk‖ ≤ lim sup
n→∞

(‖xk+1
n − vk‖ + ‖vk+1 − xk+1

n ‖)
≤ diamAk + lim sup

n→∞
‖xk+1

n − vk+1‖
= diamAk + rE(xk+1

n )
≤ diamAk + r̃E(Ak)
≤ 3r̃E(Ak) ≤ 3λk r̃E(A).
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Since λ < 1, it follows that (vk) is strongly convergent. Let v be the limit of (vk).
Since we have

d(vk, T vk) ≤ ‖vk − xk
n‖ + d(xk

n, Txk
n) + H(Txk

n, T vk)
≤ 2‖vk − xk

n‖ + d(xk
n, Txk

n),

we obtain by taking the limsup as n → ∞
d(vk, T vk) ≤ 2 · lim sup

n→∞
‖vk − xk

n‖ ≤ 2 · λk−1r̃E(A).

Letting k → ∞ yields d(v, Tv) = 0 and hence v ∈ Tv. The proof is complete.

Recall that a Banach space X is said to satisfy the nonstrict Opial property (cf
[22]) if, whenever a sequence (xn) is weakly convergent to a point x∞, one has

lim sup
n→∞

‖xn − x∞‖ ≤ lim sup
n→∞

‖xn − x‖for all x ∈ X.

If a Banach space X satisfies the nonstrict Opial property, then every nonexpansive
set-valued mapping T : E → K(X) is 1-χ-contractive (see [9] for a proof). We
therefore have the following result.

Corollary 4.10. Let X be a Banach space such that εX < 1 and satisfy the nonstrict
Opial property, E a nonempty closed bounded convex subset of X, and T : E →
Kc(X) a nonexpansive inward set-valued mapping. Then T has a fixed point.

5 Transfinite Induction and Lim’s Theorem

Transfinite induction plays an important role in the existence theory for fixed points
of set-valued mappings. As a matter of fact, Lim’s theorem (Theorem 4.2) and
Caristi’s theorem (Lemma 2.1) were first proved by using the transfinite induction
technique (cf. [23], [4]). The next theorem, again due to Lim, is another example of
applications of the transfinite induction in the fixed point theory.

Theorem 5.1. ([26]) Let E be a closed subset of a Banach space X and T : E →
2X \{∅} be a contraction taking nonempty closed values. If T is weakly inward (i.e.,
Tx ⊂ IE(x) for x ∈ E), then T has a fixed point.

Proof. Let k ∈ [0, 1) be the contraction constant of T . Pick l, k < l < 1 and
ε ∈ (0, 1) so that b := 1−ε

1+ε − l > 0. Assume on the contrary that T does not have
fixed points. Take z0 ∈ E and y0 ∈ Tz0 arbitrarily. Let Ω be the first noncountable
ordinal and γ an ordinal < Ω. Suppose zα, yα have been defined for all α < γ such
that
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(i) yα ∈ Tzα for α < γ,

(ii) zα �= zα+1 for α < α + 1 < γ,

(iii) bmax{‖zβ − zα‖, 1
l ‖yβ − yα‖} ≤ ‖yα − zα‖ − ‖yβ − zβ‖ for α, β < γ.

We next define zγ , yγ so that (i)-(iii) remain valid for all α, β < γ + 1. We shall
distinguish two cases.

Case 1. γ has a predecessor γ − 1. In this case, since yγ−1 ∈ Tzγ−1 and T is
fixed point free, we see ‖yγ−1 − zγ−1‖ > 0. By the weak inwardness of T we have
zγ ∈ E and λ ≥ 1 such that

‖yγ−1 − (zγ−1 + λγ(zγ − zγ−1))‖ ≤ ε‖yγ−1 − zγ−1‖.

This clearly implies that γ−1 �= zγ and

‖zγ − zγ−1‖ ≤ (1 + ε)µγ‖yγ−1 − zγ−1‖,
‖zγ − xγ‖ ≤ εµγ‖yγ−1 − zγ−1‖,

where µγ = 1
λγ

and xγ = µγyγ−1+(1−µγ)zγ−1. Since H(Tzγ , T zγ−1) ≤ k‖zγ−zγ−1‖,
there is some yγ ∈ Tzγ such that

‖yγ − yγ−1‖ ≤ l‖zγ − zγ−1‖. (5.1)

Thus

‖yγ − zγ‖ ≤ ‖yγ − yγ−1‖ + ‖yγ−1 − xγ‖ + ‖xγ − zγ‖
≤ l‖zγ − zγ−1‖ + (1 − µγ)‖yγ−1 − zγ−1‖ + εµγ‖yγ−1 − zγ−1‖
≤ l‖zγ − zγ−1‖ + ‖yγ−1 − zγ−1‖ − 1 − ε

1 + ε
‖zγ − zγ−1‖.

It then follows that

b‖zγ − zγ−1‖ ≤ ‖yγ−1 − zγ−1‖ − ‖yγ − zγ‖

and from (5.1)
b

l
‖yγ − yγ−1‖ ≤ ‖yγ−1 − zγ−1‖ − ‖yγ − zγ‖.

For any α < γ − 1,

b‖zα − zγ−1‖ ≤ ‖yα − zα‖ − ‖yγ−1 − zγ−1‖ (by (iii)).

So

b‖zγ − zα‖ ≤ b(‖zγ − zγ−1‖ + ‖zγ−1 − zα‖)
≤ ‖yα − zα‖ − ‖yγ − zγ‖.
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Similarly
b

l
‖yγ − yα‖ ≤ ‖yα − zα‖ − ‖yγ − zγ‖.

So (i)-(iii) are valid for α, β < γ + 1.
Case 2. γ is a limit ordinal. We then have a strictly increasing sequence (γn)

that converges to γ. Set rn = ‖yγn − zγn‖. Condition (iii) then implies that (zγn)
and (yγn) are both Cauchy and hence convergent. Let zγ and yγ be their respective
limits. Since yγn ∈ Tzγn , we have a wn ∈ Tzγ such that ‖wn − yγn‖ ≤ l‖zγn − zγ‖.
Thus wn − yγn → 0. As yγn → yγ , we get wn → yγ and thus yγ ∈ Tzγ for Tzγ is
closed. Now for α < γ, we have γn > α for sufficiently large n, so

b‖zγn − zα‖ ≤ ‖yα − zα‖ − ‖yγn − zγn‖
and upon taking limits,

b‖zγ − zα‖ ≤ ‖yα − zα‖ − ‖yγ − zγ‖.
Similarly

b

l
‖yγ − yα‖ ≤ ‖yα − zα‖ − ‖yγ − zγ‖.

Therefore, (i)-(iii) remain valid for all α, β < γ+1. If α < α+1 < γ+1, then α < γ.
Since γ is a limit ordinal, α + 1 < γ. So (ii) is also valid for α < α + 1 < γ + 1.

By the transfinite induction, zα, yα for α < Ω satisfying (i)–(iii) have been de-
fined. Let sα = ‖yα − zα‖. Since (sα)α<Ω is decreasing and bounded below by 0, it
must eventually be constant. If γ < Ω is such that sα = sβ for all α, β ≥ γ, then by
(iii) zγ+1 = zγ , contradicting (ii). Therefore, T must have a fixed point.

6 Some Open Problems

There are still a lot of basic problems in the fixed point theory for set-valued map-
pings which remain unsolved. Below is a partial list of some open problems. See
also the open problems raised in Reich [33] and Xu [38].

Problem 1. Assume (M,d) is a complete metric space and T : M → CB(M) (or
even K(X)) has a Caristi selection. Does there exist an equivalent metric on M
under which T becomes a contraction?

Problem 2. Assume (M,d) is a complete metric space and T : M → K(X) is a
directional set-valued contraction. Does T admit a Caristi selection?

Problem 3. Can one find a proof of Theorem 5.1 without using the transfinite
induction?
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Problem 4. Does a set-valued weakly inward (or even inward) contraction which
maps a closed subset of a Banach space into the collection of nonempty compact (or
even compact convex) subsets have a Caristi selection?

Problem 5. In Theorems 4.5 and 4.9, can the inwardness condition be weakened
to the weak inwardness condition?

Problem 6. Assume E is a closed bounded convex subset of a uniformly convex
Banach space X and assume T : E → Kc(X) is a set-valued contraction such that
Tx ∩ IE(x) �= ∅ (or even Tx ∩ IE(x) �= ∅) for all x ∈ E. Does T have a fixed point?

The answer to this problem is no if T is not assumed to take convex values. A
counterexample has been constructed in the plane R2 (see [39], page 700).

Problem 7. In Theorem 4.9, can one remove the assumption that the mapping T
is 1-β-contractive? In particular, can one remove the non-strict Opial assumption
in Corollary 4.10?

Problem 8. (Reich’s problem [32, 33]) Assume (M,d) is a complete metric space
and assume T : M → CB(X) is a set-valued mapping satisfying the condition:

H(Tx, Ty) ≤ k(d(x, y))d(x, y), x, y ∈ X, x �= y,

where k : (0,∞) → (0, 1) is a function with the following property:

lim sup
s→t+

k(s) < 1 for all t > 0.

Does T have a fixed point?

Hu [16] claimed that the answer to Problem 8 is yes. But his proof contains a
gap (see Reich [33] and Jachymski [19]). (Unfortunately this gap has been repeated
in several papers, e.g. [2, 3].)

Though problem 8 remains unsolved, some partial answers have been obtained.
Precisely, the asnwer to this problem is yes if any one of the following additional
conditions is satisfied:

1. For each x ∈ M , Tx is a compact set. ([31], see also [38])

2. lim sups→0+ k(s) < 1. ([35], [28])

3. There are constants a, t0 > 0 and σ ∈ (0, 1) such that k(t) ≤ 1 − atσ for all
t ∈ (0, t0). ([15], [18], [7])

4. Whenever H is a closed subset of M such that Tx ∩ H �= ∅ for all x ∈ H, it
follows that d(x, Tx ∩ H) = d(x, Tx) for all x ∈ H. ([5]; see also [38] for a
remark on this condition.)
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A Coupled Legendre Petrov–Galerkin and Collocation

Method for the Generalized Korteweg–de Vries Equations

Heping Ma∗ Weiwei Sun†

Abstract

A coupled Legendre Petrov–Galerkin and collocation method for the gener-
alized
Korteweg–de Vries equation with non-periodic boundary conditions is devel-
oped. The method is basically formulated in the Legendre Petrov–Galerkin
form to keep good stability. But the nonlinear term is treated by collocation
methods for ease of implementation. By choosing appropriate base functions,
the scheme can be solved efficiently. It is shown that this non-symmetric ap-
proach is more suitable to the underlying (2r+1)th-order differential equations
and enables us to derive an optimal rate of convergence in L2-norm. A classical
leapfrog–Crank–Nicolson scheme is adopted for the time discretization.

Keywords. generalized Korteweg–de Vries equation, coupled Legen-
dre Petrov–Galerkin and collocation

1 Introduction

The generalized Korteweg–de Vries (KdV) equation covers many important cases
such as the KdV equation, the modified KdV equation, and the nonlinear lattice
wave equation arising in the study of a number of different physical problems of
water wave, plasma physics and anharmonic lattices. The physical phenomena to
be modeled by the fifth-order dispersive KdV equation are described briefly in [10].
The spectral/pseudospectral method provides a powerful technique for the numerical
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solutions of such problems due to its high-order accuracy and has been studied by
many authors in both theoretical and computational aspects [1, 12, 8, 15, 18, 21].

The one of the most important aspect in numerical analysis is to describe
the error of the approximation method by the convergence order related to the
smoothness of the exact solution. It is well know that under the assumption that
U(x) ∈ Hσ := W σ,2, which is the Sobolev space, the error in L2-norm of the best
approximation to U(x) by algebraic polynomials (or trigonometrical polynomials in
the case of the Fourier method) of the degree at most N is of the order O(N−σ).

For the KdV equation with periodic boundary conditions, Maday and Quarteroni
[21] presented a class of Fourier spectral and Fourier pseudospectral methods. They
show that the error of the Fourier spectral method is of the order O(N1−σ) in L2-
norm when the analytic solution is in Hσ. The error of the Fourier pseudospectral
method in H1-norm is of the order O(N2−σ) in this case. No corresponding L2-
estimate for the Fourier pseudospectral method is known except some modification
done by [18].

The KdV equation with non-periodic boundary conditions is also studied by
many authors [24, 5, 7, 10]. In a recent work, Huang and Sloan [14] presented a
new pseudospectral method for solving the linear third-order differential equation
(∂tU +∂3

xU = f), which is based on the use of the zeros of P
(2,1)
N−2(x) as the collocation

points. Here we denote by P
(α,β)
n (x) (α, β > −1) the Jacobi polynomials orthogonal

on (−1, 1) with the weight functions ωα,β(x) = (1 − x)α(1 + x)β . Huang and Sloan
[14] proved that the method for the linear problem is of “infinite” order accuracy
under the assumption that the analytic solution U(x, t) ∈ C∞. Li et al [17] extended
this method to the KdV equation with the nonlinear term being interpolated at the
above collocation points and presented a more precise estimate O(N2−σ) in L2-norm.
It is obvious that the estimate in [17] is not optimal and it seems unlikely that the
optimal error estimate O(N−σ) can be obtained for the method in [17]. Pavoni
[24] first proposed single and multidomain Chebyshev collocation methods for the
KdV equation with non-periodic boundary conditions but no error estimate has
been provided. A Legendre Petrov–Galerkin (LPG) method for the KdV equation
with collocation treatment for the nonlinear term was presented in our recent work
[19, 20].

Spectral approximation to the generalized KdV equation with nonperiodic bound-
ary conditions may be written in the following operator form: Find uN ∈ PN (I)
(the space of all polynomials of degree ≤ N restricted to I = (−1, 1)), satisfying the
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a
3×106

λI 0

−3×106

−4×106 0 2×106

λR

b
3×106

λI 0

−3×106

−4×106 0 2×106

λR

Figure 1: The eigenvalues, except some smaller real ones, of the spectral approxima-
tion to third derivative operator with N = 42 for the Legendre collocation method
(a) and the LPG method (b). The largest real parts of the eigenvalues are 1.52×106

and −9.48, respectively

boundary conditions, such that

∂tuN (t) + ∂xP1F (uN (t)) + (−1)r+1P2∂
2r+1
x uN (t) = 0,

where P1 and P2 are some spectral Galerkin/collocation projection operators. The
operators, P1 and P2, should be designed suitably based on the properties of the
problem since classical Legendre/Chebyshev methods do not work well. For exam-
ple, consider the spectral approximation to the linear third-order equation

∂tU(x, t) + ∂3
xU(x, t) = f(x, t)

with the boundary conditions U(±1, t) = ∂xU(1, t) = 0. When a classical Legen-
dre/Chebyshev collocation method is applied, the scheme is unstable as shown in
[22]. They find that the eigenvalue of spectral approximation to the third-order
derivative operator having the largest positive real part for given N grows in propor-
tion to N6. Noting the nonsymmetry of the problem, a LPG method was proposed
in [19] so that the test functions differ from the trial functions. The scheme reads:
Find uN ∈ PN (I), satisfying the boundary conditions, such that

(∂tuN (t), v) − (∂2
xuN (t), ∂xv) = (f(t), v), ∀v ∈ PN−1(I), v(±1) = 0.

Eigenvalue analysis shows that unstable modes disappear in the LPG method. In
Figure 1, the eigenvalues of the spectral approximation to third derivative operator
with N = 42 for the Legendre collocation method and the LPG method are plotted
in (a) (given in [22]) and (b), respectively.
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For problems with high-order derivatives, the stability limit for an explicit tem-
poral discretization is usually much severe. So the Crank–Nicolson scheme was
adopted in [19]. The straightforward use of the method leads to solving a system
of a full structure [24]. Appropriate base functions can be constructed to make the
corresponding matrix sparse as in the case of the spectral method for the second-
order problem [25]. For the third-order problem (r = 1), set φn := Ln−Ln+2, where
{Ln} are the Legendre polynomials. Thus {φn(x)}n=N−3

n=0 are base functions of the
space of test functions. Expanding uN in terms of (1−x)φm and taking v = φn lead
to solving the system:

Aa = g,

where A is an octa-diagonal matrix. A numerical experiment shows that the con-
dition number Cond (A) grows like N2.

As can be seen from above, the LPG method is an efficient approximation to the
linear third-order problem. However, when it is applied to the nonlinear problem in
the usually way the method becomes undesirable since integrals are involved. The
key to this problem is to treat the linear part and nonlinear part in different ways,
namely P1 �= P2. A LPG and collocation method was presented in [20]. Basically,
the scheme was formulated in the LPG way. But several collocation methods were
considered to compute the nonlinear term as well as the Galerkin spectral method.
Also, the nonlinear term was treated explicitly so that the resulting system to be
solved was the same as for the linear problem while still keeping the good stability.

In this paper, we apply the LPG and collocation method to the following gener-
alized KdV equation with non-periodic boundary conditions




∂tU + ∂xF (U) + (−1)r+1∂2r+1
x U = 0, x ∈ I, t ∈ (0, T ],

∂l
xU(−1, t) = 0, 0 ≤ l ≤ r − 1, t ∈ [0, T ],

∂l
xU(1, t) = 0, 0 ≤ l ≤ r, t ∈ [0, T ],

U(x, 0) = U0(x), x ∈ I,

(1.1)

where r ≥ 1, F (z) is a smooth function of z, and I = (−1, 1). Attentions will be
paid on the efficient implementation of the scheme, good stability of time advancing,
better condition number of algebraic system, and the theoretical analysis of optimal
rate of convergence as discussed above.
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2 The Legendre Petrov–Galerkin and collocation meth-

ods

For any non-negative integer σ, Hσ(I) := W σ,2(I) and Hσ
0 (I) := W σ,2

0 (I) are the
Sobolev spaces with the norm ‖ · ‖σ and semi-norm | · |σ, respectively. For a positive
weight ω(x) on I, the inner product and norm of L2

ω(I) are denoted by (·, ·)ω and
‖ · ‖ω, respectively. We will drop the subscript ω whenever ω(x) ≡ 1. Let

Hr1,r2
0 (I) = {v ∈ Hmax{r1,r2}(I) | ∂l

xv(−1) = 0, }

0≤ l ≤ r1 − 1; ∂l
xv(1) = 0, 0 ≤ l ≤ r2 − 1.

A weak form of the problem (1.1) is to find U(t) ∈ Hr,r+1
0 (I) such that for any

v ∈ Hr
0(I),




(∂tU, v) + (∂xF (U), v) − (∂r+1
x U, ∂r

xv) = 0, t ∈ (0, T ],

(U, v) = (U0, v), t = 0.
(2.1)

Let PN (I) be the space of polynomials of degree at most N on the interval I,

VN = PN (I) ∩ Hr,r+1
0 (I), WN−1 = PN−1(I) ∩ Hr

0(I),

which are used as the trial and test function spaces, respectively. To make the
method more efficient, we also use some collocation methods to compute the non-
linear term. The semi-discrete LPG and collocation method for (1.1) is to find
uN (t) ∈ VN (t ≥ 0) such that for any v ∈ WN−1,


(∂tuN (t), v) + (∂xPNF (uN (t)), v) − (∂r+1

x uN (t), ∂r
xv) = 0, 0 < t ≤ T,

(uN (0), v) = (P (0)
N U0, v),

(2.2)

where the spectral approximation operator PN can be one of the following:
1. PN : L2(I) → PN (I), the Legendre Galerkin projection operator such that

(PNu, v) = (u, v), ∀ v ∈ PN (I);

2. IN : C(Ī) → PN(I), the polynomial interpolation operator at Legendre–
Gauss–Lobatto points {xj}N

j=0 (x0 = −1, xN = 1, and {xj}N−1
j=1 are the zeros of

P
(1,1)
N−1(x)) such that

INu(xj) = u(xj), j = 0, · · · , N ;

3. I ′
N : C1(Ī) → PN−2r+2(I), the polynomial interpolation operator at
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{x′
j}N−2r+1

j=0 (x′
0 = −1, x′

N−2r+1 = 1, and {x′
j}N−2r

j=1 are the zeros of P
(r+1,r)
N−2r (x)) such

that
I ′

Nu(x′
j) = u(x′

j), j = 0, · · · , N − 2r + 1; ∂xI ′
Nu(1) = ∂xu(1).

The third method takes more care of the nonsymmetry of the problem, which is
based on the generalized Legendre–Guass quadrature rule introduced in [14] and
similar to that adopted in [17]. We let P

(0)
N = PN in the first two cases and, in Case

3, let P
(0)
N U0 ∈ VN such that

P
(0)
N U0(x′

j) = U0(x′
j), j = 1, · · · , N − 2r.

Remark 2.1 We can also choose IC
N : C(Ī) → PN (I), the polynomial interpolation

operator at Chebyshev-Gauss points, as PN and P
(0)
N in (2.2). This combination

of the LPG and Chebyshev collocation method allows for the use of the fast Legen-
dre transformation [2] and turns out being very efficient, which will be analyzed in
another paper.

Let τ be the step size in time space and tk = kτ (k = 0, 1, 2, · · · , nT ; T = nT τ).
For simplicity, we denote uk(x) := u(x, tk) by uk usually and

uk
t̂

=
1
2τ

(uk+1 − uk−1), ûk =
1
2
(uk+1 + uk−1).

The fully discrete LPG and collocation method for (1.1) is to find uk
N ∈ VN such

that for any v ∈ WN−1,


(uk
N t̂, v) + (∂xPNF (uk

N ), v) − (∂r+1
x ûk

N , ∂r
xv) = 0, 1 ≤ k ≤ nT − 1,

(u1
N , v) = (P (0)

N [U0 + τ∂tU(0)], v),

(u0
N , v) = (P (0)

N U0, v).

(2.3)

Here the time-discretization is a leapfrog–Crank–Nicolson scheme, which is of the
second-order accuracy in time space. The method is more efficient and of better
stability since it is a semi-implicit time advancing scheme, i.e., implicit for the
linear term of the higher order derivative but explicit for the nonlinear term. The
solution of above scheme can be obtained by solving a system with a diagonal strip
matrix at each time level tk. We refer to [20] for the details in the case of r = 1.

3 Preliminaries

Throughout this paper C will denote a positive generic constant. We assume that
N is sufficiently large (N > 4r + 1). In this section, we analyze approximation
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properties of some projection operators and give some basic lemmas, which will be
needed in the error estimates.

We first recall a basic result of Jacobi approximation [17]. Let Pα,β
N : L2

ωα,β
(I) →

PN (I) be the orthogonal projection operator with the weight ωα,β(x) and PN := P00
N

for simplicity.

Lemma 3.1 ([17]) If α, β > −1 and v ∈ Hσ(I),

‖∂s
x(v − Pα,β

N v)‖ωα+s,β+s
≤ CN s−σ‖∂σ

x (v − Pα,β
N v)‖ωα+σ,β+σ

(3.1)

≤ CN s−σ‖∂σ
xv‖ωα+σ,β+σ

, 0 ≤ s ≤ σ.

We introduce a projection operator (cf. Section 6 of [4]) concerning the higher
order derivative term in (1.1). We define

P r+1
N u = ∂̄−r−1

x PN−r−1∂
r+1
x u, ∀ u ∈ Hr+1(I),

where

∂̄−1
x f(x) = −

∫ 1

x
f(y) dy, ∂̄−m

x f(x) = (∂̄−1
x )mf(x),

Then, for any v ∈ PN−1(I),

(∂r+1
x P r+1

N u, ∂r
xv) = (PN−r−1∂

r+1
x u, ∂r

xv) = (∂r+1
x u, ∂r

xv).(3.2)

We show that P r+1
N u ∈ VN if u ∈ Hr,r+1

0 (I). It is easy to see that

(∂l
xP r+1

N u)(1) = (∂̄−r−1+l
x PN−r−1∂

r+1
x u)(1) = 0, 0 ≤ l ≤ r.(3.3)

Integrating by parts, we have for 0 ≤ l ≤ r − 1 and N ≥ 2r + 1 that

(∂l
xP r+1

N u)(−1) = −
∫ 1

−1
∂̄−r+l

x PN−r−1∂
r+1
x u(x) dx(3.4)

=
−1

(r − l)!

∫ 1

−1
[∂r−l

x (x + 1)r−l][∂̄−r+l
x PN−r−1∂

r+1
x u](x) dx

=
(−1)r−l+1

(r − l)!

∫ 1

−1
(x + 1)r−lPN−r−1∂

r+1
x u(x) dx

=
(−1)r−l+1

(r − l)!

∫ 1

−1
(x + 1)r−l∂r+1

x u(x) dx

= −
∫ 1

−1
∂l+1

x u(x) dx = −(∂l
xu)(x)|1−1 = 0, 0 ≤ l ≤ r − 1.
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Also, for u ∈ Hr,r+1
0 (I), the operator P r+1

N keeps the value ∂r
xu(−1):

(∂r
xP r+1

N u)(−1) = −
∫ 1

−1
PN−r−1∂

r+1
x u(x) dx = −(∂r

xu)(x)|1−1 = ∂r
xu(−1).(3.5)

Furthermore, if u ∈ Hr,r+1
0 (I), for any v ∈ PN+l−2r−2(I) and 0 ≤ l ≤ r,

(∂l
x(u − P r+1

N u), v) = (∂l
x(u − P r+1

N u), ∂r+1−l
x ∂̄−r−1+l

x v)(3.6)

= (−1)r+1−l(∂r+1
x (u − P r+1

N u), ∂̄−r−1+l
x v)

= (−1)r+1−l((I − PN−r−1)∂r+1
x u, ∂̄−r−1+l

x v) = 0.

We have the following approximation result for P r+1
N u.

Lemma 3.2 If u ∈ Hr,r+1
0 (I) ∩ Hσ(I) and σ ≥ r + 1,

‖∂l
x(u − P r+1

N u)‖ωl−r−1,l−r−1
≤ CN l−σ‖∂σ

x (u − P r+1
N u)‖ωσ−r−1,σ−r−1,(3.7)

≤ CN l−σ‖∂σ
xu‖ωσ−r−1,σ−r−1, 0 ≤ l ≤ r + 1.

Proof. Let g = ∂l
x(u − P r+1

N u) (0 ≤ l ≤ r + 1). From (3.3), (3.4), and (3.5),
g ∈ Hr+1−l

0 (I). Therefore, gωl−r−1,l−r−1 ∈ L2(I) by the Hardy’s inequality (see
[23], p. 145). We have from (3.1) that

‖∂l
x(u − P r+1

N u)‖2
ωl−r−1,l−r−1

= (∂l
x(u − P r+1

N u), ∂r+1−l
x ∂̄−r−1+l

x [gωl−r−1,l−r−1])

= |((I − PN−r−1)∂r+1
x u, (I − PN−r−1)∂̄−r−1+l

x [gωl−r−1,l−r−1])|
≤ ‖(I − PN−r−1)∂r+1

x u‖ ‖(I − PN−r−1)∂̄−r−1+l
x [gωl−r−1,l−r−1]‖

≤ CN r+1−σ‖∂σ−r−1
x (I − PN−r−1)∂r+1

x u‖ωσ−r−1,σ−r−1N
l−r−1‖gωl−r−1,l−r−1‖ωr+1−l,r+1−l

≤ CN l−σ‖∂σ
x (I − P r+1

N )u‖ωσ−r−1,σ−r−1‖g‖ωl−r−1,l−r−1
,

which gives (3.7).
The following lemma gives some inverse properties related to the weight.

Lemma 3.3 If α > −1 and β > −1,

‖v‖ωα,β
≤ CM‖v‖ωα+1,β+1

, ∀ v ∈ PM (I).(3.8)

If α > min{−1,−2r2} and β > min{−1,−2r1} (r1, r2 ≥ 0),

‖∂xv‖ωα+1,β+1
≤ CM‖v‖ωα,β

, ∀ v ∈ PM(I) ∩ Hr1,r2
0 (I).(3.9)
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Proof. The first result (3.8) can be shown by the Gauss-Jacobi quadrature formula
of M + 2 points and the asymptotic properties of the zeros of Jacobi polynomials
(see (8.9.1) of [26]).

For (3.9), we write v = ṽωr2,r1. By (3.8) and

‖∂xP (α+2r2,β+2r1)
n ‖2

ωα+1+2r2,β+1+2r1
(3.10)

= n(n + 1 + α + 2r2 + β + 2r1)‖P (α+2r2,β+2r1)
n ‖2

ωα+2r2,β+2r1
,

we get

‖∂xv‖2
ωα+1,β+1

≤ C(r1
2‖ṽ‖2

ωα+2r2,β+2r1−1
+ r2

2‖ṽ‖2
ωα+2r2−1,β+2r1

)

+‖∂xṽ‖2
ωα+1+2r2,β+1+2r1

≤ CM2‖ṽ‖2
ωα+2r2,β+2r1

,

where we have used the orthogonality properties of {∂xP
(α+2r2,β+2r1)
n } and {P (α+2r2,β+2r1)

n }.

We define an interpolation operator Ir
N : Cr(Ī) → PN(I) based on the general-

ized Legendre–Guass quadrature rule using the values of ∂l
xu(±1) (0 ≤ l ≤ r − 1)

and ∂r
xu(1) such that


Ir

Nu(x′
j) = u(x′

j), j = 1, · · · , N − 2r,

∂l
xIr

Nu(±1) = ∂l
xu(±1), 0 ≤ l ≤ r − 1, ∂r

xIr
Nu(1) = ∂r

xu(1).

We need approximation results of the two interpolation operators IN and Ir
N . Let

{xj}N
j=0 ({x′

j}N−2r+1
j=0 ) be defined in Section 2 and {ωj}N

j=0 ({ω′
j}N−2r

j=1 , {ω′−
j }r−1

j=0,
{ω′+

j }r
j=0) be the corresponding weights of the quadrature formula. We define

(u, v)N =
N∑

j=0

ωju(xj)v(xj), ‖v‖N = (v, v)1/2
N ,

(u, v)N,′,ω =
N−2∑
j=1

ω′
ju(x′

j)v(x′
j)ω(x′

j), ‖v‖N,′,ω = (v, v)1/2
N,′,ω,

where the subscript ω will be dropped whenever ω(x) ≡ 1.

Lemma 3.4 If u ∈ Hσ(I), then

‖u − INu‖ω−1,−1 + N−1‖∂x(u − INu)‖ ≤ CN−σ‖∂σ
x u‖ωσ−1,σ−1, σ ≥ 1,

(3.11)

‖u − Ir
Nu‖ω−r−1,−r + N−1‖∂x(u − Ir

Nu)‖ω−r,−r+1 ≤ CN−σ‖∂σ
xu‖ωσ−r−1,σ−r−1, σ ≥ r + 1.

(3.12)
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Proof. The first result is similar to ones given in (13.25) and (13.26) of [4]. To
show the second result, we follow the line in [3] and first prove that

‖Ir
Nv‖ω−r−1,−r ≤ C(‖v‖ω−r−1,−r + N−1‖∂xv‖ω−r,−r+1), ∀ v ∈ Hr,r+1

0 (I).(3.13)

We notice that

ω′
j =

ωG
N−2r,j(r + 1, r)

(1 − x′
j)r+1(1 + x′

j)r
(3.14)

and the Cotes-Christoffel number (see (15.3.10) of [26])

ωG
N−2r,j(r + 1, r) =

(
sin

θj

2

)2r+3 (
cos

θj

2

)2r+1

O(N−1), x′
j = cos θj .

We see from (3.14) that

0 < ω′
j ≤ CN−1 sin θj, j = 1, · · · , N − 2r.(3.15)

With the notation

[f ]d :=
N−2r∑
j=1

ω′
jf(x′

j) +
r−1∑
j=0

ω′−
j ∂j

xf(−1) +
r∑

j=0

ω′+
j ∂j

xf(1),

we have that [14]

[f ]d =
∫ 1

−1
f(x)dx, ∀ f ∈ P2N−2r(I).(3.16)

Let v̂(θ) = v(cos θ) and ω̂α,β(θ) = ωα,β(cos θ). We get from (3.16) that

‖Ir
Nv‖2

ω−r−1,−r
= ‖Ir

Nv‖2
N,′,ω−r−1,−r

(3.17)

≤ CN−1
N−2r∑
j=1

v̂2(θj)ω̂−r−1,−r(θj) sin θj, ∀ v ∈ Hr,r+1
0 (I).

We have θj ∈ Ij ⊂ (0, π) with Ij of size CN−1. Thus,

‖Ir
Nv‖2

ω−r−1,−r
≤ CN−1

N−2r∑
j=1

sup
θ∈Ij

|v̂2(θ)ω̂−r−1,−r(θ) sin θ|(3.18)

≤ C
N−2r∑
j=1

(
‖v̂(ω̂−r−1,−r sin θ)1/2‖2

L2(Ij)
+ N−2‖[v̂(ω̂−r−1,−r sin θ)1/2]θ‖2

L2(Ij)

)

≤ C

∫ π

0

(
v̂2(θ)ω̂−r−1,−r(θ) + N−2v̂2(θ)ω̂−r−2,−r−1(θ)

+ N−2(v̂θ)2(θ)ω̂−r−1,−r(θ)
)
sin θ dθ

= C
(
‖v‖2

ω−r−1,−r
+ N−2‖v‖2

ω−r−2,−r−1
+ N−2‖∂xv‖2

ω−r,−r+1

)
,
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which, by the Hardy’s inequality, gives (3.13).
Next, for any u ∈ Hσ(I) (σ ≥ r + 1), there exists q(x) ∈ P2r(I) such that

ũ := u− q ∈ Hr,r+1
0 (I). Let u∗ = P r+1

N ũ+ q. Replacing v by u∗−u = (P r+1
N − I)ũ ∈

Hr+1
0 (I) in (3.13) and noting Ir

Nu∗ = u∗, we get from (3.7)

‖u∗ − Ir
Nu‖ω−r−1,−r ≤ C(‖u∗ − u‖ω−r−1,−r + N−1‖∂x(u∗ − u)‖ω−r,−r+1).(3.19)

= C(‖P r+1
N ũ − ũ‖ω−r−1,−r + N−1‖∂x(P r+1

N ũ − ũ)‖ω−r,−r+1)

≤ CN−σ‖∂σ
x (I − P r+1

N )ũ‖ωσ−r−1,σ−r−1

≤ CN−σ‖∂σ
x (I − P r+1

N )u‖ωσ−r−1,σ−r−1,

which gives the first part of (3.12).
The second part of the result (3.12) is obtained by applying (3.9) to u∗ − Ir

Nu

with (α, β) = (−r − 1,−r) and using (3.19) .
The following lemma plays an important role in the convergence analysis.

Lemma 3.5 Let u ∈ Hr,r+1
0 (I) and v(x) := u(x)/(1 − x). We have

− (∂r+1
x u, ∂r

xv) =
(

r +
1
2

)
|v|2r + |∂r

xv(−1)|2,(3.20)

|v|l ≤ |v|r, 0 ≤ l ≤ r.(3.21)

Proof. By the Hardy’s inequality, we can check that v ∈ Hr
0(I) and (1−x)(∂r

xv)2|x=1 =
0, which is trivial for u ∈ VN as we needed in this paper. We have

−(∂r+1
x u, ∂r

xv) = (∂r+1
x [(x − 1)v], ∂r

xv) = ((x − 1)∂r+1
x v, ∂r

xv) + (r + 1)‖∂r
xv‖2(3.22)

=
1
2
[(x − 1)(∂r

xv)2]|1−1 −
1
2
(∂r

xv, ∂r
xv) + (r + 1)‖∂r

xv‖2,

which gives (3.20). Since v ∈ Hr
0(I), (3.21) can be get easily by induction.

Lemma 3.6 If v ∈ VN , then

‖v‖ω−r,−r+1 ≤ ‖v‖N,′,ω−r,−r+1
≤ C‖v‖ω−r,−r+1 .(3.23)

Proof. We follow the line in the proof of (13.18) in [4]. Any v ∈ PN (I)∩Hr−1,r
0 (I)

can be written as

v(x) = ωr,r−1(x)
N−2r+1∑

n=0

v̂nP (r,r−1)
n (x).

By the orthogonal property of {P (r,r−1)
n (x)}

‖v‖2
ω−r,−r+1

=
N−2r+1∑

n=0

|v̂n|2‖P (r,r−1)
n ‖2

ωr,r−1
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and by (3.16)

[v2ω−r,−r+1]d =
N−2r∑
n=0

|v̂n|2‖P (r,r−1)
n ‖2

ωr,r−1
+ |v̂N−2r+1|2[(P (r,r−1)

N−2r+1)
2ωr,r−1]d.

Since ∂xP
(r,r−1)
N−2r+1(x) =

N + 1
2

P
(r+1,r)
N−2r (x) and

(P (r,r−1)
N−2r+1)

2 +
1

(N − 2r + 1)2
(1 − x2)(∂xP

(r,r−1)
N−2r+1) ∈ P2N−4r+1(I),

we obtain from (3.10)

[(P (r,r−1)
N−2r+1)

2ωr,r−1]d = ‖P (r,r−1)
N−2r+1‖2

ωr,r−1
+

1
(N − 2r + 1)2

‖∂xP
(r,r−1)
N−2r+1‖2

ωr+1,r

=
(

1 +
N + 1

N − 2r + 1

)
‖P (r,r−1)

N−2r+1‖2
ωr,r−1

.

Therefore, for any v ∈ PN(I) ∩ Hr−1,r
0 (I),

‖v‖2
ω−r,−r+1

≤ [v2ω−r,−r+1]d ≤ C‖v‖2
ω−r,−r+1

,(3.24)

which yields (3.23) for v ∈ VN .

Lemma 3.7 Let α > −1, β > −1. We have

‖v‖N,′,ωα,β
≤ C

(‖v‖ωα,β
+ N−1‖vx‖ωα+1,β+1

)
, ∀ v ∈ H1

ωα+1,β+1
(I),(3.25)

‖v‖N,′,ωα,β
≤ C(1 + MN−1)‖v‖ωα,β

, ∀ v ∈ PM (I),(3.26)

‖v‖∞ ≤ C1M‖v‖, ∀ v ∈ PM (I).(3.27)

Proof. By the same approach as in the proof of (3.17) and (3.18), according to
the asymptotic properties of θj, we can choose Ij ⊂ (δ̂, π − δ̂) with δ̂ = C/N > 0.
Then

‖v‖2
N,′,ωα,β

≤ CN−1
N−2r∑
j=1

v̂2(θj)ω̂α,β(θj) sin θj(3.28)

≤ C

(
‖v‖2

ωα,β
+ N−2‖v‖2

L2
ωα−1,β−1

(Ĩ)
+ N−2‖vx‖2

ωα+1,β+1

)
,

where Ĩ = (−1 + δ, 1 − δ) with δ = C/N2 > 0. So (3.25) follows. Then by (3.9) we
have (3.26). The result (3.27) is well known [4].

Lemma 3.8 ([20]) Assume that
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E(t), ρ(t) are non-negative functions continuous on [0, T ], ρ(t) is increasing, and
ε,C are positive constants,

for any t ∈ (0, T ], if max
0≤s≤t

E(s) ≤ ε, E(t) ≤ ρ(t) + C

∫ t

0
E(s) ds,

E(0) ≤ ρ(0) and ρ(T )eCT ≤ ε. Then for any 0 ≤ t ≤ T ,

E(t) ≤ ρ(t)eCt.

The following lemma is a discrete form of Lemma 3.8.

Lemma 3.9 (cf. Lemma 4.16 of [13]). Assume that

Ek, ρk (k = 0, 1, · · · , nT ) are non-negative set functions, ρk is increasing, and ε,C

are positive constants,

for any 1 ≤ n ≤ nT , if max
1≤k≤n

Ek ≤ ε, En ≤ ρn + Cτ
n−1∑
k=0

Ek,

for any 1 ≤ k ≤ nT , Ek − Ek−1 ≤ ε

2
,

E0 ≤ ρ0 and ρnT eCT ≤ ε

2
. Then for any 0 ≤ n ≤ nT ,

En ≤ ρnτeCnτ .

Remark 3.1 The conditions (ii) and (iii) in Lemma 3.9 can be replaced by

(ii)′ for any 1 ≤ n ≤ nT , if max
1≤k≤n−1

Ek ≤ ε, En ≤ ρn + Cτ
n−1∑
k=0

Ek.

This form is used for the numerical analysis of explicit (or linear implicit) schemes.

4 The convergence of the semi-discrete scheme

In this section we prove the convergence of optimal rate for the semi-discrete scheme
of the LPG and collocation methods. We assume that the solution of (1.1) U ∈
C(0, T ;Hσ(I)) (σ ≥ r + 1) and the positive generic constant C may be dependent
on the norm of U in this space. For simplicity, let ω(x) = (1−x)−1 hereafter. Also,
we denote by C(A,B) a positive generic constant dependent on A,B, etc.

Let u∗(t) = P r+1
N U(t), which is used as a comparison function, and eN (t) =

uN (t) − u∗(t). By (2.1), (2.2), and (3.2), we have for any v ∈ WN−1 that


(∂teN (t), v) + (∂xPN F̃N (t), v) − (∂r+1
x eN (t), ∂r

xv) = (f(t), v), t ∈ (0, T ],

(eN (0), v) = (P (0)
N U0 − u∗(0), v),

(4.1)
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where

F̃N (t) = F (uN (t)) − F (u∗(t)),

f(t) = ∂x[F (U(t)) − PNF (u∗(t))] + [∂tU(t) − ∂tu
∗(t)] := f1(t) + f2(t).

Let ηN (t) = eN (t)ω ∈ WN−1. Taking v = 2ηN (t) in (4.1), we get from (3.20) that

d

dt
‖eN (t)‖2

ω + (2r + 1)|ηN (t)|2r + 2|∂r
xηN (−1, t)|2 ≤ 2|(f(t) − ∂xPN F̃N (t), ηN (t))|.

(4.2)

For given t ∈ (0, T ], we assume that (see the condition (ii) of Lemma 3.8 )

max
0≤s≤t

‖eN (s)‖ ≤ N−1, CF := max
|z|≤2‖U‖C(0,T ;Hr+1(I))+C1

|∂zF (z)|,(4.3)

where C1 is a constant appearing in (3.27) so that

‖eN (s)‖L∞(I) ≤ C1N‖eN (s)‖ ≤ C1, 0 ≤ s ≤ t.

Consider 0 ≤ s ≤ t. We deal with the nonlinear term and the initial error in three
different cases as follows:

Case 1. PN = PN . Noting that ‖u∗(s)‖L∞(I) ≤ 2|P r+1
N U |r+1 ≤ 2|U(s)|r+1, we

have from (4.3) that,

|(∂xPN F̃N (s), ηN (s))| = |(F (uN (s)) − F (u∗(s)), ∂xηN (s))|
≤ CF‖eN (s)‖‖∂xηN (s)‖ ≤ C‖eN (s)‖2 +

1
6
|ηN (s)|2r .

By (3.7) and (3.21),

|(f1(s), ηN (s))| = |(F (U(s)) − F (u∗(s)), ∂xηN (s))|
≤ CF‖(I − P r+1

N )U(s)‖ |ηN (s)|1 ≤ CN−2σ‖U(s)‖2
σ +

1
6
|ηN (s)|2r ,

and
‖eN (0)‖ω ≤ ‖(I − P r+1

N )U0‖ω ≤ CN−σ‖U0‖σ.

Case 2. PN = IN . We use the exactness of the quadrature rule, (4.3), and
(9.3.2) of [6] to get

|(∂xIN F̃N (s), ηN (s))| = |(F (uN (s)) − F (u∗(s)), ∂xηN (s))N |
≤ CF‖eN (s)‖N‖∂xηN (s)‖N ≤ C‖eN (s)‖2 +

1
6
|ηN (s)|2r .
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Similarly, it follows from (3.11), (4.3), and (3.7) that

|(f1(s), ηN (s))| ≤ |((I − IN )F (U(s)), ∂xηN (s))| + |(F (U(s)) − F (u∗(s)), ∂xηN (s))N |
≤ C(‖(I − IN)F (U(s))‖ + CF ‖(IN − P r+1

N )U(s)‖)|ηN (s)|1
≤ CN−2σ +

1
6
|ηN (s)|2r ,

provided that F (z) ∈ Cσ(R). For the initial error, we have from (3.11) and (3.7)
that

‖eN (0)‖ω ≤ ‖(IN − P r+1
N )U0‖ω ≤ CN−σ‖U0‖σ.

Case 3. PN = I ′
N . Since [I ′

N F̃N (s)]∂xηN (s) ∈ P2N−2r(I) ∩ Hr,r+1
0 (I), we can

use (3.16) and (3.26) to get

|(∂xIN F̃N (s), ηN (s))| = |(F (uN (s)) − F (u∗(s)), ∂xηN (s))N,′ |
≤ CF‖eN (s)‖N,′‖∂xηN (s)‖N,′ ≤ C‖eN (s)‖2 +

1
6
|ηN (s)|2r .

By (3.16), (3.25), (3.26), (3.12), and (3.7)

|(f1(s), ηN (s))| ≤ |((I − Ir
N−2r+2)F (U(s)), ∂xηN (s))| + |((Ir

N−2r+2 − I)F (U(s)), ∂xηN (s))N,′ |
+|(F (U(s)) − F (u∗(s)), ∂xηN (s))N,′ |

≤ C(‖(I − Ir
N−2r+2)F (U(s))‖ + N−1|(I − Ir

N−2r+2)F (U(s))|1
+CF‖(Ir

N−2r+2 − P r+1
N )U(s)‖)|ηN (s)|1

≤ CN−2σ +
1
6
|ηN (s)|2r ,

provided that F (z) ∈ Cσ(R). Noting that P
(0)
N U0 = Ir

NU0 in this case,

‖eN (0)‖ω ≤ ‖(Ir
N − P r+1

N )U0‖ω ≤ CN−σ‖U0‖σ.

Also, it is easy to see from (3.6) and (3.7) that

|(f2(s), ηN (s))| = |((I − P r+1
N )∂tU(s), (I − PN−2r−2)ηN (s))|

≤ CN−σ‖∂tU(s)‖max{r+1,σ−r}|ηN (s)|r
≤ CN−2σ‖∂tU(s)‖2

max{r+1,σ−r} +
1
6
|ηN (s)|2r .

Putting these estimates into (4.2) and denoting

E(t) = ‖eN (t)‖2
ω + 2

∫ t

0

(
r|ηN (s)|2r + |∂r

xηN (−1, s)|2) ds,

ρ(t) = C

(∫ t

0
‖∂tU(s)‖2

max{r+1,σ−r} ds + max
0≤s≤t

‖U(s)‖2
σ

)
N−2σ,
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we obtain

E(t) ≤ ρ(t) + C

∫ t

0
E(s) ds, 0 < t ≤ T.

On the use of Lemma 3.8, we get

E(t) ≤ ρ(t)eCt, 0 < t ≤ T.

Thus, we arrive at the following convergence result via the triangle inequality and
(3.7).

Theorem 4.1 Assume that F (z) ∈ C1(R) (or F (z) ∈ Cσ(R) if PN = IN ,I ′
N ),

σ ≥ r + 1, and

U ∈ C(0, T ;Hr,r+1
0 (I) ∩ Hσ(I)) ∩ H1(0, T ;Hr,r+1

0 (I) ∩ Hmax{r+1,σ−r}(I)).

Then for 0 ≤ t ≤ T ,

‖uN (t) − U(t)‖ ≤ 2‖uN (t) − U(t)‖ω ≤ CN−σ.

Remark 4.1 By the inverse property (3.9) we can get an H1
ω0,1

-estimate from (3.7)
such that

‖∂x[uN (t) − U(t)]‖ω0,1 ≤ ‖∂xeN (t)‖ω0,1 + ‖∂x[(P r+1
N − I)U(t)]‖ω0,1

≤ C(N‖eN (t)‖ω + N1−σ) ≤ CN1−σ.

5 The convergence of the fully discrete scheme

This section is devoted to the convergence analysis for the fully discrete scheme of
the LPG and collocation method (2.3).

Let uk∗ = P r+1
N Uk and ek

N = uk
N − uk∗ . By (2.1) and (2.3), we have for any

v ∈ WN−1 that


(ek
N t̂, v) + (∂xPN F̃ k

N , v) − (∂r+1
x êk

N , ∂r
xv) = (fk, v), 1 ≤ k ≤ nT − 1,

(e1
N , v) = (P (0)

N [U0 + τ∂tU(0)] − u1∗, v),

(e0
N , v) = (P (0)

N U0 − u0∗, v),

(5.1)

where with the notation vk
tt̄ :=

1
τ2

(vk+1 − 2vk + vk−1)

F̃ k
N = F (uk

N ) − F (uk
∗),

fk = ∂x[F (Uk) − PNF (uk
∗)] +

τ2

2
∂xF (Uk)tt̄ + (∂tÛ

k − uk
∗ t̂) := fk

1 + fk
2 + fk

3 .
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Let ηk
N = ek

Nω ∈ WN−1. Taking v = 2η̂k
N in (2.3), we get as in (4.2) that

(‖ek
N‖2

ω)t̂ + (2r + 1)|η̂k
N |2r + 2|∂r

xη̂k
N (−1)|2 ≤ 2|(fk − ∂xPN F̃ k

N , η̂k
N )|.(5.2)

For given 0 < n ≤ nT , we assume that max
1≤k≤n−1

‖ek
N‖ ≤ N−1 (see the condition (ii)′

of Lemma 3.9 in Remark 3.1). Then by (3.27),

‖ek
N‖L∞(I) ≤ C1N‖ek

N‖ ≤ C1, 1 ≤ k ≤ n − 1.

Consider 1 ≤ k ≤ n − 1. As in Case 1–Case 3 of Section 4, we have

|(∂xPN F̃ k
N , η̂k

N )| ≤ C‖ek
N‖2 +

1
8
|η̂k

N |2r ,

|(fk
1 , η̂k

N )| ≤ CN−2σ +
1
8
|η̂k

N |2r.

Assume that F (z) ∈ C2(R). Since

|(fk
2 , η̂k

N )| ≤ τ2‖F (Uk)tt̄‖|η̂k
N |1 ≤ Cτ4‖F (Uk)tt̄‖2 +

1
8
|η̂k

N |2r ,

we need to bound

τ
n−1∑
k=1

‖F (Uk)tt̄‖2 ≤ C‖∂2
t F (U)‖2

L2(0,T ;L2(I)) ≤ CC ′
F (‖U‖2

H2(0,T ;L2(I)) + ‖∂tU‖4
L4(I×(0,T )))

≤ CC ′
F (‖U‖2

H2(0,T ;L2(I)) + ‖∂tU‖4
H1(I×(0,T ))),

where
C ′

F = max
|z|≤‖U‖C(Ī×[0,T ])

{|∂zF (z)|2, |∂2
zF (z)|2}.

We introduce the notation

‖u‖H−r(I) = sup
v∈Hr

0 (I),v �=0

|(u, v)|
|v|r .

The following estimate can be obtained in the same way as in [19] such that

|(fk
3 , η̂k

N )| ≤ C
(
‖∂tÛ

k − Uk
t̂
‖2

H−r(I) + N−2σ‖Uk
t̂
‖2
max{r+1,σ−r}

)
+

1
8
|η̂k

N |2r ,

and

τ
n−1∑
k=1

‖∂tÛ
k − Uk

t̂
‖2

H−r(I) ≤ Cτ4‖∂3
t U‖2

L2(0,T ;H−r(I)),

τ

n−1∑
k=1

‖Uk
t̂
‖2
max{r+1,σ−r} ≤ C‖∂tU‖2

L2(0,T ;Hmax{r+1,σ−r}(I))
.
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For the initial errors, ‖e0
N‖ω is bounded as in Section 4. For ‖e1

N‖ω, if P
(0)
N = PN ,

we have from the Taylor’s formula and (3.7) that

‖e1
N‖ω ≤ τ2‖∂2

t U‖C(0,τ ;L2
ω(I)) + ‖(I − P r+1

N )U1‖ω ≤ C(τ2 + N−σ),

and if P
(0)
N = IN or P

(0)
N = Ir

N , we have from (3.11), (3.12), and (3.7) that

‖e1
N‖ω ≤ ‖(PN − I)U0‖ω + τ‖(PN − I)∂tU(0)‖ω + τ2‖∂2

t U‖C(0,τ ;L2
ω(I)) + ‖(I − P r+1

N )U1‖ω

≤ C(τ2 + τN−σ/2 + N−σ) ≤ C(τ2 + N−σ),

provided that ∂tU(0) ∈ Hσ/2(I).
Substituting the above estimates into (5.2) and denoting

En = ‖en
N‖2

ω + 2τ
n−1∑
k=1

(
r|ηk

N |2r + |∂r
xηk

N (−1)|2
)

,

ρn = C(τ4 + N−2σ),

we obtain

En ≤ ρn + Cτ

n−1∑
k=1

Ek, 0 < n ≤ nT .

Let τ
√

N ≤ c0 being sufficiently small to meet the condition (iv) of Lemma 3.9.
Then by Lemma 3.9 with Remark 3.1, we get

En ≤ ρneCnτ , 0 < n ≤ nT .

Theorem 5.1 Assume that F (z) ∈ C2(R), τ
√

N ≤ c0 being sufficiently small,
σ ≥ r + 1, and

U ∈ C(0, T ;Hr,r+1
0 (I)∩Hσ(I))∩H1(0, T ;Hr,r+1

0 (I)∩Hmax{r+1,σ−r}(I))∩H3(0, T ;L2
ω(I)).

In addition, if PN = IN or PN = I ′
N , assume that F (z) ∈ Cσ(R) and ∂tU(0) ∈

Hσ/2(I). Then for 0 < n ≤ nT ,

‖un
N − Un‖ ≤ 2‖un

N − Un‖ω ≤ C(τ2 + N−σ).

6 Conclusion

In this paper, we have presented a class of Legendre Petrov–Galerkin and collocation
methods for the generalized Korteweg–de Vries equations with non-periodic bound-
ary conditions. This non-symmetric approach is more suitable to the (2r+1)th-order
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differential equations and leads to optimal error estimates. Combining the Legen-
dre Petrov–Galerkin method with a collocation treatment of the nonlinear term, the
approximation scheme can be solved efficiently.

To demonstrate the efficiency of the Legendre Petrov–Galerkin method for the
problem (1.1), we only used the second-order Crank–Nicolson scheme in time dis-
cretization. High-order time integration techniques [9, 11] can be designed for the
semi-discrete scheme (2.2). More detailed discussion on high-order time integration
methods for semi-discrete approximations of general time-dependent partial differ-
ential equations can be found in a review paper [16] by Levy and Tadmor.
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Suppose I = [0, 1], let {nk}k≥1 be a sequence of positive integers, and {ck}k≥1

be real number sequence satisfying nk ≥ 2, 0 < nkck ≤ 1(k ≥ 1). For any k ≥ 1,
let Dk = {(i1, · · · , ik) : 1 ≤ ij ≤ nj, 1 ≤ j ≤ k}, D =

⋃
k≥0 Dk, where D0 = ∅. If

σ = (σ1, · · · , σk) ∈ Dk, τ = (τ1, · · · , τm) ∈ Dm, let σ ∗ τ = (σ1, · · · , σk, τ1, · · · , τm).
Let F = {Iσ : σ ∈ D} be the collection of the closed sub-intervals of I which satisfy

i) I∅ = I;
ii) For any k ≥ 1 and σ ∈ Dk−1, Iσ∗i (1 ≤ i ≤ nk) are sub-intervals of Iσ.

Iσ∗1, · · · , Iσ∗nk
are arranged from the left to the right, Iσ∗1 and Iσ have the same left

endpoint, Iσ∗nk
and Iσ have the same right endpoint, and the lengths of the gaps

between any two consective sub-intervals are equal. We denote the length of one of
the gaps by yk.

iii) For any k ≥ 1 and σ ∈ Dk−1, 1 ≤ j ≤ nk, we have

|Iσ∗j |
|Iσ| = ck,

where |A| denotes the diameter of A.
Let Ek =

⋃
σ∈Dk

Iσ, E =
⋂

k≥0 Ek, we call E the homogeneous Cantor set ([5,6])
determined by {nk}k≥1, {ck}k≥1 and call Fk = {Iσ : σ ∈ Dk} the k-order basic
intervals of E.

For the homogeneous Cantor set E, its Hausdorff dimension was given ([5])

dimH(E) = lim inf
k→∞

log n1 · · ·nk

− log c1 · · · ck
.

In this paper we determine the exact Hausdorff measures of a class of homoge-
neous Cantor sets, i.e.
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Theorem 1. Let E be the homogeneous Cantor set determined by {nk}k≥1, {ck}k≥1,
if yk+1 ≤ yk for all k ≥ 1, then

Hs(E) = lim inf
k→∞

k∏
j=1

njc
s
j ,

where s is the Hausdorff dimension of E.

In order to prove Theorem 1 we need the following lemmas.
Let Gk be a set consisting of all possible union of elements in Fk, define

G =
∞⋃

k=0

Gk, (1)

and
Hα

G(E) = lim inf
δ→0

{
∑

|Ui|α : E ⊂ ∪Ui, |Ui| < δ and Ui ∈ G}. (2)

Lemma 1 ([2]). Let Hα(E) be the α-dimensional Hausdorff measure of E, then
Hα(E) = Hα

G(E).

For any σ = (σ1, · · · , σm) ∈ Dm, when 0 < k ≤ m, we denote σ|k = (σ1, · · · , σk).
Let xk be the length of k-order basic interval, yk the length of the gap between any
two consecutive sub-intervals Iσ∗i and Iσ∗(i+1), where σ ∈ Dk−1, 1 ≤ i ≤ nk − 1.
For any σ, τ ∈ Dk, let a(σ) be the left endpoint of Iσ, b(τ) the right endpoint of Iτ .
Take B = lim infk→∞

∏k
j=1 njc

s
j . Let µ be the probability measure supported by E,

such that for any A ∈ Fk, we have

µ(A) = (n1 · · ·nk)−1.

Lemma 2. Let E be the homogeneous Cantor set satisfying the condition of
Theorem 1, and 0 < B < ∞. Then for any ε > 0 there exists k0 ∈ N, such that for
any σ, τ ∈ Dk(k ≥ k0) with a(σ) < b(τ) and σ|k0 = τ |k0 holds

µ([a(σ), b(τ)]) ≤ (B − ε)−1(b(τ) − a(σ))s. (3)

Proof. Since lim infk→∞(n1 · · ·nk)(c1 · · · ck)s = B, then for any ε > 0 there exists
k0 > 0 such that for k ≥ k0 we have

(n1 · · · nk)−1 ≤ (B − ε)−1(c1 · · · ck)s. (4)
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If σ = τ ∈ Dk(k ≥ k0), then b(τ) − a(σ) = c1 · · · ck, and it follows immediately
from (4) that

µ([a(σ), b(τ)]) ≤ (B − ε)−1(b(τ) − a(σ))s.

So we need only consider the case that σ, τ ∈ Dk(k > k0), σ 	= τ . In this case we
will prove (3) by induction.

(1) For n = k0 + 1, suppose that [a(σ), b(τ)] contains i (k0 + 1)-order basic
intervals. Since σ|k0 = τ |k0 and σ 	= τ , we have 2 ≤ i ≤ nk0+1. On the other hand

(b(τ) − a(σ))s =
(

nk0+1 − i

nk0+1 − 1
ck0+1 +

i − 1
nk0+1 − 1

)s

(c1 · · · ck0)
s. (5)

Using the convexity of xs we have

(b(τ) − a(σ))s ≥ nk0+1 − i

nk0+1 − 1
(c1 · · · ck0+1)s +

i − 1
nk0+1 − 1

(c1 · · · ck0)
s. (6)

From (4) and (6) we obtain (3).
(2) Now suppose that (3) holds for n = k(> k0), we will deal with the case for

n = k + 1 in the following two cases
1◦ σ, τ ∈ Dk+1, σ|k = τ |k. In this case, similar to the proof of (1) we have (3).
2◦ σ, τ ∈ Dk+1, σ|k 	= τ |k.

i) If a(σ) = a(σ|k) and b(τ) 	= b(τ |k), then Iτ |k lies to the right of Iσ|k and
i = τk+1 < nk+1. Let τ̂ ∈ Dk, and Iτ̂ is the k-order basic interval immediately to
the left of Iτ |k. Since y1 ≥ y2 ≥ · · · ≥ yk, so the gap between Iτ̂ and Iτ |k is of size
at least yk. Put

λ = (b(τ |k) − b(τ))/(b(τ |k) − b(τ̂ )), 0 < λ < 1. (7)

Then

b(τ) − a(σ) = b(τ) − a(σ|k) = λ(b(τ̂ ) − a(σ|k)) + (1 − λ)(b(τ |k) − a(σ|k)). (8)

Since Iσ, Iτ lie in the k0-order basic interval Iτ |k0
, we have that Iσ|k, Iτ |k and Iτ̂

also lie in Iτ |k0
. Using the convexity of xs and (8), we obtain

(b(τ) − a(σ))s ≥ λ(b(τ̂ ) − a(σ|k))s + (1 − λ)(b(τ |k) − a(σ|k))s. (9)

By inductive assumption and (9), we have

(b(τ) − a(σ))s ≥ (B − ε)(λµ([a(σ|k), b(τ̂ )]) + (1 − λ)µ([a(τ |k), b(τ |k)])). (10)

The condition yk+1 ≤ yk implies

xk + yk ≥ xk + yk+1 = nk+1(xk+1 + yk+1). (11)
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From (7) and (11) we have

λ ≤ (nk+1 − i)(xk+1 + yk+1)/(xk + yk) ≤ 1 − i

nk+1
. (12)

From (10) and (12) we obtain (3).
Using the same method, we also have (3) in the case that b(τ) = b(τ |k) and

a(σ) 	= a(σ|k).
ii) If a(σ) 	= a(σ|k) and b(τ) 	= b(τ |k), we have 1 < σk+1 and τk+1 < nk+1.
a) If σk+1 > τk+1, let σ′ ∈ Dk, and Iσ′ is the first k-order basic interval to the

right Iσ|k. Let τ ′ ∈ Dk+1, τ ′|k = τ |k, and τ ′
k+1 = τk+1 + nk+1 − σk+1 + 1, in this

case, J = [a(σ′), b(τ ′)] and

b(τ) − a(σ) ≥ b(τ ′) − a(σ′),

µ([a(σ), b(τ)]) = µ([a(σ′), b(τ ′)]).

By i) we have (3).
b) If σk+1 ≤ τk+1, let τ ′ ∈ Dk+1, τ ′|k = τ |k and τ ′

k+1 = τk+1 − σk+1 + 1, in this
case J = [a(σ|k), b(τ ′)], and

b(τ) − a(σ) = b(τ ′) − a(σ|k),

µ([a(σ), b(τ)]) = µ([a(σ|k), b(τ ′)]).

By i) we also have (3). This completes the proof of Lemma 2.

Proof of Theorem 1. By [5] , if B = 0 or ∞ we have Hs(E) = 0 or ∞ re-
spectively. Therefore it suffices to prove Theorem 1 in the case for 0 < B < +∞.

Let {Ui}i ⊂ G is a δ-covering of E, where δ ≤ min{xk0 , yk0}. For each Ui there
exists σ ∈ Dk0 such that Ui ⊂ Iσ. Suppose Ui is the union of some k(i)-order basic
intervals, i.e. Ui = Iσ(i) ∪· · ·∪Iτ (i) , where = Iσ(i) and Ui have the same left endpoint,
Iτ (i) and Ui have the same right endpoint. Then

|Ui| = b(τ (i)) − a(σ(i)).

By Lemma 2, we have

1 = µ(E) ≤ ∑
i µ(Ui) ≤

∑
i µ([a(σ(i)), b(τ (i))])

≤ (B − ε)−1
∑

(b(τ (i)) − a(σ(i)))s = (B − ε)−1
∑

i |Ui|s,
by Lemma 1 we have

Hs(E) = Hs
G(E) ≥ B − ε.

Since ε is arbitrary we obtain Hs(E) ≥ B. On the other hand, we obviously have
Hs(E) ≤ B, thus Hs(E) = B, which complete the proof of Theorem 1.
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Best approximation of a compact convex set

by a ball in an arbitrary norm∗

S.I.Dudov and I.V.Zlatorunskaya

The problem of the best approximation of a compact convex set by a ball with
respect to an arbitrary norm in the Hausdorff metric corresponding to that norm is
considered. This problem is reduced to a convex programming problem, which can
be studied by means of convex analysis.

Necessary and sufficient conditions for a solution of this problem are obtained and
several properties of its solution are described. It is proved, in particular, that the
center of at least one ball of the best approximation lies in the approximated compact
set. Conditions ensuring that the centers of all balls of the best approximation lie
in this compact set and conditions for uniqueness of the solution are obtained. In
addition, several variational properties of the solution are studied and it is shown
that the problem may be reduced to a linear programming problem in the case when
the approximated set and the ball of the given norm are polytopes.

1 Introduction

Estimation and approximation problems of relatively complex sets by sets of a simple
structure have broad applications in natural sciences and in mathematics itself,
presenting a branch of nonsmooth analysis.

As simple sets that locally approximate a given set,one usually takes cones of fea-
sible (or tangent, or contingent) directions1,2,3,4 or bundles of higher order curves5,6.
Problems of nonlocal set approximation involve different problems of the set estima-
tion, such as problems of outer and inner estimation. Simple sets are usually taken

∗The work was supported by the Russian Foundation for Basic Researches (grant no. 00–15–
96123).

1B.N.Pshenichnyi, Convex analysis and extremal problems, Nauka, Moscow 1980. (Russian)
2V.F. Dem’yanov and L.V. Vasil’ev, Nondifferentiable optimization, Nauka, Moscow 1981; Eng-

lish transl., Optimization Software, New York 1985.
3V.F. Dem’yanov and A.M.Rubinov, Constractive nonsmooth analysis, Frankfurt a/M, Verlag

Peter Lang, 1995.
4F.H. Clarke, Optimization and nonsmooth analysis, Wiley, New York 1983.
5A.Ya.Dubovitskii and A.A.Milyutin, ”Extremal problems in the presence of constraints”, Comp.

Maths and Math. Phys., 5, (1965), 395–453. (Russian).
6U.Ledzewicz and H.Shaettler,”High–Order Approximations and generalized necessary condi-

tions for optimality”, SIAM J. on Control and Optimization, 37:1, (1998), 33–53.
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in the form of ellipsoid or polytope. The known publications are mostly connected
just with these cases.

Alongside with the ellipsoid and the polytope, the ball with respect to an arbi-
trary norm can be also considered as the simplest set, both in the geometric sense
and in the number of required parameters.

The problem of outer estimation of a given compact set by a ball in arbitrary
norm was considered by B.Pshenichnyi1. It consists in constructing the ball of the
smallest radius that contains the estimated compact set. The corresponding inner
estimation problem was also considered7.

In this paper we consider another estimation problem of a given convex compact
set by a ball of an arbitrary norm, consisting in the following. Let D be a given
convex compact set in the finite–dimensional real space R

p an estimate of which we
are seeking, let n(x) be a function on R

p satisfying the axioms of norm, let ρ(A,B) =
sup
x∈A

inf
y∈B

n(x − y) be the deviation of the set A from the set B with respect to the

norm n(·), let h(A,B) = max{ρ(A,B), ρ(B,A)} be the Hausdorff distance between
A and B corresponding to the norm n(·), and let Bn(x, r) = {y ∈ R

p : n(x−y) ≤ r}
be the ball in the norm n(·) with center at the point x and the radius r. Then the
problem of the best approximation of the convex compact set D by a ball with
respect to n(·) in the Hausdorff metric corresponding to this norm can be expressed
as follows:

h(D,Bn(x, r)) → min
x∈Rp, r≥0

. (1.1)

The problem (1.1) was considered by M.Nikol’skii and D.Silin8 in the case when
n(·) is the Euclidean norm. In their paper they established the existence and unique-
ness of the solution, obtained a necessary condition and described some properties of
the solution. The authors pointed out that all their results can be easily extended
to the case of a more general ’ellipsoidal’ norm because of the simple connection
between the solutions of the problems for these norms.

The aim of the present paper is to study the problem (1.1) for an arbitrary norm
n(·). This problem can be regarded as a problem of approximation theory. Indeed,
a given convex compact set, as an element of the space of all convex compact sets
Kv(Rp), can be approximated by elements of a subset of Kv(Rp), namely, by balls
of the given norm in the above metric. On another hand, (1.1) can be called the
uniform estimation problem, in comparison with the outer and inner estimation
problems.

It was discovered in the work of M.Nikol’skii and D.Silin8 that the problem (1.1)
is connected with another estimation problem. Namely, in the case of Euclidean
norm it is proved that the ball of best approximation is unique, its center x0 lies in

7S.I.Dudov, ”An inner bound of a convex set by a norm body”, Comp. Maths Math. Phys.,
36:5, (1996), 683–688.

8M.S.Nikol’skii and D.B.Silin, ”Best approximation of a convex compact set by elements of
addial”, Proc. Steklov Inst. Math., 211, (1995), 306–321.
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D, and is the unique solution of the problem

R(x) − ρΩ(x) → min
x∈D

, (1.2)

where R(x) = max
y∈D

n(x − y), ρΩ(x) = min
y∈Ω

n(x − y), Ω = Rp\D. The radius of this

ball is r0 = (R(x0) + ρΩ(x0))/2; moreover

min
x∈Rp, r≥0

h(D,Bn(x, r)) =
R(x0) − ρΩ(x0)

2
.

Therefore, we can say in that case that problems (1.1) and (1.2) are equivalent.
From the geometrical point of view, the latter problem is the problem of con-

structing a spherical layer of the ’least thickness’ that contains the boundary of the
convex compact set D. Interconnection between these problem is natural. Indeed,
the smallest thickness of a spherical layer containing the boundary of D can be taken
as a measure of approximation of this set by a ball of the given norm. The thinner
this layer the better compact set D can be approximated by a ball.

As was pointed out by M.Nikol’skii and D.Silin8, problem (1.1) and some close
problems were considered9,10,11,12,13,14,15,16 only in the case of the Euclidean norm.
In particular, for p = 2 T.Bonnesen12 and for p = 3 N.Kriticos15 obtained necessary
and sufficient conditions and proved the uniqueness of solution of problem (1.2).
Corresponding results for arbitrary p were obtained by I.Barany16, where the means
of convex analysis were essentially exploited. It must be emphasized that R(x) is
a convex function on R

p and ρΩ(x) is a concave function on D. Hence (1.2) is a
convex problem.

However, as was established by the authors of this paper, problems (1.1) and
(1.2) are not necessarily equivalent for any norm. Examples show that some balls
of the best approximation may have centers outside D. Moreover, a solution of
problem (1.1) is not necessarily unique. Still, we show in section 3 for any norm
n(·), (1.1) is equivalent to a convex problem that is slightly different from (1.2).
Namely, we establish that (1.1) is equivalent to the following problem

R(x) + P (x) → min
x∈Rp

, (1.3)
9M. D’Ocagne, ”Sur certaine figures minimales”, Bull. Soc. Math. France 12 (1884), 168–177.

10H. Lebesgue, ”Sur quelques questions de minimum, relatives aux courbes orbiformes, et sur
leurs rapports avec le calcul des variations”, J. Math. Pures Appl. 4 (1921), 67–96.

11T. Bonnesen and W. Fenchel, Theorie der konvexen Korper, Springer-Verlag, Berlin 1934.
12T. Bonnesen, Uber das isoperimetrische Defizit ebener Figuren, Math. Ann., 91(1924), 252–268
13St. Vincze, ”Uber den Minimalkreisring einer Eiline”, Acta Sci. Math. (Szeged) 11:3 (1947),

133–138.
14I. Vincze, ”Uber Kreisringe, die eine Eiline einschlissen”, Studia. Sci. Math. Hungar. 9:1/2

(1974), 155–159.
15N. Kritikos, ”Uber konvexe Flachen und einschliessende Kugeln”, Math. Ann. 96 (1927),583–

586.
16I.Barany, ”On the minimal ring containing the boundary of convex body”, Acta Sci. Math.

(Szeged) 52:1/2 (1988), 93–100.
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where P (x) = ρD(x) − ρΩ(x). The main results are obtained by investigation of
properties of the function Φ(x) = R(x) + P (x).

The paper has the following structure. In section 2 we establish some properties
of the function R(x) and of the distance function ρA(x), in particular, in the case,
when the norm n(·) is a strictly quasiconvex function. In addition, we prove the
convexity of the function P (x) on R

p and derive formula for its subdifferential. In
section 4 we obtain a necessary and sufficient condition for solution of problem (1.1),
which is a basic tool for the further study. Also we prove here that the center of at
least one ball of the best approximation lies in D. In section 5 we present conditions
ensuring that the entire set of centers of the balls of the best approximation lies in
D. Conditions for the uniqueness of solution are given in section 6. In section 7
several variational properties of the solution are studied. Finally, in section 8 it is
shown that the problem may be reduced to a linear programming problem in the
case when the approximated set and the balls of the given norm are polytopes.

2 Auxiliary functions and their properties

One would expect that the properties of the norm involved affect the properties of
the solutions of (1.1). They can also be crucial for one’s choice of analytic tools.
For instance there exists a simple formula expressing the distance between sets in
the Hausdorff metric generated by the Euclidean norm in terms of the support
functions of these sets 17. This was evidently decisive for the systematic use of
support functions techniques in the work of M.Nicol’skii and D.Silin8. As regards
this paper, the following axiliary functions will be important in what follows:
R(x) = max

y∈D
n(x− y), the radius of the smallest ball with center at x containing the

set D;
ρA(x) = min

y∈A
n(x− y), the distance from x to a closed set A;

P (x) = ρD(x) − ρΩ(x), where Ω = Rp\D.
In this section we discuss some properties of the norm and these functions; we

will use the following notation: A, intA, coA, ∂A are the closure, interior, convex
hull, and boundary of a set A, respectively;
〈v, w〉 is the inner product of elements v and w;

A+B = {a+ b : a ∈ A, b ∈ B}; A−B = {a− b : a ∈ A, b ∈ B};
K(A) = {v ∈ R

p : ∃α ≥ 0, a ∈ A, v = αa};
K+ = {w ∈ R

p : 〈v, w〉 ≥ 0 ∀v ∈ K};
K(x,A) is the cone of feasible directions of the set A at the point x, that is,
K(x,A) = γ(x,A), where γ(x,A) = {g ∈ R

p : ∃αg ≥ 0 : x+ αg ∈ A, ∀α ∈ (0, αg)};
QR(x,D) = {y ∈ D : n(x− y) = R(x)};

17K.Leichtveiss, Konvexe Mengen, Springer-Verlag, Berlin 1985.
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Qρ(x,A) = {z ∈ A : n(x− z) = ρA(x)};
W (ψ,A) = sup

v∈A
〈v, ψ〉 is the support function of the set A;

[x1, x2] = co {x1, x2} is the closed interval connecting x1 and x2;

‖x‖ = (
p∑
i=1

(x(i))2)1/2 is the Euclidean norm of the vector x ∈ R
p.

1. The norm n(x) is a finite convex function on R
p, therefore it is a continuous

function that is differentiable at each point x ∈ R
p in each direction g ∈ R

p, and
its subdifferential ∂n(·), regarded as a set-valued map, is upper semicontinuous; in
addition,

n′(x, g) ≡ lim
α↓0

α−1[n(x+ αg) − n(x)] = max
v∈∂n(x)

〈v, g〉.

The following formula for the subdifferential of the norm is well-known1:

∂n(0p) = {v ∈ R
p : n∗(v) ≤ 1},

∂n(x) = {v ∈ R
p : n∗(v) = 1, n(x) = 〈v, x〉}, x �= 0p.

(2.1)

Here n∗(·) = max
n(v)≤1

〈v, ·〉 is the polar norm, 0p = (0, . . . , 0) ∈ R
p.

Definition 2.1. We call n(·) a smooth norm if it is continuously differentiable
at all points x �= 0p.

According to the concept of a strictly quasiconvex functions we give here the
following definition.

Definition 2.2. We say that a norm n(·) is strictly quasiconvex if

n(αx1 + (1 − α)x2) < max{n(x1), n(x2)} for x1 �= x2, α ∈ (0, 1). (2.2)

Examples of a strictly quasiconvex norm are Euclidean norm, ellipsoidal norms
(in which balls are ellipsoids), and each calibration function18 generated by a strictly
convex17 or a strongly convex19 compact set symmetric with respect to origin. An
example of a norm not satisfying Definition 2.2 is the Chebyshev norm n(x) =
max
i=1,...,p

|x(i)|, where x = (x(1), . . . , x(p)) ∈ R
p.

Let us give some simple properties of a strictly quasiconvex norm.
Lemma 2.1. If n(·) is a strictly quasiconvex norm and elements x1 �= 0p and

x2 �= 0p have property x2 �= λx1 for each λ > 0, then

n(αx1 + (1 − α)x2) < αn(x1) + (1 − α)n(x2), α ∈ (0, 1). (2.3)

Proof. If n(x1) = n(x2), then (2.3) is an immediate consequence of (2.2).

Assume that n(x1) �= n(x2). Consider x3 =
n(x2)
n(x1)

x1. In view of our assumptions,

18R.Rockafellar, Convex analysis, Princeton Univ. Press, Princeton, NJ 1970.
19E.S.Polovinkin, ”Strongly convex analysis”, Mat. sb. 187:2 (1996), 102-130; English transl. in

Sb.Math. 187 (1996).
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x3 �= x2; at the same time n(x3) = n(x2). Hence, in accordance with Definition 2.2
we have

n(βx3 + (1 − β)x2) < n(x2) for all β ∈ (0, 1). (2.4)

We consider an arbitrary α ∈ (0, 1) and associate with it the quantities

β0 =
αn(x1)

αn(x1) + (1 − α)n(x2)
, λ0 =

αn(x1) + (1 − α)n(x2)
n(x2)

.

It is easy to see that β0 ∈ (0, 1) and αx1 + (1− α)x2 = λ0(β0x3 + (1 − β)x2). Now,
using inequality (2.4), we can deduce (2.3):

n(αx1 + (1 − α)x2) = λ0n(β0x3 + (1 − β0)x2) < λ0n(x2) = αn(x1) + (1 − α)n(x2).

�
Lemma 2.2. If n(·) is a strictly quasiconvex norm, then the equality

n(x2) = n(x1) + n(x1 − x2) (2.5)

holds for x1 �= 0p if and only if there exists λ ≥ 1 such that x2 = λx1.
Proof. The sufficiency is obvious. We now establish the necessity. Assume that

equality (2.5) holds and x1 �= 0p. If the assertion of Lemma 2.2 is false, then using
Lemma 2.1 we obtain inequality (2.3). From it and (2.5) we deduce the inequality

n(x2) − n(αx1 + (1 − α)x2) > αn(x1 − x2), α ∈ (0, 1),

which contradicts the triangle inequality for the norm n(·). �
Lemma 2.3. If n(·) is a smooth norm, then the polar norm n∗(·) is a strictly

quasiconvex norm.
Proof. Since n(x) is the convex positively homogeneous function, it is suffi-

ciently to prove (2.2) for any α ∈ (0, 1) and x1 �= x2 such that n∗(x1) = n∗(x2) = 1.
Assume the contrary, that is, there exist the points x1 �= x2, such that n∗(x1) =

n∗(x2) = 1, and α0 ∈ (0, 1), for which n∗(α0x1 +(1−α0)x2) = 1. Then by convexity
of the function n∗(·) it follows

n∗(αx1 + (1 − α)x2) = 1 for all α ∈ [0, 1]. (2.6)

It means that the line segment [x1, x2] belongs to the boundary of the ballBn∗(0p, 1) =
{y ∈ R

p : n∗(y) ≤ 1}. Let us build the support hyperplane to the ball Bn∗(0p, 1)

π = {x ∈ R
p : 〈v0, x〉 = λ},

which contains the line segment [x1, x2]. Without loss of generality we can assume
λ > 0. Then, in accordance with construction, we have

〈v0, αx1 + (1 − α)x2〉 = λ, α ∈ (0, 1), (2.7)
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〈v0, y〉 ≤ λ for all y ∈ Bn∗(0p, 1). (2.8)

It is known18 that n(v) = max
n∗(x)≤1

〈v, x〉 for all v ∈ R
p. Therefore using (2.6) and

(2.7) we obtain

n(v0) = max
n∗(x)≤1

〈v0, x〉 ≥ 〈v0, αx1 + (1 − α)x2〉 = λ.

On the other hand, by (2.8) it follows n(v0) ≤ λ. Thus we conclude

n(v0) = λ. (2.9)

Now from (2.6), (2.7) and (2.9), in accordance the formula (2.1), it follows αx1 +
(1 − α)x2 ∈ ∂n(v0) for all α ∈ [0, 1]. This contradicts the smoothness of norm n(·),
since the subdifferential of a smooth norm at any point v �= 0p consists of the only
element.

2. In this subsection we deal with some properties of the function R(x).
Lemma 2.4. The function R(x) is globally Lipschitz on R

p, and for all x, y ∈ R
p

the following inequality holds:

|R(x) −R(y)| ≤ n(x− y). (2.10)

Proof. Using the triangle inequality, we obtain

|R(x)−R(y)| = |max
z∈D

n(x−z)−max
y∈D

n(x−y)| ≤ max
z∈D

|n(x−z)−n(y−x)| ≤ n(x−y).

The global Lipschitz property of the function R(x) follows from (2.10) in view of
the equivalence of norms in R

p.
On the basis of subdifferential calculus for convex functions1,2 we can easily

establish the following result.
Lemma 2.5. The function R(x) is convex on R

p and its subdifferential can be
expressed by the formula

∂R(x) = co {∂n(x− z) : z ∈ QR(x,D)}. (2.11)

The following property of the function R(x) is very important for our purposes.
Lemma 2.6. If x1 and x2 are points such that

R(x2) = R(x1) + n(x1 − x2), (2.12)

then for all α ∈ [0, 1] the following equality holds:

R(αx1 + (1 − α)x2) = αR(x1) + (1 − α)R(x2). (2.13)

If on the other hand n(·) is a strictly quasiconvex norm and points x1 and x2 satisfy
the inequalities

R(x1) ≤ R(x2) < R(x1) + n(x1 − x2), (2.14)
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then the strict inequality

R(αx1 + (1 − α)x2) < αR(x1) + (1 − α)R(x2), α ∈ (0, 1). (2.15)

holds.
Proof. (a) Assume that (2.12) holds, but there exists α0 ∈ (0, 1) such that

R(α0x1 + (1 − α0)x2) < α0R(x1) + (1 − α0)R(x2) = R(x2) − α0n(x1 − x2).

Then, using Lemma 2.4 we deduce the contradicting inequality

R(x2) −R(α0x1 + (1 − α0)x2) ≤ α0n(x1 − x2),

which proves the first part of the statement.
(b) Now let n(·) be a strictly quasiconvex norm and assume that (2.14) holds. If

we additionally assume that there exists at least one α0 ∈ (0, 1) failing (2.15), then
it easily follows from the convexity of R(x) that (2.13) holds for all α ∈ [0, 1], that
is,

R(x1 + (1 − α)(x2 − x1)) −R(x1) = (1 − α)(R(x2) −R(x1)). (2.16)

The function R(x) is a finite convex function on R
p, therefore dividing both parts

of equality (2.16) by β = (1 − α) and passing to the limit as β ↓ 0 we obtain

R′(x1, x2 − x1) ≡ lim
β↓0

β−1[R(x1 + β(x2 − x1)) −R(x1)] = R(x2) −R(x1). (2.17)

The upper continuity of the set-valued map ∂n(·) : R
p → 2R

p
, the boundedness of

∂n(x) (see (2.1)) and the closedness of the set QR(x,D) demonstrate that {∂n(x−
z)/ z ∈ QR(x,D)} is a compact set. Now, applying Lemma 2.5 we see that there
exists z0 ∈ QR(x,D) such that

R′(x1, x2 − x1) = max
v∈∂R(x1)

〈v, x2 − x1〉 = max
v∈{∂n(x1−z)/z∈QR(x1,D)}

〈v, x2 − x1〉 =

= max
v∈∂n(x1−z0)

〈v, x2 − x1〉 = n′(x1 − z0, x2 − x1). (2.18)

Since z0 ∈ D and R(x1) = n(x1 − z0), it follows by right-hand inequality in (2.14)
that

n(x2 − z0) ≤ R(x2) < n(x1 − z0) + n(x1 − x2).

Next, using in turn Lemmae 2.2 and 2.1; we obtain

n(αx1 + (1 − α)x2 − z0) < αn(x1 − z0) + (1 − α)n(x2 − z0), α ∈ (0, 1).

Thus, the convex function f(x) = n(x− z0) is not an affine function on [x1, x2] and
therefore

n(x2 − z0) = f(x2) > f(x1) + f ′(x1, x2 − x1) = n(x1 − z0) + n′(x1 − z0, x2 − x1).
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Hence, using (2.18) and (2.17) we obtain

R(x2) ≥ n(x2 − z0) > R(x1) + n′(x1 − z0, x2 − x1) =

= R(x1) +R′(x1, x2 − x1) = R(x2),

which is a contradiction. �
3.Let us examine now some properties of the distance function ρA(·).
Similarly as in the case of Euclidean norm1,4 we obtain the following statement
Lemma 2.7.For the arbitrary set A ∈ R

p the function ρA(x) is globally Lipschitz
on R

p, and for all x, y ∈ R
p the following inequality holds:

|ρA(x) − ρA(y)| ≤ n(x− y), (2.19)

Under the condition that D ⊂ R
p is an arbitrary convex closed set the following

two facts are proved20.
Lemma 2.8. The function ρD(x) is convex on R

p and its subdifferential can be
expressed by the formula

∂ρ
D

(x) = ∂n(x− z) ∩ −K+(z,D), for all z ∈ Qρ(x,D). (2.20)

Lemma 2.9. The function ρΩ(x) is concave on D, and its superdifferential can
be expressed by the formula

∂ρΩ(x) = co {∂n(x− z) ∩K+(z,D) : z ∈ Qρ(x,Ω)}, x ∈ intD. (2.21)

At the boundary points of D the function ρΩ(x) is differentiable in each direction
g ∈ R

p and

ρ′Ω(x, g) ≡ lim
α↓0

α−1[ρΩ(x+ αg) − ρΩ(x)] = max{0, min
w∈K+(x,D),

n∗(w)=1

〈w, g〉}. (2.22)

Remark 2.1. It is easy to show2 that K+(z,D) ⊂ K(∂n(x − z)) for all z ∈
Qρ(x,D) if x ∈ D. Hence we also have the formula

∂ρΩ(x) = co {w ∈ K+(z,D) : z ∈ Qρ(x,Ω), n∗(w) = 1}, x ∈ intD. (2.23)

Later we shall use both formulae for ∂ρΩ(x).
Lemma 2.10. If D is a strictly convex set and points x1, x2 ∈ D satisfy the

inequalities
ρΩ(x1) ≤ ρΩ(x2) < ρΩ(x1) + n(x1 − x2), (2.24)

then the strict inequality

ρΩ(αx1 + (1 − α)x2) > αρΩ(x1) + (1 − α)ρΩ(x2), α ∈ (0, 1). (2.25)
20S.I. Dudov, ”Subdifferentiability and superdifferentiability of distance functions”, Math. Za-

metki 61:4 (1997), 530-542; English transl. in Math. Notes 61:4 (1997).
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holds.
Proof. The case xi ∈ ∂D, i = 1, 2 is obvious. Let x1 ∈ intD or x2 ∈ intD,

then αρΩ(x1) + (1 − α)ρΩ(x2) > 0, α ∈ (0, 1). For arbitrary point z satisfying

n(x1 + (1 − α)x2 − z) ≤ αρΩ(x1) + (1 − α)ρΩ(x2)), (2.26)

that is, z ∈ Bn(αx1 + (1 − α)x2, αρΩ(x1) + (1 − α)ρΩ(x2)), consider points

zi =
xi + [z − (αx1 + (1 − α)x2)]ρΩ(xi)

αρΩ(x1) + (1 − α)ρΩ(x2)
, i = 1, 2. (2.27)

Using (2.26) it is easy to verify

zi ∈ Bn(xi, ρΩ(xi)), i = 1, 2, (2.28)

and also z = αz1 + (1 − α)z2. Let us show that

z1 �= z2. (2.29)

Indeed, assuming the contrary, from (2.27) we can deduce

x2 − x1 =
[z − (αx1 + (1 − α)x2)](ρΩ(x2) − ρΩ(x1))

αρΩ(x1) + (1 − α)ρΩ(x2)
.

Hence applying (2.26) we have n(x2 − x1) ≤ ρΩ(x2)− ρΩ(x1). It contradicts (2.24).
Since Bn(xi, ρΩ(xi)) ⊂ D, i = 1, 2 and D is strictly convex set, then (2.28)-

(2.29) imply z = αz1 + (1 − α)z2 ∈ intD. In view of the arbitrary choice of
z ∈ Bn(αx1 + (1 − α)x2, αρΩ(x1) + (1 − α)ρΩ(x2)) we proved

Bn(αx1 + (1 − α)x2, αρΩ(x1) + (1 − α)ρΩ(x2)) ⊂ intD.

It implies inequality (2.25). �
4. In this subsection let us consider function P (x) = ρD(x) − ρΩ(x), assuming

that the set D is convex and closed.
The following statement is completely obvious.
Lemma 2.11. Let f1(t) and f2(t) be finite convex functions on the closed inter-

vals [a, b] and [b, c], respectively, where a < b < c, and let f1(b) = f2(b). If there
exists α ∈ (0, 1) such that the function

f(t) =
{
f1(t), t ∈ [a, b],
f2(t), t ∈ [b, c]

satisfies the inequality

f(αa+ (1 − α)c) > αf(a) + (1 − α)f(c),

and if
b = βa+ (1 − β)c, β ∈ (0, 1),
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then
f(b) > βf(a) + (1 − β)f(c).

The main properties of function P (x) are mapped by following statement.
Lemma 2.12. The function P (x) is finite and convex on R

p, and its subdiffer-
ential can be expressed as follows:

∂P (x) =
{

∂n(x− z) ∩ −K+(z,D), ∀z ∈ Qρ(x,D), x /∈ D,
co{v ∈ −K+(z,D) : n∗(v) = 1, z ∈ Qρ(x,Ω)}, x ∈ D.

(2.30)

Proof. Assume that P (x) is not convex on R
p, that is, there exist points x1, x2

and quantity α0 ∈ (0, 1) such that

P (α0x1 + (1 − α0)x2) > α0P (x1) + (1 − α0)P (x2). (2.31)

We see from Lemmae 2.8 and 2.9 and also from the definition of P (x) that only cases
when x1 ∈ intD and x2 /∈ D or x1, x2 /∈ D, but [x1, x2] ∩ intD �= Ø are non-trivial.

(a) Let x1 ∈ intD,x2 /∈ D. Let x0 be the boundary point of D lying on the line
segment [x1, x2]. The function P (x) is convex on [x1, x0] and on [x0, x2] by Lemmae
2.9 and 2.8 respectively. Hence, by Lemma 2.11, we see from inequality (2.31) for
the point x0 = βx1 + (1 − β)x2, where β ∈ (0, 1), that:

P (x0) > βP (x1) + (1 − β)P (x2). (2.32)

We claim that the following inequality for g =
x2 − x1

‖x2 − x1‖ is a consequence of (2.32):

P ′(x0, g) < −P ′(x0,−g). (2.33)

Indeed, from (2.32) we immediately obtain

(1 − β)(P (x2) − P (x0)) < β(P (x0) − P (x1)). (2.34)

Since
β

1 − β
=

‖x2 − x0‖
‖x1 − x0‖ , from (2.34) it follows that

P (x2) − P (x0)
‖x2 − x0‖ <

P (x0) − P (x1)
‖x1 − x0‖ . (2.35)

The function P (x) is convex on [x0, x2] and [x1, x0], therefore

P ′(x0, g) ≤ P (x2) − P (x0)
‖x2 − x0‖ , P ′(x0,−g) ≤ P (x1) − P (x0)

‖x1 − x0‖ . (2.36)

A combination of (2.35) and (2.36) yields (2.33).
We now claim that, in fact,

P ′(x0, g) ≥ −P ′(x0,−g)). (2.37)
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Actually, since x0 is a boundary point of a convex set D, it is a well-known result
of convex analysis2,18 that there exists a support hyperplane π containing x0 such
that D lies in one of the two half-spaces into which it partitions the space R

p. It
now follows from the definition of P (x), the properties of the support hyperplane π,
and our choice of x1 and x2 that for sufficiently small α ≥ 0 we have

ρπ(x0 + αg) = ρπ(x0 − αg), P (x0 + αg) = ρD(x0 + αg) ≥ ρπ(x0 + αg),

P (x0 − αg) = −ρΩ(x0 − αg) ≥ −ρπ(x0 − αg), ρπ(x0) = P (x0) = 0.

Hence it easily follows that

P ′(x0, g) ≥ ρ′π(x0, g), P ′(x0,−g) ≥ −ρ′π(x0,−g),

ρ′π(x0, g) = ρ′π(x0,−g).
(2.38)

From (2.38) we can deduce (2.37). The contradiction between (2.37) and (2.33)
means that our assumption (2.31) fails in the case under consideration.

(b) Assume now that x1, x2 /∈ D, but [x1, x2] ∩ intD �= Ø. The function P (x) is
continuous. Hence it follows from its definition that there exists
x0 ∈ [x1, x2] ∩ intD such that

P (x0) = min
x∈[x1,x2]

P (x) < 0 < min{P (x1), P (x2)}. (2.39)

As shown in (a), the function P (x) is convex on the closed intervals [x1, x0] and
[x0, x2]. By assumption (2.31), using Lemma 2.11 for the point x0 = βx1+(1−−β)x2

where β ∈ (0, 1), we obtain the inequality P (x0) > βP (x1) + (1 − β)P (x2), which
contradicts (2.39).

(c) It remains to prove formula (2.30). It is an immediate consequence of Lemmae
2.8 and 2.9 for x /∈ D or x ∈ intD. Hence it remains to prove it in the case when x
is a boundary point of D. Using Lemmae 2.8 and 2.9, and formula (2.1) we obtain

P ′(x, g) = ρ′D(x, g) − ρ′Ω(x, g) =

= max
v∈∂n(0)∩−K+(x,D)

〈v, g〉 − max{0, min
w∈K+(x,D),

n∗(w)=1

〈w, g〉} =

= max{0, max
v∈−K+(x,D),

n∗(v)=1

〈v, g〉} + min{0, max
v∈−K+(x,D),

n∗(v)=1

〈v, g〉} =

= max
v∈−K+(x,D),

n∗(v)=1

〈v, g〉 = max
co {v∈−K+(x,D):n∗(v)=1}

〈v, g〉, ∀ g ∈ R
p. (2.40)

On the other hand, for the finite convex function P (x) we have the following ex-
pression for its directional derivative in terms of the subdifferential ∂P (x), which is
a convex compact set:

P ′(x, g) = max
v∈∂P (x)

〈v, g〉, ∀g ∈ R
p. (2.41)
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From (2.40) and (2.41) we see that ∂P (x) = co {v ∈ −K+(x,D) : n∗(v) = 1}, which
corresponds to formula (2.30) in the case x ∈ ∂D. �

3 Reduction to a convex problem

In this section we prove that the problems (1.1) and (1.3) are equivalent.
The deviation of the convex compact set A from the convex set B in an arbitrary

norm n(·) can be expressed by formula1

ρ(A,B) = sup
n∗(ψ)≤1

{W (ψ,A) −W (ψ,B)}.

Hence the corresponding Hausdorff distance between the convex compact sets A and
B we can write in the form

h(A,B) = sup
n∗(ψ)≤1

|W (ψ,A) −W (ψ,B)|. (3.1)

As above we suppose that D ⊂ R
p is the convex compact set and Ω = Rp \D.

Lemma 3.1. The following equality holds

min
n∗(ψ)=1

max
v∈D

〈v − x, ψ〉 =




−ρD(x), if x /∈ D,

ρΩ(x), if x ∈ D.
(3.2)

Proof. (a) Let x /∈ D. Consider the positively homogeneous function ϕ(ψ) =
max
v∈D

〈v − x, ψ〉. Since x /∈ D it is easy to see that ϕ(ψ) may receive the negative

value. Therefore the following equality

min
n∗(ψ)=1

max
v∈D

〈v − x, ψ〉 = min
n∗(ψ)≤1

max
v∈D

〈v − x, ψ〉 (3.3)

is valid.
Using well-known minimax theorem3 we obtain

min
n∗(ψ)≤1

max
v∈D

〈v − x, ψ〉 = max
v∈D

min
n∗(ψ)≤1

〈v − x, ψ〉 = −min
v∈D

max
n∗(ψ)≤1

〈x− v, ψ〉 =

= −min
v∈D

n(x− v) = −ρD(x). (3.4)

In the considered case (3.2) follows from (3.3)-(3.4).
(b) Let now x ∈ D. Since Bn(x, ρΩ(x)) ⊂ D we have

min
n∗(ψ)=1

max
v∈D

〈v − x, ψ〉 ≥ min
n∗(ψ)=1

max
v∈Bn(x,ρΩ(x))

〈v − x, ψ〉 =

min
n∗(ψ)=1

max
v∈x+ρΩ(x)Bn(0p,1)

〈v − x, ψ〉 = ρΩ(x) · min
n∗(ψ)=1

max
n(v)≤1

〈v, ψ〉 =
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= ρΩ(x) · min
n∗(ψ)=1

n∗(ψ) = ρΩ(x). (3.5)

On the other hand take any point v∗ ∈ Qρ(x,Ω). It is the boundary point of the
convex set D. Therefore by the supporting hyperplane theorem there exists element
ψ∗ �= 0p such that

〈v, ψ∗〉 ≤ 〈v∗, ψ∗〉 for all v ∈ D.

Hence we obtain
max
v∈D

〈v − x, ψ∗〉 ≤ 〈v∗ − x, ψ∗〉. (3.6)

Without loss of generality we assume that n∗(ψ) = 1. It is easy to see, that

min
n∗(ψ)=1

max
v∈D

〈v − x, ψ〉 ≤ max
v∈D

〈v − x, ψ∗〉, (3.7)

〈v∗ − x, ψ∗〉 ≤ max
n∗(ψ)≤1

〈v∗ − x, ψ〉 = n(x− v∗) = ρΩ(x). (3.8)

From (3.6)–(3.8) we have inequality

min
n∗(ψ)=1

max
v∈D

〈v − x, ψ〉 ≤ ρΩ(x),

which together with (3.5) gives us (3.2) for the case in question. �
Now we will use (3.1) and Lemma 3.1 to obtain one interesting formula.
Lemma 3.2. For any x ∈ R

p and r ≥ 0 the following formula holds

h(D,Bn(x, r)) = max {R(x) − r, r + P (x)}. (3.9)

Proof. In accordance with (3.1) we obtain

h(D,Bn(x, r)) = sup
n∗(ψ)≤1

|W (ψ,D) −W (ψ,Bn(x, r))| =

= max
n∗(ψ)≤1

|max
v∈D

〈v, ψ〉 − max
v∈x+r Bn(0p,1)

〈v, ψ〉| =

max
n∗(ψ)≤1

|max
v∈D

〈v − x, ψ〉 − r max
n(v)≤1

〈v, ψ〉| = max
n∗(ψ)≤1

|max
v∈D

〈v − x, ψ〉 − r n∗(ψ)| =

= max{ max
n∗(ψ)≤1

f(ψ),− min
n∗(ψ)≤1

f(ψ)}, (3.10)

where f(ψ) = max
v∈D

〈v − x, ψ〉 − r n∗(ψ).

Since f(ψ) is the positively homogeneous function, then

max
n∗(ψ)≤1

f(ψ) = max{0, max
n∗(ψ)=1

f(ψ)},

min
n∗(ψ)≤1

f(ψ) = min{0, min
n∗(ψ)=1

f(ψ)}.
(3.11)
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It is easy to see that

max
n∗(ψ)=1

f(ψ) = max
v∈D

max
n∗(ψ)=1

〈v − x, ψ〉 − r =

max
v∈D

n(v − x) − r = R(x) − r, (3.12)

and by the Lemma 3.1,

min
n∗(ψ)=1

f(ψ) =




−(r + ρD(x)) for x /∈ D,

−(r − ρΩ(x)) for x ∈ D.
(3.13)

Substituting (3.12) and (3.13) to (3.11), we have

max
n∗(ψ)≤1

f(ψ) = max{0, R(x) − r},

min
n∗(ψ)≤1

f(ψ) = min{0,−(r + P (x))}.
(3.14)

Now the formula (3.9) follows from (3.10) and (3.14). �
It is obvious, that R(x) ≥ P (x), therefore we obtain

min
r≥0

max{R(x) − r, r + P (x)} = max {R(x) − r0, r0 + P (x)} =

=
R(x) + P (x)

2
, (3.15)

where r0 =
R(x) − P (x)

2
.

Directly from formula (3.15) and Lemma 3.2 the following statement, which
plays important role, follows.

Theorem 3.1.The problem (1.1) is equivalent to the problem (1.3). In addition,
if the pair (x0, r0) is a solution of (1.1), then the point x0 is a solution of (1.3) and
r0 = (R(x0) − P (x0))/2. Conversely, if x0 is a solution of (1.3), then the pair
(x0, r0), where r0 = (R(x0) − P (x0))/2, is a solution of (1.1). Moreover,

min
x∈Rp, r≥0

h(D,Bn(x0, r)) =
R(x0) + P (x0)

2
.

4 Necessary and sufficient condition of solution

Obviously the problem (1.3) is equivalent to the problem

Φ(x) ≡ R(x) + P (x) → min
x∈D(z)

,
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where D(z) = {x ∈ R
p : Φ(x) ≤ Φ(z)} for any z ∈ R

p. It is easy to see that the
set D(z) is bounded and closed and function Φ(x) is continuous. From this fact we
have the existence of solution of problem (1.3), and, therefore, of problem (1.1). The
formulae of subdifferentials of R(x) and P (x) make it possible to obtain necessary
and sufficient condition for solution of the problem (1.1).

Theorem 4.1. A pair (x0, r0) solves the problem (1.1) if and only if

0p ∈ ∂Φ(x0) ≡ ∂R(x0) + ∂P (x0),

where ∂R(x0) and ∂P (x0) are defined by formulae (2.11) and (2.30), respectively,
and r0 = (R(x0) − P (x0))/ 2.

Proof. As it follows from Lemmae 2.5 and 2.12, the function Φ(x) is finite
and convex on R

p. Its subdifferential ∂Φ(x) is the algebraic sum of ∂R(x) and
∂P (x) by the Moreau-Rockafellar theorem18. From convex analysis1,2,18, we know
that a necessary and sufficient condition of the solution of (1.3) is the inclusion
0p ∈ ∂Φ(x0). Now it remains to use theorem 3.1. �

Remark 4.1. It follows from Theorem 3.1 that

X(D) = {y ∈ R
p : Φ(y) = min

x∈Rp
Φ(x)}

is the set of centers of the best approximation balls for the convex compact set D
and, in accordance with Theorem 4.1,

x0 ∈ X(D) ⇔ 0p ∈ ∂R(x0) + ∂P (x0). (4.1)

Corollary 4.1. Let D be a convex compact set symmetric with respect to a
point x0. Then x0 ∈ X(D).

Proof. It is easy to see that x0 ∈ D and the sets QR(x0, D) and Qρ(x0,Ω)
possess central symmetry relative to x0. One sees from formulae (2.1), (2.11), and
(2.30) that this yields the inclusions

0p ∈ ∂R(x0), 0p ∈ ∂P (x0).

Hence (4.1) also holds. �
Remark 4.2. Thus if convex compact set D possesses central symmetry and

the solution of the problem (1.1) is unique, then X(D) = {x0}, where point x0 is
the center of symmetry. Example 4.1 below shows that even if D possesses central
symmetry, the set X(D) is not necessarily a singleton.

Example 4.1. Let p = 3, x = (x(1), x(2), x(3)) ∈ R
3,

n(x) = max{|x(1)|, |x(2)|, |x(3)|},
D = co {(0, 1, 1/2), (0, 1,−1/2), (0,−1, 1/2), (0,−1,−1/2)}.

In that case intD = Ø and D is a set symmetric with respect to x0 = (0, 0, 0) and
r0 = (R(x0) − ρΩ(x0))/2 = R(x0)/2=1/2. Hence it follows by Theorem 3.1 and
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Corollary 4.1 that Bn(03, 1/2) is the best approximation ball for D and h0(D) =
h(D,Bn(03, 1/2)) = 1/2. However, it is easy to see that for
x ∈ co {(0, 0, 1/2), (0, 0,−1/2)} we have h(D,Bn(x, 1/2)) = 1/2, that is, the balls
Bn(x, 1/2) are also best approximation balls. Hence

co {(0, 0, 1/2), (0, 0,−1/2)} ⊂ X(D).

Corollary 4.2. If D = [x1, x2] – is a line segment connecting x1 and x2;
then the best approximation ball in the problem (1.1) is unique. Moreover, it has its
center at the point x0 = (x1 + x2)/2 and its radius is r0 = n(x1 − x2)/4.

Proof. Clearly, x0 is a minimum point of the function R(x) in R
p and it is

the only such point on the interval [x1, x2]. Since P (x) = 0 for x ∈ [x1, x2], x0 is
also the unique minimum point of Φ(x) on this closed interval. Moreover, it has the
property Φ(x0) = min

x∈Rp
Φ(x) by Corollary 4.1. It remains to observe that for x /∈ D

we have P (x) = ρD(x) > 0, so that

Φ(x) = R(x) + P (x) > R(x0) = Φ(x0) = min
x∈Rp

Φ(x).

Using Theorem 1.1 we can calculate the radius of the best approximation ball:

r0 =
R(x0) − P (x0)

2
=
R(x0)

2
=
n(x1 − x2)

4
. �

The following fact is important.
Theorem 4.2. The following relation

X(D) ∩D �= Ø, (4.2)

is valid. Moreover if x0 ∈ X(D) but x0 /∈ D, then

co{x0, Q
ρ(x0, D)} ⊂ X(D). (4.4)

Proof. Assume that x0 ∈ X(D) but x0 /∈ D. We consider an arbitrary point
z ∈ Qρ(x0, D). Then P (x0) = ρD(x0) = n(x0 − z), P (z) = 0, and therefore

R(x0) + n(x0 − z) = R(x0) + P (x0) = Φ(x0) ≤ Φ(z) = R(z). (4.4)

On the other hand, by Lemma 2.4 we obtain

R(z) −R(x0) ≤ n(x0 − z). (4.5)

From (4.4) and (4.5) we see that R(z) − R(x0) = n(x0 − z), and therefore we also
have Φ(z) = Φ(x0), that is, z ∈ X(D). Since Φ(x) is a convex function, the entire
segment [x0, z] ⊂ X(D) lies in X(D). We have thus proved the inclusion (4.3).
Relation (4.2) appears, actually, as its consequence. �



98 S.I.Dudov and I.V.Zlatorunskaya

Remark 4.3. Let PrBA = {b ∈ B : n(a − b) = min
y∈B

n(a − y) for some a ∈ A}
be the projection of a set A onto a set B. It is easy to see that the assertion of
Theorem 4.2 is equivalent to the relation

co {X(D), P rDX(D)} = X(D).

Relation (4.2) means that at least one best approximation ball has its center in D.
We now discuss the case when the center of a best approximation ball lies at the

boundary of D.
Corollary 4.3. If x0 ∈ X(D) ∩ ∂D, then

∂R(x0) ∩K+(x0, D) �= Ø. (4.6)

Proof. Since x0 ∈ X(D), the inclusion (4.1) follows from Theorems 3.1 and
4.1. For x0 ∈ ∂D we have Qρ(x0,Ω) = {x0}, therefore using formula (2.30) we can
write the inclusion (4.1) as follows:

0p ∈ ∂R(x0) + co {v ∈ −K+(x0, D) : n∗(v) = 1}.

Hence we immediately obtain (4.6). �
Remark 4.4. From convex analysis1,2 we know that (4.6) is equivalent to

R(x0) = min
x∈D

R(x).

Corollary 4.4. Let intD = Ø and x0 ∈ D. Then x0 ∈ X(D) if and only if
(4.6) holds.

Proof. The necessity follows from Corollary 4.3. Assume that (4.6) holds.
Since intD = Ø, it follows that P (x) = 0 for all x ∈ D. Hence, using Theorem 4.2
and taking into account Remark 4.4 we obtain

Φ(x0) = R(x0) = min
x∈D

R(x) = min
x∈D

Φ(x) = min
x∈Rp

Φ(x).

This shows that x0 ∈ X(D). �
Remark 4.5. Simple examples show that if intD �= Ø, then relation (4.6) is

not sufficient for validity of x0 ∈ X(D) ∩ ∂D.
Corollary 4.5. Let intD �= Ø, and let n(·) = ‖ · ‖ be the Euclidean norm.

Then a point x0 is the center of a best approximation ball if and only if x0 ∈ intD
and

0p ∈ co{ x0 − y

‖x0 − y‖ : y ∈ QR(x0, D)} − co{ x0 − z

‖x0 − z‖ : z ∈ Qρ(x0,Ω)}. (4.7)

Proof. For the case of Euclidean norm the solution of problem (1.1) is unique
and also8

X(D) = {x0} ∈ intD.
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The smoothness of Euclidean norm involves ∂n(x) = {n′(x)} for all x �= 0p, where
gradient n′(x) = x‖x‖−1. Therefore taking into account P (x0) = −ρΩ(x0) and
formulae (2.11)-(2.21) we have

∂R(x0) = co{ x0 − y

‖x0 − y‖ : y ∈ QR(x0, D)},

∂P (x0) = −co{ x0 − z

‖x0 − z‖ : z ∈ Qρ(x0,Ω)}.
(4.8)

Now it is easy to see that inclusion (4.1) is equivalent to (4.7) in this case. �
Remark 4.6. As it was noted in section 1 problem (1.1) is equivalent to the

problem (1.2) for Euclidean norm. It is not difficult to verify that the necessary and
sufficient condition, obtained by I.Barany16, is equivalent to (4.7).

Remark 4.8. Let p = 2, let D be a triangle, and let n(·) be the Euclidean norm.
Using relation (4.7) it is easy to prove that the point x0, that is the center of the best
approximation ball (disc), is the point of intersection of the perpendicular bisector
of the largest side of the triangle and the bisector of the smaller angle adjoining this
side. The radius of this disc is r0 = (R(x0) + ρΩ(x0))/2.

Corollary 4.6. If intD = Ø and n(·) = ‖ · ‖ is the Euclidean norm, then

x0 ∈ X(D) ⇔ x0 ∈ coQR(x0, D). (4.9)

Proof. It is not difficult to prove that for the Euclidean norm

min
x∈D

R(x) = min
x∈Rp

R(x).

Hence in accordance with Corollary 4.4 and Remark 4.4 the point x0 ∈ X(D) if and
only if

R(x0) = min
x∈Rp

R(x). (4.10)

As we know1,2,18, (4.10) is equivalent to inclusion

0p ∈ ∂R(x0).

Now using formula (4.8) it is easy to obtain (4.9). �

5 Conditions providing an estimated set contains all
centers of the best approximation balls

Relation (4.2) means that at least one best approximation ball has its center in D.
In this section we will deduce some conditions ensuring the inclusion X(D) ⊂ D.

Let Sn(x, r) = {y ∈ R
p : n(x− y) = r} be the sphere with respect to the norm

n(·) with center at x and of radius r.
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Lemma 4.1. If n(·) is a strictly quasiconvex norm, then the spheres Sn(x1, r1)
and Sn(x2, r1 + n(x1 − x2)) have the unique common point y0 = x1 + r1(n(x1 −
x2))−1(x1 − x2).

Proof. If y ∈ Sn(x1, r1) ∩ Sn(x2, r1 + n(x1 − x2)), then

n(x1 − y) = r1, n(x2 − y) = r1 + n(x1 − x2), (5.1)

that is, n(x2 − y) = n(x1 − y) + n(x1 − x2). By Lemma 2.2 this means that
x2 − y = λ(x1 − y), where λ > 1. Expressing y and substituting this expression into
(5.1) we obtain the uniqueness of the common point and the required formula for
it. �

Theorem 5.1. Assume that at least one of the following conditions is fulfilled:
1) n(·) is a smooth norm,
2) n(·) is a strictly quasiconvex norm,
3) p = 2,
4) the set D possess central symmetry.

Then
X(D) ⊂ D. (5.2)

Proof. Assume the contrary: there exists at least one point x0 ∈ X(D) such
that x0 /∈ D. Then we see from (4.1) that

0p ∈ ∂Φ(x0) = ∂R(x0) + ∂ρ
D

(x0). (5.3)

(a) Consider the case when n(·) is a smooth norm. By Lemma 2.8 we obtain

∂ρ
D

(x0) = n′(x0 − z), ∀z ∈ Qρ(x0, D). (5.4)

We claim that there exists z∗ ∈ QR(x0, D) such that

n′(x0 − z) = −n′(x0 − z∗), ∀z ∈ Qρ(x0, D). (5.5)

The inclusion (5.3) means, in view of (2.11) and (5.4), that there exists a positive
integer m, elements {zi}i=1,m ⊂ QR(x0, D), and quantities αi > 0, i = 1,m, such

that
m∑
i=1

αi = 1 and

n′(x0 − z) = −
m∑
i=1

αin
′(x0 − zi), z ∈ Qρ(x0, D). (5.6)

Since ∂n(x0 − zi) = {n′(x0 − zi)}, it follows by (2.1) that

n∗(n′(x0 − zi)) = 1. (5.7)

Hence, taking into account the equality

n(x) = max
n∗(v)≤1

〈v, x〉, (5.8)
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we obtain
〈n′(x0 − zi), x0 − z〉 ≤ n(x0 − z). (5.9)

In addition, in accordance with (2.1) we have

〈n′(x0 − z), x0 − z〉 = n(x0 − z). (5.10)

Thus, we see from (5.6), (5.9), (5.10) that

〈−n′(x0 − zi), x0 − z〉 = n(x0 − z), i = 1,m, z ∈ Qρ(x0, D). (5.11)

Comparing (2.1) with (5.7) and (5.11) we conclude that

−n′(x0 − zi) ⊂ ∂n(x0 − z) = n′(x0 − z),

that is, −n′(x0 − zi) = n′(x0 − z), i = 1,m, z ∈ Qρ(x0, D). We have thus
established (5.5).

We now fix a point z0 ∈ Qρ(x0, D). The ball Bn(x0, ρD(x0)) touches the convex
set D at the point z0. Hence there exists a hyperplane through this point that
separates Bn(x0, ρD(x0)) from D. In the case under consideration the ball has a
smooth boundary and n′(x0−z0) is the normal to it at z0, therefore this hyperplane
has the equation

π = {x ∈ Rp : 〈x, n′(x0 − z0)〉 = 〈z0, n′(x0 − z0)〉}.

Moreover,

〈x, n′(x0 − z0)〉 ≤ 〈y, n′(x0 − z0)〉, ∀x ∈ D, y ∈ Bn(x0, ρD(x0)). (5.12)

Since QR(x0, D) ⊂ D and x0 ∈ Bn(x0, ρD(x0)), it follows by (5.12) that

〈z − x0, n
′(x0 − z0)〉 ≤ 0, for each z ∈ QR(x0, D).

Now, considering here point z∗ ∈ QR(x0, D) satisfying (5.5) and using (2.1) we
arrive at a contradiction:

〈z∗ − x0,−n′(x0 − z∗)〉 = n(x0 − z∗) ≤ 0.

(b) Let n(·) be a strictly quasiconvex norm: and let z0 ∈ Qρ(x0, D) be an
arbitrary point. By Theorem 4.2, [x0, z0] ⊂ X(D), therefore Φ(x0) = Φ(z0).
Since Φ(x0) = R(x0) + ρD(x0) = R(x0) + n(x0 − z0) and Φ(z0) = R(z0), it
follows that R(z0) = R(x0) + n(x0 − z0), which means that Bn(x0, R(x0)) ⊂
⊂ Bn(z0, R(z0)), and the boundary spheres Sn(x0, R(x0)) and Sn(z0, R(z0)) of
these balls are by Lemma 5.1 tangent at the unique point y0 = x0 + R(x0)(n(x0 −
−z0))−1(x0 − z0). By the definition of the function R(·) the set D has common
points with Sn(x0, R(x0)) and Sn(z0, R(z0)). Hence we conclude that y0 ∈ D.
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The convex compact sets D and Bn(x0, ρD(x0)) have no common interior points.
Hence, by the separating hyperplane theorem there exists g0 ∈ R

p, g0 �= 0p, such
that

〈x, g0〉 ≤ 〈z0, g0〉 ≤ 〈y, g0〉, ∀x ∈ Bn(x0, ρD(x0)), y ∈ D. (5.13)

Since x0 ∈ intBn(x0, ρD(x0)), it follows that 〈x0, g0〉 < 〈z0, g0〉. Hence, bearing in
mind that y0 ∈ D, we obtain

〈y0, g0〉 = 〈x0, g0〉 +
R(x0)

n(x0 − z0)
〈x0 − z0, g0〉 < 〈z0, g0〉.

This contradicts the right-hand side of (5.13).
(c) Let the dimension of the space be p = 2. By (5.3) we conclude that there

exists an element v0 ∈ ∂R(x0) ∩ −∂ρ
D

(x0). The inclusion v0 ∈ −∂ρ
D

(x0) means in
accordance with (2.20) and (2.1) that for each z0 ∈ Qρ(x0, D) we have the relations

n∗(v0) = 1, (5.14)

v0 ∈ K+(z0, D), (5.15)

〈v0, z0 − x0〉 = n(x0 − z0). (5.16)

We now claim that if p = 2, then the inclusion v0 ∈ ∂R(x0) and relation (5.14) yield
the existence of elements z1, z2 ∈ QR(x0, D), appropriate points v1 ∈ ∂n(x0 − z1),
v2 ∈ ∂n(x0 − z2) and α ∈ [0, 1] such that

v0 = αv1 + (1 − α)v2. (5.17)

For it follows from (2.11) by Caratheodory’s theorem2,18 that there exist (not nec-
essarily distinct) elements {zi}i=1,2,3 ⊂ QR(x0, D), appropriate (distinct) elements

vi ∈ ∂n(x0 − zi), i = 1, 2, 3, and quantities αi ≥ 0, i = 1, 3,
3∑
i=1

αi = 1, such that

v0 = α1v1 + α2v2 + α3v3. Moreover, in view of (2.1) we have n∗(vi) = 1, i = 1, 2, 3.
If the elements {vi}i=1,2,3 do not all lie on the same line and the quantities αi are
all strictly positive, then v0 ∈ int co {v1, v2, v3}, and therefore n∗(v0) < 1 which
contradicts (5.14). Hence we can assume without loss of generality that α3 = 0,
which means that the element v0 can be represented in the form (5.17).

It follows by (5.15) that

〈v0, x− z0〉 ≥ 0, for all x ∈ D

and therefore 〈v0, zi − x0〉 + 〈v0, x0 − z0〉 ≥ 0, i = 1, 2. In view of (5.16), the last
inequalities are equivalent to

〈v0, zi − x0〉 ≥ n(x0 − z0), i = 1, 2. (5.18)
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For vi ∈ ∂n(x0 − zi), in accordance with (2.1), we have

〈vi, zi − x0〉 = −n(zi − x0), n∗(vi) = 1, i = 1, 2. (5.19)

Now, substituting (5.17) in (5.18) and using (5.19) we obtain

−αn(z1 − x0) + (1 − α)〈v2, z1 − x0〉 ≥ n(x0 − z0), (5.20)

α〈v1, z2 − x0〉 − (1 − α)n(z2 − x0) ≥ n(x0 − z0). (5.21)

However, since n∗(vi) = 1, i = 1, 2, it follows by (5.8) that

〈v2, z1 − x0〉 ≤ n(z1 − x0), 〈v2, z2 − x0〉 ≤ n(z2 − x0).

Hence for α ∈ [1/2, 1] inequality (5.20) leads to a contradiction. For α ∈ [0, 1/2]
contradiction results from (5.21).

d) Let D be a convex compact set symmetric with respect to a point x∗. It
means by Corollary 4.1 that x∗ ∈ X(D). Since Φ(x) is the convex function we have
[x∗, x0] ⊂ X(D), that is,

Φ(x) = R(x) + P (x) = const for all x ∈ [x∗, x0]. (5.22)

It is easy to see that point x∗, as center of symmetry, possesses the properties

R(x∗) = min
x∈Rp

R(x), P (x∗) = min
x∈Rp

P (x).

Therefore the convex functions R(x) and P (x) are nonincreasing functions on the
line segment [x0, x

∗] when x tends from x0 to x∗. Taking into account (5.22) we
conclude that the functions R(x) and P (x) are the constant quantities on [x0, x

∗].
On the other hand since x∗ ∈ D and x0 /∈ D it follows that P (x∗) ≤ 0 and P (x0) =
ρD(x0) > 0. Thus we obtain contradiction. The proof is over. �

Remark 5.1. The conditions 1) and 2) of Theorem 5.1, which are sufficient
for inclusion (5.2) mean the strict convexity and smoothness of balls respectively.
Examples show that smoothness and strict convexity of convex compact set D are
insufficient for validity of (5.2).

We now present an example when X(D) �⊂ D.
Example 5.1. Let p = 3, x = (x(1), x(2), x(3)) ∈ R

3, n(x) = max
i=1,2,3

|x(i)|,
D = co{z1, z2, z3, }, where z1 = (1, 1, 1), z2 = (1,−1,−1), z3 = (−1,−1, 1). Clearly,
x0 = (0, 0, 0) /∈ D and Qρ(x0, D) = {z0}, where z0 = (1/3,−1/3, 1/3). Using (2.1)
it is now easy to obtain

∂n(x0 − z0) = co {(−1, 0, 0), (0, 1, 0), (0, 0,−1)},

∂n(x0 − z1) = co {(−1, 0, 0), (0,−1, 0), (0, 0,−1)},
∂n(x0 − z2) = co {(−1, 0, 0), (0, 1, 0), (0, 0, 1)},
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∂n(x0 − z3) = co {(1, 0, 0), (0, 1, 0), (0, 0,−1)}. (5.23)

We have {z1, z2, z3} ⊂ QR(x0, D), therefore co {∂n(x0 − zi) : i = 1, 2, 3} ⊂
⊂ ∂R(x0)) by (2.11). Substituting here (5.23) we obtain

co {(1, 0, 0), (0,−1, 0), (0, 0, 1)} ⊂ ∂R(x0). (5.24)

It is easy to calculate that K+(z0, D) = {x = (λ,−λ, λ) ∈ R
3 : λ ∈ R

1}. Hence
−∂ρ

D
(x0) = ∂n(z0 − x0) ∩K+(z0, D) = {y0}, where y0 = (1/3,−1/3, 1/3). Since

this point can be represented as

y0 =
1
3
(1, 0, 0) +

1
3
(0,−1, 0) +

1
3
(0, 0, 1),

and with (5.24) taken into account, it follows that y0 ∈ ∂R(x0)∩−∂ρ
D

(x0), that is,
03 ∈ ∂R(x0) + ∂ρ

D
(x0). Hence, in accordance with (4.1), the point x0 lies in X(D).

However, x0 /∈ D, therefore X(D) �⊂ D.

6 Condition of the uniqueness of solution

Examples 4.1 and 5.1 simultaneously show that solution of problem (1.1) can be
nonunique. Let us give sufficient conditions of the uniqueness of the solution.

Theorem 6.1. If at least one of the following conditions is valid:
1) n(·) is a strictly quasiconvex norm,
2) D is a strictly convex set and n(·) is a smooth norm,
3) D is a strictly convex set and it possesses central symmetry,

then the solution of problem (1.1) is unique.
Proof. Assume that a solution is not unique and there exist at least two best

approximation balls with centers at x1, x2 ∈ X(D). By Theorem 5.1 we have the
inclusion X(D) ⊂ D, and since [x1, x2] ⊂ X(D), it follows that

Φ(x) = R(x) − ρΩ(x) = min
x∈Rp

Φ(x) = Φ(x1), ∀x ∈ [x1, x2]. (6.1)

Hence the convex function R(x) and concave function ρΩ(x) are affine on [x1, x2].
(a) Let n(·) be a strictly quasiconvex norm. Assume for definiteness thatR(x2) ≥

R(x1). Since the function R(x) is affine on [x1, x2], it follows by Lemma 2.6 that

R(x2) = R(x1) + n(x1 − x2). (6.2)

By (6.1) and (6.2) we also obtain

ρΩ(x2) = ρΩ(x1) + n(x1 − x2). (6.3)

It now follows from (6.3) that

R(x1) > ρΩ(x1). (6.4)
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Actually, if one assumes that R(x1) = ρΩ(x1), then the inclusions

Bn(x1, ρΩ(x1)) ⊂ D ⊂ Bn(x1, R(x1))

show that D = Bn(x1, ρΩ(x1)) and therefore ρΩ(x1) = max
x∈D

ρΩ(x). This contradicts

(6.3).
We conclude from (6.2) and Lemma 5.1 that boundary spheres of the nested

balls Bn(x1, R(x1)) and Bn(x2, R(x2)) are tangent at the unique point

y0 = x1 +
x1 − x2

n(x1 − x2)
R(x1). (6.5)

Moreover, in view of the inclusions

D ⊂ Bn(x1, R(x1)) ⊂ Bn(x2, R(x2))

and since the ball Bn(x2, R(x2)) must have a common point with D, it follows that
y0 ∈ D. Next, x2 ∈ intD by (6.3), therefore

αx2 + (1 − α)y0 ∈ intD, for all α ∈ (0, 1). (6.6)

On the other hand we see from (6.3) and Lemma 5.1 that the boundary spheres of
the nested balls Bn(x1, ρΩ(x1)) and Bn(x2, ρΩ(x2)) are tangent at the unique point

y1 = x1 +
x1 − x2

n(x1 − x2)
ρΩ(x1). (6.7)

Moreover, in view of the inclusions

Bn(x1, ρΩ(x1)) ⊂ Bn(x2, ρΩ(x2)) ⊂ D

and since the ball Bn(x1, ρΩ(x1)) has a common point with Ω, it follows that

y1 ∈ Ω. (6.8)

From (6.4), (6.5), and (6.7) we see that y1 = α0x2 + (1 − α0)y0 for some
α0 ∈ (0, 1). In view of (6.6), this contradicts (6.8).

(b) Let now D be a strictly convex compact set and n(·) be a smooth norm. In
accordance with the definition of a strictly convex set17 we have αx1 + (1 − α)x2 ∈
intD for all α ∈ (0, 1). Therefore without loss of generality we shall assume that
x1, x2 ∈ intD and ρΩ(x1) ≤ ρΩ(x2). The function ρΩ(x) is affine on [x1, x2], therefore
application of Lemma 2.10 gives us

ρΩ(x2) = ρΩ(x1) + n(x1 − x2). (6.9)

By (6.1) and (6.9) we also obtain

R(x2) = R(x1) + n(x1 − x2). (6.10)
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Now from affineness of functionsR(x) and ρΩ(x) on [x1, x2] and equalities (6.9),(6.10)
it follows

R′(x1, x2 − x1) = ρ′Ω(x1, x2 − x1) = n(x1 − x2). (6.11)

b1) We claim that there exists element z0 ∈ QR(x1, D) such that

n′(x1 − z0) = n′(x2 − x1). (6.12)

Let us recall that the smoothness of norm n(·) means2

∂n(x) = {n′(x)}, x �= 0p. (6.13)

Using relation between n(·) and n∗(·) we can write

n(x2 − x1) = max
n∗(v)≤1

〈v, x2 − x1〉. (6.14)

From (6.13) and (2.1) we have

n(x) = 〈n′(x), x〉, n∗(n′(x)) = 1 for all x �= 0p. (6.15)

By lemma 2.3 n∗(·) is a strictly quasiconvex norm. Therefore the ball
Bn∗(0p, 1) = {v ∈ R

p : n∗(x) ≤ 1} is a strictly convex set. Then from (6.14),(6.15)
we obtain

n(x2 − x1) < 〈v, x2 − x1〉 for v ∈ Bn∗(0p, 1), v �= n′(x2 − x1). (6.16)

Applying Lemma 2.5 and using the property of subdifferential as differential char-
acteristic of a convex function1,2,3,18 we have

R′(x1, x2 − x1) = max
v∈∂R(x1)

〈v, x2 − x1〉 = n(x2 − x1), (6.17)

∂R(x1) = co {n′(x1 − z) : z ∈ QR(x1, D)}. (6.18)

Also by (6.15) and (6.18) it follows that

∂R(x1) ⊂ Bn∗(0p, 1). (6.19)

Now from relations (6.15)–(6.19) we obtain (6.12).
b2) Let us show that superdifferential ∂ρΩ(x1) is a singleton, moreover

∂ρΩ(x1) = {n′(x2 − x1)}, n′(x2 − x1) = n′(x1 − z) for all z ∈ Qρ(x1,Ω). (6.20)

Indeed, applying Lemma 2.9 and using the differential property of superdifferential
for a concave function, and also (6.11),(6.13) we have

ρ′Ω(x1, x2 − x1) = min
w∈∂ρΩ(x1)

〈w, x2 − x1〉 = n(x2 − x1), (6.21)
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∂ρΩ(x1) = co {n′(x1 − z) : z ∈ Qρ(x1,Ω)}. (6.22)

Since ∂ρΩ(x1) ⊂ Bn∗(0p, 1) by (6.15) and (6.22), (6.20) follows from (6.15),(6.16)
and (6.21).

b3) According to (6.12) and (6.20) there exists some element z0 ∈ QR(x1, D),
for which

n′(x1 − z0) = n′(x1 − z) for all z ∈ Qρ(x1,Ω). (6.23)

Let us show that (6.23) leads to contradiction with our assumption of nonuniqueness
of solution.

First we notice that for given normal w0 �= 0p we can construct unique support
hyperplane to the convex set D

π = {x ∈ R
p : 〈w0, x〉 = λ},

such that
π+ = {x ∈ R

p : 〈w0, x〉 ≤ λ} ⊂ D. (6.24)

The point z0 ∈ QR(x1, D) is the boundary point of the convex compact set D and
the ball Bn(x1, R(x1)). Since n(·) is a smooth norm then the support hyperplane
of the ball Bn(x1, R(x1)) and set D at the point z0 must be unique. Moreover
the normal of this support hyperplane is w0 = n′(x1 − z0). On the other hand
any z ∈ Qρ(x1,Ω) is the boundary point of the convex compact set D and the
ball Bn(x1, ρΩ(x1)). Their support hyperplane at the point z can be constructed
in unique way and its normal is w0 = n′(x1 − z). In both cases we suppose the
inclusion (6.24).

Taking into account (6.23) and the arguments stated above we conclude that
there exists hyperplane which is a support hyperplane of the balls Bn(x1, ρΩ(x1))
and Bn(x1, R(x1)) simultaneously. It is possible only for case R(x1) = ρΩ(x1). This
means that the set D is the ball with center at point x1, which is a unique solution
of problem (1.3).

(c) LetD be a strictly convex compact set possessing central symmetry. Without
loss of generality we assume that its center of symmetry is the point x1 = 0p. By
Theorems 3.1, 5.1 and Corollary 4.1 it follows that

min
x∈Rp, r≥0

h(D,Bn(x, r)) = h(D,Bn(0p, r1)) = h0, (6.25)

r1 =
R(0p) + ρΩ(0p)

2
, h0 =

R(0p) − ρΩ(0p)
2

. (6.26)

Supposing that Bn(x2, r2), where x2 �= 0p, is also the best approximation ball, we
have

h(D,Bn(x2, r2)) = h0, (6.27)

r2 =
R(x2) + ρΩ(x2)

2
. (6.28)
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Since the point x1 = 0p is the center of symmetry for the set D, then

R(0p) = min
x∈Rp

R(x), ρΩ(0p) = max
x∈D

ρΩ(x).

Therefore the convex function R(x) is nonincreasing function and concave function
ρΩ(x) is nondecreasing function on [x1, x2]. Taking into account (6.1) we conclude
that the functions R(x) and P (x) are the constant quantities on [x1, x2]. By (6.26)
and (6.28) it follows that

r1 = r2. (6.29)

Let us consider Minkowski function generated by the set D

ϕD(x) = inf {α > 0 : x ∈ αD}.

It is easy to see that ϕD(x) is a strictly quasiconvex norm. Therefore, as it is proved
in (a), the problem

h(BϕD(x, ρ), Bn(0p, r1)) → min
x∈Rp, ρ≥0

, (6.30)

where BϕD(x, ρ) = {y ∈ R
p : ϕD(x − y) ≤ ρ}, have unique solution. Moreover in

accordance with Corollary 4.1

min
x∈Rp ρ≥0

h(BϕD(x, ρ), Bn(0p, r1)) = min
x∈Rp ρ≥0

h(BϕD(0p, ρ), Bn(0p, r1)) =

= min
ρ≥0

h(ρD,Bn(0p, r1)). (6.31)

Using the symmetry of set D with respect to the point x1 = 0p and Lemma 3.2 we
obtain

h(ρD,Bn(0p, r1)) = max {ρR(0p) − r1, r1 − ρΩ(0p)}. (6.32)

Now by (6.31),(6.32) and (6.25),(6.26) it follows that

min
x∈Rp ρ≥0

h(BϕD(x, ρ), Bn(0p, r1)) = h(D,Bn(0p, r1)) = h0,

that is, D = BϕD(0p, 1) is the best approximation ball for set Bn(0p, r1) and norm
ϕD(·) in problem (6.30).

However since

h(D,Bn(x2, r2)) = h(D − x2, Bn(0p, r2)) =

= h(BϕD(−x2, 1), Bn(0p, r2)),

then by (6.27) and (6.29) we have

h(BϕD(−x2, 1), Bn(0p, r1)) = h0,



Best approximation of a compact convex set by a ball in an arbitrary norm 109

that is, BϕD(−x2, 1) is also the best approximation ball in problem (6.30). It
contradicts the uniqueness of solution of problem (6.30). The proof is over. �

Remark 6.1. The strict quasiconvexity of the norm means the strict convexity
of balls with respect to this norm. We have shown that the problem (1.3) is uniquely
soluble in this case. On the contrary the following example shows that the strict
convexity of the set D doesn’t guarantee the uniqueness of solution.

Example 6.1. Let p = 2, x = (x(1), x(2)) ∈ R
2, n(x) = max{|x(1)|, |x(2)|};

D = {x ∈ R
2 : (x(1) +1)2 +(x(2)−1)2 ≤ 4, (x(1)−2)2 +(x(2) +2)2 ≤ 10} is a strictly

convex compact set, x0 = (0, 0), x1 = ((1 +
√

2 −√
5)/2, (

√
5 −√

2 − 1)/2).
(a) It is easy to verify that QR(x0, D) = {z1; z2}, where z1 = (−1,−1), z2 =

(1, 1) and Qρ(x0,Ω) = {z0}, where z0 = (2 − √
5,
√

5 − 2). Bearing in mind that
n∗(x) = |x(1)| + |x(2)| and using (2.1) we obtain

∂n(x0 − z0) = co {(1, 0), (0,−1)}, ∂n(x0 − z1) = co {(1, 0), (0, 1)},
∂n(x0 − z2) = co {(−1, 0), (0,−1)},

K+(z0, D) = {x ∈ R
2 : x(1) = −x(2), x(1) ≥ 0}.

Next, using formulae (2.11) and (2.21) we obtain

∂R(x0) = {x ∈ R
2 : |x(1)| + |x(2)| ≤ 1},

∂ρΩ(x0) = {(1/2,−1/2)}.
(6.33)

Since x0 ∈ intD, it follows that ∂P (x0) = −∂ρΩ(x0). Hence we see from (6.33) that
02 ∈ ∂R(x0) + ∂P (x0) ≡ ∂Φ(x0); this means thatx0 ∈ X(D) and x0 is the center of
some best approximation ball.

(b) We can also verify that QR(x1, D) = {z1; z2} and Qρ(x1,Ω) = {z0; z3}, where
z3 = (

√
2 − 1, 1 −√

2). Moreover,

∂n(x1 − z0) = co {(1, 0), (0,−1)}, ∂n(x1 − z3) = co {(−1, 0), (0,−1)},
∂n(x1 − z1) = {(1, 0)}, ∂n(x1 − z2) = {(0,−1)},
K+(z3, D) = {x ∈ R

2 : x(1) = −x(2), x(1) ≤ 0}.
Next, using (2.11) and (2.21), we obtain

∂R(x1) = co {∂n(x1 − z1), ∂n(x1 − z2)} = co {(1, 0); (0,−1)},
∂ρΩ(x1) = co {v ∈ K+(z0, D) ∪K+(z3, D) : n∗(v) = 1} =

= co {(−1/2, 1/2); (1/2,−1/2)}.
Similarly to (a) we can now conclude that 02 ∈ ∂Φ(x1) and x1 too is the center of
a best approximation ball. Thus, the problem has more than one solution in this
case.
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7 Variational properties of solution

1. Let Kv(Rp) be the space of all non-empty convex compact subsets of R
p. It is

easy to see that the Hausdorff distance h(A,B) induced by an arbitrary norm n(·) is
a metric in Kv(Rp). Generalizing results of M.Nikol’skii and D.Silin8 we can discuss
some properties of the function

h0(D) = min
x∈Rp, r≥0

h(D,Bn(x, r)) : Kv(Rp) → R
1

and the set-valued map X(D) : Kv(Rp) → 2R
p
.

Theorem 7.1. The function h0(D) is Lipschitz on Kv(Rp) with Lipschitz con-
stant 1, that is,

|h0(D1) − h0(D2)| ≤ h(D1, D2), ∀D1, D2 ∈ Kv(Rp). (7.1)

Proof. Let Bn(x1, r1) be a best approximation ball for D1, and Bn(x2, r2) is
similar ball for D2. Then, using the properties of a metric we obtain

h0(D1) = h(D1, Bn(x1, r1)) ≤ h(D1, Bn(x2, r2)) ≤
≤ h(D1, D2) + h(D2, Bn(x2, r2)) = h(D1, D2) + h0(D2),

that is,
h0(D1) − h0(D2) ≤ h(D1, D2). (7.2)

In a similar way
h0(D2) − h0(D1) ≤ h(D1, D2). (7.3)

From (7.2) and (7.3) we deduce (7.1). �
Theorem 7.2. The set-valued map X(D) : Kv(Rp) → 2R

p
is upper semicontin-

uous on Kv(Rp).
Proof. We fix D0 ∈ Kv(Rp); and let M be the set of D ∈ Kv(Rp) such that

h(D,D0) ≤ 1. It is easy to see that there exists a finite number λ such that

‖x‖ + r < λ, for each x ∈ X(D), and for r = (R(x) − P (x))/2, D ∈M. (7.4)

Consider an arbitrary sequence {Di}i=1,2,... ⊂ Kv(Rp), such that
h(Di, D0) → 0, i → ∞. By (7.4) we can choose xi ∈ X(Di) and
ri = (R(xi) − P (xi))/2 such that xi → x∗ and ri → r∗ as i → ∞. We claim
that x∗ ∈ X(D0).

Assume that, on the contrary,

h(D0, Bn(x∗, r∗)) − h0(D0) = δ > 0.

Then for sufficiently large i we have

h(Di, Bn(xi, ri)) − h(Di, Bn(x0, r0)) ≥ δ/2 > 0, (7.5)
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where x0 ∈ X(D0) and r0 = (R(x0) − P (x0))/2, that is, Bn(x0, r0) is one of the
best approximation balls for D0. However, (7.5) contradicts the assumption that
Bn(xi, ri) is a best approximation ball for Di. �

Immediately from Theoremes 6.1 and 7.1 we obtain
Corollary 7.1. If n(·) is a strictly quasiconvex norm, then the map X(D) is

single-valued and continuous on Kv(Rp).
Remark 7.1. In the following example we demonstrate that the set-valued map

X(D) : Kv(Rp) → 2R
p

is not always lower semicontinuous.
Example 7.1. Let p = 3, x = (x(1), x(2), x(3)) ∈ R

3,

n(x) = max{|x(1)|, |x(2)|, |x(3)|}.

It was shown in Example 4.1 that each point x ∈ [(0, 0, 1/2), (0, 0,−1/2)] is the
center of the best approximation ball for set

D0 = co {(0, 1, 1/2), (0, 1,−1/2), (0,−1, 1/2), (0,−1,−1/2)}.

Let Di = co {D0, (1/i, 0, 0), (−1/i, 0, 0)}. Clearly, h(D0, Di) → 0 as i→ ∞, and the
Di are compact sets symmetric with respect to the same point x0 = (0, 0, 0). Hence
by Corollary 4.1 x0 ∈ X(Di). Moreover x0 is the center of a ball of the smallest
radius containing Di and, more importantly, x0 is the unique maximum point of
ρΩi(x) in Ωi = R3 \Di. Hence X(Di) = {x0}. This shows that elements of X(D0)
distinct from x0 cannot be limit points of elements of X(Di). Hence the set-valued
map X(D)) is not lower semicontinuous on element D0 ∈ Kv(Rp).

2. Consider two classes of transformation : 1) displacements Tx = x+ a, where
a ∈ R

p is a fixed element; 2) extensions Tx = λx, where λ is a fixed quantity.
It is not difficult to prove that the properties of displacements and extensions

for the Euclidean norm8 are reserved for an arbitrary norms.
Theorem 7.3. For the displacements there are fulfilled the relations

r0(TD, Tx) = r0(D,x), h0(TD) = h0(D), (7.6)

and for the extensions, respectively,

r0(TD, Tx) = |λ|r0(D,x), h0(TD) = |λ|h0(D),

where r0(D,x) is the radius of the best approximation ball for the set D with center
x ∈ X(D). Moreover for both classes of transformations

X(TD) = TX(D). (7.7)

Remark 7.2. In the work of M.Nikol’skii and D.Silin8 it was shown for the case
of Euclidean norm that orthogonal linear transformations also possess the properties
(7.6) and (7.7). Simple examples show that it can be wrong for non-Euclidean norms.
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8 Reduction to a linear programming problem

Everywhere in this section suppose that a convex compact set D is the polytope of
the form

D = {y ∈ R
p : 〈Ai, y〉 + ai ≥ 0, i = 1,m}, (8.1)

where Ai ∈ R
p, ai ∈ R

1, i = 1,m. And let unit ball of the norm also be a polytope
formed as

Bn(0p, 1) = {y ∈ R
p : 〈Bj , y〉 + bj ≥ 0, j = 1, l}, (8.2)

where Bj ∈ R
p, bj ∈ R

1, bj > 0, j = 1, l. Remark that the example of such norm is
n(x) = max

i=1,p
|x(i)|.

As it follows from Theorems 3.1 and 4.2, for obtaining at least one of the solutions
of the problem (1.3) we can to find the minimum point of the function Φ(x) on the
set D. That is, taking into account that P (x) = −ρΩ(x) for x ∈ D, it is sufficient
to solve the problem

R(x) − ρΩ(x) → min
x∈D

. (8.3)

Define concretely the forms of the functions R(x) and ρΩ(x) for the considered case.
Lemma 8.1. If the polytope D is given in form (8.1) and x ∈ D, then

ρΩ(x) = min
i=1,m

{〈Ci, x〉 + ci}, (8.4)

where
Ci =

Ai
n∗(Ai)

, ci =
ai

n∗(Ai)
. (8.5)

Proof. Clearly, for the point x ∈ D

ρΩ(x) = min
i=1,m

ρπi(x),

where πi = {x ∈ R
p : 〈Ai, x〉 + ai = 0}, i = 1,m are the hyperplanes forming the

sides of the polytope D. Hence, using the formula

ρπi(x) =
|〈Ai, x〉 + ai|

n∗(Ai)
,

notations (8.5) and taking into account that |〈Ai, x〉 + ai| = 〈Ai, x〉 + ai for x ∈ D,
we obtain (8.4). �

Lemma 8.2. If the unit ball of the norm n(·) is given in form (8.2), then

R(x) = max
j=1,l

{〈Tj , x〉 + tj}, (8.6)

where
Tj = −Bj

bj
, tj = max

y∈−D
〈Tj , y〉. (8.7)
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Proof. By (8.2) it is not difficult to conclude

Bn∗(0p, 1) = {v ∈ R
p : n∗(v) ≤ 1} = co {−Bj

bj
: j = 1, l}.

Hence, using the formula n(x) = max
n∗(v)≤1

〈v, x〉, we have

R(x) = max
y∈D

max
n∗(v)≤1

〈v, x− y〉 = max
y∈D

max
v∈co{−Bj/bj :j=1,l}

〈v, x− y〉. (8.8)

Since,
max

v∈co{−Bj/bj :j=1,l}
〈v, x− y〉 = max

v∈{−Bj/bj :j=1,l}
〈v, x− y〉,

then, using notations (8.7), by (8.8) it follows that

R(x) = max
j=1,l

max
y∈D

〈Tj , x− y〉 = max
j=1,l

{〈Tj , x〉 + max
y∈D

〈Tj ,−y〉} =

= max
j=1,l

{〈Tj , x〉 + tj}. �

Now we can reduce the problem (8.3) to a linear programming problem.
Theorem 8.1. If D and Bn(0p, 1) are the polytopes given in forms (8.1) and

(8.2) respectively, then the problem (8.3) is equivalent to the linear programming
problem




z = x(p+1) → min,
x(p+1) − 〈Tj − Ci, x〉 − tj + ci ≥ 0, i = 1,m, j = 1, l,
x ∈ D,

(8.9)

where Tj , tj, Ci, ci is defined by (8.7) and (8.5). Moreover, if the pair (x∗, z∗) is
a solution of (8.9) then the point x∗ is a solution of (8.3). Conversely, if x∗ is a
solution of (8.3), then the pair (x∗, z∗), where z∗ = R(x∗)− ρΩ(x∗), is a solution of
(8.9).

Proof. Lemmae 8.1 and 8.2 allow us to rewrite the problem (8.3) in form

max
i=1,m, j=1,l

{〈Tj − Ci, x〉 + tj − ci} → min
x∈D

.

The equivalence of this problem and the problem (8.9) is quite clear. �

9 Conclusion

The reduction of the problem (1.1) to the convex problem (1.3) enables us to get
its approximate solution by using numerical methods of convex programming. The
formulae for the subdifferentials of the functions R(x) and P (x), for example, make
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it possible to apply subgradient methods2. Constructing a numerical solution algo-
rithm the authors used the idea of the Kelley’s method21,2. This led to the necessity
of solving problems of the form (8.9) at each step of the algorithm, which were the
result of an outer estimating of a compact set under approximation and the unit
ball of chosen norm by polytopes.

Authors wish to express their gratitude to M.S.Nicol’skii for valuable advice.

21J.F.Kelley, ”The cutting–plane methods for solving convex problems”, SIAM J.Appl. Math.,
8:4, (1960), 703–712.



Aspects of Numbers Theory in terms of Potential Theory

N. Boboc and Gh. Bucur

1. Preliminaries concerning elementary Potential Theory.

Let (X,B) be a measurable space and V be a kernel on (X,B). If pB denotes

the set of all positive numerical B-measurable functions on X then V appear as map

V : pB → pB which is additive, increasing, V 0 = 0 and σ-continuous in order from

below.

The principal notion in the elementary Potential Theory [7] associated with the

kernel V is so called V -supermedian function (or simply supermedian function) i.e.

a function s ∈ pB such that V s ≤ s. The Potential Theory associated to V means,

roughly speaking, the study of the set of all supermedian functions denoted by S̄.

Obviously this set S̄ is a min-stable convex subcone of pB such that for any

increasing (resp. decreasing) sequence (sn)n in S̄ we have sup sn ∈ S̄ (resp. inf sn ∈

S̄.

Moreover for any f ∈ pB the function

Rf : {s ∈ S̄/f ≤ s}

called, the reduite of f , is also supermedian and if there exists s, t ∈ S̄ with f +t = s

then there exists t1 ∈ S̄ with Rf + t1 = s. (Mokobodzki theorem)

We associate to V an other kernel, called Green kernel, G = GV given by

G =
∑

n

V n

where V ◦ is the identity map and V n+1 = V ◦ V n, for all n ∈ IN. For any f ∈ pB

the function Gf is supermedian and it is called potential function. If Gf is finite

115



116 N. Boboc and Gh. Bucur

then f is uniquely determined by Gf since we have

Gf = f + V (Gf).

Also if p is a finite potential then any supermedian function s with s ≤ p is also

a potential. The kernel G satisfies the following property: if s is V -supermedian,

f ∈ B and s ≥ Gf an {x ∈ X | f(x) > 0} then s ≥ Gf on X.

A function h ∈ pB such that V h = h is called V -invariant (or simply invariant).

Obviously any invariant function is a supermedian one. Moreover any supermedian

function can be decomposed in a summ between a potentil and an invariant function

(Watanable theorem) and this decomposition is unique if the given supermedian

function is finite.

In the sequel we denote by S = SV the set of all finite V -supermedian functions.

In the set S we consider two order relations: the first is the usual order relation

denoted ≤, called the natural order relation (i.e. s ≤ t
det⇐⇒ s(x) ≤ t(x)∀x ∈ X); the

second, called specific order relation, denoted 	, is defined by

s 	 t
det⇐⇒∃u ∈ S with s + u = t

It is proved that the ordered sets (S,≤), (S,	) are ordered convex cones such

that any subset of S possesses an infimum in both order relations. Moreover any

specific majorant of a nonempty subset A of S is a specific majorant of the natural

supremum of A in S.

To have a consistent Potential Theory associated to the kernel V we assume

that V is transient i.e. there exists f0 ∈ pB, 0 < f0 ≤ 1 such that Gf is finite or

equivalently, there exists s ∈ S such that

V s(x) < s(x) ∀x ∈ X.

In this case the liniar vector space S −S is a vector lattice of real B-measurable

functions such that there exists a strictly positive function f0 ∈ pB, f0 ≤ 1 for which

f ∈ pB, f ≤ f0 ⇒ f ∈ S − S.
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Hence for any functional

ϕ : S −→ IR+

which is additive, increasing and continuous in order f from below there exists a

unique positive σ-finite measure µ on (X,B) such that ϕ(f) =
∫

fdµ.

Also for any s ∈ S there exists an increasing sequence (pn)n of potentials in S

such that supn pn = s.

An element s ∈ S is called subtractible if for any t ∈ S we have

s ≤ t =⇒ s 	 t.

It is easy to see that any s ∈ S which is V -invariant is subtractible. Also the set

S0 of all subtractible elements of S is a convex cone which is solid in S with respect

to the specific order.

If sn)n is an increasing sequence in S0 dominated in (S,≤) then supn sn ∈ S0.

An element s ∈ S is called extremal if for any s ∈ S with s′ 	 s there exists

α ≥ 0 with s′ = αs. It is easy to see that any extremal element of S is a V -potential

or a V -invariant function.

2. Potential theory on special ordered sets

In this section (X,≤) is an ordered set such that for any x, y ∈ X with x ≤ y the

interval [x, y] := {z ∈ X | x ≤ z ≤ y} is finite. In the sequel X will be considered as

a measurable space endowed with the σ-algebra B of all subsets of X. The case X

finite was considered in [2]. For other general cases see [3], [4] and [5].

We denote by m the measure on X given by m({x}) = 1 for any x ∈ X.

If x ∈ X, a point x′ ∈ X is called precedent of x if x′ < x (i.e. x′ ≤ x and x′ �= x)

and there is no z ∈ X with x′ < z < x. We note that if x ∈ X is not minimal then

for any z ∈ X, z < x there exists x′ precedent of x with x ≤ x′ < x. The set of all

precedents of x is denoted by Πx. Obviously Πx = ∅, iff x is minimal.
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We denote by V the kernel on X given by

V f(x) =


0 if x is minimal∑
x′∈Πx

f(x′) if x is not minimal

The kernel V is called the associated kernel on the ordered set (X,≤).

If x ∈ X, a point x′ ∈ X is called succesor of x if x is a precedent of x′. The set

of all succesors of x is denoted by Π∗
x. Obviously Π∗

x = ∅ iff x is maximal in X and

for any x ∈ X which is not maximal and z ∈ X with x < z there exists a succesor

x′ of x with x < x′ ≤ z.

We denote by V ∗ the kernel on X given by

V f(x) =


0 if x is maximal∑
x′∈Π∗

x

f(x′) if x is not maximal

Remark If we denote by ≤∗ the order relation on X given by

x ≤∗ y ⇐⇒ y ≤ x

then, for any x, y ∈ X with x ≤∗ y, the interval [x, y] in (X,≤∗) is finite. Also x in

minimal in (X,≤∗) iff x is maximal in (X,≤) and x′ is precedent of x in (X,≤∗)

iff x′ is a succesor of x in (X,≤). Hence the kernel V ∗ is the associated kernel of

the ordered set (X,≤∗).

In the sequel we denote by G (resp. G∗) the Green kernel associated with the

kernels V (resp. V ∗) and by S (resp. S∗) the set of all V (resp. V ∗) supermedian

functions. If x ∈ X we denote by Gx (resp. G∗
x) the function Gx = G1{x} (resp.

G∗
x = G∗1{x}).

Since by definition for any x, y ∈ X with x ≤ y there exists a finite system

(xk)0≤k≤n with x0 = x, xk ∈ Πxk+1
∀0 ≤ k < n, xn = y it follows that for any s ∈ S

we have

s(xk+1) ≥ V s(xk+1) ≥ s(xk) ∀ 0 ≤ k < n − 1
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and so

s(x) = s(x0) ≤ s(xn) = s(y)

i.e. s is an increasing function on the ordered set (X,≤).

Proposition 2.1. For any two positive function f, g on X we have∫
f(V ∗)ngdm =

∫
gV nfdm ∀n ∈ IN.

Particularly we have

G∗
y(x) = Gx(y) ∀x, y ∈ X

Proof. We have∫
fV ∗gdm =

∑
x∈X

f(x)V ∗g(x) =∑
x

∑
x′∈Π∗

x

f(x)g(x′) =
∑
x∈X

∑
x∈Πx′

f(x)g(x′) =

=
∑
x′∈X

∑
x∈Πx′

f(x)g(x′) =
∑
x′∈X

g(x′)V f(x′) =
∫

gV fdm

i.e.∫
fV ∗gdm =

∫
gV fdm.

Suppose now that∫
f(V ∗)ngdm =

∫
gV nfdm ∀f, g ≥ 0.

Then ∫
f(V ∗)n+1gdm =

∫
f(V ∗)n(V ∗g)dm =

∫
V ∗gV nfdm

=
∫

gV (V nf)dm =
∫

gV n+1fdm.

Since

G =
∑
n

V n, G∗ =
∑
n

V ∗n
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it follows ∫
fG∗gdm =

∫
gGfdm ∀f, g ≥ 0

and particularly, taking f = 1{x}, g = 1{y} we get

G∗
y(x) =

∫
1{x}G∗(1{y})dm =

∫
1yG1{x}dm = Gx(y)

Proposition 2.2 For any x, y ∈ X we have

Gy(x) = 0 if y �≤ x,

Gy(x) =
∑

x′∈Πx

Gy(x′) + 1{y}(x).

Proof. Suppose that y �≤ x. We show inductively that V n1y(x) = 0. Indeed this

relation holds, obviously for n = 0. Suppose that V n
1y

(x) = 0. Since y �≤ x then

y �≤ x′ for all x′ ∈ Πx and so

V n+11y(x) =
∑

x′∈Πy

V n1y(x′) = 0.

From the above considerations we deduce

y �≤ x ⇒ Gy(x) = 0.

If y �= x we get

Gy = G1y = V (G1y) + 1y = V Gy + 1y

and so

Gy(x) =
∑

x∈Πx

Gy(x′) + 1y(x).

Proposition 2.3. For any x, y ∈ X we have

Gy(x) = cardLy,x

where Ly,x is the set of all maximal totally ordered subsets of [y, x].
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Proof. We show that

Gy(x) = cardLy,x

by induction following card [y, x]. If card [y, x] = 0 (i.e. y �≤ x) the relation follows

since Ly,x = ∅ and Gy(x) = 0.

Suppose now that the relation holds for card [y, x] = n and let x, y such that

card [y, x] = n + 1 (where n ≥ 0). From the preceding Proposition we have

y = x ⇒ Gy(x′) = 0 ∀x′ ∈ Πx

and so

Gy(x) =
∑

x′∈Πx

Gy(x′) + 1y(x) = 1y(x) = 1.

On the other hand

y = x ⇒ card Ly,x = 1

Suppose that y �= x. In this case from card [y, x] = n + 1 it follows y < x and

therefore, using the preceeding Proposition, we have

Gy(x) =
∑

x′∈Πx

Gy(x′).

On the other hand we have

x′ ∈ Πx, y < x ⇒ card [y, x′] = n

and so by hypothesis of induction,

Gy(x′) = card Ly,x′ .

Hence

Gy(x) =
∑

x′∈Πx

card Lyx′ = card Lyx

Proposition 2.4. For any x, y ∈ X the following assertion are equivalent:

1) x ≤ y

2) Gx(y) > 0

3) G∗
x ≤ G∗

y

4) Gy ≤ Gx
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Proof. 1) ⇔ 2) follows from Proposition 3)

1) ⇔ 3). If z ∈ X we have

G∗
x(z) = Gz(x), G∗

y(z) = Gz(y)

and therefore, Gz beeing increasing,

Gz(x) ≤ Gz(y).

3) ⇔ 1) If G∗
x ≤ G∗

y then we have

1 = G∗
x(x) ≤ G∗

y(x) = Gx(y), Gx(y) > 0

and so x ≤ y.

1) ⇔ 4) follows from 1) ⇔ 3) and from x ≤ y ⇔ y ≤∗ x using the fact that

Gz(u) = G∗
u(z) ∀z, u ∈ X.

Proposition 2.5. Suppose that

i) for any x ∈ X there exists x′ ∈ X minimal x′ ≤ x;

ii) the set of all minimal elements of X is at most countable;

iii) The kernel V ∗ is transient.

Then X is at most countable. Particularly the kernel V is also transient.

Proof. Let f0 be a positive function on X, 0 < f0 ≤ 1 such that G∗f0 < ∞. For

any n ∈ IN∗ we denote

An := [f0 ≥ 1
n

].

For any x ∈ X we have

∑
y∈An

G∗
y(x) ≤ nG∗f0(x) < ∞

Since

Gy(x) = card Ly,x
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it follows that ∪y∈An [x, y] is finite. Therefore the set

{y ∈ An | y ≥ x}

is finite. Since

{y ∈ X | y ≥ x} ⊂ ∪n{y ∈ An | y ≥ x}

it follows that the set

{y ∈ X | y ≥ x}

is at most countable.

By hypothesis we have

X = ∪
p∈X

p minimal

{y ∈ X | y ≥ p}

and so X is at most countable.

Proposition 2.6. We consider the following assertions:

1. For any x ∈ X the set of all minorants of x is finite.

2. Any V -invariant function on X is equal zero.

3. There is no strictly decreasing sequence in X.

4. For any x ∈ X there exists a minimal element x′ of X with x′ ≤ x.

5. For any x ∈ X the set of all minimal elements of x′ of X with x′ ≤ x is

finite.

Then we have

1) ⇒ 2) ⇔ 4) and 1) ⇔ 4) + 5).

Generally 2) ⇒ 1) and 4) ⇐ 3) are not true.

Proof

1) ⇒ 4) + 5) is trivial

4) + 5) ⇒ 1) follows from the fact that for each x the set Mx of all minorants

of x is given by

Mx = ∩x′∈Ax [x′, x]
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where Ax is the set of all minimal x′ elements of X with x′ ≤ x.

2) ⇐ 3) Suppose that 3) is not true and let (xn)n be a strictly decreasing sequence

in X. It follows that the sequence (Gxn)n is increasing. Let us denote

h = sup
n

Gxn

Since

V Gxn = GxnonX\{xn}

V Gxn ≤ GxnonX

and

V Gxn+1(xn) = Gxn+1(xn) ≥ Gxn(xn)

it follows that

h ≥ V h = sup
n

V Gxn ≥ sup
n

Gxn = h.

i.e. h is V -invariant. By hypothesis h = 0 and therefore Gxn = 0 contradiction.

3) ⇔ 2) Suppose that there exists non zero V -invariant function h. If we put

h0 = sup
n

nh

it follows that h0 is V -invariant, h0 �= 0 and

h0(x) > 0 ⇔ h0(x) = +∞.

Let x ∈ X with h0(x) = +∞. Since

+∞ = h0(x0) =
∑

x′∈Πx

h0(x′)

then there exists x′ ∈ Πx with h0(x′) = +∞.

By induction we can construct a sequence (xn)n in X such that h0(xn) = +∞

and xn+1 ∈ Πxn . Obviously (xn)n is strictly decreasing, contradiction.

1) ⇒ 3) is trivial.

2) ⇒ 1) is not generally true. We consider the ordered set X = P ∪ {a} with a �∈ P

such that P is infinit any two diferent elements of P are incompatible and a > p for
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any p ∈ P . Obviously the assertion 1) is not true for this set. If h is a V -invariant

function then, from the fact that any p ∈ P is minimal, we have h(p) = 0 and so

h(a) =
∑
p∈P

h(p) = 0.

3) ⇒ 4) Let x ∈ X be such that there is no minimal elements x′ of X with x′ ≤ x.

Then there exists a strictly decreasing sequence (xn)n in X with x0 = x which

contradicts 3).

4) ⇒ 3) is not generally true. We consider the ordered set X = {(x, y) | x ∈ Z, y ∈

{0, 1}} where the order relation is the following:

(x, y) ≤ (x′, y′) ⇔ x ≤ x′, y = y′ = 1 or x = x′, y = 0, y′ = 1.

Obviously any element of X has a minorant minimal (i.e. (4) is true) but there

exists a strictly decreasing sequence in X (i.e. 3) is not true).

Proposition 2.7 Let u = Gf be a finite V -potential. Then u will be subtractible

iff f(x) = 0 for all non minimal element x of X then u = 0.

Proof. Let x = X not minimal. Then G1{x} is not subtractible. Indeed suppose

that G1{x} is subtractible and let x′ ∈ X be such that x′ < x. We get G1{x} ≤ G1{x′}

and therefore there exists v, V -supermedian with G1{x} +v = G1{x′}. Since v = Gg

with g ≥ 0 it follows that

1{x} + g = 1{x′}

which is a contradiction. Hence if u = Gf is subtractible and x ∈ X is not minimal

then f(x)G1{x}, being specifically dominated by u, is also subtractible and therefore

by the above considerations f(x) = 0. Conversely suppose that f(x) = 0 for any

non minimal element x of X. To show that Gf is subtractible it will be sufficient

to suppose that f = 1{x} where x is a minimal element of X. Indeed in this case if

v is V -supermedian such that G1{x} ≤ v we have

V (v − G1{x})(y) = V v(y) − V (G1{x})(y) = V v(y) − G1{x}(y)

≤ v(y) − G1{x}(y) ∀y ∈ X, y �= x
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and

V ((v − G1{x}))(x) = 0 ≤ v(x) − G1{x}

i.e. v − G1{x} is V -supermedian.

Proposition 2.8 Let u = Gf be a finite V -potential. Then u will be extremal

in S iff there exists α ≥ 0 and x ∈ X with u = αGx.

Proof. Suppose that u is extremal in S. We have

u = f(x) · Gx + G(g)

where g is the function equal f in any y �= x and equal zero at x. From f(x) ·Gx 	 u

it follows that

f(x)Gx = αu

for a suitable α > 0. We get u = 1/αf(x) · Gx, u = βGx where β = αf(x).

Conversely suppose that u = βGx with x ∈ X and β > 0 and let s ∈ S be such

that

s 	 u

then s is a potential s = Gf such that

0 ≤ f ≤ β1x.

Hence f = α1{x} with α ≥ 0 and so

s = αGx =
α

β
u

A positive real function s on the ordered set (X,≤) is called totally increasing (resp.

totally decreasing) function if for any system (x1, x2, . . . , xn) of strictly minorants

(resp. strictly majorant) of x such that xi �≤ xj for all i �= j we have

s(x) ≥
n∑

i=1

s(xi).
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Obviously any totally increasing (resp. totally decreasing) function is increasing

(resp. decreasing). Also a totally decreasing function with respect to the order

relation ≤ is nothing also that a totally increasing function with respect to the

order relation ≤∗.

Proposition 2.9 A positive real function s on the ordered set (X,≤) will be

totally increasing iff s is V -supermedian.

Proof. Suppose that s is V -supermedian. For any x ∈ X let J = {x1, x2, . . . , xn}

a finite system of strictly minorants of x such that xi �≤ xj for all i �= j. We show

that

s(x) ≥
n∑

i=1

s(xi)

by induction following the natural number

µ(J) := sup
1≤i≤n

card [xi, x].

If µ(J) = 1 then each xi is a precedent of x and in this case we have

s(x) ≥
∑

x′∈πx

s(x′) ≥
n∑

i=1

s(x2).

Suppose that the assertion is true for q ≤ m and suppose µ(x1, . . . xn) = m + 1.

Since xi is a strictly minorant of x there exists a precedent x′ of x with xi ≤ x′. We

put A = {x′ ∈ Πx/∃ 1 ≤ i ≤ n with xi ≤ x′}.

For any x′ ∈ A let us denote Jx′ = {xi ∈ J/xi ≤ x′}

Obviously we have µ(Jx′) ≤ m and so

s(x′) ≥
∑

xi∈Jx′

s(xi),

Hence

s(x) ≥
∑

x′∈Πx

s(x′) ≥
∑
x′∈A

s(x′) ≥
∑
x′∈A

∑
xi∈Jx′

s(xi) ≥
∑
xi∈J

s(xj).
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Conversely suppose that s is totally increasing on the ordered set (X,≤). Then

for any x ∈ X any finite subset A of Πx satisfies the relation

x, y ∈ A, x �= y ⇒ x �≤ y

and so

s(x) ≥
∑
x′∈A

s(x′).

The set A being arbitrary we deduce

s(x) ≥
∑

x′∈Πx

s(x′).

Lemma 2.10 Let T be a convex cone of positive real functions on ordered set

(X,≤) such that:

1) T is min-stable and for any t, t1, t2 ∈ T with t ≤ t1 + t2 there exists t′, t′′ ∈ T

with t = t′ + t′′, t′ ≤ t1, t′′ ≤ t2.

2) for any x, y ∈ X such that x ≤ y and any t ∈ T we have t(x) ≤ t(y).

3) for any x, y ∈ X such that x �≤ y there exists t ∈ T with t(x) > 0 and t(y) = 0.

Then T ⊂ S.

Proof. In fact we show that any t ∈ T is totally increasing function on the

ordered set (X,≤). Let t ∈ T , x ∈ X and let x1, . . . , xn) a finite system of strictly

minorants of x with xi �≤ xj for all i �= j. For any i, j ∈ {1, 2, . . . , n} with i �= j let

tij ∈ T be such that tij(xi) = 1 and tij(xj) = 0. Let us consider the element of T

given by

ti = inf{tij/i �= j}.

We have

ti(xi) = 1, ti(xj) = 0 ∀j �= i.

We consider the element s0 ∈ T , s ∈ T given by

s0 =
n∑

i=1

t(xi) · ti, s = inf(t, s0).
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Obviously s ≤ s0. From the property 1) of T there exists s1, s2, . . . , sn ∈ T with

s =
n∑

i=1

si, si ≤ t(xi) · ti ∀1 ≤ i ≤ n.

It follows si(xj) = 0 ∀j �= i and

si(xi) = s(xi), s0(xi) = t(xi) = s(xi)

and therefore

t(xi) = si(xi) ∀1 ≤ i ≤ n.

From property 2) we get

t(x) ≥ s(x) =
n∑

i=1

si(x) ≥
n∑

i=1

si(xi) =
n∑

i=1

t(xi)

i.e. t is totally increasing function.

Corollary 2.11 Let W be a kernel on X such that the connex cone SW of all

real W -supermedian functions satisfies the following properties:

a) x ≤ y ⇒ s(x) ≤ s(y) ∀s ∈ SW

b) x �≤ y ⇒ ∃s ∈ SW with s(x) > 0 and s(y) = 0.

Then SW ⊂ S.

3. Potential theory on the set of natural numbers

associated with the divisibility.

In this section X will be the set of all natural numbers n ≥ 2 which is considered

as a measurable space with respect to the σ-algebra of all subsets of X.

On X we distinguish two remarkable order relatins: the first is denoted by x|y

and is defined by

x|y det⇔ x is a divisor of y;
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the second is denoted by x‖y and is defined by

x‖y det⇔ x|y and (x,
y

x
) = 1

where if u, v ∈ X, (u, v) denotes the greatest common divizor of (u, v). This second

order relation was considered in [6].

Obviously for any x, y ∈ X we have

x‖y ⇒ x|y.

The set of minimal elements in the ordered set (X, |) is the set P of all prime

numbers and the set P̃ of minimal elements in the ordered set (X, ‖) is the set of

all natural numbers of the form pk with p ∈ P and k ∈ IN∗.

If x ∈ X is of the form

x = px1
1 px2

2 . . . pxk
k

where pi ∈ P , i �= j ⇒ pi �= pj and xk ∈ IN∗ then the set Πx of the precedents of x

in the ordered set (X, |) is given by

Πx = {x/pi | i ∈ {1, 2, . . . k}}

and the set ¶̃1i2 of the precedents of x in the ordered set (X, ‖) is given by

Π̃x = {x/pxi
i | i ∈ {1, 2, . . . , k}}.

In the sequel we denote by V, V ∗ (resp. Ṽ , Ṽ ∗) the kernels associated with

the ordered set (X, |) (resp. (X, ‖)) and by G, G∗ (resp. G̃, G̃∗) the Green kernel

associated with V, V ∗ (resp. Ṽ , Ṽ ∗).

Also, we denote by S, S∗ (resp. S̃, S̃∗) the set of all finite V -supermedian,

V ∗-supermedian (resp. Ṽ -supermedian, Ṽ ∗-supermedian) function.

Proposition 3.1 For any x, y ∈ X

x =
k∏

i=1

pxi
i , y =

k∏
i=1

pyi
i , xi, yi ∈ IN
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such that y|x (resp. y‖x) we have

Gy(x) =

(∑k
i=1(xi − yi)

)
!∏k

i=1((xi − yi)!)

(resp.G̃y(x) = l!)

where l = card{i ∈ 1, 2, . . . , k} | yi = 0 and 0 < xi}

Proof. Since y|x it follows that yi ≤ xi for all i ∈ {1, 2, . . . , k}. On the other

hand a maximal chain starting in y and ending in x is a system of the following

form

(y, ypi1 , ypi1pi2 , . . . ypi1pi2 . . . piq)

where q =
k∑

i=1

(xi − yi) and where for any j ∈ {1, 2, . . . k} we have

card{s ∈ {1, 2 . . . q}/is = j} = xj − yj .

The set of all these systems coincides with the set of all partitions of the set

{1, 2, . . . q} of the form {A1, A2 . . . Ak} where

cardAj = xj − yj ∀1 ≤ j ≤ k.

Hence

cardL(y, x) =
q!∏k

j=1[(xj − yj)!]
=

(∑n
j=1(xj − yj)

)
!∏k

j=1[(xj − yj)!]
.

Now, if y‖x we may suppose

x = y · px1
1 · px2

2 . . . pxl
l , xi ≥ 1, pi � |y i = 1, 2, . . . l

A maximal chain with respect to the order relation ‖ starting in y and ending in x

is of the form (
y, yp

xi1
i , yp

xi1
i1

p
xi2
i2

, . . . yp
xi2
i1

, . . . yp
xi1
i1

p
xi2
i2

. . . p
xil
il

)
and therefore the cardinal of the set of these maximal chains is equal l!
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Proposition 3.2. Any element of S (resp. S̃) is a V -potential (resp Ṽ -

potential).

Proof. The assertion follows from Proposition 2.5 and from the fact that for any

x ∈ X the set of all minorants of x in (X, |) or (X, ‖) is finite.

Proposition 3.3. Any non zero extremal element of S (resp. S̃) is of the form

αGx (resp. αG̃x) with α > 0 and x ∈ X. Also any subtractible element of S (resp.

S̃) is of the form Gf where f(x) = 0 for all x �= P (resp. x �∈ P̃ ).

Proof. The assertion follows from Proposition 2.7 and Proposition 2.8.

Proposition 3.4 Any subtractible elements of S∗ (resp. ˜̃S∗) is V ∗ (resp. Ṽ ∗)-

invariant

Proof. The assertion follows from Proposition 2.7.

Proposition 3.5 For any x, y ∈ X we have

x|y ⇔ G∗
x ≤ G∗

y, x‖y ⇔ G̃∗
x ≤ G̃∗

y.

x|y ⇔ Gx(y) > 0, x‖y ⇔ G̃x(y) > 0.

Proof. The assertion follows from Proposition 2.4.

Now we develop a compactification precedure which is usual in Potential theory

[1].

We denote by L (resp. L̃) the subset of S∗ (resp. S̃∗) defined by

L = {t ∈ S∗/
∑
x∈P

t(x) ≤ 1}

(resp.L̃ = {t ∈ S̃∗/
∑
x∈ ˜P

t(x) ≤ 1}).

It is easy to see that L (resp. L̃) is a convex subset of S∗ (resp. S̃∗).
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We endowed L (resp. L̃) with the topology τ generated by the functions

t −→ t(x), x ∈ X

Obviously since X is countable the topology τ is metrisable.

Proposition 3.6 The metric space (L, τ) (resp. L̃, τ) is compact.

Proof. Let (tn)n be a sequence in L (resp. L̃). Since X is countable and t(x) ≤ 1,

∀x ∈ X, there exists a subsequence (tkn)n of (tn)n such that (tkn(x))n is convergent

for any x ∈ X. We consider the function

t(x) = lim
n→∞ tkn(x).

Since tkn is totally decreasing on (X, |) (resp. (X, ‖)) it follows that t is also totally

decreasing on (X, |) (resp. (X, ‖)). Hence t ∈ S resp. (t ∈ S∗). We have

∑
x∈P

t(x) ≤ lim inf
n→∞

∑
x∈P

tkn(x) ≤ 1

(resp.
∑
x∈ ˜P

t(x) ≤ lim inf
n→∞

∑
x∈ ˜P

tkn(x) ≤ 1)

and so t ∈ L (resp. L̃). Hence (tkn)n converges in (L, τ) (resp. (L̃, τ)) to t.

Corollary 3.7 For any s ∈ L (resp. L̃) there exists a probability measure θ on

the extrem points of L (resp. L̃) such that

s =
∫

E
tdθ(t)

where E is the Gσ-set of all extrem points of L (resp. L̃).

Proof. We consider the liniar space L of all bounded real function on X endowed

with the topology of simply convergence. Obviously L (resp. L̃) is a metrisable

convex compact subset of L and therefore by Choquet representation theorem the
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set of all extrem points of L is a Gδ-set and any s ∈ L (resp. L̃) is the baricenter of

a probability measure θ on E. i.e.

s =
∫

E
tdθ(t)

Notation. For any t ∈ S∗ and any x ∈ X we denote by tx the function on X

given by

tx(y) = t(xy) ∀y ∈ X.

Proposition 3.8 For any t ∈ S∗ and any x ∈ X the function tx belongs to S∗

and we have

tx ≤ t,

(V ∗tx)(y) = (V ∗t)x(y).

Particularly if t is V ∗-invariant then tx is also V ∗-invariant and tx 	 t.

Proof. We have, for any y ∈ X,

(V ∗tx)(y) =
∑
p∈P

tx(yp) =
∑
p∈P

t(xyp) =

(V ∗t)(x · y) = (V ∗t)x(y) ≤ t(xy) = tx(y)

tx(y) = t(xy) ≤ t(y)

and so tx ∈ S∗.

If t is V ∗-invariant in S∗ then V ∗t = t and so

(V ∗tx)(y) = (V ∗t)x(y) = tx(y), ∀y ∈ X,

i.e. tx is V ∗-invariant.

Corollary 3.9 For any s ∈ S∗, V ∗-invariant and s �= 0 there exists s′ ∈ S∗,

V ∗-invariant, s′ ≤ s such that
∑

p∈P s′(p) < ∞.

A function f : X → IR is called completely multiplicative if for any x, y ∈ X we

have f(xy) = f(x) · f(y).
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We recall that a function f : X → IR is called multiplicative if for any x, y ∈ X

such that the greatest common divizor of x, y is equal 1 we have f(xy) = f(x)f(y).

Obviously any completely multiplicative function is multiplicative but the converse

is not true.

There are many very interesting multiplicative functions which are not completly

multiplicative. For instance the function x → O(x) where O(x) is the set of all

divizor of x is multipicative but not completely multiplicative.

For any arbitrary function g on P̃ there exists a unique multiplicative extension

g̃ of g on X. Indeed if

x = px1
1 px2

2 . . . pxn
n

with pi ∈ P , xi ∈ N∗, i �= j ⇒ pi �= pj we have

g̃(x) =
n∏

i=1

g(pxi
i ).

We remark that if g ≥ 0 then g̃ ≥ 0.

For any arbitrary function g on P there exists a unique completely multiplicative

extension g̃ of g on X. Indeed if

x = px1
1 px2

2 . . . pxn
n

we put

g̃(x) = (g(p1))x1(g(p2))x2 . . . (g(pn))xn .

Also if g ≥ 0 then g̃ ≥ 0.

Proposition 3.10 If t ∈ S∗, t �= 0 is V ∗-invariant and extremal then

l :=
∑
p∈P

t(p) < ∞

and the function t/l is completely multiplicative.

Proof. From

t(x) = V ∗t(x) =
∑
p∈P

tp(x)
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it follows using the fact that t is extremal, that there exists, for each p ∈ P , αp ∈ IR+

with

tp = αpt.

Therefore

t(p) =
∑
q∈P

tp(q) = αp(
∑
q∈P

t(q)) ∀p ∈ P.

Since there exists p ∈ P with t(p) > 0 we get αp > 0 and so l =
∑

q∈P t(q) < ∞.

Now, t′ = t/l is also V ∗ invariant and extremal and moreover∑
p∈P

t′(p) = 1, t′p = αpt
′.

Hence for any p ∈ P we have

t′(px) = t′p(x) = αpt
′(x) = t′(p)t′(x)

i.e. t′ is completely multiplicative.

Theorem 3.11 Let t ∈ S∗ with
∑
p∈P

t(p) = 1. Then t is V ∗-invariant and

extremal iff t is completely multiplicative.

Proof. Using the above Proposition it is sufficient to show that any positive,

completely multiplicative function t with
∑
p∈P

t(p) = 1 is V ∗-invariant and extremal.

Indeed let t be a positive completely multiplicative function with
∑
p∈P

t(p) = 1. Since

V ∗t(x) =
∑
p∈P

t(xp) =
∑
p∈P

t(x)t(p) = t(x)

it follows that t is V ∗-invariant. Suppose that t is not extremal. Then there exists

u, v ∈ S∗|{0} such that s = u + v and such that u ∧ v = 0 (where ∧ is the infimum

in S∗ with respect to the specific order in S∗).

If we put

α :=
∑
p∈P

u(p)
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we have 0 < α < 1 and

t = αu′ + (1 − α)v′

where u′ = u/α, v′ = v/1 − α. For any p ∈ P we have

tp = αu′
p + (1 − α)v′p.

Since t is completely multiplicative we have

tp = t(p) · t.

Suppose that t(p) > 0. Then we have

t =
α

t(p)
u′

p +
1 − α

t(p)
v′p = αu′ + (1 − α)v′.

Since u′, v′ are V ∗-invariant then from Proposition 3.8 we get u′
p 	 u′ and so

u′
p

t(p)
= u′.

Since V ∗u′ = u′ we deduce

u′(p)
t(p)

=
1

t(p)

∑
q∈P

u′
p(q) =

∑
q∈P

u′(q) = 1,

u′(p) = t(p), u′
p = u′(p) · u′.

If t(p) = 0 than tp = 0 and therefore u′
p = 0 and so

u′
p = u′(p)u′.

Hence

u′(p) = t(p) ∀p ∈ P,

u′
p = t(p)u′ ∀p ∈ P

i.e. u′ is completely multiplicative and therefore

u′ = t contradiction.
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Notation. For any t ∈ S̃∗ and any x ∈ X we denote by tx the function on X

defined by

tx(y) =

{
0 if(x, y) �= 1

t(y · x) if(x, y) = 1

where (x, y) means the greatest common divisor of (x, y).

Proposition 3.12 For any t ∈ S̃∗ and any x ∈ X the function tx belongs to S̃∗

and we have

tx ≤ t,

Ṽ ∗(tx) = (Ṽ ∗t)x.

Particularly if t is Ṽ ∗-invariant then tx is also Ṽ ∗-invariant.

Proof. We have

Ṽ ∗(tx)(y) =
∑

q∈P,α∈N∗
q�y

tx(yqα) =

=


∑

q∈P,α∈N∗
q�xy

t(yxqα) if(x, y) = 1

0 if(x, y) �= 1.

=


∑

q∈P,α∈N∗
q�xy

t(yxqα) if(x, y) = 1

0 if(x, y) �= 1.

=


(Ṽ ∗t)(yx) if(x, y) = 1

= (Ṽ ∗t)x(y)

0 if(x, y) �= 1

i.e.

Ṽ ∗(tx) = (Ṽ ∗t)x.

Obviously if, x = pα1
1 pα2

2 . . . pαn
n we have

(x, y) = 1 ⇒ tx(y) = t(y · x) ≤ (Ṽ ∗)nt(y) ≤ t(y)

(x, y) �= 1 ⇒ tx(y) = 0 ≤ t(y)
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and so

tx ≤ t

From

t1 ≤ t2 ⇒ (t1)x ≤ (t2)x

it follows

Ṽ ∗(tx) = (Ṽ ∗t)x ≤ tx

and so tx ∈ S
˜V ∗ . Suppose now that t is Ṽ ∗-invariant. We get

Ṽ ∗(tx) = (Ṽ ∗t)x = tx

i.e. tx is also Ṽ ∗-invariant.

Proposition 3.13 If t ∈ S̃∗ is Ṽ ∗-invariant and extremal then t = 0.

Proof. Suppose that t ∈ S
˜V ∗ is Ṽ ∗-invariant and suppose that x ∈ X is such

that t(x) > 0. From

t(x) = Ṽ ∗t(x) =
∑

q∈P,q�x
α∈IN∗

t(xqα)

it follows that there exists q ∈ P , q � x and α ∈ N∗ with

t(xqα) > 0.

The function tx is Ṽ ∗-invariant, tx ≤ t and so tx 	 t. Since t is extremal there

exists θx ≥ 0 with

tx = θxt.

We have

tx(qα) = t(xqα) > 0

and so θx > 0 which contradicts the relation

0 = tx(x) = θxt(x).
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Theorem 3.14 Any t ∈ S̃∗, Ṽ ∗-invariant is equal zero.

Proof. Suppose firstly that ∑
q∈P
β∈N∗

t(qβ) < ∞.

Hence for a suitable α ∈ IR∗
+ we have αt ∈ L̃ where

L̃ = {s ∈ S̃∗/
∑
x∈ ˜P

s(x) ≤ 1}.

Using Corollary 3.7 there exists a probability measure m on L̃ carried by the set

Ẽ of all extremal points of L̃ such that

αt =
∫
˜E

sdm(s)

Since

Ṽ ∗(αt) = αt

we deduce

αt =
∫
˜E

Ṽ ∗sdm(s) ≤
∫
˜E
sdm(s) = αt

and so m is carried by the set of all extremal elements s ∈ L̃∗ with Ṽ ∗s = s and

therefore, from Proposition 3.13, m = 0, αt = 0, t = 0.

Suppose that t is arbitrary and let p ∈ P , α ∈ IN∗. Since tpα is Ṽ ∗-invariant and∑
q∈P

q �=p,β>0

tpα(qβ) =
∑
q∈P

q �=P,β>0

t(pαqβ) = Ṽ ∗t(pα) = t(pα) < ∞

it follows that tpα satisfies the above condition and therefore tpα = 0 i.e.

t(xpα) = 0 ∀x ∈ X with p � x

and so

t(x) = Ṽ ∗t(x) =
∑
p∈P

α∈S∗,p�x

t(xpα) = 0 ∀x ∈ X.
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4. Martin compactification of the set of natural

numbers and “prime numbers”.

In this section we consider on the set X of all natural numbers x ≥ 2 the order

relation x|y. Let us denote by V and V ∗ the kernels associated with this order

relation and let G and G∗ the Green kernels associated with V and V ∗. We denote

by S (resp. S∗) the convex cones of all V -supermedian (resp. V ∗-supermedian)

functions. As in the previous section for any x ∈ X we denote by Gx (resp. G∗
x) the

function given by

Gx = G1{x}(resp. G∗
x = G∗1{x}).

Further we denote by u the function on X given by

u(x) =
∑
p∈P

Gp(x) =
∑
p∈P

G∗
x(p).

Obviously u ∈ S and it is subtractible in S, u(x) > 0 ∀x ∈ X.

We denote by L the convex subset of S∗ given by

L := {t ∈ S∗/
∑
p∈P

t(p) ≤ 1}.

Obviously for any x ∈ X we have

Kx :=
G∗

x

u(x)
∈ L,

∑
p∈P

Kx(p) = 1

and moreover Kx is an extrem point of the convex set L.

From Proposition 3.6 the set L is compact with respect to the topology of simply

convergence on L. On the other hand any extrem point t ∈ L, t �= 0 is such that∑
p∈P

t(p) = 1.

Since any element t of S∗ is the sum of the form t = G∗f + h where h is V ∗-

invariant it follows that any non zero extrem point of L is either Kx with x ∈

X or it is V ∗-invariant and therefore a completely multiplicative function h with∑
p∈P h(p) = 1.
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In the sequel we denote by P ∗ the set of all non zero extrem points of L which

are completely multiplicative.

The elements of P ∗ are called “coprime numbers”. This terminology we be

justified in the sequel.

We denote by E the set of all non zero extrem points of L. Obviously we have

E = {Kx/x ∈ X} ∪ P ∗.

We consider on E the relation � given by

t1 � t2
def⇐⇒∃α > 0, t1 ≤ αt2.

Proposition 4.1 The relation � is an order relation on E such that

1) Kx � Ky ⇔ x|y, ∀x, y ∈ X

2) h1 � h2 ⇔ h1 = h2, ∀h1, h2 ∈ P ∗

3) h ∈ P ∗, x ∈ X ⇒ h �� Kx

4) Kx � h ⇔ h(x) > 0 ∀ x ∈ X, h ∈ P ∗.

Particularly for any x ∈ X there exists h ∈ P ∗ with Kx � h and moreover for

any h ∈ P ∗ the set {x ∈ X/Kx � h} is infinit.

Proof.

1) Let x, y ∈ X. We have, from Proposition 3.5,

x|y ⇔ G∗
x ≤ G∗

y ⇒ Kx ≤ u(x)
u(y)

Ky.

Suppose now that there exists α > 0 with Kx ≤ αKy. We get

G∗
x ≤ α

u(x)
u(y)

G∗
y

and therefore G∗
y(x) > 0. From Proposition 3.5 we deduce x|y.

2) Leth1, h2 ∈ P ∗ such that h1 � h2 i.e. there exists α > 0 with h1 ≤ αh2.

Since h1, h2 are V ∗-invariant and extremal in S∗ it follows that there exists θ ≥ 0
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with h1 = θh2. From ∑
p∈P

h1(p) =
∑
p∈P

h2(p) = 1

we deduce θ = 1, h1 = h2.

3) Let h ∈ P ∗, x ∈ X and suppose that h � Kx i.e. there exists α > 0 with

h ≤ αKx. Since Kx is a V ∗-potential then h is also a V ∗-potential. Because h is

V ∗-invariant we deduce h = 0 contradiction.

4) Let x ∈ X and h ∈ P ∗. If Kx � h then there exists α > 0 with Kx ≤ αh and

so

h(x) ≥ 1
α

Kx(x) > 0.

Conversely if h(x) > 0 then there exists β > 0 with u(x) ≥ βKx(x) and so Kx being

a V ∗-potential of the form

Kx = Kx(x) · G∗1{x}

it follows

h ≥ βKx, Kx � h.

Let now

x = px1
1 px2

2 . . . pxn
n .

with pi ∈ P , xi ∈ IN∗, 1 ≤ i ≤ n and let h be a completely multiplicative function

on X with

h(pi) =
xi

n∑
j=1

xj

1 ≤ i ≤ n

and h(p) = 0 if p �= pi, 1 ≤ i ≤ n.

Since
∑
p∈P

h(p) = 1 it follows that h ∈ P ∗. On the other hand we have

h(x) =

n∏
i=1

xxi
i

(
n∑

i=1

xi

) n∑
i=1

xi

> 0
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i.e. Kx � h.

If h ∈ P ∗ then from

{x ∈ X/Kx � h} = {x ∈ X/h(x) > 0}

and from

h(x) > 0, h(y) > 0 ⇒ h(xy) > 0

it follows that it Kx � h then Kx � h and so the set

{x ∈ X/Kx � h}

is infinit.

Remark. Looking this Proposition it will be naturally to identily the ordered set

(X, |) with the subset

{Kx/x ∈ X}

of E endowed with the order relation �. Also in the ordered set (E,�), P ∗ is the

set of all maximal elements of E and P becomes the set of all minimal elements of

E. Thus it is naturally to regard the elements of P ∗, in oposite of the elements of

P , as “coprime numbers”.

In the sequel we give some results concerning the approximation of any element

h ∈ P ∗ by the elements Kx with x ∈ X in terms of simply convergence.

For any x ∈ X, x = pα1
1 pα2

2 . . . pαn
n where pi ∈ P and αi ∈ IN∗ we denote by l(x)

the number

l(x) :=
n∑

i=1

αi

Proposition 4.2 Let (xm)m be a sequence in X with l(xm) → +∞ such that

for any p ∈ P there exists

βp = lim
m→∞Kxm(p)

and
∑
p∈P

βp = 1. Then the sequence (Kxn)n converges simply to an element h ∈ P ∗.
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Proof. Suppose

xm =
∏
p∈P

pαm
p , αm

p ∈ IN.

and let y ∈ X,

y =
∏
p∈P

pαp αp ∈ IN.

We want to show that

lim
m→∞Kxm(y) =

∏
p

( lim
m→∞Kxm(p))αp =

∏
p

β
αp
p .

For this it is sufficient to consider only two cases:

a) y|xm ∀ m ∈ IN; b) y � xm ∀ m ∈ IN.

a) In this case we have, using Proposition 3.1,

Kxm(y) =
G∗

xm
(y)∑

p∈P

G∗
xm

(p)
=

Gy(xm)∑
p∈P

Gp(xm)
=

=

∑
p∈P

(αm
p − αp)

!

∏
p∈P

[
(αm

p − αp)!
] ·

∏
p∈P

(αm
p !)∑

p∈P

αm
p

!

=

=

∏
p∈P

[
αm

p (αm
p − 1) . . . (αm

p − αp + 1)
]

∑
q∈P

αm
q

 ·

∑
q∈P

αm
q − 1

 . . .

∑
q∈P

αm
q − αq + 1

 =

=
∏
p∈P
p|y

αm
p∑

q∈P

αm
q

·
αm

p − 1(∑
q∈

αm
q − 1

) . . .
αm

p − αp + 1∑
q∈P

αm
q − αq + 1

.

Since

Kxm(p) =
αm

p∑
q∈

αm
q

and since

l(xm) =
∑
q∈P

αm
q → +∞
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it follows that

Kxm(y) →
∏
p∈P

β
αp
p = ( lim

m→∞Kxm(p))αp .

b) In this case it is sufficient to consider only the situation in which there exists

p ∈ P , p|y and p � xm∀m ∈ IN. In this case we have

y � xm ⇒ Kxm(y) = 0

p � xm ⇒ Kxm(p) ⇒ βp = 0

and so

Kxm(y) = 0 =
∏
q∈P

β
αq
q ∀m ∈ IN.

Proposition 4.3. For any h ∈ P ∗ there exists an increasing sequence (xm)m in

(X, |) such that (Kxm)m converges simply to h,

Kxm � h

and

l(xm) → ∞.

Proof. Firstly suppose that

A := {p ∈ P/h(p) �= 0}

is finite and that h(p) ∈ Q for all p ∈ P . Then there a function

P � p → αp ∈ IN

such that

h(p) =
αp∑

q∈P αq
∀p ∈ IN.

We consider

x :=
∏
p∈P

pαp
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and the sequence (xm)m given by

xm = xm.

We have l(xm) → +∞ and from

Kxm(p) = Kx(p) =
αp∑

q∈P αq

it follows that

lim
m∞Kxm(p) =

αp∑
q∈P αq

.

Using the above proposition it follows that the sequence (Kxm)m converges sim-

ple to an element h′ ∈ P ∗ such that

h′(p) =
αp∑

q �∈P

αq

= h(p).

Since h, h′ are completely multiplicative we get h′ = h.

Suppose now that h ∈ P ∗ is such that

A := {p ∈ P/h(p) > 0}

is finite. Let now (hm)m be a sequence in P ∗ such that

A = {p ∈ P/hm(p) > 0}

and moreover for any p ∈ A we have hm(p) ∈ Qx, hm(p) − 1
m

≤ h(p) ≤ hm(p) +
1
m

∀ p ∈ A. Obviously (hm)m converges simple to h.

From this fact and from the first step of the proof there exists an increasing

sequence (xm)n in (X, |) such that (Kxm)m converges simply to h and

Kxm � h ∀m ∈ IN,

l(xm) → +∞.

Suppose now h ∈ P ∗ such that

A := {p ∈ P/h(p) > ◦}
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is infinit. We consider an increasing sequence (Fn)n of finite subsets of A and

∑
p�∈Fn

h(p) <
1
n

For any n ∈ IN let hn ∈ P ∗ such that

{p ∈ P/hn(p) > 0} = Fn

and such that

hn(p) =
h(p)∑

q∈Fn
h(q)

∀ p ∈ Fn.

Obviously (hn)n is simply convergent to h. Using the preceeding

consideration there exists an increasing sequence (xn)n in X such that

Kxn � hn, l(xn) ≥ n

and

|Kxn − hn| <
1
n

on{y ∈ X/l(y) ≤ n}

Obviously

Kxn � h, l(xn) → +∞

and (Kxn)n converges simply to h.
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LARGE DEVIATIONS
VIA TRANSFERENCE PLANS ∗

Sergey G. Bobkov †

1 Introduction

Let P be a log-concave probability measure on Rn. Equivalently, P is concentrated
on some affine subspace E ⊂ Rn where it has a density p, with respect to Lebesgue
measure on E, such that

p(tx+ (1 − t)y) ≥ p(x)tp(y)1−t, for all t ∈ (0, 1) and x, y ∈ E.

We refer the reader to the classical 1974 paper by C. Borell [Bor] for a general theory
of such measures.

As is known, given a function f on Rn, certain possible distributional properties
of f with respect to P can be controled by the behavior of this function along lines.
For example, when f(x) = ‖x‖ is an arbitrary norm, we have an inequality for large
deviations

P{f > λEf} ≤ Ce−cλ, λ ≥ 0, (1.1)

where C and c are positive numerical constants, and where we use probabilistic
notations Ef =

∫
f dP for the expectation with respect to P . In an equivalent

form this fact first appeared in [Bor], cf. Lemma 3.1. If f is a polynomial in n real
variables of degree d, we have a similar inequality

P{|f | > λE|f |} ≤ C(d) e−c(d)λr(d)
, λ ≥ 0, (1.2)

thus with the right hand side depending on d, but independent of the measure P .
This observation, which gave an affirmative answer to a conjecture of V. D. Milman,
is due to J. Bourgain [Bou] who considered for P the uniform distribution on an
arbitrary convex body in Rn.

Both (1.1) and (1.2) can be united by a more general scheme. With every
continuous function f on Rn and ε ∈ (0, 1), we associate the quantity

δf (ε) = sup
x0,x1∈Rn

mes{t ∈ (0, 1) : | f(tx0 + (1 − t)x1) | < ε|f(x0)|}.
∗Key words: Large deviations, Khinchine-type inequalities, transportation of mass
†Supported in part by an NSF grant
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As turns out, the behavior of δf near zero is connected with large deviations of f ,
and moreover, the corresponding inequalities can be made independent of P . To
study the polynomial case, J. Bourgain established the property

δf (ε0) ≤ δ0 (1.3)

with δ0 = 1/2 and with some ε0 ∈ (0, 1) depending upon d. This was already enough
to derive a very general statement on large deviations in the form (1.2). However, the
altitude of δf (ε) for small ε’s may contain an additional information on the strength
of deviations. In this note, we refine and extend Bourgain’s approach to arbitrary
functions f and log-concave measures P , with resulting estimates depending upon
δf , only. In particular, we prove:

Theorem 1.1. Let P be a log-concave probability measure on Rn, and let f be
a continuous function on Rn. Then, for all λ > 2e such that δf (2e/λ) ≤ 1/2,

P{|f | > λE|f |} ≤ exp

{
− 1

2δf (2e/λ)

}
. (1.4)

Once δf (ε) → 0, as ε → 0, the assumption δf (2e/λ) ≤ 1/2 is fulfilled for all λ
large enough. In case δf (ε) ≤ Cεr, for all ε ∈ (0, 1) and some C ≥ 1, r > 0, we thus
arrive at the estimate of the form

P {|f | > λE|f |} ≤ c1e
−c2λr

, λ ≥ 0.

As an example, we will observe that δf (ε) = 2ε
1+ε for any norm f(x) = ‖x‖ on Rn,

and we are thus lead to (1.1). In the polynomial case, δf (ε) = O(ε1/d) that leads to
(1.2) with the correct power r(d) = 1/d.

The main Bourgain argument based on the existence of suitable measure-preserving
maps is described in section 2. In the next section 3, we study large deviations un-
der the condition 1.3. The latter turns out to be related to a property known as
Markov’s inequality for polynomials in one real variable. In section 4, we consider
Theorem 1.1 itself and show how it can be applied to norms and polynomials, by
computing or estimating the quantity δf (ε). In section 5, we apply Theorem 1.1 to
study deviations of convex functions f from their mean Ef . In particular, we will
consider the case of the euclidean norm for which it is possible to reach exponentially
decreasing tails in terms of P -variance. At the end of this note, we put an appendix
devoted to triangular measure-preserving maps.

2 Bourgain’s argument

As a first basic step, we prove:



Large Deviations via Transference Plans 153

Theorem 2.1. Let f be a continuous function on Rn, and let P be a log-concave
probability measure on Rn. Let ε ∈ (0, 1) and δ = δf (ε) < 1. Then, for all λ ≥ 0
and γ ∈ (0, 1 − δ],

P{|f | > λε} ≥ γP{|f | > λ}δ/(1−γ). (2.1)

Proof. Without loss of generality, we may assume that P is absolutely contin-
uous with respect to Lebesgue measure on Rn. Thus, P is concentrated on an open
convex set A0 ⊂ Rn where it has a positive, log-concave density p(x). We may also
assume that 0 < λ < ess sup f . For such values, introduce a family of non-empty
open subsets of A0,

Aλ = {x ∈ A0 : |f(x)| > λ}.
Fix λ and take a regular subset A of Aλ (e.g., a finite union of open balls, cf.
Appendix for details). In particular, P (A) > 0. We follow an argument of J.
Bourgain [Bou]: There exists unique continuous bijective triangular map T : A→ A0

which pushes forward the normalized restriction PA of P to A to the measure P .
Moreover, the components Ti = Ti(x1, . . . , xi) of T , i = 1, . . . , n, are C1-smooth
with respect to xi-coordinates and satisfy ∂Ti

∂xi
> 0 so that the Jacobian

J(x) =
n∏

i=1

∂Ti(x)
∂xi

, x ∈ A,

is continuous and positive on A. Since PA has density pA(x) = p(x)
P (A) , x ∈ A, the

property that T pushes forward PA to P is equivalent to saying that

p(x)
P (A)

= p(T (x))J(x), x ∈ A. (2.2)

Now, for each t ∈ (0, 1), introduce another map,

Tt(x) = tx+ (1 − t)T (x), x ∈ A,

which is also continuous, triangular, with components that are C1-smooth with
respect to xi-coordinates. Moreover, its Jacobian Jt satisfies

Jt(x) =
n∏

i=1

(
t+ (1 − t)

∂Ti(x)
∂xi

)
≥ J(x)1−t, x ∈ A. (2.3)

Consider the set

Bt = {x ∈ A : |f(tx+ (1 − t)T (x))| > λε}
and its image B′

t = Tt(Bt). Clearly, if y ∈ B′
t, then y = tx + (1 − t)T (x), for some

x ∈ Bt, hence |f(y)| > λε, that is, y ∈ Aλε. This means that B′
t ⊂ Aλε, and

therefore
P (B′

t) ≤ P (Aλε). (2.4)



154 Sergey G. Bobkov

On the other hand, using the log-concavity p(tx+ (1− t)x′) ≥ p(x)tp(x′)1−t (which
will be needed with x′ = T (x)), and applying (2.2)-(2.3), we get

P (B′
t) =

∫
Tt(Bt)

p(y) dy =
∫

Bt

p(Tt(x))Jt(x) dx

≥
∫

Bt

p(Tt(x))J(x)1−t dx ≥
∫

Bt

p(x)t p(T (x))1−t J(x)1−t dx

= P (A)t−1
∫

Bt

p(x) dx = P (A)t−1 P (Bt).

Together with (2.4), this yields

P (Aλε) ≥ P (A)t−1 P (Bt). (2.5)

Now, in order to further estimate from below the last term in (2.5), it is the time
to involve the function δf . By the definition, for any x ∈ A,

mes{t ∈ (0, 1) : |f(tx+ (1 − t)T (x)| < ε|f(x)|} ≤ δ.

Since A ⊂ Aλ, we have |f(x)| > λ, so,

mes{t ∈ (0, 1) : |f(tx+ (1 − t)T (x)| ≤ ελ} ≤ δ,

or equivalently, ∫ 1

0
1{|f(tx+(1−t)T (x)|>λε} dt ≥ 1 − δ.

Integrating this inequality over the measure PA and interchanging the integrals, we
get ∫ 1

0
PA(Bt) dt ≥ 1 − δ. (2.6)

Thus, the function ψ(t) = PA(Bt) being bounded by 1 satisfies
∫ 1
0 ψ(t) dt ≥ 1 − δ.

This actually implies that ψ(t) ≥ γ, for some t ∈ (0, t0] where t0 = δ
1−γ ∈ (0, 1].

Indeed, assuming that ψ(t) < γ, whenever t ∈ (0, t0], we would get
∫ 1

0
ψ(t) dt =

∫ t0

0
ψ(t) dt+

∫ 1

t0
ψ(t) dt < γt0 + (1 − t0) = 1 − (1 − γ)t0 = 1 − δ.

Thus,
∫ 1
0 ψ(t) dt < 1 − δ that contradicts to (2.6). We can therefore conclude that

P (Bt)
P (A)

= PA(Bt) ≥ γ, for some t ∈ (0, t0].

Applying this in (2.5), we arrive at P (Aλε) ≥ γP (A)t, and since t ≤ t0,

P (Aλε) ≥ γP (A)t0 . (2.7)
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At last, approximating from below the set Aλ by regular subsets A so that P (A) ↑
P (Aλ), we get from (2.7) in the limit P (Aλε) ≥ γP (Aλ)t0 , that is, exactly (2.1).

Theorem 2.1 is proved.

Remark 2.2. The above argument still works with many other measure pre-
serving maps. For example, one may take for T the Brenier map, i.e., of the form
T = ∇ϕ, for some mod(P )-uniquely defined convex function ϕ, cf. [Bre] and [M]. In
this case, the derivative T ′(x) represents a positively definite matrix, and the crucial
inequality (2.3) should be replaced with

det(t Id + (1 − t)T ′(x)) ≥ det1−t(T ′(x))

which is a particular (and log-concave) case of the Brunn-Minkowski-type inequality
for determinants det1/n(A+B) ≥ det1/n(A)+det1/n(B) in the class of all positively
definite n× n-matrices. However, to make the argument following (2.3) absolutely
rigorous (the change of the variable formula), it is desirable to require that the
map Tt be in a certain sense regular. C1-smoothness seems too strong requirement,
but specializing in triangular maps, it is enough to have C1-smoothness of the
components Ti of T with respect to i-th coordinates. We provide more details in
appendix.

Remark 2.3. An attempt to choose an optimal γ in (2.1) complicates this
inequality, but in essense does not give an improvement. For further applications,
at the sake of some loss in constants, one may use Theorem 2.1 with γ = 1

2 , for
example.

It is however interesting to know how sharp the inequality (2.1) is. The definition
of δf reflects the behavior of the function f along all lines, so one may try to derive
inequalities of this kind by appealing to the localization technique going back to
the papers by M. Gromov and V. D. Milman, cf. [G-M], [A], and L. Lovász and
M. Simonovits [L-S], cf. also [K-L-S]. The advantage of this approach is that it allows
one to reduce many problems to dimension one where it is much easier to explore
extremal situations. In a recent preprint [N-S-V], F. Nazarov, M. Sodin, and A.
Volberg employ the localization ideas to prove the following remarkable statement
which they call the geometric KLS lemma in the spirit of [K-L-S]: Given a compact
convex set K in Rn, its closed subset F , and a number α > 1, define

Fα =
{
x ∈ K : for every interval J such that x ∈ J ⊂ K,

|F ∩ J |
|J | ≥ α− 1

α

}
.

Then, if voln(F ) > 0,
voln(Fα)
voln(K)

≤
(

voln(F )
voln(K)

)α

.

It is noted in [N-S-V] that in the definition of Fα it is enough to consider only the
intervals J that have x as one of their endpoints. Moreover, the above inequality
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extends to arbitrary log-concave probability measures P in the form

P (Fα) ≤ P (F )α. (2.8)

To see a connection with (2.1), take F = {x : |f(x)| ≥ λε}, G = {x : |f(x)| ≥ λ},
and assume that δ = δf (ε) < 1. Then, by the very definition of δf , we have G ⊂ Fα

for α = 1/δ, so (2.8) turns into

P{|f | ≥ λε} ≥ P{|f | ≥ λ}δ. (2.9)

This is an improved and more correct version of (2.1): the factor γ can thus be
replaced with 1 while the power δ/(1 − γ) can be replaced with δ. The inequality
(2.9) is sharp already in some special sitiuations. For example, for an arbitrary
norm f(x) = ‖x‖ on Rn, we have δf (ε) = 2ε

1+ε , ε ∈ (0, 1), so P{|f | ≥ λε} ≥ P{|f | ≥
λ}2ε/(1+ε) which is another version of the ineqiality

1 − P

(
1
ε
A

)
≤ (1 − P (A))2ε/(1+ε) (2.10)

for the class of all centrally symmetric convex sets A in Rn. The latter was proved
using a localization lemma by L. Lovász and M. Simonovits [L-S] for euclidean balls
A and later extended by O. Guédon [G] to the general case. He also observed
that equality in (2.10) is attained in dimension one for any interval A = (−a, a),
a > 0, at the (non-symmetric) exponential measure P with P (x,+∞) = e−(x+a),
x > −a. We do not know whether the argument based on the transference plans
can appropriately be modified to reach the sharp forms (2.9)-(2.10).

Remark 2.4. It follows from (2.1) by letting λ ↓ 0 that P{f = 0} = 0, if f �= 0
mod(P ) and δf (ε) → 0, as ε ↓ 0. Note also that in Theorem 2.1 one may assume
that f is defined on A0 (rather than on the whole space), and restrict the points x0

and x1 in the definition of δf to the set A0.

3 Iteration procedure. Markov’s classes

In order to apply the inequality (2.1), the weakest assumption which should be
required from f is the property δf (ε) �= 0 (identically), that is,

δf (ε0) ≤ δ0 (3.1)

for some ε0 ∈ (0, 1) and δ0 ∈ (0, 1). As shown in [Bou], already in this situation
one can recover exponentially decreasing tails for f by iterating the inequality (2.1).
Namely, we have:
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Theorem 3.1. Under the condition (3.1), there exist positive numbers C, c, r,
depending on (ε0, δ0), only, such that, for all λ ≥ 0,

P{|f | > λE|f |} ≤ C e−cλr
. (3.2)

The power r appearing in (3.2) can be chosen as close to the number r0 =
log(1/δ0)
log(1/ε0)

, as we wish. In particular, f has finite moments E|f |q of any order q, and,
moreover, for all 0 < r < r0,

E exp{|f |r} =
∫

exp{|f |r} dP < +∞.

In addition, f satisfies Khinchine-type inequalities

(E|f |q)1/q ≤ C E|f |, C = C(q, ε0, δ0), q ≥ 1. (3.3)

It would therefore be interesting to explore the class of all functions f possessing
the property (3.1). One sufficient condition was suggested by Yu. V. Prokhorov
in his study of Khinchine-type inequalities for polynomials over Gaussian and Γ-
distributions on the real line, cf. [Pr1], [Pr2]. Prokhorov’s proof of (3.3) is based on
Markov’s inequality,

max
0≤t≤1

|Q′(t)| ≤ κ max
0≤t≤1

|Q(t)|, (3.4)

which holds true for any polynomial Q in real variable t of degree d with (optimal)
constant κ = 2d2. Let us then say that a given function f on Rn belongs to the
(Markov) classM(κ) with constant κ ≥ 1, if, for all vectors x0, x1 ∈ Rn, the function
Q(t) = f(tx0 + (1− t)x1) is absolutely continuous on R and has a Radon-Nikodym
derivative Q′ satisfying the inequality (3.4). With this definition, we have:

Proposition 3.2. Every function f in M(κ) satisfies (3.1) with

ε0 =
1
2
, δ0 = 1 − 1

2κ
.

Indeed, following an argument of [Pr1-2], let t0 be a point of maximum of |Q(t)|
on [0,1], and assume for definiteness that Q(t0) > 0. Then, by (3.4), for all t ∈ [0, 1],

Q(t) ≥ Q(t0)(1 − κ|t− t0|) ≥ 1
2
Q(t0),

where the second inequality holds true in a smaller subinterval |t − t0| ≤ 1/(2κ),
0 ≤ t ≤ 1. This interval has length at least 1/(2κ), so

mes{| f(tx0 + (1 − t)x1) | < ε|f(x0)|} = mes
{
t ∈ (0, 1) : |Q(t)| < 1

2
|Q(1)|

}

≤ mes
{
t ∈ (0, 1) : |Q(t)| < 1

2
|Q(t0)|

}
≤ 1 − 1

2κ
.
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Thus, according to Theorem 3.1 and Proposition 3.2, any function f in M(κ)
shares the large deviation inequality (3.2) and the Khinchine-type inequality (3.3).
Moreover, for large values of κ, the critical value r0 in (3.2) is of order at most C/κ.

According to Markov’s inequality, any polynomial f on Rn of degree d belongs
to the class M(2d2). Another important example: any norm f(x) = ‖x‖ belongs
to the class M(2). Indeed, the function Q(t) = f(tx0 + (1 − t)x1) is convex and
satisfies, by the triangle inequality, Q(t) ≥ Q0(t) ≡ | t‖x0‖ − (1 − t)‖x1‖ |. Since
Q0(0) = Q(0), Q0(1) = Q(1), we conclude that

max
0≤t≤1

|Q′(t)| ≤ max
0≤t≤1

|Q′
0(t)| = ‖x0‖ + ‖x1‖ ≤ 2 max

0≤t≤1
|Q(t)|.

Proof of Theorem 3.1. Assume for definiteness that f �= 0 mod(P ) and write
the inequality (2.1) with ε = ε0, δ = δ0 and an arbitrary fixed γ ∈ (0, 1 − δ0) as

P{|f | > λ} ≤ αβ P{|f | > λε0}β , λ ≥ 0, (3.5)

where α = 1
γ , β = 1−γ

δ0
. Thus, α > 1 and β > 1. In case λ = 0, we get in particular

that
P{|f | > 0} ≥ α

− β
β−1 (3.6)

Now, applying (3.5) to λε0, we get P{|f | > λ} ≤ αβ+β2
P{|f | > λε20}β2

. Similarly,
on the k-th step, we will have

P{|f | > λ} ≤ αβ+...+βk
P{|f | > λεk

0}βk
.

Using β + . . .+ βk ≤ β
β−1 β

k, we obtain a simpler estimate

P{|f | > λ} ≤
(
α

β
β−1 P{|f | > λεk

0}
)βk

. (3.7)

Now denote by m a quantile of |f | of order e−1 α
− β

β−1 , that is, any number such
that

P{|f | > m} ≤ 1

e α
β

β−1

, P{|f | < m} ≤ 1

e α
β

β−1

(3.8)

By (3.6), such a number m must be positive. Furthermore, the inequality (3.7) with
λεk

0 = m yields, for all k = 1, 2 . . . ,

P

{ |f |
m

> ε−k
0

}
≤ exp

{
−βk

}
. (3.9)

Now take any x ≥ 1/ε0 and pick up a natural namber k such that ε−k
0 ≤ x <

ε
−(k+1)
0 . Then, k ≥ log x

log(1/ε0)
− 1, so, βk ≥ 1

βx
log β/ log(1/ε0). Since P

{ |f |
m > x

}
≤

P
{ |f |

m > ε−k
0

}
, we derive from (3.9)

P

{ |f |
m

> x

}
≤ exp

{
− 1
β
x

log β
log(1/ε0)

}
, x ≥ 1

ε0
. (3.10)
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The power r = log β
log(1/ε0)

in (3.10) is less than r0 = log(1/δ0)
log(1/ε0)

but it can be made close
to this number by choosing small values of γ.

Now, in order to replace the quantile with the mean E|f |, we may use the
inequality E|f | ≥ 1

e α
β

β−1

m, so (3.10) yields

P

{
|f | > eα

β
β−1 xE|f |

}
≤ exp

{
− 1
β
x

log β
log(1/ε0)

}
, x ≥ 1

ε0
.

Making the change λ = e α
β

β−1 x, we get the desired inequality P{|f | > λE|f |} ≤
e−c λr

, λ ≥ λ0, with an arbitrarily chosen γ ∈ (0, 1 − δ0), and

r =
log β

log(1/ε0)
, c =

1

β

(
e α

β
β−1

) log β
log(1/ε0)

, λ0 =
e α

β
β−1

ε0
.

4 Theorem 1.1. Norms and polynomials

To derive the inequality of Theorem 1.1 from Theorem 2.1, assume f is normalized
so that E|f | = 1. By Chebyshev’s inequaity, P{|f | ≥ x} ≤ 1/x, for all x > 0. If
δf (ε) ≤ 1/2, we can take in (2.1) γ = 1/2 which leads to

P{|f | > λ} ≤ (2P{|f | > λε})1/(2δf (ε)) ≤
(

2
λε

)1/(2δf (ε))

, λ ≥ 0.

Choosing if possible ε = 2e/λ, we then arrive at the estimate (1.4), that is,

P{|f | > λE|f |} ≤ exp

{
− 1

2δf (2e/λ)

}
, λ > 2e, δf (2e/λ) ≤ 1/2. (4.1)

The above inequality immediately implies:

Corollary 4.1. If δf (ε) ≤ Cεr, for all ε ∈ (0, 1) and some C ≥ 1, r > 0, then

P

{
1
2e

|f | ≥ λE|f |
}
≤ exp

{
− λr

2C

}
, λr ≥ 2C. (4.2)

As we see, the inequalities (4.1)-(4.2) may contain more precise information in
comparison with the general Markov classes M(κ). This concerns in particular such
functions f as norms and polynomials for which it would be interesting to explore
the behavior of δf near zero. We start with an arbitrary norm f(x) = ‖x‖ on Rn.

Proposition 4.2. For any norm f , we always have δf (ε) = 2ε
1+ε , ε ∈ (0, 1).
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Proof. By the triangle inequality, for all x0, x1 ∈ Rn, and t ∈ (0, 1),

‖tx0 + (1 − t)x1‖ ≥ | t‖x0‖ − (1 − t)‖x1‖ |.
Hence,

mes{t ∈ (0, 1) : ‖tx0 + (1 − t)x1‖ < ε‖x0‖} ≤
mes{t ∈ (0, 1) : | t‖x0‖ − (1 − t)‖x1‖ | < ε‖x0‖}.

Putting a = ‖x0‖, b = ‖x1‖, c = a
a+b ≤ 1, and assuming a > 0, we obtain

mes{t : | ta− (1 − t)b | < εa} = mes{t : −εa < ta− (1 − t)b < εa}
= mes{t : (1 − ε) a < t (a+ b) < (1 + ε) a}
= mes{t : (1 − ε) c < t < (1 + ε) c}
= min{1, (1 + ε) c} − (1 − ε) c.

The last quantity is maximized in 0 ≤ c ≤ 1 at c = 1
1+ε which gives 2ε

1+ε . The
optimality of this upper bound can be seen in case x1 = −εx0, ‖x0‖ = 1. Proposition
4.2 is proved.

Thus, the assumption made in Corollary 4.1 is fulfilled for the norm-function
with r = 1 and C = 2. Hence, by (4.2), for all λ ≥ 8e,

P {|f | > λE|f |} ≤ e−λ/(16e).

The numerical constants are certainly not optimal and can be improved by virtue
of (2.10).

Now let f be an arbitrary polynomial of degree at most d ≥ 1. In this case,
the maximal possible value of δf (ε) is completely determined in dimension one, so
assume n = 1. In [Bou] it was shown that, for some numerical c0 ∈ (0, 1),

mes
{
t ∈ (0, 1) : |f(t)| < cd0 ‖f‖L∞(0,1)

}
≤ 1

2
.

Thus, we always have δf (cd0) ≤ 1
2 which complements Proposition 3.2 in the poly-

nomial case, namely, δf (1/2) ≤ 1 − 1
4d2 . As for small values of ε, we have:

Proposition 4.3. For any polynomial f of degree at most d ≥ 1, for all ε ∈
(0, 1),

1) δf (ε) ≤ 2d ε1/d ; 2) δf (ε) ≤ 2 ε1/d log 1
ε1/d .

Proof. Let f(t) =
∏d

i=1(t − zi) with zi ∈ C, 1 ≤ i ≤ d. Then, on the interval
(0,1),

mes{t ∈ (0, 1) : |f(t)| < ε |f(0)|} ≤ mes
d⋃

i=1

{|t− zi| < ε1/d |zi|}
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≤
d∑

i=1

mes{|t− zi| < ε1/d |zi|}.

Since |t − zi| ≥ |t − |zi| |, the roots zi may be assumed to be real non-negative
numbers. But, for any c ∈ (0, 1) and z > 0, the quantity mes{t ∈ (0, 1) : |t−z| < cz}
is maximized at z = 1

1+c and is equal to 2c
1+c . This gives the first inequality.

To get the second one, we follow an argument of [Bou]. Fix α ∈ (0, 1) and put
ui = 1/zi (zi > 0). By Chebyshev’s and Hölder’s inequalities,

mes{t ∈ (0, 1) : |f(t)| < ε |f(0)|} = mes

{
d∏

i=1

|uit− 1|−α/d > ε−α/d

}

≤ εα/d
∫ 1

0

d∏
i=1

|uit− 1|−α/d dt

≤ εα/d

(
d∏

i=1

∫ 1

0
|uit− 1|−α dt

)1/d

≤ 2εα/d

1 − α

where we used a simple inequality
∫ 1
0 |ut − 1|−α dt ≤ 2

1−α (u ≥ 0) on the last step.
It remains to optimize over all α ∈ (0, 1).

Thus, the condition of Corollary 4.1 is fulfilled with r = 1/d and C = 2d. Hence:

Corollary 4.4. For all λ ≥ (4d)d,

P {|f | > λE|f |} ≤ e−λ1/d/(8ed).

The upper bound can further be sharpened with the help of the localization
lemma of Lovász-Simonovits [L-S] which allows one to get in Khinchine-type in-
equalities for polynomials a correct order of constants as functions of degree d. As
shown in [B1-2], for all p ≥ 1,

(E|f |p)1/p ≤ (cp)d E|f |,

where c > 1 is a universal constant. Hence, by Chebyshev’s inequality, for all λ > 0,
P{|f | > λE|f |} ≤ (cp)pd

λp . Optimizing the right hand side over p ≥ 1, we arrive at

P{|f | > λE|f |} ≤ e−dλ1/d/(ce),

provided that λ ≥ (ce)d.
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5 Deviations from the mean

Large deviations of f from the mean Ef =
∫
f dP can be controled once we know

how to estimate the quantity δf−c uniformly over all c ∈ R. For example, since the
class of polynomials f of degree d is closed under translations f → f + const, (1.2)
implies the bound

P{|f − Ef | > λσ} ≤ C(d) exp
{
−c(d)λ1/d

}
, λ ≥ 0,

in terms of the variance σ2 = E(f −Ef)2. One may therefore hope to reach similar
dimension-free inequalities for other classes of functions. The question is stimulated
by the observation (typical in concentration problems, cf. [M-S], [L]) that many
interesting f ’s have very large expectations Ef , but relatively small variances σ2.
In this situation, bounds for P{|f − Ef | > λσ} are certainly more delicate and
preferable in comparison with those for P{|f | > λE|f |}. However, if we wish to
involve into consideration arbitrary norms, the desired extension of (1.1) to the
larger class f(x) = ‖x‖− c is no longer valid, and some extra condition on the norm
like the uniform convexity is required. To illustrate these ideas, we will consider
here the example of the euclidean norm f(x) = ‖x‖2 on Rn.

To start with, it might be reasonable to find an appropriate form of Theorem
1.1 for the case of devations from constants. To every continuous function f on Rn

and ε > 0, we may associate another quantity ∆f (ε) defined to be the least number
∆ ∈ [0, 1] such that, for all x0, x1 ∈ Rn, the function Q(t) = f(tx0 + (1 − t)x1)
satisfies

mes
{
t ∈ [0, 1] : Q(t) − min

0≤s≤1
Q(s) < ε

[
max
0≤s≤1

Q(s) − min
0≤s≤1

Q(s)
]}

≤ ∆.

Theorem 5.1. Let P be a log-concave probability measure on Rn, and let f be
a convex function on Rn with mean Ef and variance σ2. Then, for all λ > 2e such
that ∆f (4e/(λ+ 2e)) ≤ 1/2,

P{|f − Ef | > λσ} ≤ exp

{
− 1

2δf (4e/(λ+ 2e))

}
.

The statement follows immediately from Theorem 1.1 and

Lemma 5.2. For every convex f on Rn, for all ε ∈ (0, 1),

sup
c∈R

δf−c(ε) = ∆f

(
2ε

1 + ε

)
. (5.1)
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Proof. Fix x0, x1 ∈ Rn and the corresponding functionQ(t) = f(tx0+(1−t)x1),
0 ≤ t ≤ 1 (not identically a constant on [0,1]). Since Q is convex, it attains its
maximum at t = 0 or t = 1. By homogeneity and translation invariance of (5.1), and
replacing x0 with x1 if necessary, we may assume that Q(1) = max0≤s≤1Q(s) = 1
and Q(t0) = min0≤s≤1Q(s) = 0, for some t0 ∈ [0, 1). Consider the quantity

ϕ(c) = mes{t ∈ [0, 1] : |Q(t) − c| < ε|1 − c|}
appearing in the definition of δf−c(ε). In view of supc∈R δf−c(ε) = supx0,x1

supc∈R ϕ(c),
we need to maximize the latter function over all c.

If c > 1, |Q(t) − c| < ε|1 − c| implies Q(t) > 1 that is not possible. So, assume
c ≤ 1 in which case the definition becomes

ϕ(c) = mes{t ∈ [0, 1] : (1 + ε)c− ε < Q(t) < (1 − ε)c+ ε}. (5.2)

In the range {c : (1 + ε)c − ε < 0} = (−∞, ε
1+ε), the first inequality in (5.2) is

fulfilled automatically, while the upper bound (1 − ε)c + ε increases with c. Thus,
we may also assume c ≥ c0 ≡ ε

1+ε .
As c varies in [c0, 1], the interval ((1 + ε)c − ε, (1 − ε)c + ε) moves to the right

and its length 2ε(1− c) decreases from 2c0 to 0. By the convexity of Q, this implies
that the length of the interval {t ∈ [t0, 1] : (1 + ε)c − ε < Q(t) < (1 − ε)c + ε}
decreases as a function of c. Indeed, if Q is not a constant in any neighborhood of
t0, then it increases in [t0, 1], the inverse function Q−1 : [0, 1] → [0, t0] is concave, so,
for any positive decreasing function h = h(u), the function Q−1(u+ h) −Q−1(u) is
decreasing in u, as well. A similar argument applies to Q restricted to the interval
[0, t0]. Therefore, c = c0 is the point of minimum to ϕ. To involve a possible
”degenerate” case, we should write

sup
c∈R

ϕ(c) = lim
c↑c0

ϕ(c) = mes{t ∈ [0, 1] : Q(t) < (1 − ε)c0 + ε}.

It remains to note that (1 − ε)c0 + ε = 2c0 = 2ε
1+ε , and the lemma follows.

Now, let us turn to the particular case f(x) = ‖x‖2. The euclidean norm can be
related to the polynomial f2 of degree d = 2 via the following observation: For every
convex f ≥ 0 on Rn, for all ε > 0 and q ≥ 1, we have ∆f (ε) ≤ ∆fq(ε). The latter
statement easily follows from the definition and a simple inequality bq−aq

cq−aq ≤ b−a
c−a ,

0 ≤ a ≤ b ≤ c (a �= c). Now, appropriate computations show that

∆‖x‖2
2
(ε) =

2
√
ε

1 +
√
ε
, ε ∈ (0, 1).

Hence, ∆‖x‖2
(ε) ≤ ∆‖x‖2

2
(ε) ≤ 2

√
ε. Thus, from Theorem 5.1, we obtain

Corollary 5.3. Let X = (X1, . . . , Xn) be a random vector in Rn with a log-
concave distribution. Let σ2 be the variance of ‖X‖2. Then,

Prob{| ‖X‖2 − E‖X‖2 | > λσ} ≤ Ce−c
√

λ, λ ≥ 0,
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where C and c are positive numerical constants.

Since one can relate the strength of concentration of ‖X‖2 about its mean to
the standard deviation σ, one may wonder how to bound the variance itself. For
normalization, let the covariances of the components of X satisfy

cov(Xi, Xj) ≡ EXiXj − EXiEXj = δij , 1 ≤ i, j ≤ n, (5.3)

where δij is the Kronecker symbol. Under this (isotropy) assumption, the question
of whether or not σ2 = Var(‖X‖2) does not exceed a universal constant represents a
week form of a conjecture of R. Kannan, L. Lovász and M. Simonovits, cf. [K-L-S].
One simple sufficient condition of dimension free boundedness of σ2, namely, the
property

cov(X2
i , X

2
j ) ≤ 0, 1 ≤ i < j ≤ n, (5.4)

was recently proposed by K. Ball and I. Perissinaki [B-P]. Indeed, for positive ran-
dom variables ξ’s, there is a general estimate Var(ξ) ≤ Var(ξ2)

Eξ2 , which for ξ = ‖X‖2

in view of (5.3) becomes Var(‖X‖2) ≤ Var(‖X‖2
2)

n . On the other hand,

Var(‖X‖2
2) =

n∑
i=1

Var(X2
i ) + 2

∑
i<j

cov(X2
i , X

2
j ) ≤

n∑
i=1

EX4
i ≤ Cn,

where we used (5.4) and Khinchine-type inequality EX4
i ≤ C (EX2

i )2 = C.
In [B-P], a property implying (5.3) was verified for random vectors X uniformly

distributed in np balls in Rn.

6 Appendix: Triangular maps

Here we recall some facts about triangular maps which are needed for the proof of
Theorem 2.1. A map T = (T1, . . . , Tn) : G→ Rn defined on an open non-empty set
G in Rn is called triangular if its components are of the form

Ti = Ti(x1, . . . , xi), x ∈ G, 1 ≤ i ≤ n.

The triangular map T will be called increasing if, for all i ≤ n, the component
Ti is a (strictly) increasing function with respect to xi-coordinate while the rest
coordinates are fixed (xi may vary within an open interval which depends on the
rest coordinates xj , j < i).

Such maps were used by H. Knothe [Kn] to reach some generalizations of the
Brunn-Minkowski inequality. The following statement is often refered to as the
construction of the Knothe mapping [Kn].
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Theorem 6.1. Let A and B be open, bounded, non-empty convex sets in Rn.
There exists a continuous, bijective, triangular map T : A→ B such that

a) the partial derivatives ∂Ti
∂xi

are continuous and positive on A ;

b) the Jacobian J(x) = Det(T ′(x)) =
∏n

i=1
∂Ti
∂xi

is constant on A and satisfies

J(x) =
Voln(B)
Voln(A)

, x ∈ A;

c) the map T pushes forward the uniform distribution on A to the uniform dis-
tribution on B.

Note that T is not required to be C1-smooth, so the property b) first defines a
function ”Jacobian” and then pustulates that it is a constant.

To complete Bourgain’s argument, we need an appropriate generalization of The-
orem 6.1 for measures. In [Bou], Theorem 6.1 is stated without convexity assumption
on A which might lead to singularity problems. Indeed, consider, for example, the
sets B = (0, 1)×(0, 1) and A = (0, 1)×(0, 2)∪(0, 2)×(0, 1) ⊂ R2. The set A is open,
bounded and has Lebesgue measure |A| = 3. Let P be a probability measure which
has density p(x) = 1/3, for x ∈ A, and p = 0 outside A. Then, the distrubution P1

of x1-coordinate under P is concentrated on the interval A1 = (0, 2) and has there
density

p1(x1) =
{

2/3, if 0 < x1 < 1
1/3, if 1 < x1 < 2

That is, P1 does not have any continuous density on (0, 2). But the property that
P1 has a continuous density is necessary for smoothness of triangular maps which
push forward P to the uniform measure Q on B.

Thus, to save the property a) in the general non-convex case, some extra con-
dition is required. First note that, given random vectors X = (X1, . . . , Xn) and
Y = (Y1, . . . , Yn) with values in open sets A and B and distributed according to P
and Q, respectively, the first i coordinates (X1, . . . , Xi) and (Y1, . . . , Yi) (1 ≤ i ≤ n)
have distributions Pi and Qi supported on the open sets

Ai = {x ∈ Ri : ∃ t ∈ Rn−i (x, t) ∈ A},

Bi = {x ∈ Ri : ∃ t ∈ Rn−i (x, t) ∈ B},
which are projections of A and B to Ri. In particular, An = A, Bn = B.

We will say that P is regular if it has a (necessarily continuous) density p on
A such that the following two conditions are satisfied. The first condition is that,
for each i ≤ n, the measure Pi has a positive continuous density pi on Ai. This is
equivalent to saying that the integral

pi(x1, . . . , xi) =
∫
Rn−i

p(x1, . . . , xi, ti+1, . . . , tn) dti+1 . . . dtn
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is finite for every (x1, . . . , xi) ∈ Ai and represents a continuous function on Ai

(when i = n, we just have pi = p). The second condition is that, for each i ≤ n, the
conditional distribution function

Prob{Xi ≤ xi |Xj = xj , j = 1, . . . , xi−1}
is continuous in (x1, . . . , xi) ∈ Ai. Under the first condition, this is equivalent to
saying that the integral∫ xi

−∞

∫
Rn−i

p(x1, . . . , xi−1, ti, . . . , tn) dti . . . dtn

defines a continuous function on Ai. We can now state a corresponding generaliza-
tion of Theorem 6.1.

Theorem 6.2. For all regular probability measures P and Q supported on an
open set A and on an open convex set B, respectively, there exists unique increas-
ing, continuous, triangular, bijective map T : A → B which pushes forward P to
Q. Moreover, the components Ti are C1-smooth with respect to xi-coordinates and
satisfy ∂Ti

∂xi
> 0 on Ai.

Some examples of regular measures will be described at the end of this section,
and we turn to the study of triangular maps T themselves. Many properties of such
maps are determined by behavior of functions Ti with respect to xi-coordinates. We
collect some properties in the two lemmas below.

Lemma 6.3. If T = (T1, . . . , Tn) : G → Rn is a continuous, increasing, trian-
gular map, then the image T (G) is an open set, and T represents a homeomorphism
between G and T (G).

Lemma 6.4. Let T = (T1, . . . , Tn) : G → Rn be a continuous triangular map
whose components Ti have continuous positive partial derivatives ∂Ti

∂xi
on G. Then,

for every integrable function f on Rn,∫
G
f(T (x))J(x) dx =

∫
T (G)

f(y) dy, (6.1)

where J(x) =
∏n

i=1
∂Ti(x)

∂xi
.

Note that, by Lemma 6.3, the map T from Lemma 6.4 is increasing, so T is a
bijection from G to the open set T (G). The topological Lemma 6.3 can easily be
proved by virtue of Brauer’s theorem, so we omit the proof.

Proof of Lemma 6.4. If T is C1-smooth on G, i.e., T has a continuous
derivative T ′ = ( ∂Ti

∂xj
)1≤i,j≤n, the ”true” Jacobian J(x) = Det(T ′(x)) =

∏n
i=1

∂Ti(x)
∂xi
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is well-defined and is everywhere positive on G. Hence, the equality (6.1) holds true
by the well-known theorem on the change of the variable in the Lebesgue integral.

In general, we approximate T by smooth triangular maps T ε. Recall that the
domain of Ti is the open set

Gi = {x = (x1, . . . , xi) ∈ Ri : ∃y ∈ Rn−i (x, y) ∈ Rn}.
Now, take C∞

0 -functions Ki ≥ 0, i = 1, . . . , n, supported on the unit ball Di(0, 1) ⊂
Ri and such that

∫
Di(0,1)Ki(y) dy = 1, and introduce convolutions T ε

i of Ti with
Kε

i (x) = 1
εi Ki(x/ε), ε > 0:

T ε
i (x) =

∫
Gi

Kε
i (x− z)Ti(z) dz, x ∈ Ri.

The above integral is well-defined and represents a C∞-function on Ri. Differenti-
ating over xi, we obtain a C∞-function

∂T ε
i (x)
∂xi

=
∫

Gi

∂Kε
i (x− z)
∂xi

Ti(z) dz, x ∈ Ri.

The kernel Kε
i is supported on Di(0, ε). Hence, this integral may be taken over the

whole space Ri as soon as Di(x, ε) lies in Gi:

∂T ε
i (x)
∂xi

=
∫
Ri

∂Kε
i (x− z)
∂xi

Ti(z) dz, x ∈ Ri.

Let εi(x) be the supremum of such ε’s. Integrating by parts, for ε ∈ (0, εi(x)],
ε < +∞, we get

∂T ε
i (x)
∂xi

=
∫
Ri
Kε

i (x− z)
∂Ti(z)
∂zi

dz =
∫

Gi

Kε
i (x− z)

∂Ti(z)
∂zi

dz, x ∈ Ri.

The integral on the right is again well-defined and represents a C∞-function as the
convolution of ∂Ti

∂zi
with Kε

i . Moreover, it is positive, by the assumptions on Ti and
Ki.

Thus, the map T ε = (T ε
1 , . . . , T

ε
n) is triangular, C∞-smooth, with positive Jaco-

bian

Jε(x) =
n∏

i=1

∂T ε
i (x1, . . . , xi)

∂xi

at every point x ∈ G and for all ε ∈ (0,+∞) such that 0 < ε ≤ εn(x) (note that the
numbers εi(x1, . . . , xi) decrease when i increases from 1 to n). Moreover, Jε(x) > 0
on the set Gε = {x ∈ G : Dn(x, ε) ⊂ G}, the open ε-interior of G. Therefore, we
can apply (6.1) to any open set A ⊂ Gε and every intergrable function f on Rn to
get ∫

A
f(T ε(x))Jε(x) dx =

∫
T ε(A)

f(y) dy. (6.2)



168 Sergey G. Bobkov

Now, by the choice of Ki’s, and since T and ∂Ti
∂xi

are continuous, T ε(x) → T (x) and
∂T ε

i (x)
∂xi

→ ∂Ti(x)
∂xi

, as ε ↓ 0 uniformly over all x ∈ A, for every A whose closure clos(A)
is compact and lies in G. Similarly, Jε(x) → J(x).

Let A be open with compact closure clos(A) ⊂ G. Since Gε ↑ G, as ε ↓ 0, there
is ε0 > 0 such that clos(A) ⊂ Gε0 . Hence, we can apply the Lebesgue dominated
convergence theorem: for every continuous function f on Rn,∫

A
f(T ε(x))Jε(x) dx→

∫
A
f(T (x))J(x) dx, as ε ↓ 0. (6.3)

To find the limit of the right hand side of (6.2), first note that

lim sup
ε↓0

T ε(A) ⊂ clos(T (A)) = T (clos(A)).

On the other hand, by a topological argument, we have T (A) ⊂ lim infε↓0 T ε(A),
that is, whenever a ∈ A, the point b = T (a) is contained in T ε(A), for all ε > 0
small enough. As a result, 1T (A)(y) ≤ lim infε↓0 1T ε(A)(y) ≤ lim supε↓0 1T ε(A)(y) ≤
1T (clos(A))(y), for every y ∈ Rn. Hence, for every non-negative bounded continuous
function f on Rn,∫

T (A)
f(y) dy ≤ lim inf

ε↓0

∫
T ε(A)

f(y) dy ≤ lim sup
ε↓0

∫
T ε(A)

f(y) dy ≤
∫

T (clos(A))
f(y) dy.

Together with (6.2)-(6.3) we get∫
T (A)

f(y) dy ≤
∫

A
f(T (x))J(x) dx ≤

∫
T (clos(A))

f(y) dy.

This already easily implies the equality (6.1). Lemma 6.4 follows.

In order to turn to the proof of Theorem 6.2, let us first emphasize what exactly
we need to prove. Assume we have two absolutely continuous probability measures
P and Q on Rn which are supported on some open sets A and B and have there
densities p(x) and q(y), respectively. We wish to construct a continuous bijective
map T = (T1, . . . , Tn) : A → B which pushes forward P to Q. This property is
denoted Q = PT−1 or Q = T (P ) and can be defined via the equality

∫
B f dQ =∫

A f(T ) dP or, in terms of densities, as∫
B
f(y)q(y) dy =

∫
A
f(T (x))p(x) dx, (6.4)

holding for every bounded measurable function f on B. If T is C1-smooth and
has at every point x ∈ A an invertible matrix T ′(x) = (∂Ti(x)

∂xj
)1≤i,j≤n of the first

derivatives, one can make in the first integral the change of variable y = T (x), and
(6.4) becomes∫

A
f(T (x)) q(T (x)) |Det(T ′(x))| dx =

∫
A
f(T (x)) p(x) dx.
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Thus, if T is bijective, C1-smooth, and the Jacobian J(x) = Det(T ′(x)) is every-
where positive, the necessary and sufficient condition for Q = PT−1 is that, for
almost all x ∈ A,

q(T (x))J(x) = p(x). (6.5)

In the case where the map T is increasing and triangular, one can weaken the
smoothness requirement and just assume that the components Ti have positive con-
tinuous derivatives ∂Ti

∂xi
. Indeed, if B = T (A), then, by Lemma 6.4, the equality∫

B
g(y) dy =

∫
A
g(T (x))J(x) dx

holds true for every integrable function g on B with J(x) =
∏n

i=1
∂Ti(x)

∂xi
. Applying

this equality to g(y) = f(y)q(y), we get∫
B
f(y)q(y) dy =

∫
A
f(T (x))q(T (x))J(x) dx.

Therefore, (6.4) would immediately follow from (6.5). Thus, we may conclude:

Lemma 6.5. Let T = (T1, . . . , Tn) : A → Rn be a continuous triangular map
whose components Ti have continuous positive partial derivatives ∂Ti

∂xi
on A. Let

B = T (A). If the equality (6.5) holds true for almost all x ∈ A, then the map T
pushes forward P to Q.

However, the existence of the triangular map T satisfying (6.5) requires more
properties such as regularity of P and Q.

Proof of Theorem 6.2. We use induction over n, and prove at the same time
that the components Ti, 1 ≤ i ≤ n, satisfy, for all (x1, . . . , xi) ∈ Ai, the relation∫ xi

−∞
∫
Rn−i p(x1, . . . , xi−1, ti, . . . , tn) dti . . . dtn∫+∞

−∞
∫
Rn−i p(x1, . . . , xi−1, ti, . . . , tn) dti . . . dtn

=

∫ Ti
−∞

∫
Rn−i q(T1, . . . , Ti−1, ti, . . . , tn) dti . . . dtn∫+∞

−∞
∫
Rn−i q(T1, . . . , Ti−1, ti, . . . , tn) dti . . . dtn

, (6.6)

where it is also claimed that all the integrals are finite and positive. For i = 1, the
above formula becomes∫ x1

−∞

∫
Rn−1

p(t1, . . . , tn) dt1 . . . dtn =
∫ T1

−∞

∫
Rn−1

q(t1, . . . , tn) dt1 . . . dtn , (6.7)

while for i = n, it reads as∫ xn
−∞ p(x1, . . . , xn−1, tn) dtn∫+∞
−∞ p(x1, . . . , xn−1, tn) dtn

=
∫ Tn
−∞ q(T1, . . . , Tn−1, tn) dtn∫+∞
−∞ q(T1, . . . , Tn−1, tn) dtn

. (6.8)
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Note that the formulas (6.6)-(6.8) may be written in a more compact probabilistic
form as

Prob{Xi ≤ xi |X1 = x1, . . . , Xi−1 = xi−1} = Prob{Yi ≤ Ti |Y1 = T1, . . . , Yi−1 = Ti−1},
where for i ≤ n we write for short Ti = Ti(x1, . . . , xi).

The case n = 1 is obvious: the desired map T = T1(x1) is unique and is deter-
mined by ∫ x1

−∞
p(t1) dt1 =

∫ T1(x1)

−∞
q(t1) dt1. (6.9)

Clearly, T1 is a C1-smooth increasing bijection from A to B (B is an interval).
Now, to perfom the induction step, assume n ≥ 2 and recall that Pi and Qi de-

note the distrubution of the first i variables (x1, . . . , xi) under P and Q, respectively.
By the induction hypothesis, there is unique continuous, increasing, triangular bi-
jective map (T1, . . . , Tn−1) : An−1 → Bn−1 which transports Pn−1 to Qn−1, and
moreover, the equality (6.6) holds true on Ai for all i ≤ n− 1.

According to (6.9) for the case n = 1, the equality (6.7) expresses the fact that
the measure P1 is transported to Q1 by the map T1. Similarly and more generally,
the equality (6.6) expresses the fact that, given a vector (x1, . . . , xi−1) ∈ Ai−1, the
function

xi → Ti(x1, . . . , xi−1, xi)

transports the corresponding conditional measure Px1,...,xi−1 of P on the line in Ri

with these first i− 1 coordinates to the conditional measure QT1(x1),...,Ti−1(x1,...,xi−1)

of Q on the line with fixed coordinates T1(x1), . . . , Ti−1(x1, . . . , xi−1). In order to
make the same to be valid when i = n, we just postulate equality (6.8) as the
definition of Tn. Note that Px1,...,xn−1 represents a probability measure which is
supported on the open one dimensional set

A(x1, . . . , xn−1) = {x ∈ R : (x1, . . . , xn−1, x) ∈ A},
while QT1(x1),...,Tn−1(x1,...,xn−1) is a probability measure supported (by convexity of
B) on the open segment

B(x1, . . . , xn−1) = {y ∈ R : (T1(x1), . . . , Tn−1(x1, . . . , xn−1), y) ∈ B}.
In addition, by the regularity assumption made on P and Q, these measures have
positive continuous densities on A(x1, . . . , xn−1) and B(x1, . . . , xn−1), respectively.
Hence, as well as in the case n = 1, for all (x1, . . . , xn−1) ∈ An−1, the function

xn → Tn(x1, . . . , xn−1, xn)

represents a C1-smooth increasing bijection fromA(x1, . . . , xn−1) toB(x1, . . . , xn−1).
This proves that (T1, . . . , Tn−1, Tn) is an increasing bijection from A to B together
with the fact that all components Ti are C1-smooth with respect to xi-coordinates.
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It should also be clear that, for each i ≤ n, the function Ti continuously depends
on (x1, . . . , xi). Indeed, the case i = 1 does not need to be verified, while for i ≥ 2
we may argue using induction over i. Assuming that T1, . . . , Ti−1 are continuous,
introduce the function

ψ(x1, . . . , xi−1, y) =
∫ y

−∞

∫
Rn−i

q(T1, . . . , Ti−1, ti, . . . , tn) dti . . . dtn

and write the equality (6.6) as

R(x1, . . . , xi) = ψ(x1, . . . , xi−1, Ti).

By the regularity assumption on P and Q and the induction hypothesis, both R and
ψ are continuous functions defined respectively on the open sets Ai and

{(x1, . . . , xi−1, y) : (x1, . . . , xi−1) ∈ Ai−1, (T1, . . . , Ti−1, y) ∈ Bi}.

In particular, if x′j → xj for all j = 1, . . . , i, and y = Ti(x1, . . . , xi), y′ = Ti(x′1, . . . , x′i),
we get that

ψ(x′1, . . . , x
′
i−1, y

′) → ψ(x1, . . . , xi−1, y).

The function ψ increases with respect to y. So, if y′ does not converge to y, and for
definiteness y′ ≤ y − ε for some ε > 0, then for some δ > 0,

ψ(x′1, . . . , x
′
i−1, y

′) ≤ ψ(x′1, . . . , x
′
i−1, y − ε) → ψ(x1, . . . , xi−1, y − ε)

< ψ(x1, . . . , xi−1, y) − δ

which is a contradiction. Hence, y′ → y, and thus Ti is continuous.
Now, differentiating (6.7) over x1, (6.6) over xi, where we assume that 2 ≤ i ≤

n− 1, and (6.8) over xn, we get respectively,

∫
Rn−1

p(x1, t2, . . . , tn) dt2 . . . dtn =
∫
Rn−1

q(T1, t2, . . . , tn) dt2 . . . dtn
∂T1

∂x1
, (6.10)

∫
Rn−i p(x1, . . . , xi, ti+1, . . . , tn) dti+1 . . . dtn∫
Rn−i+1 p(x1, . . . , xi−1, ti, . . . , tn) dti . . . dtn

=

∫
Rn−i q(T1, . . . , Ti, ti+1, . . . , tn) dti+1 . . . dtn∫
Rn−i+1 q(T1, . . . , Ti−1, ti, . . . , tn) dti . . . dtn

∂Ti

∂xi
, (6.11)

p(x1, . . . , xn)∫+∞
−∞ p(x1, . . . , xn−1, tn) dtn

=
q(T1, . . . , Tn)∫+∞

−∞ q(T1, . . . , Tn−1, tn) dtn

∂Tn

∂xn
. (6.12)
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Myltiplying (6.10)-(6.11)-(6.12) by each other, we arrive at

p(x1, . . . , xn) = q(T1, . . . , Tn)
n∏

i=1

∂Ti

∂xi

which is exactly (6.5). It remains to apply Lemma 6.5, and the existence part of
Theorem 6.2 immediately follows.

The uniqueness follows from the requirement that, given a vector (x1, . . . , xi−1) ∈
Ai−1, the function xi → Ti(x1, . . . , xi−1, xi) must transport the conditional measure
Px1,...,xi−1 to the conditional measure QT1(x1),...,Ti−1(x1,...,xi−1).

Theorem 6.2 is now proved.

To give some examples of regular measures (in the above sense), we need another
definition. In addition to the projections Ai, with every set A ⊂ Rn, we also
associate its sections

Ax1,...,xi = {t ∈ Rn−i : (x1, . . . , xi, t) ∈ A}, (x1, . . . , xi) ∈ Ri, 1 ≤ i ≤ n− 1.

We say that A is regular, if for all i ≤ n− 1 and for all (x1, . . . , xi) ∈ Ai, the section
(∂A)x1,...,xi of the boundary of A has the (n−i)-dimensional Lebesgue measure zero.

For example, a finite union of balls represents a regular set. Another simple
example is provided by an arbitrary open convex set in Rn. As for regularity of
measures, the following lemma covers most interesting cases.

Lemma 6.6. Assume that a probability measure P is concentrated on an open
set B ⊂ Rn where it has a positive continuous density p such that, for each i ≤ n−1,∫

Rn−i
sup
x∈Bi

p(x, t) dt < +∞ (6.13)

(where it is assumed that p = 0 outside B). Then, the normalized restriction of P
to any regular set A ⊂ B is a regular measure.

The condition (6.13) is fulfilled, for example, if with some positive constants C
and c, the density p satsfies an inequality

p(x) ≤ Ce−c|x|, x ∈ B. (6.14)

Proof of Lemma 6.7. By the assumption, the function

pi(x) =
∫
Rn−i

p(x, t) 1A(x, t) dt

is finite for every x ∈ Bi, and moreover the function under the integral sign is
bounded by an integrable function. We should show that pi is continuous on Ai.
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So, take a sequence x(k) ∈ Ai converging to a point x ∈ Ai, as k → ∞. Then, for
every t ∈ Rn−1,

1A(x, t) ≤ lim inf
k→∞

1A(x(k), t) ≤ lim sup
k→∞

1A(x(k), t) ≤ 1clos(A)(x, t).

Since pi(x(k), t) → p(x, t), as k → ∞, and since A is open, we may apply Lebesgue
dominated converging theorem which gives

pi(x) ≤ lim inf
k→∞

∫
Rn−i

p(x(k), t) 1A(x(k), t) dt

≤ lim sup
k→∞

∫
Rn−i

p(x(k), t) 1A(x(k), t) dt ≤
∫
Rn−i

p(x, t) 1clos(A)(x, t) dt.

Now note that, by regularity of A, for any x ∈ Ai

1clos(A)(x, t) − 1A(x, t) = 1∂A(x, t) = 0, for almost all t ∈ Rn−i

with respect to Lebesgue measure on Rn−i. Hence,
∫
Rn−i p(x, t) 1clos(A)(x, t) dt =

pi(x), and thus pi is continuous. The first condition involved in the definition of
regularity of a measure is therefore fulfilled. The second condition requires to verify
that, for each i ≤ n, the function

ri(x, xi) =
∫ xi

−∞

∫
Rn−i

p(x, ti, t) 1A(x, ti, t) dti dt

=
∫ +∞

−∞

∫
Rn−i

p(x, ti, t) 1A(x, ti, t) 1(−∞,xi]×Rn−i(ti, t) dti dt

is continuous in (x, xi) ∈ Ai, as well, where for short we write x = (x1, . . . , xi−1),
t = (ti+1 . . . , tn). In case i = 1, the above expression depends on x1, only,

r1(x1) =
∫ +∞

−∞

∫
Rn−1

p(t1, t) 1A(t1, t) 1(−∞,x1]×Rn−1(t1, t) dt1 dt,

and is clearly continuous on A1. In the case i ≥ 2, we use the property that, for every
(ti, t) ∈ R×Rn−i, the function (x, xi) → p(x, ti, t) 1(−∞,xi]×Rn−i(ti, t) is continuous
on Ai, and then argue as before: for any x ∈ Ai−1,

1clos(A)(x, ti, t) − 1A(x, ti, t) = 1∂A(x, ti, t) = 0, for almost all (ti, t) ∈ R× Rn−i

with respect to Lebesgue measure on Rn−i+1, and therefore, once more by the
Lebesgue dominated convergence theorem, ri is continuous on Ai. Lemma 6.6 fol-
lows.

Corollary 6.7. Uniform distrubution on a bounded regular set is a regular
measure.
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This statement appears as a particular case of Lemma 6.6 with A = B and
p = 1/|A| on A (where |A| stands for the Lebesgue measure).

At last, since absolutely continuous log-concave measure on Rn are known to
satisfy (6.14), we also obtain:

Corollary 6.8. Every absolutely continuous log-concave measure P on Rn is
regular. Moreover, the normalized restriction of P to an arbitrary regular set A of
positive Lebesgue measure in the support of P represents a regular measure.

REFERENCES

[A] Alesker, S. Localization technique on the sphere and the Gromov-Milman theorem
on the concentration phenomenon on uniformly convex sphere. Convex Geometric Analysis
(Berkeley, CA, 1996). Math. Sci. Res. Inst. Publ., 34, Cambridge Univ. Press, Cambridge,
1999.

[B-P] Ball, K., Perissinaki, I. Subindependence of coordinate slabs in np balls. Israel J.
of Math., 107 (1998), 289–299.

[B1] Bobkov, S.G. On the growth of Lp-norms of polynomials. Geom. Aspects of Func.
Anal., Lecture Notes in Math., 1745 (2000), 27–35.

[B2] Bobkov, S.G. Some generalizations of the results of Yu.V. Prokhorov on Khinchine-
type inequalities for polynomials. Probab. Theory and its Appl., 45 (2000), No. 4, 745–748.

[Bor] Borell, C. Convex measures on locally convex spaces. Ark. Math., 12 (1974),
239–252.

[Bou] Bourgain, J. On the distribution of polynomials on high dimensional convex sets.
Israel Seminar (GAFA) 1989–90, Lecture Notes in Math., 1469 (1991), 127–137.

[Bre] Brenier, Y. Polar factorization and monotone rearrangement of vector-valued func-
tions. Comm. Pure Appl. Math., 44 (1991), 375–417.

[G-M] Gromov, M., Milman, V.D. Generalization of the spherical isoperimetric inequal-
ity to uniformly convex Banach spaces. Compositio Math., 62 (1987), 263–282.
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Abstract

A dynamic random environment usually induces statistical dependence among

components of a system operating in such an environment, which makes explicit

computation of the joint survival function of component lifelengths very diffi-

cult or even intractable. In this paper, we introduce a multivariate shot-noise

process to model the situations where the imposed environmental stresses have

a correlated residual effect on the failure rates of various components. We then

obtain some positive dependence properties (such as association, and orthant

dependence) of component lifelengths of a system operating in the multivariate

shot-noise environment, and investigate how the dependence structure of com-

ponent lifelengths varies in response to the environmental change by using the

orthant comparison method. Some computable bounds for the joint survival

function of component lifelengths are also obtained.

Key words and phrases: Survival in random environments, multivariate
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shot-noise process, hazard rate process, association of probability measures on

partially ordered spaces, orthant dependence comparison

1 Introduction

Consider the lifelengths T1, . . . , Tn (assume that they are positive almost surely) of

n components of a system that operates in a randomly varying environment. For

such a system, the simplifying assumption of components independence has resulted

in inadequate assessments of system reliability. In reality, there are a number of

situations where some form of dependence exists among various components. A

usual factor inducing correlation is the common random environment that affects

all the components of the system. The objective of this paper is to introduce a

multivariate shot-noise process to model the situations where the imposed stresses

from a random environment have a correlated residual effect on the failure rates

of various components, and characterize the dependence structures of the systems

operating in such an environment.

Failure models for system reliability that incorporate component dependence

from the operating environment were proposed and studied by a number of re-

searchers. The reader is referred to two survey papers by Singpurwalla (1995) and

by Kijima, Li and Shaked (2000) for an extensive review on the modeling method-

ologies and a list of the related references. A common approach (Çinlar and Özekici

(1987) and Lefèvre and Milhaud (1990)) is to represent the dynamic random envi-

ronment by a stochastic cadlag process X = {X(t), t ≥ 0} with an appropriate state

space S, and given X, view lifelengths T1, . . . , Tn as independent random variables,

and modulate their failure rates as follows,

lim
u→0

1
u

P (t < Ti ≤ t + u | Ti > t,X) = ri(t,X(t)), i = 1, . . . , n, (1.1)

where each ri(t, x) is a positive continuous function on R+ ×S. Observe that given

the external environmental process X, the failure rates depend on X only through

the current state X(t), rather than on the whole history of X as described in Çinlar

and Özekici (1987). Therefore, the failure model (1.1) is similar to that of Lefèvre

and Milhaud (1990). From (1.1), each conditional survival function P (Ti > t | X)
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satisfies the ordinary differential equation,

dP (Ti > t | X) = −P (Ti > t | X)ri(t,X(t))dt, i = 1, . . . , n.

These equations can be solved ‘path by path’, and we have

P (Ti > t | X) = exp[−
∫ t

0
ri(u,X(u))du], i = 1, . . . , n. (1.2)

Note that the right-hand side of (1.2) is well defined as the exponential of a Lebesgue

integral under our assumption (see Lefèvre and Milhaud 1990). From (1.2), the

marginal survival function of Ti can be represented as

P (Ti > t) = E(exp[−
∫ t

0
ri(u,X(u))du]), i = 1, . . . , n. (1.3)

An alternative way to express the lifelength vector (T1, . . . , Tn) is to use the cu-

mulative hazard processes Λi(t) =
∫ t
0 ri(u,X(u))du, i = 1, . . . , n. Let S1, . . . , Sn

be independent of X and of each other and have the standard (that is, mean 1)

exponential distribution. Then the lifelength of component i is modeled by

Ti = inf{t ≥ 0 : Λi(t) > Si}, i = 1, . . . , n. (1.4)

It is now evident, from (1.2) and (1.4), that the joint distribution of lifelengths

T1, . . . , Tn depends on the environment through the environmental process X and, in

general, is difficult to evaluate explicitly. Çinlar, Shaked and Shanthikumar (1989)

and Lefèvre and Milhaud (1990) explored the dependence of lifelengths T1, . . . , Tn

on the environmental process X and showed that if the environmental process X

is associated in time (see Definition 2.2) then the lifelengths T1, . . . , Tn are associ-

ated in the sense of Esary, Proschan and Walkup (1967). In this paper, we use a

similar approach to characterize the dependence structure of component lifelengths

of a system operating in a random environment where the imposed stresses have a

correlated residual effect on the component failure rates.

It is well-known that the univariate shot-noise process provides a natural setting

for describing the time-dependent effects of damage due to nontraumatic events

(Cox and Isham 1980). As pointed out in Lemoine and Wenocur (1986) and in

Singpurwalla and Youngren (1993), the shot-noise process model is meaningful if

the imposed stresses have a residual effect on the hazard rate of an item, such as
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healing after a heart attack, or cracks due to fatigue which tend to close up after

the material has borne a load. However, for a system of components operating in a

dynamic random environment, the dependence nature of the component lifelengths is

inherited from both temporal dependence and spatial dependence; that is, dependence

over different time instants introduced by the event arrival process, and dependence

among various components due to ‘simultaneous damage’ caused by an event on

these components. In order to describe such correlated residual effect on the failure

rates of various components, we introduce a multivariate version of the shot-noise

process that incorporates both the temporal dependence and the spatial dependence

effects into consideration. We then formulate the conditions on a multivariate shot-

noise process under which the component lifelengths of the system operating in such

an environment are positively associated or orthant dependent. Although sharing

the same spirit with Çinlar, Shaked and Shanthikumar (1989) and Lefèvre and

Milhaud (1990), a distinction of this work from the others in the literature is that we

focus on the temporal dependence as well as spatial dependence effects and, using

the orthant comparison method, we are able to compare the systems in different

environments in terms of the strengths of correlations among their components.

The organization of this paper is as follows. Section 2 discusses some prelimi-

naries on some stochastic comparison methods. A multivariate shot-noise process is

introduced in Section 3. The dependence structures of this multivariate process and

the related systems are discussed in Sections 3, and 4. Finally, as the byproducts of

our main results, some computable bounds for certain systems are given in Section

5. Throughout this paper, the terms ‘increasing’ and ‘decreasing’ mean ‘nondecreas-

ing’ and ‘nonincreasing’ respectively, and the measurability of sets and functions as

well as the existence of expectations are assumed without explicit mention.

2 Preliminaries

In this section, we review some notions of stochastic orders and positive dependence

that are relevant to our research. Most of the definitions and results discussed here

can be found in Tong (1980), Lindqvist (1988) and in Shaked and Shanthikumar

(1994). Let E be a partially ordered Polish space (that is, a complete separable

metric space) with a closed partial ordering ≤.
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Definition 2.1 1. A probability measure P on E is called associated if for all

upper subsets U1 and U2 of E , P (U1 ∩ U2) ≥ P (U1)P (U2) (A subset U ⊆ E is

called upper (or lower) if x ∈ U and x ≤ y (or x ≥ y) imply that y ∈ U).

2. An E-valued random variable X is said to be larger than Y in the usual

stochastic order (denoted as X ≥st Y ) if P (X ∈ U) ≥ P (Y ∈ U) for all upper

sets U ⊆ E .

Two E-valued random variables X and Y have the same distribution (denoted as

X =st Y ) if and only if X ≥st Y and X ≤st Y .

Let X = {Xn, n ≥ 0} be a discrete-time stochastic process where Xn is E-valued

for all n ≥ 0. Let E∞ = E ×E × . . . be the product space of infinitely many E ’s with

the usual product topology and the coordinate-wise partial ordering; that is, for any

x = (x1, x2, . . . , ) ∈ E∞ and y = (y1, y2, . . . , ) ∈ E∞, x ≤ y if and only if xi ≤ yi

for all i ≥ 1. The product space E∞ is again a partially ordered Polish space (see

Billingsley 1968, Page 218). A process X is said to be associated if the probability

measure PX on E∞ induced by X is associated in the sense of Definition 2.1 (1).

For a continuous-time E-valued process X = {X(t), t ≥ 0}, we need to consider

the space DE [a, b], the space of all functions from the real interval [a, b] to E which

are right continuous and have left limits. The space DE [a, b] is a partially ordered

Polish space with the Skorohod metric and the partial order ≤ defined as x ≤ y if

x(t) ≤ y(t) for all t ∈ [a, b] where x, y ∈ DE [a, b]. Note that the DE [0,∞) is still

Polish, where we use the Stone (1963) modification of Skorohod’s metric (Kamae,

Krengel and O’Brien 1977). A continuous-time process X = {X(t), t ≥ 0} is said to

be associated if the probability measure PX on DE [0,∞) induced by X is associated

in the sense of Definition 2.1 (1).

In order to verify the association property of a stochastic process, we first need

the following,

Definition 2.2 Let R be the set of all real numbers.

1. The Rn-valued random vectors Z1, . . . ,Zk are said to be associated if the prob-

ability measure P on the space Rkn induced by the random vector (Z1, . . . ,Zk)

is associated in the sense of Definition 2.1 (1).
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2. (Esary and Proschan 1970) An Rn-valued stochastic process {Z(t), t ∈ I} is

said to be associated in time if for any set {t1, . . . , tk} ⊆ I, the random vectors

Z(t1), . . . ,Z(tk) are associated in the sense of (1) (Here I is either R+ = [0,∞)

or Z+ = {0, 1, 2, . . . , }).

It was shown in Lindqvist (1988) that a probability measure P is associated on

a partially ordered Polish space E if and only if
∫

fgdP ≥ (
∫

fdP )(
∫

gdP ) for all

real bounded increasing functions f and g defined on E . Therefore, the probability

measure P induced by an Rn-valued random vector Z = (Z1, . . . , Zn) is associated

if and only if the covariance Cov(f(Z), g(Z)) ≥ 0, for all increasing functions f and

g (Esary, Proschan and Walkup 1976). Note also that if the probability measure PZ

induced by a process Z = {Z(t), t ∈ I} on an appropriate state space is associated

if and only if

E(f(Z)g(Z)) ≥ Ef(Z)Eg(Z) (2.1)

for all bounded increasing functionals f and g. This (2.1) implies that the process

Z is associated in time. Conversely, Lindqvist (1987, 1988) has showed that if Z is

associated in time, then (2.1) holds under certain conditions.

Some properties of association are summarized below.

Lemma 2.3 Let E1 and E2 be partially ordered Polish spaces.

1. If a probability measure P on E1 is associated and f : E1 → E2 is increasing,

then the induced measure Pf−1 on E2 is associated.

2. If a probability measure P1 on E1 is associated and a probability measure P2

on E2 is associated, then the usual product measure P1 × P2 on E1 × E2 is

associated.

3. Let X be an E1-valued random variable and Y be an E2-valued random vari-

able. If X is associated, (Y | X = x) is associated for all x and E[f(Y ) | X =

x] is increasing in x for all increasing functional f , then Y is associated.

Proof: The first two results can be found in Lindqvist (1988). Jogdeo (1978)

obtained (3) for the real space. Lindqvist (1988) obtained a stronger version of

(3) using monotone and associated kernels. We now prove (3) directly. Note that
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since E1 and E2 are Polish, there exists a regular conditional probability measure

P (Y ∈ B | X = x) on E2. Let PX be the probability measure on E1 induced by X.

For any two upper sets U and V of E2, we have,

P (Y ∈ U ∩ V ) =
∫

P (Y ∈ U ∩ V | X = x)PX(dx)

≥
∫

P (Y ∈ U | X = x)P (Y ∈ V | X = x)PX(dx)

≥
∫

P (Y ∈ U | X = x)PX(dx)
∫

P (Y ∈ V | X = x)PX(dx) = P (Y ∈ U)P (Y ∈ V ),

where the first inequality follows from the association property of (Y | X = x), and

the second inequality follows from the association property of X and the monotonic-

ity of P (Y ∈ B | X = x) for any upper set B.

As indicated in Lindqvist (1988), Definition 2.1 (1) is equivalent to the corre-

sponding statement with the upper set being replaced by the lower set. Thus if

the mapping f in Lemma 2.3 (1) and (3) is replaced by a decreasing mapping, the

results still hold.

Many different weaker notions of stochastic orders and positive dependence have

been also introduced and studied in the literature, see, for example, Tong (1980)

and Shaked and Shanthikumar (1994) for more detail. The following concepts that

are weaker than Definition 2.1 are frequently used later.

Definition 2.4 Let X = (X1, . . . ,Xn) and Y = (Y1, . . . , Yn) where Xi and Yi are

R-valued random variables, i = 1, . . . , n.

1. X is said to be larger (smaller) than Y in the upper (lower) orthant order,

denoted as X ≥uo (≤lo) Y , if P (X > x) ≥ P (Y > x) (P (X ≤ x) ≥ P (Y ≤
x)) for all x ∈ Rn. Here and in the sequel, an inequality of two vectors means

component-wise inequalities.

2. X is said to be more positively upper (lower) orthant dependent than Y if

X ≥uo Y (X ≤lo Y ) and Xi =st Yi for each i.

3. X is said to be positively upper (lower) orthant dependent (PUOD, PLOD)

if X ≥uo XI (X ≤lo XI), where XI = (XI
1 , . . . ,XI

n) denotes a vector of

real random variables such that Xi =st XI
i for each i and XI

1 , . . . ,XI
n are

independent.
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It is well known (see, for example, Shaked and Shanthikumar 1994) that

X ≥st Y =⇒ X ≥uo Y and X ≥lo Y . (2.2)

Note that the dependence comparisons described in Definition 2.4 (2) emphasize

the comparison on the dependence structures by separating the marginals from

the consideration. Some properties regarding orthant comparisons are summarized

below and will be used later.

Lemma 2.5 Let X and Y be two n-dimensional random vectors.

1. X ≥uo Y (X ≤lo Y ) if and only if E[
∏n

i=1 fi(Xi)] ≥ E[
∏n

i=1 fi(Yi)] for every

collection {f1, . . . , fn} of univariate nonnegative increasing (decreasing) func-

tions.

2. The orthant orders are closed under increasing transformations. That is, if

X ≤lo (≤uo) Y and fi is a right continuous increasing function, i = 1, . . . , n,

then (f1(X1), . . . , fn(Xn)) ≤lo (≤uo) (f1(Y1), . . . , fn(Yn)).

3. Let U and V be another two n-dimensional random vectors such that X ≤lo

(≤uo) Y and U ≤lo (≤uo) V . In addition, X and U are independent and

Y and V are independent. Let fi : R2 → R be a right continuous in-

creasing function, i = 1, 2, . . . , n. Then (f1(X1, U1), . . . , fn(Xn, Un)) ≤lo (≤uo

) (f1(Y1, V1), . . . , fn(Yn, Vn)).

The following facts are easy to verify (see, for example, Tong 1980, and Szekli

1995):

X is (positively) associated =⇒ X is PUOD and PLOD =⇒ Cov(X) ≥ 0,(2.3)

where Cov(X) is the covariance matrix of X. Note that the association property

of a random vector implies that its joint distribution and joint survival functions

can be bounded below by the products of its marginal distribution and marginal

survival functions respectively. While the PLOD (PUOD) property of a random

vector means that its joint distributions (joint survival functions) can be bounded

below by the product of its marginal distributions (marginal survival functions).

Fortuin, Kasteleyn and Ginibre (1971) introduced the so-called FKG-inequality

which implies the association property of a probability measure. A probability
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measure P on a finite distributive lattice E is said to satisfy the FKG inequality if

for all x, y ∈ E ,

P (x)P (y) ≤ P (x ∧ y)P (x ∨ y), (2.4)

where x ∧ y is the greatest lower bound of x and y, and x ∨ y is the least upper

bound of x and y. Fortuin, Kasteleyn and Ginibre (1971) proved that if P satisfies

(2.4), then P is associated. Also see Karlin and Rinott (1980) for a generalization

of this result.

Xu and Li (2000), and Li and Xu (2001) introduced the so-called IE-transforms

that can be used to construct a sequence of n-dimensional PLOD (or PUOD) random

vectors from a vector of n independent random variables. The reader is referred to

these papers for more detail.

3 A Multivariate Shot-Noise Process

In this section, we introduce a multivariate shot-noise process and use such a process

to model (multivariate) hazard rates of lifelengths of components of a system oper-

ating in dynamic environments. Some properties on dependence structures of such

multivariate shot-noise processes and related systems are also given here.

We first describe the univariate shot-noise process. Suppose an item operates

in a random environment consisting of a series of events (‘shots’) whose effect is to

induce stresses of unknown varying magnitudes Ak, k ≥ 0, on the item. The shot are

assumed to occur over time according to a Poisson process with a known rate µ, and

whenever a stress of magnitude Ak is induced at an epoch τk, then its contribution

to the item’s hazard rate X(τk + u) at time τk + u is Akh(u), where the attenuation

function h : R → R is positive and decreasing for nonnegative arguments with

h(u) = 0, u < 0. Thus the item’s hazard rate at time t is given by

X(t) =
∞∑

k=0

Akh(t − τk), (3.1)

where {τk, k ≥ 0} are the epochs at which the shots occur with respective magni-

tudes {Ak, k ≥ 0}. The process {X(t), t ≥ 0} is called a shot-noise process. See Cox

and Isham (1980) for more details on the univariate shot-noise process. Under some
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conditions on an item with shot-noise hazard rate process, Lemoine and Wenocur

(1986) (and also see Singpurwalla and Youngren (1993)) obtained the survival func-

tion of the item in terms of its Laplace transform. Special cases of their results

provide us with an alternative motivation for some well-known distributions (such

as Pareto) as failure models, and also yield some new families of failure distributions.

In order to model the hazard rates of lifelengths of components in a system

sharing the same randomly varying environment, one has to incorporate the shot’s

‘simultaneous’ effect on various components in the system. Singpurwalla and Youn-

gren (1991) introduced the environmental factor function to handle such effect and

their idea is the following. Consider the lifelengths T1, T2 of a two component system.

When they operate in the laboratory (design) environment, Ti has a specified failure

rate λi(t), t ≥ 0, i = 1, 2. Suppose that the system is installed in an operating (use)

environment comprising several covariates (stresses) whose presence and intensities

change over time. Assume that the net effect of the operating environment is to

modulate λi(t) to λi(t)X(t), where X(t) is a suitable stochastic process (called the

environmental factor function). As indicated in Singpurwalla and Youngren (1993),

one possible choice for X(t) is the shot-noise process as described in (3.1).

However, in general, the environmental stress and its residual effect may not

always have the same impact on the various components in a system. This mo-

tivates us to introduce a multivariate shot-noise process, and to extend the above

model to handle a more general situation. We describe our model in the context of

nontraumatic shock environment. Let τ = {τk, k ≥ 0} be a point process on R+,

where random variables 0 ≤ τ0 < τ1 < . . . are defined on the same probability space.

The point processes considered in this paper are assumed to have no multiplicities

and have no limiting points (non-explosive). Consider a system of n components

that operates in a dynamic environment whose net effect is to inflict shocks of vary-

ing magnitudes. Suppose that shocks occur according to the point process τ , and

the consequence of each shock is a set of simultaneous stresses on the components

contributing to their failure rates. Upon an arrival epoch τk, the contribution of

this shock to the hazard rate of component i at time τk + u is Ai
khi(u), for each

i = 1, . . . , n, where the attenuation function hi : R → R is positive and decreasing

for nonnegative arguments with hi(u) = 0, u < 0. As such, the total contribution
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to the hazard rate of component i, i = 1, . . . , n, by time t from the environmental

shocks is given by

Xi(t) =
∞∑

k=0

Ai
khi(t − τk), i = 1, . . . , n. (3.2)

Note that for each k, A1
k, . . . , A

n
k may be dependent, but we assume in the sequel

that the sequence of nonnegative random vectors A = {Ak = (A1
k, . . . , A

n
k), k =

0, 1, . . . , } are independent and identically distributed, and also independent of the

point process τ . The n-dimensional process X(t) = (X1(t), . . . ,Xn(t)) is called a

multivariate shot-noise process.

Since A1
k, . . . , A

n
k are nonnegative and h1(u), . . . , hn(u) are nonnegative func-

tions, it is sufficient in the sequel to assume that the sums in (3.2) converge. Daley

(1971) introduced a multivariate version of shot-noise process where τ is a homo-

geneous Poisson process in Rn and Aj
k = Wk for all j = 1, . . . , n. Daley (1971)

also discussed the conditions under which the multivariate shot-noise process is ab-

solutely convergent. Daley’s motivation was in the description of gravitational fields,

while ours is in modeling components of a system sharing the same dynamic shock

environment.

Let Ti be the lifelength of component i of a system in a multivariate shot-noise

process environment described as in (3.2). Given X = {X(t), t ≥ 0}, the lifelengths

T1, T2, . . . , Tn are independent and

lim
u↓0

1
u

P (t < Ti ≤ t + u | Ti > t,X) = ri(t,Xi(t)), i = 1, 2, . . . , n, (3.3)

where each ri is a positive continuous function on R+ × R. As we commented in

Section 1, our failure model (3.3) is similar to that of Lefèvre and Milhaud (1990),

but the processes Xi(t)’s may be different.

A failure model described by (3.3) and (3.2) is rather general, and the following

two special cases have better interpretation in some applications.

1. Similar to Singpurwalla and Youngren (1993), this special case of (3.3) de-

scribes that a system operates in a dynamic environment that needs not be
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the same as the design environment. Assume that, given a multivariate shot-

noise process X = {X(t), t ≥ 0} that is described by (3.2),

lim
u↓0

1
u

P (t < Ti ≤ t + u | Ti > t,X) = λi(t)Xi(t), i = 1, 2, . . . , n, (3.4)

where λi(t), i = 1, . . . , n, can be viewed as the failure rate of component i in

an ideal design environment.

2. We now consider a special case of the general multivariate process {X(t), t ≥ 0}
defined in (3.2). Let h(t) = 1 for t ≥ 0 and zero otherwise, then (3.2) becomes

Xi(t) =
N(t)∑
k=0

Ai
k, i = 1, . . . , n, (3.5)

where N(t) = max{k : τk ≤ t} is a counting process generated by the point

process τ . This process is a multivariate cumulative damage process where

shocks arrive at the system according to the point process τ . Therefore, (3.5)

and (3.3) provide a cumulative shock model for the systems operating in dy-

namic environments.

Remark 3.1 In the second special case above, if we assume that Ai
k is a Bernoulli

random variable for all k and i, then we obtain the process that was studied exten-

sively in Li and Xu (2000, 2001). Using newly developed majorization of weighted

trees (Xu and Li 2000), Li and Xu (2000, 2001) studied the dependence structures

of shock models and queueing models with certain synchronized constraints. How-

ever, the distinction between the shock model scenario of Li and Xu (2001) and the

scenario described above is the following. In Li and Xu (2001), the amount of some

physically observable entity, such as amount of damage, is modeled by a multivariate

process, whereas here an unobservable entity, the hazard rate, is so modeled. In the

former, a component fails when the observable entity reaches a threshold, whereas

here there is no parallel notion of a threshold for the hazard rate.

The dependence structures of a multivariate shot-noise process X(t) and the

related systems described above are determined by the dependence nature of Ak

over the various components and the autocorrelation structure of the point process

τ . Intuitively, if the simultaneous damages A1
k, . . . , A

n
k on the various components
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are spatially dependent in some sense, and the shock arrival epochs {τ0, τ1, . . . , } are

temporally dependent in some sense, then one would expect the lifelengths T1, . . . , Tn

are dependent in some sense. We begin our discussion on dependence structures with

the simpler models.

Lemma 3.2 Let x(t;a, z) = (x1(t;a, z), . . . , xn(t;a, z)) be defined as, for i = 1, . . . , n,

xi(t;a, z) =
∫ t

0
λi(u)(

∞∑
k=0

ai
khi(u − zk))du,

where a = {ak = (a1
k, . . . , a

n
k), k ≥ 0} is a sequence of vectors of nonnegative real

numbers, and z = {zk, k ≥ 0} is a sequence of nonnegative real numbers, and

the attenuation function hi : R → R is positive and decreasing for nonnegative

arguments with hi(u) = 0, u < 0. If λi(t) is nonnegative and decreasing in t,

i = 1, . . . , n, then xi(t;a, z) is increasing in a, and decreasing in z with respect to

the usual product order.

Proof: From the monotone convergence theorem, we have, for i = 1, . . . , n,

xi(t;a, z) =
∫ t

0
λi(u)(

∞∑
k=0

ai
khi(u − zk))du =

∞∑
k=0

ai
k(
∫ t

0
λi(u)hi(u − zk)du). (3.6)

Obviously, the function xi(t;a, z) is increasing in a on the space R∞ with respect

to the usual product order. We next claim that these functions are decreasing in z

with respect to the usual product order. Let z = {zk, k ≥ 0} and z̄ = {z̄k, k ≥ 0} be

two sequences such that 0 ≤ zk ≤ z̄k for each k. Denote dk = z̄k − zk. Since λi(t) is

decreasing in t, we have, for z̄k ≤ t, ,

∫ t

0
λi(u)hi(u − zk)du =

∫ t+dk

dk

λi(v − dk)hi(v − z̄k)dv ≥
∫ t+dk

dk

λi(v)hi(v − z̄k)dv ≥

∫ t

dk

λi(v)hi(v − z̄k)dv ≥
∫ t

z̄k

λi(v)hi(v − z̄k)dv =
∫ t

0
λi(u)hi(u − z̄k)du, k = 0, 1, . . . .

Therefore,

xi(t;a, z) ≥ xi(t;a, z̄).

Hence xi(t;a, z) is decreasing in z with respect to the usual product order.
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Theorem 3.3 Let T = (T1, . . . , Tn) be the lifelengths of components of a system

operating in a multivariate shot-noise process environment as described in (3.2) and

(3.4) where λi(t) is decreasing in t, i = 1, . . . , n. If Ak = (A1
k, . . . , A

n
k) is associated

and the process τ = {τk, k ≥ 0} is associated in time, then T is associated.

Proof: First observe that the lifelength of component i is modeled by

Ti = inf{t ≥ 0 : Λi(t) > Si}, i = 1, . . . , n,

where the cumulative failure rate Λi(t) = xi(t; {Ak}, τ) =
∫ t
0 λi(u)Xi(u)du, and

S1, . . . , Sn are independent of Λ = {(Λ1(t), . . . ,Λn(t)), t ≥ 0} and of each other and

have the standard exponential distribution. Thus, for any increasing function φ,

Eφ(T | Λ1(t) = x1(t), . . . ,Λn(t) = xn(t)) (3.7)

is a decreasing functional with respect to (x1(t), . . . , xn(t)) on the space [DR[0,∞)]n,

which is also a partially ordered Polish space with the product topology and the

coordinate-wise partial order. Since (T | Λ1(t) = x1(t), . . . ,Λn(t) = xn(t)) is an

increasing function with respect to (S1, . . . , Sn), which are independent, then (T |
Λ1(t) = x1(t), . . . ,Λn(t) = xn(t)) is associated from Lemma 2.3 (1). Now, from

Lemma 2.3 (3), if the process Λ is associated (that is, the probability measure PΛ

on [DR[0,∞)]n induced by the process Λ is associated), then T is associated. Thus

we only need to show that Λ is associated.

Since the space R∞ is normally ordered with respect to the usual product order

in the sense of Lindqvist (1988), the time association property of the process τ

implies the probability measure Pτ induced by τ is associated (Lindqvist 1988).

Since Ak is associated for each k, and Ak1,Ak2 , . . . ,Akl
are independent for all

k1 ≤ k2 ≤ . . . ≤ kl, then, from Lemma 2.3 (2), (Ak1 ,Ak2 , . . . ,Akl
) is associated.

Hence, from Definition 2.2 (2), the process A = {Ak, k = 0, 1, . . .} is associated

in time. From Lindqvist (1988) again, we obtain that the probability measure PA

induced by this discrete-time process {Ak, k = 0, 1, . . .} is associated.

Since, for fixed z, x(·;a, z) is increasing from R∞ to [DR[0,∞)]n, then from

Lemma 2.3 (1), for each fixed z, the process x(t;A, z) is associated. In addition,

Lemma 3.2 implies that for any decreasing functional φ, Eφ(x(·;A, z)) is increasing



On the Dependence Structure of a System of Components with a ... 191

in z with respect to the usual product order. Therefore, from lemma 2.3 (3), the

process x(t;A, τ) is associated. Hence the process Λ, and thus PΛ is associated.

To illustrate the result we just obtained, we discuss the following example.

Example 3.4 Consider the multivariate shot-noise process,

Xi(t) =
∞∑

k=0

Ai
khi(t − τk), (3.8)

where {Ak = (A1
k, . . . , A

n
k ), k = 1, 2, . . .} is a sequence of independent and identically

distributed Bernoulli random vectors, and τ = {τk, k ≥ 0} is a renewal process. Let

T = (T1, . . . , Tn) be the lifelength vector of components of a system operating in a

multivariate shot-noise environment as defined in (3.2) and (3.4). Assume that the

function λi(t) is a constant for i = 1, . . . , n.

Since each τk can be written as a sum of some of independent and identically

distributed random variables, τ is associated in time. Now we assume that Ak

satisfies the FKG-inequality (see (2.4))

P (Ak = a)P (Ak = b) ≤ P (Ak = a ∨ b)P (Ak = a ∧ b) (3.9)

for all a = (a1, . . . , an),b = (b1, . . . , bn) ∈ {0, 1}n, where a∨b = (max{a1, b1}, . . . ,max{an, bn})
and a∧b = (min{a1, b1}, . . . ,min{an, bn}). Therefore, Ak is associated. Thus, from

Theorem 3.3, we obtain that T is associated.

For example, consider a system with two components where (A1
k, A

2
k) has the

following distribution,

P ((A1
k, A2

k) = (1, 1)) = P ((A1
k, A2

k) = (0, 0)) = 1/8,

P ((A1
k, A2

k) = (0, 1)) = 3/4, P ((A1
k , A2

k) = (1, 0)) = 0.

It is easy to verify that (A1
k, A

2
k) satisfies the FKG inequality, and so the correspond-

ing lifelengths T1, T2 are associated.

Note that the approach used in Theorem 3.3 is to establish directly the asso-

ciation property of the cumulative hazard process Λ. An alternative approach is

to establish the association property of the environmental process X(t), and then
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to obtain the association property of the lifelength vector T of a system operating

in such random environment (Çinlar, Shaked and Shanthikumar 1989, Lefèvre and

Milhaud 1990). Using such approach, we can study the dependence structure for

a more general model (3.3), but a trade-off is that we have to impose a stronger

condition on the point process τ . The following result is needed for employing this

approach.

Proposition 3.5 Let T = (T1, . . . , Tn) be the lifelength vector of components of

a system operating in a multivariate shot-noise environment as defined in (3.2)

and (3.3). Assume that the functions ri(t, x), i = 1, . . . , n, are all increasing (or

decreasing) in x for each t. If the probability measure induced by X = {X(t), t ≥ 0}
is associated, then T is associated.

Proof: Since ri(t, x) is increasing (decreasing) in x, then the cumulative hazard

rate process of component i

Λi(t) =
∫ t

0
ri(u,Xi(u))du

is an increasing (decreasing) function of the process X = {X(t), t ≥ 0} on the

space [DR[0,∞)]n. Since the probability measure PX on [DR[0,∞)]n induced by

the process X is associated, then, from Lemma 2.3 (1), the probability measure PΛ

induced by the joint cumulative hazard process Λ = {Λ(t) = (Λ1(t), . . . ,Λn(t)), t ≥
0} is associated. Now we employ a similar argument as in Theorem 3.3. Since (T |
Λ(t) = x(t)) is associated and for any decreasing function f , Ef(T | Λ(t) = x(t))

is increasing with respect to x(t) in the space [DR[0,∞)]n (see (3.7)), then from

Lemma 2.3 (3), we obtain that T is associated.

Çinlar, Shaked and Shanthikumar (1989), and Lefèvre and Milhaud (1990) ob-

tained the same conclusion as Proposition 3.5 under the (weaker) condition that

the environmental process {X(t), t ≥ 0} is associated in time. However, the current

Proposition 3.5 is sufficient for development of our results. As a direct consequence

of Proposition 3.5, we obtain the association property of the lifelengths of compo-

nents of a system with the environmental process described in (3.5).

Theorem 3.6 Let T = (T1, . . . , Tn) be the lifelength vector of components of a

system operating in a multivariate shot-noise environment as defined in (3.5) and



On the Dependence Structure of a System of Components with a ... 193

(3.3). Assume that the functions ri(t, x), i = 1, . . . , n, are all increasing (decreasing)

in x for each t. If Ak = (A1
k, . . . , A

n
k ) is associated and the process τ is associated

in time, then T is associated.

Proof: Let PN be the probability measure induced by the counting process N =

{N(t), t ≥ 0} and Pτ be the probability measure induced by the point process τ .

Consider φ(z) = {n(t), t ≥ 0} ∈ DZ+ [0,∞) where z = {zk, k ≥ 0} ∈ R∞
+ and

n(t) = max{k : zk ≤ t}. (3.10)

Clearly, φ is an decreasing mapping from R∞
+ to DZ+ [0,∞), and PN = Pτφ

−1. Since

τ is associated in time, then from Lindqvist (1988), Pτ is associated. Therefore, from

Lemma 2.3 (1), we obtain that PN is also associated.

Since Ak is associated, and {Ak, k ≥ 0} is a sequence of independent ran-

dom vectors, then, as we have shown in Theorem 3.3, the process {Ak, k ≥ 0} is

associated. Therefore, from Lemma 2.3 (1), the process {∑m
k=0 Ak,m ≥ 0} is as-

sociated. In addition,
∑m

k=0 Ak is increasing with respect to the coordinate-wise

order, almost surely as m increases. Thus, from Lemma 2.3 (3), we obtain that

X = {∑N(t)
k=0 Ak, t ≥ 0} is associated. Hence, from Proposition 3.5, T is associated.

For example, as illustrated in Example 3.4, a renewal process τ is associated

in time. Thus, if Ak satisfies the FKG-inequality (3.9), then the corresponding

lifelengths T as defined in (3.5) and (3.3) is associated.

In order to analyze the dependence structure of a system operating in a general

multivariate shot-noise environment as defined in (3.2) and (3.3), we need to discuss

the association property of a point process with respect to thinning order (Burton

and Franzosa 1990). As illustrated in the literature (see, for example, Shaked and

Szekli 1995), a point process τ = {τk, k ≥ 0} defined on a probability space (Ω,F , P )

can be viewed as a random measure. Each realization of {τk, k ≥ 0} can be treated

as a measure on R+,

N(ω) =
∑
k≥0

δτk(ω). (3.11)

where δt denotes the atomic measure concentrated at t, that is, δt(B) = 1 if t ∈ B

and zero otherwise, for all bounded Borel sets B of R+. Measures of this type are



194 Haijun Li

integer valued, and belong to the set N of all integer valued Radon (that is, finite on

bounded sets) measures on R+, which is equipped with the vague topology to be a

Polish space (Burton and Franzosa 1990). In other words, a point process τ can be

viewed as a random element of N (random measure). As discussed in Shaked and

Szekli (1995), such definition of a point process provides us a ‘global’ description of

the process. Note that the space N is a Polish space equipped with the following

partial order,

µ ≤ ν if µ(B) ≤ ν(B), (3.12)

for all bounded Borel sets B, where µ, ν ∈ N .

Since N is naturally identified with the set of all finite or infinite configurations

of points (including multiplicities) in R+ without limit points, the partial order in

(3.12) is equivalent to the notion of thinning. Consider two increasing sequences

z = {zk} and z̄ = {z̄k} with zk ≤ zk+1 and z̄k ≤ z̄k+1. z is said to be a thinning of

z̄, denoted as z ⊂ z̄, if there exists an one-to-one mapping T from the index set of

z to the index set of z̄ such that zk = z̄T (k). Thus, if z ⊂ z̄, then z̄ is ‘finer’ than z.

It is easy to verify that the thinning ⊂ is a closed partial order. Let

µz =
∑
k≥0

δzk
, µz̄ =

∑
k≥0

δz̄k
.

Clearly µz ≤ µz̄ in the sense of (3.12) if and only if z is a thinning of z̄.

We say that a point process τ = {τk} is associated with respect to thinning order

if the probability measure Pτ on N induced by τ is associated with respect to (3.12)

(Burton and Franzosa 1990). The following lemma is needed for characterizing

the dependent structures of a multivariate shot-noise process (3.2) and the related

system (3.3). Let x(t;a, z) = (x1(t;a, z), x2(t;a, z), . . . , xn(t;a, z)) such that

xi(t;a, z) =
∞∑

k=0

ai
khi(t − zk), (3.13)

where a = {ak = (a1
k, . . . , a

n
k), k ≥ 0}, and z = {zk, k ≥ 0}.

Lemma 3.7 If for each i the function hi is positive and decreasing for nonneg-

ative arguments and hi(u) = 0 for u < 0, then for all increasing functionals g,

Eg(x(·;A, z)) is increasing in z with respect to the thinning order, where A =
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{Ak = (A1
k, . . . , A

n
k), k = 0, 1, . . . , } are independent and identically distributed

nonnegative random vectors.

Proof: Consider two sequences z = {zk} and z̄ = {z̄k} with zk ≤ zk+1 and z̄k ≤
z̄k+1, such that z ⊂ z̄. That is, zk = z̄T (k) for each k, and T is one-to-one. Without

loss of generality, we assume that {Ak} are defined on the same probability space

as τ . Let {Bk = (B1
k, . . . , Bn

k ), k = 0, 1, . . . , } be another sequence of independent

and identically distributed random vectors defined on this probability space such

that {Bk} and {Ak} are independent and Bk and Ak have the same distribution.

Define

(Ā1
j , . . . , Ā

n
j ) = (A1

k, . . . , An
k ), if j = T (k)

= (B1
j , . . . , Bn

j ), otherwise.

Therefore, the random variable

xi(t; {Āk}, z̄) =
∞∑

j=0

Āi
jhi(t − z̄j) =

∞∑
k=0

Ai
khi(t − z̄T (k)) +

∑
j �∈T (Z+)

Bi
jhi(t − z̄j),

where Z+ = {0, 1, 2, . . . , }. Thus we obtain that x(t; {Āk}, z̄) and x(t; {Ak}, z̄) have

the same distribution and for all t,

x(t; {Āk}, z̄) ≥ x(t; {Ak}, z).

Therefore, for any increasing functional g, Eg(x(·;A, z̄)) = Eg(x(·; {Āk}, z̄)) ≥
Eg(x(·;A, z)).

Theorem 3.8 Let X(t) = (X1(t), . . . ,Xn(t)) be a multivariate shot-noise process

as defined in (3.2). If Ak = (A1
k, . . . , A

n
k ) is associated and the process τ is as-

sociated with respect to thinning, then the probability measure PX induced by

X = {X(t), t ≥ 0} is associated.

Proof: Since Ak is associated for each k, then from the proof of Theorem 3.3,

we obtain that the probability measure PA induced by the discrete-time process

{Ak, k = 0, 1, . . .} is associated. Since the attenuation function hi is nonnegative,

then for every t, the function xi(t;a, z) defined as in (3.13) is increasing in a = {ak}
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on the space R∞ with respect to the usual product order. From Lemma 2.3 (1), the

probability measure induced by the process {x(t; {Ak}, z), t ≥ 0} is associated.

From Lemma 3.7, for all increasing functional g, Eg(x(·; {Ak}, z)) is increasing

in z with respect to the thinning order. Thus, from Lemma 2.3 (3), we obtain that

the process X = {X(t), t ≥ 0} is associated.

Using Proposition 3.5 and Theorem 3.8, we now obtain

Corollary 3.9 Let T = (T1, . . . , Tn) be the lifelength vector of components of a

system operating in a multivariate shot-noise environment as defined in (3.2) and

(3.3). Assume that the functions ri(t, x), i = 1, . . . , n, are all increasing (or de-

creasing) in x for each t. If Ak = (A1
k, . . . , A

n
k ) is associated and the process τ is

associated with respect to thinning, then T is associated.

For example, from Burton and Franzosa (1990), a Poisson process is associated

with respect to thinning order. Thus, if Ak satisfies the FKG-inequality (3.9),

then the corresponding lifelengths T as defined in (3.2) and (3.3) is associated.

Burton and Franzosa (1990) obtained some conditions on product densities of a

point process under which the process is associated with respect to thinning order,

but in general, it is difficult to verify whether a point process τ is associated with

respect to thinning order. In contrast with Corollary 3.9, Theorems 3.3 and 3.6 are

easier to use in applications.

4 Dependence Comparison of Systems Operating in Shot-

Noise Process Environments

In this section, we discuss comparison of dependence structures of the component

lifelength vectors of two systems as described in (3.3) operating in multivariate shot-

noise process environments (3.2), and examine the impact of environmental shocks

on the failure rates of component lifelengths.

Let S denote a system of n components as described in (3.3) with the multivariate

shot-noise process X(t) = (X1(t), . . . ,Xn(t)) where

Xi(t) =
∞∑

k=0

Ai
khi(t − τk), i = 1, . . . , n. (4.1)
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Let S ′ be another similar system of n components with the multivariate shot-noise

process Y(t) = (Y1(t), . . . , Yn(t)) where

Yi(t) =
∞∑

k=0

Bi
khi(t − τ ′

k), i = 1, . . . , n. (4.2)

The following theorem describes a stochastic comparison about dependence struc-

tures of these two systems.

Theorem 4.1 Let T = (T1, . . . , Tn) and T′ = (T ′
1, . . . , T

′
n) be the component

lifelengths of systems S and S ′, defined as in (3.3), with multivariate shot-noise

processes X(t) and Y(t) respectively. Assume that ri(t;x), i = 1, . . . , n, are all

increasing (decreasing) in x, and τ and τ ′ have the same distribution.

1. If (A1
k, . . . , A

n
k ) ≤lo (B1

k, . . . , Bn
k ) ((A1

k, . . . , A
n
k) ≥uo (B1

k, . . . , Bn
k )), then T ≥uo

T′.

2. If (A1
k, . . . , An

k ) is more lower (upper) orthant dependent than (B1
k, . . . , Bn

k ),

then T is more upper orthant dependent than T′.

Proof: We only prove the case of lower orthant comparison. The other case is

similar.

(1) Let Pτ denote the probability measure on R∞
+ induced by the process τ , and

PA (PB) denote the probability measure on (Rn)∞ induced by A = {Ak, k ≥ 0}
(B = {Bk, k ≥ 0}). For any z = {z1, z2, . . . , } ∈ R∞

+ with z1 < z2 < . . ., denote

f(z) = P (T1 > t1, . . . , Tn > tn | τ = z),

g(z) = P (T ′
1 > t1, . . . , T

′
n > tn | τ = z).

Thus, we have

P (T1 > t1, . . . , Tn > tn) =
∫

f(z)Pτ (dz), P (T ′
1 > t1, . . . , T

′
n > tn) =

∫
g(z)Pτ (dz).

(4.3)

Since the lifelengths T1, . . . , Tn are independent given the environmental process

X = {X(t), t ≥ 0} (see (3.3)), we also have,

f(z) =
∫ n∏

j=1

e−
∫ tj
0

rj(s,
∑∞

k=0
aj

k
hj(s−zk))dsPA(da), (4.4)
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g(z) =
∫ n∏

j=1

e−
∫ tj
0

rj(s,
∑∞

k=0
bj
k
hj(s−zk))dsPB(db), (4.5)

where a = {(a1
k, . . . , an

k ), k ≥ 0}, and b = {(b1
k, . . . , bn

k), k ≥ 0}. To approximate

(4.4) and (4.5), consider the following two integrals,

∫ n∏
j=1

e−
∑mj

i=0 rj(sij ,
∑∞

k=0
aj

k
hj(sij−zk))∆sijPA(da),

∫ n∏
j=1

e−
∑mj

i=0 rj(sij ,
∑∞

k=0
bj
k
hj(sij−zk))∆sijPB(db),

where 0 = s0j ≤ s1j ≤ . . . ≤ smjj = tj, and ∆sij = s(i+1)j − sij for i =

0, . . . ,mj − 1 and j = 1, . . . , n. Note that both integrands of above two integrals

involve only finite number of ak’s or bk’s. Since rj(t;x) is increasing in x, then∑mj

i=0 rj(sij,
∑∞

k=0 aj
khj(sij−zk))∆sij is increasing in aj

k, and
∑mj

i=0 rj(sij,
∑∞

k=0 bj
khj(sij−

zk))∆sij is increasing in bj
k.

Since {Ak, k ≥ 0} and {Bk, k ≥ 0} are two sequences of independent and iden-

tically distributed random vectors, and Ak ≤lo Bk for any k ≥ 0, then use Lemma

2.5 (3) repeatedly, we obtain,(
m1∑
i=0

r1(si1,
∞∑

k=0

A1
kh1(si1 − zk))∆si1, . . . ,

mn∑
i=0

rn(sin,
∞∑

k=0

An
khn(sin − zk))∆sin

)

≤lo

(
m1∑
i=0

r1(si1,
∞∑

k=0

B1
kh1(si1 − zk))∆si1, . . . ,

mn∑
i=0

rn(sin,
∞∑

k=0

Bn
k hn(sin − zk))∆sin

)
.

Denote xj(t) =
∑∞

k=0 aj
khj(t − zk) and yj(t) =

∑∞
k=0 bj

khj(t − zk). Since e−x is

nonnegative and decreasing in x, we have, from Lemma 2.5 (1),

∫ n∏
j=1

e−
∑mj

i=0 rj(sij ,xj(sij))∆sij PA(da) ≥
∫ n∏

j=1

e−
∑mj

i=0 rj(sij ,yj(sij))∆sijPB(db).

Now let max{∆sij} → 0, we have

lim
max{∆sij}→0

n∏
j=1

e−
∑mj

i=0 rj(sij ,xj(sij))∆sij =
n∏

j=1

e−
∫ tj
0

rj(s,xj(s))ds, (4.6)

lim
max{∆sij}→0

n∏
j=1

e−
∑mj

i=0 rj(sij ,yj(sij))∆sij =
n∏

j=1

e−
∫ tj
0

rj(s,yj(s))ds. (4.7)
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Note that all the functions involved in (4.6) and (4.7) are bounded, then the bounded

convergence theorem implies that for each fixed z, as max{∆sij} → 0,

∫ n∏
j=1

e−
∑mj

i=0 rj(sij ,xj(sij))∆sijPA(da) → f(z),

∫ n∏
j=1

e−
∑mj

i=0 rj(sij ,yj(sij))∆sijPB(db) → g(z).

Therefore, f(z) ≥ g(z) for any z. Hence,
∫

f(z)Pτ (dz) ≥
∫

g(z)Pτ (dz), (4.8)

which says, from (4.3), that T ≥uo T′.

(2) Under the current conditions, we have T ≥uo T′. Also since τ and τ ′ have

the same distribution, and Aj
k =st Bj

k for j = 1, . . . , n, then Tj and T ′
j have the same

(marginal) distribution. Thus T is more upper orthant dependent than T′.

Corollary 4.2 Let T = (T1, . . . , Tn) be the lifelength vector of components of a

system operating in a multivariate shot-noise environment as defined in (3.2) and

(3.3). Assume that the functions ri(t, x), i = 1, . . . , n, are all increasing in x for

each t, and Ak = (A1
k, . . . , A

n
k ) is positively lower orthant dependent.

1. If ri(t, x) = λi(t)x where λi(t) is decreasing in t for i = 1, . . . , n, and the

process τ is associated in time, then T is positively upper orthant dependent.

2. If hi(t) = 1 for t ≥ 0 and zero otherwise, i = 1, . . . , n, and the process τ is

associated in time, then T is positively upper orthant dependent.

3. If the process τ is associated with respect to thinning order, then T is positively

upper orthant dependent.

Proof: Let {Āk, k ≥ 0} be a sequence of independent and identically distributed

random vectors such that for each k, Āk = (Ā1
k, . . . , Ā

n
k ) is a vector of independent

random variables and Āj
k =st Aj

k for each j = 1, . . . , n. Since Ak = (A1
k, . . . , An

k ) is

PLOD, then Ak is more lower orthant dependent than Āk for each k. From Theorem

4.1 (2), we then have, T is more upper orthant dependent than T̄ = (T̄1, . . . , T̄n)
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where T̄i is the lifelength of component i of the system operating in an environment

with the following multivariate shot-noise process, i = 1, . . . , n,

X̄i(t) =
∞∑

k=0

Āi
khi(t − τk).

If T̄ is associated then T̄ is PUOD (see (2.3)). Hence T is PUOD. We now argue

that T̄ is associated under three different conditions.

1. If ri(t, x) = λi(t)x where λi(t) is decreasing in t for i = 1, . . . , n, and the

process τ is associated in time, then from Theorem 3.3, T̄ is associated.

2. If hi(t) = 1 for t ≥ 0 and zero otherwise, i = 1, . . . , n, and the process τ is

associated in time, then from Theorem 3.6, T̄ is associated.

3. If the process τ is associated with respect to thinning order, then from Corol-

lary 3.9, T̄ is associated.

To compare the dependence structures of two systems with different shock arrival

processes, we need to employ some comparison methods of point processes. A point

process τ = {τk, k ≥ 0} is said to be stochastically larger than a point process

τ ′ = {τ ′
k, k ≥ 0} (denoted as τ ≥st τ ′) if Ef({τk, k ≥ 0}) ≤ Ef({τ ′

k, k ≥ 0}) for

all increasing functionals f on R∞
+ . A point process τ = {τk, k ≥ 0} is said to

be larger than a point process τ ′ = {τ ′
k, k ≥ 0} with respect to thinning (denoted

as τ ≥thinning τ ′) if Ef(τ) ≥ Ef(τ ′
k) for all functionals f defined on N that are

increasing with respect to the ordering (3.12). It is known that τ ≥thinning τ ′

implies that τ ≥st τ ′. For the details on various notions of stochastic comparisons

of point processes and their applications, the reader is referred to Shaked and Szekli

(1995).

Theorem 4.3 Let T = (T1, . . . , Tn) and T′ = (T ′
1, . . . , T

′
n) be the component

lifelengths of systems S and S ′, as defined in (3.3), with multivariate shot-noise

processes X(t) and Y(t) as described in (4.1) and (4.2) respectively. Assume that

ri(t;x) is increasing in x, i = 1, . . . , n, and (A1
k, . . . , A

n
k) ≤lo (B1

k, . . . , Bn
k ) for each

k.

1. If ri(t, x) = λi(t)x where λi(t) is decreasing in t for i = 1, . . . , n, and τ ≤st τ ′,

then T ≥uo T′.
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2. If hi(t) = 1 for t ≥ 0 and zero otherwise, i = 1, . . . , n, and τ ≤st τ ′, then

T ≥uo T′.

3. If τ ≤thinning τ ′, then T ≥uo T′.

Proof: Let T̄ = (T̄1, . . . , T̄n) be the component lifelengths of a system as defined in

(3.3), with the following multivariate shot-noise process

Zi(t) =
∞∑

k=0

Bi
khi(t − τk), i = 1, . . . , n.

As in Theorem 4.1, denote, for fixed t1, . . . , tn,

f(z) = P (T1 > t1, . . . , Tn > tn | τ = z),

g(z) = P (T̄1 > t1, . . . , T̄n > tn | τ = z),

ḡ(z) = P (T ′
1 > t1, . . . , T

′
n > tn | τ ′ = z).

From the proof of Theorem 4.1 (see (4.8)), we have,

∫
f(z)Pτ (dz) ≥

∫
g(z)Pτ (dz). (4.9)

1. If ri(t, x) = λi(t)x where λi(t) is decreasing in t for i = 1, . . . , n, then from

Lemma 3.2, xi(t;a, z) defined as in (3.6) is decreasing in z with respect to the

usual product order. Thus, g(z) is increasing in z with respect to the usual

product order. Since τ ≤st τ ′ we have

∫
g(z)Pτ (dz) ≥

∫
g(z)Pτ ′ (dz) =

∫
ḡ(z)Pτ ′(dz).

This and (4.9) imply that T ≥uo T′.

2. If hi(t) = 1 for t ≥ 0 and zero otherwise, i = 1, . . . , n, then from Theorem

3.6, φ(z) = {n(t), t ≥ 0}, where n(t) is given by (3.10), is decreasing in z

with respect to the usual product order. Since ri(t;x) is increasing in x, g(z)

is increasing in z with respect to the usual product order. Using a similar

argument as in (1), we obtain that T ≥uo T′.
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3. From Lemma 3.7, xi(t;a, z) defined as in (3.13) is increasing in z with respect

to the thinning order. Since ri(t;x) is increasing in x, g(z) is decreasing in z

with respect to the thinning order. Since τ ≤thinning τ ′ we have∫
g(z)Pτ (dz) ≥

∫
g(z)Pτ ′ (dz) =

∫
ḡ(z)Pτ ′(dz).

This and (4.9) imply that T ≥uo T′.

5 Bounds

Using the results developed in Section 4, we can establish computable upper and

lower bounds for the joint survival functions of the systems operating in certain

dynamic environments. To simplify the exposition, we only consider the systems

with two components to illustrate our results.

5.1 The Poisson Shock Arrival Process

We begin with the bounds on the joint survival functions of the systems (3.4) with

λi(t) = λi being a constant and the following bivariate shot-noise process,

Xi(t) =
∞∑

k=0

Ai
khi(t − τk), i = 1, 2, (5.1)

where τ = {τk, k ≥ 0} is a Poisson process with a known rate m(t), t ≥ 0.

Theorem 5.1 Let (T1, T2) be the lifelength vector of a two component system

operating in the bivariate shot-noise environment as defined in (5.1). If (A1
k, A

2
k) is

PLOD, then

P (T1 > t1, T2 > t2) ≥

L∗
1[λ1H1(t1)]L∗

2[λ2H2(t2)] exp[−
2∑

i=1

M(ti)] · exp

[
2∑

i=1

∫ ti

0
L∗

i (λiHi(u))m(ti − u)du

]
,

where L∗
i is the Laplace transform of the distribution of Ai

k, Hi(t) =
∫ t
0 hi(u)du and

M(t) =
∫ t
0 m(u)du.

Proof: Since a Poisson process has independent increments, it is clearly associated

in time. From Corollary 4.2, (T1, T2) is positively upper orthant dependent; that

is, P (T1 > t1, T2 > t2) ≥ P (T1 > t1)P (T2 > t2). The inequality now follows from

Theorem 3.1 of Singpurwalla and Youngren (1993).
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Example 5.2 Let (A1
k, A

2
k) be distributed as a Marshall-Olkin distribution (Mar-

shall and Olkin 1967) with E(A1
k) = b1, E(A2

k) = b2. It is known that a Marshall-

Olkin distribution is positively associated, and hence PLOD. Let hi(t) = exp[−ait]

for ai > 0, i = 1, 2. Suppose that τ is a Poisson process with a constant rate m, and

λi = 1 for i = 1, 2. Then from Theorem 5.1 and Singpurwalla (1995), we obtain

that

P (T1 > t1, T2 > t2) ≥

exp

(
−

2∑
i=1

maibiti
1 + aibi

)
·
{

2∏
i=1

(
1 + aibi − exp(−aiti)

aibi

)mbi/(1+aibi)
}

.

Consider a bivariate vector (A1
k, A

2
k) such that A1

k =st A2
k. The distribution of

(A1
k, A

1
k) is known as the upper Fréchet bound (see, for example, Whitt 1976) and

(A1
k, A

2
k) ≥lo (A1

k, A
1
k).

If (A1
k, A2

k) is PLOD, then Theorems 4.1 and 5.1, Theorem 3.3 of Singpurwalla and

Youngren (1993) yield the following bounds.

Corollary 5.3 Let (T1, T2) be the lifelength vector of a two component system

operating in the bivariate shot-noise environment as defined in (5.1). If h1(t) =

h2(t) = h(t) for all t, and (A1
k, A

2
k) is PLOD with A1

k =st A2
k, then for all 0 ≤ t1 ≤ t2,

L∗[
2∑

i=1

λiH(ti)] · exp
[∫ t1

0
L∗[λ1H(t1 − u1) + λ2H(t2 − u1)]m(u1)du1

]
·

exp
[∫ t2

t1
L∗[λ2H(t2 − u2)]m(u2)du2 − M(t2)

]
≥

P (T1 > t1, T2 > t2) ≥

L∗[λ1H(t1)]L∗[λ2H(t2)] exp[−
2∑

i=1

M(ti)] · exp

[
2∑

i=1

∫ ti

0
L∗(λiH(u))m(ti − u)du

]
,

where L∗ is the Laplace transform of the distribution of Ai
k, H(t) =

∫ t
0 h(u)du and

M(t) =
∫ t
0 m(u)du.
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5.2 The Renewal Shock Arrival Process

Using the bounds developed in Section 5.1, we can obtain some bounds for the joint

survival functions of the systems (3.4) with λi(t) = λi being a constant and the

following bivariate shot-noise process,

Xi(t) =
∞∑

k=0

Ai
khi(t − τk), i = 1, 2, (5.2)

where τ = {τk, k ≥ 0} is a renewal process with NBU (NWU) interarrival times. A

nonnegative random variable X is said to be new better (worse) than used (NBU,

NWU) if

P (X > x + t) ≤ (≥) P (X > x)P (X > t),

for all x and t (see Barlow and Proschan 1981). It is known (see for example, Stoyan

1983) that if X is NBU (NWU) then

X ≤st (≥st) exp(θ), (5.3)

for some θ ≤ (≥) 1/E(X), where exp(θ) is a random variable with the exponential

distribution of mean 1/θ.

If the interarrival time of a renewal process τ is NBU (NWU), then τ ≥st (≤st

) τ ′ where τ ′ is a Poisson process with a rate m ≤ (≥) 1/(E(τk+1 − τk)). Hence,

employing Theorem 4.3, we can use the systems with (5.1) to bound the systems

with (5.2). We illustrate this by discussing NWU case.

Theorem 5.4 Let (T1, T2) be the lifelength vector of a two component system

operating in the bivariate shot-noise environment as defined in (5.2). If τk+1 − τk

is NWU, then (T1, T2) ≥uo (T ′
1, T

′
2) where (T ′

1, T
′
2) is the lifelength vector of a two

component system operating in the bivariate shot-noise environment as defined in

(5.1) with a Poisson shock arrival process of rate m ≥ 1/(E(τk+1 − τk)).

Note that if m = 1/(E(τk+1 − τk)) then τk+1 − τk has the exponential distribution

and τ =st τ ′. Thus, (T1, T2) and (T ′
1, T

′
2) have the same distribution.
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