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1. Introduction. Let {Xn}∞n=1 be a sequence of random variables on a proba-
bility space (Ω,F ,P) with finite second moments and such that, for all k, j,

EXkXj = δkj ,(1.1)

where δkj denotes the Kronecker symbol.
In this paper, we study the question of whether or not the sequence {Xn}∞n=1

contains a subsequence, say {Xin}∞n=1, which behaves like a sequence of indepen-
dent random variables with respect to some intensively studied functionals. As main
examples, we consider normalized sums

Sn =
Xi1 + · · · + Xin√

n

and self-normalized statistics

Tn =
Xi1 + · · · + Xin√
X2

i1
+ · · · + X2

in

.

To avoid degenerate situations, we assume that in probability, as n → ∞,

max
1�k�n

|Xk| = o(
√
n ).(1.2)

This condition is weaker than the uniform integrability of the sequence X2
n and is im-

plied by usual moment assumptions such as supn�1 EX2
n log |Xn| < +∞, for example.

Theorem 1.1. Assume that in probability as n → ∞,

X2
1 + · · · + X2

n

n
−→ 1.(1.3)

Then, under the hypotheses (1.1)–(1.2), there exists an increasing sequence of in-
dices {in}n�1 such that weakly in distribution

Sn ⇒ N(0, 1).
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As we will see, the desired sequence {in}n�1 can be chosen to be sufficiently tight

in a sense that, for any prescribed sequence {jn}∞n=1 such that jn/n → +∞, {in}n�1

is dominated by {jn}n�1, i.e.,

in � jn for all n large enough.(1.4)

Note that no assumption is made about the expectations EXn.
Theorem 1.1 may be viewed as a certain generalization of the central limit theorem

for independent and identically distributed random variables with mean zero and a
finite second moment. In that case, all the conditions are fulfilled, while the conclusion
of Theorem 1.1 does not depend on the choice of subsequences (by exchangeability).

The meaning of the hypothesis (1.2) is better clarified in the triangular arrays
scheme or in the scheme of finite sequences X1, . . . , XN . Consider, for example,
normalized indicator functions

Xn =
√
N 1An

, 1 � n � N,

where the An’s form a partition of Ω into N measurable subsets of P-measure 1/N .
Then, (1.1) and (1.3) are satisfied, but, for any choice of 1 � i1 < · · · < in � N , the
random variable Sn takes only two values and therefore cannot be approximated by
the standard normal law.

While condition (1.3) is important for asymptotic normality of Sn, it can be
considerably weakened in the study of self-normalized statistics.

Theorem 1.2. Assume that

lim sup
n→∞

P

{
X2

1 + · · · + X2
n

n
� h

}
−→ 0 as h ↓ 0.(1.5)

Then, under hypotheses (1.1), (1.2), there exists an increasing sequence of indices
{in}n�1 such that weakly in distribution as n → ∞,

Tn ⇒ N(0, 1).

Assumption (1.5) means that the distributions of the quadratic forms Rn = (X2
1 +

· · · + X2
n)/n cannot approximate those distributions which have atoms at zero. This

ensures, in particular, that the random variables Tn are well defined for large n with
probability almost 1 (for proper subsequences).

Actually, a statement similar to (1.4) holds in this case, as well: in both statements
the sequences of indices can be chosen almost arbitrarily. Moreover, they form a
subset I in the space I of all increasing sequences (of natural numbers) with µ(I) = 1
for certain probability measures µ on I.

To make this argument precise, recall that every increasing sequence of natural
numbers may be canonically associated to a 0–1 sequence ε = {εn}n�1. Hence, we
may equivalently consider the problem on the functionals

Sn(ε) =
ε1X1 + · · · + εnXn√

ε1 + · · · + εn
and Tn(ε) =

ε1X1 + · · · + εnXn√
ε1X2

1 + · · · + εnX2
n

.

It turns out that assuming (1.1) only, the distributions of Sn(ε) and Tn(ε) are strongly
concentrated around certain “typical distributions” with respect to products of some
Bernoullian measures. In this sense they almost do not depend on the choice of ε.
The first observation of this kind was made by V. N. Sudakov [17], who considered a



606 S. G. BOBKOV AND F. GÖTZE

related problem about the concentration of distributions of linear forms
∑n

k=1 θkXk

with coefficients representing coordinates of a random point on the unit sphere in Rn.
Some extensions and refinements in this randomized model, including the rate of
concentration and different approaches to this concentration phenomenon, were later
studied by a number of authors; cf., e.g., [7], [19], [1], [3]. In these papers, the
additional assumption (1.3) appears as a natural condition which ensures asymptotic
normality of typical distributions (regardless of whether (1.2) holds). The symmetric
Bernoullian case, where θk = εk/

√
n with εk = ±1, was considered in [4]. There it is

shown that, under (1.1)–(1.3), for µ-almost all sequences of signs,

1√
n

n∑
k=1

εkXk ⇒ N(0, 1) as n → ∞,

where µ is the product symmetric Bernoullian measure on the infinite discrete cube
{−1, 1}∞. In contrast, such a statement for “0–1”-coefficients εk (with probability
weights 1

2 ) is no longer valid (even with other than
√
n-normalization). Therefore we

need to look for different suitable measures µ.
As for Tn, this functional is of a more complicated nature, but it is known to be

more well behaved in comparison with linear forms. In the nonrandomized model,
i.e., for in = n, the self-normalized statistics have been of great interest already in
the classical case of independent, identically distributed random variables Xn. In this
case, the question of limit distributions of Tn was raised in 1973 by B. Logan et al. [12]
solving the problem for stable laws F of Xn’s. After contributions [13], [9], [8], and
others, a complete answer in terms of F has recently been given by G. Chistyakov
and F. Götze [6]. In particular, the central limit theorem for Tn holds under weaker
assumptions than that for Sn (that is, a little less than finiteness of the second moment
of F is required). For other important aspects of the asymptotic normality of Tn, such
as the Berry–Esseen-type bounds, see, e.g., [2], [16], [18].

On the other hand, there is no hope of reaching the asymptotic normality of Sn

and Tn if we replace the independence with the orthogonality condition (1.1). One
surprising possible situation was recently noticed by A. R. Pruss [15]: For any natural
number N , it is possible that Xi1 , . . . , XiN are independent for any choice of distinct
indices, and that all Xn are equidistributed according to a prescribed symmetric non-
degenerate law, but the central limit theorem fails. See also [10] for other examples.
As we have seen, in such “bad” situations, one can still obtain some positive results at
the expense of removing certain “bad” terms in the given sequence Xn. This scheme
involves many standard examples such as the sequence of trigonometric functions and
various systems of orthogonal polynomials such as Chebyshev’s.

In the randomized situation as above, let us note that, in order to study a typical
law of Tn(ε), there is good reason to first look at the joint distribution Fε of both
linear and quadratic forms, namely, of random variables

ε1X1 + · · · + εnXn√
Bn

and
ε1X

2
1 + · · · + εnX

2
n

Bn

with a suitably chosen normalization Bn. As we will see, under (1.1)–(1.2), for
“most” ε, the distributions Fε are very close to the distribution of the random vector

Wn = (RnZ,R
2
n),

where Z is a standard normal random variable independent of Rn. This explains why
conditions (1.3) and (1.5) appear in the formulations of Theorems 1.1 and 1.2.
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This paper is (almost) self-contained and is organized as follows. In section 2 we
discuss a concentration property of product measures on the finite dimensional discrete
cube in terms of deviations of “Lipschitz” functions from their means. In section 3
we consider characteristic functions fε of Fε and investigate the Lipschitz seminorm
of functions ε → fε(t, s) with fixed (t, s). A concentration property for this family,
uniform with respect to the variables (t, s), is studied in section 4. An asymptotic
behavior of typical distributions is discussed in section 5, and finally in section 6 we
complete the proof of Theorems 1.1 and 1.2, including the refining assertion (1.4).

2. Concentration on the discrete cube. Given p ∈ (0, 1), denote by µp the
Bernoullian measure on {0, 1} assigning mass p to the point 1 and q = 1 − p to
the point 0. In this section we recall a Gaussian deviation inequality for functions
on the discrete cube {0, 1}n with respect to arbitrary product probability measures
µ = µp1 ⊗ · · · ⊗ µpn

.
With every complex-valued function f on {0, 1}n, we connect the length of the

discrete gradient |∇f | defined by

∣∣∇f(ε)
∣∣2 =

n∑
k=1

∣∣f(ε) − f
(
sk(ε)

)∣∣2, ε ∈ {0, 1}n.

Here, sk(ε) denotes the neighbor of ε along the kth coordinate, i.e., (sk(ε))j = εj for
j 	= k and (sk(ε))k = 1 − εk. Set ‖∇f‖∞ = maxε |∇f(ε)|. This quantity may be
viewed as a Lipschitz seminorm of f .

Proposition 2.1. For every complex-valued f on {0, 1}n such that ‖∇f‖∞ � σ,

µ

{∣∣∣∣f −
∫

f dµ

∣∣∣∣ � h

}
� 4e−h2/σ2

, h > 0.(2.1)

This Gaussian bound is standard, although in the literature it appeared with a
worse constant in the exponent (except for the case of the uniform measure). So, we
include a proof of the refined estimate.

Lemma 2.1. For every real-valued function f on {0, 1}, for any p ∈ (0, 1),

Entµp(e
f ) � 1

8

∫
|∇f |2ef dµp.(2.2)

Here, the entropy functional Entµ(g) with respect to a probability measure µ is
defined, for any g � 0, by

Entµ(g) =

∫
g log g dµ−

∫
g dµ log

∫
g dµ.

Thus, the worst case in the modified logarithmic Sobolev inequality (2.2) corre-
sponds to the symmetric measure, i.e., when p = q = 1

2 .
Proof. Instead of (2.2), consider an equivalent inequality

Entµp
(f) � C(p)

∫
|∇ log f |2f dµp(2.3)

in the class of all positive f on {0, 1} with some optimal C(p). An exact value of this
constant is unknown, but a simple argument shows that it is maximized at p = 1

2 .
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Since (2.3) is homogeneous in f , we may assume
∫
f dµp = 1. In terms of x = f(1),

y = f(0), this condition reads as

px + qy = 1, x, y > 0,(2.4)

and (2.3) itself simplifies to

px log x + qy log y � C(p) (log x− log y)2.

We may think of x as a free variable with values in (0, 1/p), while y = (1 − px)/q is
dependent.

Introduce the function

u(x) =
px log x + qy log y

(log x− log y)2
, 0 < x <

1

p
, y =

1 − px

q
,

so that C(p) = supx u(x). Since u(0+) = u(1/p−) = 0, the function u attains
maximum at some point x0 ∈ (0, 1/p). We have

u′(x) =
pq xy (log x− log y)2 − 2 (px log x + qy log y)

(log x− log y)3 · qy .

Hence u′(x) = 0 if and only if px log x+qy log y = (pq xy/2) (log x−log y)2. Therefore,
C(p) = u(x0) = px qy/2 � 1

8 by (2.4). Thus, Lemma 2.1 follows.

Proof of Proposition 2.1. Inequality (2.2) is extended to the product space {0, 1}n
equipped with product measures µ = µp1 ⊗ · · · ⊗ µpn

. Namely, for any real-valued
function f on {0, 1}n,

Entµ(ef ) � 1

8

∫
|∇f |2ef dµ.

In turn, given that ‖∇f‖∞ � σ, the above inequality easily implies the following
bound on probabilities of large deviations of f (cf. [11], [5]),

µ

{
f −

∫
f dµ � h

}
� e−2h2/σ2

, h > 0,(2.5)

and the following two-sided estimate, as well:

µ

{∣∣∣∣f −
∫
f dµ

∣∣∣∣ � h

}
� 2e−2h2/σ2

, h > 0.(2.6)

In the complex-valued case, the latter bound can be applied separately to f1 =
Re(f) and f2 = Im(f). Assume

∫
f dµ = 0. Since |f | � h implies |f1| � h/

√
2

or |f2| � h/
√

2, and since |∇fj | � |∇f | � σ, j = 1, 2, (2.6) yields

µ
{|f | � h

}
� µ

{
|f1| � h√

2

}
+ µ

{
|f2| � h√

2

}
� 2e−h2/σ2

+ 2e−h2/σ2

.

Thus, Proposition 2.1 is proved.
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3. Bounding the Lipschitz constant. Consider a finite sequence (X1, . . . , Xn)
of random variables satisfying the orthonormality condition (1.1).

Given a collection of probabilities p1, . . . , pn ∈ (0, 1), we equip the discrete
cube {0, 1}n with the product of Bernoullian measures µ = µp1

⊗ · · · ⊗ µpn
. For

ε ∈ {0, 1}n, put

Sn(ε) =
ε1X1 + · · · + εnXn√

Bn

,

Vn(ε) =
ε1X

2
1 + · · · + εnX

2
n

Bn
,

where here and throughout we write Bn = p1 + · · ·+ pn. The normalization is chosen
canonically so that ∫

ESn(ε)2 dµ(ε) =

∫
EVn(ε) dµ(ε) = 1.(3.1)

Note that the self-normalized statistics Tn(ε) may be expressed as

Tn(ε) =
Sn(ε)√
Vn(ε)

.

Our next goal will be to show that, under certain conditions on the growth of Bn,
the joint distribution Fε of Sn(ε) and Vn(ε) is almost independent of the choice of ε
with respect to the measure µ. In other words, Fε’s are strongly concentrated around
a certain “typical” distribution F on the plane R2 and, moreover, for this typical
distribution one can take the µ-average of Fε. Identifying distributions with their
corresponding distribution functions, the average F is given by

F (x, y) =

∫
P
{
Sn(ε) � x, Vn(ε) � y

}
dµ(ε), x, y ∈ R.

Thus, F represents the distribution of (Sn(ε), Vn(ε)), where now ε is viewed as a
random vector independent of all Xk’s, with values in the discrete cube and distributed
according to µ.

To measure the distance between distribution functions of two variables, say F1

and F2, we use the metric

ρ(F1, F2) = sup
t,s

|f1(t, s) − f2(t, s)|
1 + |t| + |s| ,

where f ’s denote the associated characteristic functions. Thus, introduce the family
of characteristic functions of Fε with parameter ε ∈ {0, 1}n,

fε(t, s) = E exp
{
it Sn(ε) + is Vn(ε)

}
, t, s ∈ R,

and their µ-mean

f(t, s) =

∫
E exp

{
it Sn(ε) + is Vn(ε)

}
dµ(ε),

representing the characteristic function of the average distribution F .
As a first step, we fix t, s and derive a bound on the modulus of the gradient

of fε(t, s) viewed as a function of ε ∈ {0, 1}n.
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Lemma 3.1. For all t, s ∈ R and ε ∈ {0, 1}n,∣∣∇fε(t, s)
∣∣ � |t|√

Bn

+
(|t|2 + 2|s|)√n

2Bn
.(3.2)

Corollary 3.1. Given t, s ∈ R with |t| + |s| > 0, for any h ∈ (0, 2],

µ

{
ε :

|fε(t, s) − f(t, s)|
|t| + |s| � h

}
� 4 e−B2

nh
2/(9n).(3.3)

Note that the right-hand side is small once Bn becomes bigger than
√
n.

Inequality (3.3) remains true in the limit case t, s → 0. In particular, since for
small t Taylor’s representation reads as

fε(t, 0) − 1 = itESn(ε) + o(t) = it
ε1EX1 + · · · + εnEXn√

Bn

+ o(t),

we obtain the following corollary.
Corollary 3.2. For any h ∈ (0, 2],

µ

{
ε :

∣∣∣∣∣
n∑

k=1

(εk − pk)EXk

∣∣∣∣∣ � h
√
Bn

}
� 4 e−B2

nh
2/(9n).(3.4)

To show how Corollary 3.1 can be derived from Lemma 3.1 and Proposition 2.1,
first let us observe that, since |fε(t, s) − f(t, s)| � 2, inequality (3.3) is immediate in
the case |t| + |s| > 2/h. In the other case, consider on the discrete cube the function

g(ε) =
fε(t, s) − f(t, s)

|t| + |s| .

It has µ-mean zero, and the modulus of its gradient satisfies, by (3.2),∣∣∇g(ε)
∣∣ � 1

|t| + |s|
( |t|√Bn + |s|√n

Bn
+

|t| |t|√n

2Bn

)
�

√
n

Bn
+

√
n

Bnh
� 3

√
n

Bnh
,

where we have made use of the property Bn � n and the assumptions h � 2 and
|t| � 2/h in the two last steps. It remains to apply inequality (2.1) to the function g.

Proof of Lemma 3.1. We use the following equivalent definition of the modulus
of the gradient of f ,

∣∣∇f(ε)
∣∣ = max

a

∣∣∣∣∣
n∑

k=1

ak
(
f(ε) − f

(
sk(ε)

))∣∣∣∣∣, ε ∈ {0, 1}n;(3.5)

here the maximum is computed over all n-tuples of complex numbers a = (a1, . . . , an)
such that |a1|2 + · · · + |an|2 = 1.

Note that, for each k � n,

Sn(sk(ε)) = Sn(ε) − δkXk√
Bn

, Vn(sk(ε)) = Vn(ε) − δkXk

Bn
,

where

δk = 2εk − 1 =

{
1 if εk = 1,

−1 if εk = 0.
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Hence, we may write

eitSn(ε) eisVn(ε) − eitSn(sk(ε)) eisVn(sk(ε))

= eitSn(ε)+isVn(ε)
(
1 − e−itδkXk/

√
Bn
)

+ eitSn(sk(ε))+isVn(ε)
(
1 − e−isδkX

2
k/Bn

)
.

By (3.5),

∣∣∇fε(t, s)
∣∣ � max

a

∣∣∣∣∣E eitSn(ε)+isVn(ε)
n∑

k=1

ak
(
1 − e−it δkXk/

√
Bn
)∣∣∣∣∣

+ max
a

∣∣∣∣∣E eitSn(sk(ε))+isVn(ε)
n∑

k=1

ak
(
1 − e−is δkX

2
k/Bn

)∣∣∣∣∣
� max

a
E

∣∣∣∣∣
n∑

k=1

ak
(
1 − e−it δkXk/

√
Bn
)∣∣∣∣∣+ max

a
E

∣∣∣∣∣
n∑

k=1

ak
(
1 − e−is δkX

2
k/Bn

)∣∣∣∣∣.
To estimate the first expectation, we use the estimate |eiα − 1 − iα| � 1

2 α
2 (α ∈ R),

which yields∣∣∣∣∣
n∑

k=1

ak
(
1 − e−it δkXk/

√
Bn
)∣∣∣∣∣ � |t|√

Bn

∣∣∣∣∣
n∑

k=1

akδkXk

∣∣∣∣∣+ t2

2Bn

n∑
k=1

|ak|X2
k .

By Cauchy’s inequality and the basic assumption (1.1),(
E

∣∣∣∣∣
n∑

k=1

akδkXk

∣∣∣∣∣
)2

� E

∣∣∣∣∣
n∑

k=1

akδkXk

∣∣∣∣∣
2

= 1.

On the other hand,
∑n

k=1 |ak| � √
n. Together with EX2

k = 1, we get

E

∣∣∣∣∣
n∑

k=1

ak
(
1 − e−it δkXk/

√
Bn
)∣∣∣∣∣ � |t|√

Bn

+
t2
√
n

2Bn
.(3.6)

To estimate the second expectation, just use |eiα − 1| � |α| (α ∈ R), which leads to

E

∣∣∣∣∣
n∑

k=1

ak
(
1 − e−is δkX

2
k/Bn

)∣∣∣∣∣ � |s|
Bn

E

n∑
k=1

|ak|X2
k � |s|√n

Bn
.(3.7)

It remains to combine (3.6) with (3.7) in order to finish the proof of Lemma 3.1.

4. Concentration of distributions in the metric ρ. In the next step we need
to show that the distance ρ(Fε, F ) is small for most of ε ∈ {0, 1}n with respect to the
measure µ. Starting from (3.3), it is unlikely that one can bound the µ-probability

µ

{
ε : sup

t,s

|fε(t, s) − f(t, s)|
|t| + |s| � h

}
without stronger moment assumptions on Xk. We thus use a metric ρ which is
less sensitive to the behavior of characteristic functions near zero. Note that always
ρ(F,G) � 2.

Proposition 4.1. For any h ∈ (0, 2],

µ
{
ε : ρ(Fε, F ) � h

}
� C

h2
e−B2

nh
2/(9n),(4.1)

where C is a universal constant.



612 S. G. BOBKOV AND F. GÖTZE

Proof. In the definition

ρ(Fε, F ) = max
t,s

|fε(t, s) − f(t, s)|
1 + |t| + |s|

one may restrict oneself to the half-plane s � 0. Consider points

tr = r · ch, r = 0,±1,±2, . . . ,±N,

sl = l · ch, l = 0, 1, 2, . . . , N.

where N = [2/(ch)] (the integer part) and where the constant c (such that 0 < c < 1)
will be specified later on. Let

Ω0(h) =

{
ε ∈ {0, 1}n :

|fε(tr, sl) − f(tr, sl)|
|tr| + |sl| < h for all 0 � |r|, l � N − 1

}
with the convention that the ratio is defined to be zero for r = l = 0. By Corollary 3.1,

1 − µ(Ω0(h)) �
∑

|r|<N, l<N

µ

{ |fε(tr, sl) − f(tr, sl)|
|tr| + |sl| � h

}
� 4N(2N − 1) e−B2

nh
2/(9n) � 16

c2h2
e−B2

nh
2/(9n).(4.2)

Take ε ∈ Ω0(h) and a point (t, s) from the square [0, tN ]× [0, sN ]. Then, for some
r, l = 1, . . . , N ,

tr−1 � t � tr, sl−1 � s � sl,

so t− tr−1 � ch, s− sl−1 � ch. Since

∣∣fε(t, s) − fε(tr−1, sl−1)
∣∣ � sup

t,s

∣∣∣∣∂fε∂t

∣∣∣∣ (t− tr−1) + sup
t,s

∣∣∣∣∂fε∂s

∣∣∣∣ (s− sl−1)

and similarly for f , we obtain that∣∣fε(t, s) − f(t, s)
∣∣ � ∣∣fε(tr−1, sl−1) − f(tr−1, sl−1)

∣∣
+
∣∣fε(t, s) − fε(tr−1, sl−1)

∣∣+ ∣∣f(t, s) − f(tr−1, sl−1)
∣∣

� (tr−1 + sl−1)h +

(
sup
t,s

∣∣∣∣∂fε∂t

∣∣∣∣+ sup
t,s

∣∣∣∣∂fε∂s

∣∣∣∣+ sup
t,s

∣∣∣∣∂f∂t
∣∣∣∣+ sup

t,s

∣∣∣∣∂f∂s
∣∣∣∣) ch

� (t + s)h +

(
sup
t,s

∣∣∣∣∂fε∂t

∣∣∣∣+ sup
t,s

∣∣∣∣∂fε∂s

∣∣∣∣+ sup
t,s

∣∣∣∣∂f∂t
∣∣∣∣+ sup

t,s

∣∣∣∣∂f∂s
∣∣∣∣) ch.(4.3)

Recall that fε(t, s) = EeitSn(ε)+isVn(ε). To estimate the absolute values of the
partial derivatives of fε(t, s), we may use the trivial bounds

sup
t,s

∣∣∣∣∂fε∂t

∣∣∣∣ � E
∣∣Sn(ε)

∣∣ �
(
E|Sn(ε)|2)1/2 =

(
ε1 + · · · + εn

Bn

)1/2

,(4.4)

sup
t,s

∣∣∣∣∂fε∂s

∣∣∣∣ � EVn(ε) =
ε1 + · · · + εn

Bn
.(4.5)
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Indeed, consider on the discrete cube the function g(ε) = (ε1 + · · · + εn)/Bn. It has
µ-mean 1 and a constant modulus of gradient |∇g(ε)| ≡ σ =

√
n/Bn. Hence, by the

one-sided deviation inequality (2.5) applied to g,

µ{g − 1 � R} � e−2R2/σ2

, R > 0.

Using it with R =
√

2
3 , we arrive at

µ

{
sup
t,s

∣∣∣∣∂fε∂s

∣∣∣∣ � 1 +

√
2

3

}
� e−4B2

n/(9n) � e−B2
nh

2/(9n)(4.6)

(since h � 2), and similarly

µ

{
sup
t,s

∣∣∣∣∂fε∂t

∣∣∣∣2 � 1 +

√
2

3

}
� e−B2

nh
2/(9n).(4.7)

Also note that by (4.4)–(4.5) and (3.1), since f represents the µ-mean of fε’s,

sup
t,s

∣∣∣∣∂f∂t
∣∣∣∣ � ∫ E

∣∣Sn(ε)
∣∣ dµ(ε) � 1, sup

t,s

∣∣∣∣∂f∂s
∣∣∣∣ � ∫ EVn(ε) dµ(ε) = 1.(4.8)

Now, introduce

Ω1 =

{
ε ∈ {0, 1}n : sup

t,s

∣∣∣∣∂fε∂t

∣∣∣∣2 < 1 +

√
2

3
, sup

t,s

∣∣∣∣∂fε∂s

∣∣∣∣ < 1 +

√
2

3

}
.

Then, by (4.8), if ε ∈ Ω0(h) ∩ Ω1, (4.3) implies

∣∣fε(t, s) − f(t, s)
∣∣ � (t + s)h +

(
3 +

√
2

3
+

(
1 +

√
2

3

)1/2)
ch < (t + s)h + 5 ch.

A similar argument works in the case −tN � t � 0. So taking, for example, c = 1
5 ,

for all (t, s) ∈ [−tN , tN ] × [0, sN ], we obtain that∣∣fε(t, s) − f(t, s)
∣∣ � (1 + |t| + s)h for ε ∈ Ω0(h) ∩ Ω1.(4.9)

On the other hand, if |t| > tN or s > sN , then (1 + |t| + s)h > (1 + [2/h])h > 2, so
inequality (4.9) will be fulfilled automatically. Thus, applying (4.2) and (4.6)–(4.7),
we conclude that

µ

{
sup
t,s

|fε(t, s) − f(t, s)|
1 + |t| + |s| � h

}
� 1 − µ(Ω0(h) ∩ Ω1)

� 16

c2h2
e−B2

nh
2/(9n) + 2 e−B2

nh
2/(9n).

Finally, note that 16/(c2h2) + 2 = 16 · 25/h2 + 2 � 408/h2, for 0 < h � 2. Thus,
Proposition 4.1 follows with C = 408.
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5. Average distributions. Let us start with an infinite sequence {Xn}n�1 of

random variables satisfying the orthonormality condition (1.1). Here we concentrate
on the asymptotic behavior of the average distributions F = Fn for a growing “di-
mension” parameter n. Thus, fix a sequence pn ∈ (0, 1) and, for each n, equip the
discrete cube {0, 1}n with the product of Bernoullian measures µn = µp1 ⊗ · · · ⊗ µpn .

Introduce the random variable Rn � 0 by

R2
n =

1

Bn

n∑
k=1

pkX
2
k ,(5.1)

and denote by Gn the distribution of the two-dimensional random vector

Wn = (RnZ,R
2
n),

where Z is an N(0, 1)-random variable independent of all Xn’s. Note that ER2
n = 1.

Proposition 5.1. We have ρ(Fn, Gn) → 0 as n → ∞, if
(a) pn → 0;
(b) Bn → +∞;
(c) max1�k�n |Xk| = o(

√
Bn ) in probability.

It is obvious that assumption (b) is implied by (c). The latter is defined as

P

{
max1�k�n |Xk|√

Bn

� λ

}
→ 1 for any λ > 0.(5.2)

Proof of Proposition 5.1. Changing the order of integration in the definition of
the characteristic function fn of Fn, we may write it as fn(t, s) = EΠn(t, s), where

Πn(t, s) =

n∏
k=1

(
qk + pk e

itXk/
√
Bn+isX2

k/Bn

)
, t, s ∈ R, qk = 1 − pk.

By conditions (a) and (b), we may assume without loss of generality that pn � 1
4 for

all n. Fix a point (t, s). We use log to denote the principal value of the logarithm.
By Taylor’s expansion, | log(1 + z) − z| < |z|2 for any complex z such that |z| � 1

2 .
Applying this to z = pk(exp{itXk/

√
Bn + isX2

k/Bn} − 1), we may write

(5.3)

log Πn(t, s) =

n∑
k=1

pk
(
eitXk/

√
Bn+isX2

k/Bn − 1
)

+

n∑
k=1

θkp
2
k

∣∣∣eitXk/
√
Bn+isX2

k/Bn − 1
∣∣∣2

with some random complex θk such that |θk| < 1.
First let us note that the second sum in (5.3) is becoming small for large n. Using

|eiα − 1| � |α| (α ∈ R), we observe that on the set Ωn = {max1�k�n |Xk|/
√
Bn � 1}∣∣∣eitXk/

√
Bn+isX2

k/Bn − 1
∣∣∣2 �

(|t| + |s|)2 X2
k

Bn
.

But the random variables ξn = B−1
n

∑n
k=1 θkp

2
kX

2
k have first absolute moments satis-

fying

E|ξn| � 1

Bn

n∑
k=1

p2
k =

p2
1 + · · · + p2

n

p1 + · · · + pn
−→ 0 as n → ∞,
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due to assumptions (a) and (b). Together with (5.2) we conclude that the second
sum in (5.3) represents a random variable, say Yn, such that Yn → 0 in probability
as n → ∞.

Now, let us turn to the first sum in (5.3). We will need a strengthened (but still
equivalent) version of (5.2), namely, the property that there is a sequence of reals
λn ↓ 0 such that the events

Ωn(λn) =

{
max1�k�n |Xk|√

Bn

� λn

}

have probabilities P(Ωn(λn)) → 1. On the set Ωn(λn), by Taylor’s expansion, uni-
formly over all k � n

eitXk/
√
Bn+isX2

k/Bn = 1 + it
Xk√
Bn

−
(
t2

2
− is

)
X2

k

Bn
+ o(1)

X2
k

Bn
,

so the first sum in (5.3) simplifies

it√
Bn

n∑
k=1

pkXk −
(
t2

2
− is

)
R2

n + o(1)R2
n.

But by the basic assumption (1.1), the random variables ηn = B
−1/2
n

∑n
k=1 pkXk have

second moments Eη2
n = B−1

n

∑n
k=1 p

2
k → 0, as already mentioned. Hence, the first

sum behaves asymptotically like (−t2/2 + is)R2
n.

Eventually, with probability converging to 1, an identity

log Πn(t, s) =

(
− t2

2
+ is

)
R2

n + αn(t, s)

holds with some random αn such that αn → 0. This implies that

fn(t, s) = Ee(−t2/2+is)R2
n+αn = gn(t, s)

(
1 + o(1)

)
,

where gn(t, s) = Ee(−t2/2+is)R2
n is just the characteristic function of Wn.

This finishes the proof.

Remark 5.1. The statement of Proposition 5.1 holds if we replace in (5.1) the
random variable R2

n with a more canonical expression

R̂2
n =

1

n

n∑
k=1

X2
k .

More precisely, the sequence pn should possess an additional property

n∑
k=1

∣∣∣∣ pkBn
− 1

n

∣∣∣∣ −→ 0 as n → ∞.(5.4)

In this case, E|R̂2
n −R2

n| → 0 as n → ∞, so E|R̂n −Rn| → 0 as well. As a result, the

distributions of Wn and Ŵn = (R̂nZ, R̂
2
n) will converge.
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Remark 5.2. The convergence ρ(Fn, Gn) → 0 is equivalent to the (formally
stronger) property that, for any bounded, continuous function u = u(x, y) on the
plane,

lim
n→∞

∣∣∣∣∫ u dFn −
∫

u dGn

∣∣∣∣ = 0.

This is due to the fact that both sequences {Fn}n�1 and {Gn}n�1 form precompact

families in the space of probability measures on the half-plane y � 0 equipped with
the topology of weak convergence. Indeed, they have bounded first moments:∫ ∫ (|x| + y

)
dFn(x, y) =

∫ (
E
∣∣Sn(ε)

∣∣+ EVn(ε)
)
µn(ε) � 2

(cf. (4.8)), and similarly for Gn,∫ ∫ (|x| + y
)
dGn(x, y) = ERn E|Z| + ER2

n < 2.

6. Limit behavior along subsequences. At last, we are prepared to prove
Theorems 1.1 and 1.2. Keeping the notation of the previous section, introduce the
product of Bernoullian measures µ = µp1 ⊗ µp2 ⊗ · · · on the infinite dimensional
discrete cube M = {0, 1}∞ parametrized by pn ∈ (0, 1), n � 1. For infinite sequences
ε = (εn)n�1 ∈ M , we use the notation as before, namely,

Sn(ε) =
ε1X1 + · · · + εnXn√

Bn

, Vn(ε) =
ε1X

2
1 + · · · + εnX

2
n

Bn
, Tn(ε) =

Sn(ε)√
Vn(ε)

.

Also recall that

R2
n =

1

Bn

n∑
k=1

pkX
2
k , Bn = p1 + · · · + pn,

and that Z denotes a standard normal random variable independent of Rn. First we
derive a more general theorem.

Theorem 6.1. Assume that
(a) pn → 0 as n → ∞;

(b) for any h > 0, the series
∑∞

n=1 e
−B2

nh
2/n is convergent;

(c) max1�k�n |Xk| = o(
√
Bn ) in probability.

Then, for µ-almost all ε ∈ M , the two-dimensional distributions of random vectors
(Sn(ε), Vn(ε)) and (RnZ,R

2
n) are convergent in the sense of the weak topology.

Condition (b) strengthens the assumption Bn → ∞ of Proposition 5.1.
As an application, we have (taking into account Remark 5.2) the following corol-

lary.
Corollary 6.1. Assuming conditions (a)–(c) of Theorem 6.1, we have the fol-

lowing for µ-almost all ε ∈ M :
(1) If Rn → 1 in probability as n → ∞, then Sn(ε) ⇒ N(0, 1);
(2) if lim supn→∞ P{Rn < h} → 0 as h ↓ 0, then Tn(ε) ⇒ N(0, 1).
Note that the assumption of statement (2) is much weaker than that of state-

ment (1).
Proof of Theorem 6.1. Given ε ∈ M , denote by Un(ε) its projection (ε1, . . . , εn)

onto {0, 1}n. Clearly, Un(ε) has distribution µn = µp1 ⊗ · · · ⊗ µpn , and the random
vector (Sn(ε), Vn(ε)) has distribution FUn(ε), according to previous notation.
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In view of Proposition 5.1, we need to show that ρ(FUn(ε), Fn) → 0 for µ-almost
all ε. Fix a number h > 0. By Proposition 4.1 and assumption (b),

∞∑
n=1

µ
{
ρ(FUn(ε), Fn) � h

}
=

∞∑
n=1

µn

{
ε = (ε1, . . . , εn) : ρ(Fε, Fn) � h

}
�

∞∑
n=1

C

h2
e−B2

nh
2/n < +∞.

Therefore, by the Borel–Cantelli lemma, for µ-almost all ε ∈ M , we obtain that
ρ(FUn(ε), Fn) < h, for all sufficiently large n. So,

µ

{
lim sup
n→∞

ρ(FUn(ε), Fn) � h

}
= 1.

Letting h tend to zero finishes the proof.
Proof of Corollary 6.1. To deduce statement (2), we need to make sure, as is

discussed in Remark 5.2, that for µ-almost all ε ∈ M , the sequence of distributions
{FUn(ε)}n�1 forms a precompact family in the space of probability measures on the

half-plane y � 0. Indeed, for the first moments we have∫ ∫
(|x| + y) dFUn(ε)(x, y) =

∫ (
E
∣∣Sn(ε)

∣∣+ EVn(ε)
)
dµn(ε)

�
(
ε1 + · · · + εn

Bn

)1/2

+
ε1 + · · · + εn

Bn
,

which is bounded in n with µ-probability 1, by the strong law of large numbers.
Hence, for any bounded, continuous function u = u(x, y), we have for µ-almost all ε,

lim
n→∞

∣∣Eu
(
Sn(ε), Vn(ε)

)− Eu(RnZ, R
2
n)
∣∣ = 0.(6.1)

The assumption in statement (2) implies that lim supn→∞ P{Vn(ε) < h} → 0 as h ↓ 0.
Hence, we may apply (6.1) to functions of the form u(x, y) = v(x/

√
y ), which gives

Ev(Un(ε)) → Ev(Z) as n → ∞. Thus Corollary 6.1 follows.
Now, let us focus on specific choices of product measures µ on M , that is, of

sequences pn, which make assumptions on Xn as weak as possible. For example, since
Bn � n, one can try to weaken assumption (c) of Theorem 6.1 to

max
1�k�n

|Xk| = o(
√
n ) in probability as n → ∞.(6.2)

Note that the basic hypothesis (1.1) or, more precisely, the assumption EX2
n = 1,

implies only max1�k�n |Xk| = O(
√
n ) so that (6.2) represents a mild strengthening.

On the other hand, (6.2) is already fulfilled under a mild moment assumption such as

sup
n

EΨ(X2
n) < +∞,(6.3)

where Ψ(x) is a nonnegative increasing function in x � 0 such that Ψ(x)/x → +∞ as
x → +∞. Indeed, by Chebyshev’s inequality, for any λ > 0, we would get

P

{
max1�k�n |Xk|√

n
� λ

}
�

EΨ(max1�k�n |Xk|2)
Ψ(λ2n)

� EΨ(X2
1 ) + · · · + EΨ(X2

n)

Ψ(λ2n)
−→ 0.
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The existence of such a function Ψ is equivalent to the property of the se-
quence {X2

n} to be uniformly integrable in the Lebesgue space L1(Ω,F ,P). In that
case, Ψ can be chosen to be convex; cf., e.g., [14].

Theorem 6.2. If (6.2) is fulfilled, then for some product probability measure µ on
M = {0, 1}∞, the distributions of (Sn(ε), Vn(ε)) and (RnZ,R

2
n) converge for µ-almost

all ε in M .
The proof is based on Theorem 6.1 and the following simple observation, which

is needed for the proof of Theorems 1.1 and 1.2 as well.
Lemma 6.1. Given a sequence of positive reals (An)n�1 such that An = o(n)

as n → ∞, one can find a sequence (pn)n�1 with the following properties:

(1) 0 < pn < 1;
(2) pn is nonincreasing;
(3) pn → 0 as n → ∞;
(4) p[

√
n ] ∼ pn as n → ∞;

(5)
∑∞

n=1 e
−B2

nh
2/n < ∞ for all h > 0, where Bn = p1 + · · · + pn;

(6)
∑n

k=1 |pk/Bn − 1/n| → 0 as n → ∞;
(7) Bn � An for all n large enough.
Here [

√
n ] denotes the integer part of

√
n and ∼ denotes the equivalence of se-

quences. Thus, property (4) means that pn is varying very slowly. Together with
other properties, it actually implies property (6), appearing in Remark 5.1; cf. (5.4).
Indeed, write

n∑
k=1

∣∣∣∣ pkBn
− 1

n

∣∣∣∣ = 2
∑

1�k<
√
n

(
pk
Bn

− 1

n

)+

+ 2
∑

√
n�k�n

(
pk
Bn

− 1

n

)+

� 2
∑

k<
√
n

pk
Bn

+ 2n

(
p[

√
n ]

Bn
− 1

n

)+

� 2

√
n

Bn
+ 2

(
np[

√
n ]

Bn
− 1

)+

,

where we used notation a+ = max{a, 0} and where we applied properties (1) and (2)
to justify the last inequality. Now, by property (5),

√
n/Bn → 0 as n → ∞. Finally,

in terms of cn = p[
√
n ]/pn, since npn � Bn, we obtain that(
np[

√
n ]

Bn
− 1

)+

=

(
cnnpn
Bn

− 1

)+

� cn − 1−→ 0.

Proof of Lemma 6.4. The last requirement, (7), may be weakened to An =
O(Bn), since one can always start with a sequence A′

n such that A′
n = o(n) and

An = o(A′
n).

Put αn = maxk�n Ak/k. Since this sequence is not increasing, it majorizes An/n

and satisfies αn ↓ 0 as n → ∞. Hence, the sequence βn = (α1 + · · · + αn)/n also
majorizes An/n and converges to zero. Let A′

n = βnn = α1+· · ·+αn so that A′
n � An,

A′
n = o(n), and A′

n+1 −A′
n ↓ 0 as n → ∞. Given c > 0, define

B′
n = c

(
A′

n + n3/4
)
, n � 1.

This sequence is strictly increasing, and again we have B′
n � An, B′

n = o(n), B′
n+1 −

B′
n ↓ 0 as n → ∞ (since the increments (n+1)3/4 −n3/4 decrease as well). Moreover,

the constant c can be chosen to satisfy p′n ≡ B′
n+1 −B′

n < 1 for all n � 1.
The sequence p′n meets all the requirements of the lemma except perhaps prop-

erty (4) (and therefore (6)), and with property (7) replaced by B′
n � cAn. Hence, it
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remains to modify p′n to make it vary slowly. For this purpose, introduce the sequence
r′n � 0 through R′

n ≡ − log p′n = r′1 + · · · + r′n and define ∆′
k = r′2k−1 + · · · + r′2k−1.

Then
∑∞

k=1 ∆′
k = limk→∞ R′

2k−1 = +∞. Therefore, one can choose a sequence ∆k

with the following properties:
(a) 0 � ∆k � ∆′

k;
(b) ∆k → 0 as k → ∞;
(c)
∑∞

k=1 ∆k = +∞.
Moreover, by the first property, for each k � 1, one can choose nonnegative real

numbers r2k−1 � r′2k−1 , . . . , r2k−1 � r′2k−1 such that r2k−1 + · · ·+r2k−1 = ∆k. Finally,

put Rn = r1 + · · · + rn and pn = e−Rn . It follows that 0 < p′n � pn < 1, (pn)n�1

is nonincreasing, and Bn = p1 + · · · + pn � p′1 + · · · + p′n = B′
n � cAn. Hence,

properties (1), (2), (5) and the weakened version of property (7) are fulfilled automat-
ically. Moreover, property (3) is also satisfied, since by monotonicity and property (c),
p2k−1 = e−(∆1+···+∆k) → 0 as k → ∞. Finally, (p2k−1)/p2k−1 = e−∆k → 1 by prop-
erty (b), which implies p[ log n]/pn → 1 as n → ∞. This is stronger than property (4),
so Lemma 6.1 is proved.

Proof of Theorem 6.2. Condition (6.2) can formally be strengthened as

max
1�k�n

|Xk| = o(λn

√
n ) in probability as n → ∞,(6.4)

for some λn → 0. Put

An = λ2
nn(6.5)

so that An = o(n). Let us recall how one can choose An, i.e., λn in (6.4). For any
sequence of random variables ξn � 0, the convergence ξn → 0 in probability as n → ∞
is equivalent to EL(ξn) → 0, where

L(x) =
x

1 + x
, x � 0.

This function is concave, positive for x > 0, and satisfies L(0) = 0, 0 � L < 1.
In particular, the inequality L(x/λ) � λ−1 L(x) holds for all x � 0 and λ ∈ (0, 1].
Moreover, if Eξn > 0, the sequence λn = (EL(ξn))1/2 satisfies the properties 0 <
λn < 1, λn → 0, and EL(ξn/λn) � λn. Thus, in the case ξn = Mn/n, Mn =
max1�k�n |Xk|2, one can take An = λ2

nn with

λ2
n =

(
EL

(
Mn

n

))1/2

.(6.6)

Picking a sequence pn from Lemma 6.1, all the conditions of Theorem 6.1 will be
fulfilled, and thus the conclusion follows.

Taking into account Remark 5.1, from Lemma 6.1 and Theorem 6.2 we obtain
immediately the assertions of Theorems 1.1 and 1.2 in a stronger “almost surely” form
similarly to statements (1)–(2) of Corollary 6.1 (now with Rn replaced by R̂n). It
remains to prove the refining property (1.4).

Theorem 6.3. Given a sequence {jn}n�1 such that limn→∞ jn/n → +∞, a

sequence {in}n�1 in Theorems 1.1 and 1.2 can be chosen to satisfy in � jn for all n
large enough.

Proof. Let µ = µp1 ⊗µp2 ⊗· · · be product of Bernoulli measures on M = {0, 1}∞
constructed for a sequence pn from Lemma 6.1 with An defined in (6.5) and (6.6). In
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the conditions of Theorems 1.1 and 1.2, we have proved the weak convergence

Sn(ε) ⇒ N(0, 1), Tn(ε) ⇒ N(0, 1)

for µ-almost all ε = (εn)n�1 in M . Thus, such an ε exists, but we need to choose

a 0–1-sequence satisfying (1.4). Note that since Bn = p1 + · · · + pn → +∞, for
µ-almost ε, we have, by the strong law of large numbers,

ε1 + · · · + εn
Bn

−→ 1.(6.7)

Thus, Sn(ε) may be replaced with Sn, introduced in section 1, for the increasing
sequence of indices

ik = min{n � 1: ε1 + · · · + εn = k}, k � 1.

Hence, by (6.7), for all sufficiently large k, we have k = ε1 + · · · + εik � Bik/2, that
is, Bik � 2k. Recall that in Lemma 6.1 the sequence Bn may be chosen to majorize
any prescribed An such that An = o(n). Therefore, with µ-probability 1, we also
have Aik � 2k for all sufficiently large k. Let us start with an increasing, continuous
function A = A(x) of x � 0 such that A(0) = 0, A(x)/x → 0 as x → +∞, with
inverse function A−1. Put Ai = A(i) and solve Aik � 2k as ik � A−1(2k). Finally,
the inequality 2k � A(jk) holds by an appropriate choice of the function A.
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