
Concentration of Distributions of the
Weighted Sums with Bernoullian Coefficients�

S.G. Bobkov

School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church St.
S.E., Minneapolis, MN 55455, USA bobkov@math.umn.edu

Summary. For non-correlated random variables, we study a concentration prop-
erty of the distributions of the weighted sums with Bernoullian coefficients. The
obtained result is used to derive an “almost surely version” of the central limit
theorem.

Let X = (X1, . . . , Xn) be a vector of n random variables with finite second
moments such that, for all k, j,

EXkXj = δkj (1)

where δkj is Kronecker’s symbol. It is known that, for growing n, the distri-
bution functions

Fθ(x) = P

{
n∑

k=1

θkXk ≤ x

}
, x ∈ R,

of the weighted sums of (Xk), with coefficients θ = (θ1, . . . , θn) satisfying
θ2
1 + . . . + θ2

n = 1, form a family possessing a certain concentration property
with respect to the uniform measure σn−1 on the unit sphere Sn−1. Namely,
most of Fθ’s are close to the average distribution

F (x) =
∫

Sn−1
Fθ(x) dσn−1(θ)

in the sense that, for each δ > 0, there is an integer nδ such that if n ≥ nδ

one can select a set of coefficients Θ ⊂ Sn−1 of measure σn−1(Θ) ≥ 1 − δ
such that d(Fθ, F ) ≤ δ, for all θ ∈ Θ. This property was first observed by
V.N. Sudakov [S] who stated it for the Kantorovich–Rubinshtein distance
d(Fθ, F ) =

∫ +∞
−∞ |Fθ(x) − F (x)| dx, with a proof essentially relying on the

isoperimetric theorem on the sphere. A different approach to this result was
suggested by H. von Weizsäcker [W] (cf. also [D-F]). V.N. Sudakov also con-
sidered “Gaussian coefficients” in which case, as shown in [W], there is a
rather general infinite dimensional formulation. An important special situ-
ation where the random vector X is uniformly distributed over a centrally
symmetric convex body in Rn was recently studied, for the uniform distance
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supx |Fθ(x) − F (x)|, by M. Antilla, K. Ball, and I. Perissinaki [A-B-P], see
also [B] for refinements and extensions to log-concave distributions. One can
find there quantitative versions of Sudakov’s theorem, while in the general
case, the following statement proven in [B] holds true: under (1), for all δ > 0,

σn−1
{
L(Fθ, F ) ≥ δ

} ≤ 4n3/8 e−nδ4/8. (2)

Here L(Fθ, F ) stands for the Lévy distance defined as the minimum over all
δ ≥ 0 such that F (x−δ)−δ ≤ Fθ(x) ≤ F (x+δ)+δ, for all x ∈ R. As well as
the Kantorovich–Rubinshtein distance d, the metric L is responsible for the
weak convergence, and there is a simple relation d(Fθ, F ) ≤ 6L(Fθ, F )1/2 (so
one can give an appropriate estimate for d on the basis of (2)).

The aim of this note is to show that a property similar to (2) still holds
with respect to very small pieces of the sphere. As a basic example, we con-
sider coefficients of the special form θ = 1√

n
ε where ε = (ε1, . . . , εn) is an

arbitrary sequence of signs ±1. Thus, consider the weighted sums

Sε =
1√
n

n∑
k=1

εkXk

together with their distribution functions Fε(x) = P{Sε ≤ x} and the corre-
sponding average distribution

F (x) =
∫

{−1,1}n

Fε(x) dµn(ε) =
1
2n

∑
εk=±1

P
{

ε1X1 + . . . + εnXn√
n

≤ x

}
.

(3)
Here and throughout, µn stands for the normalized counting measure on the
discrete cube {−1, 1}n. We prove:

Theorem 1. Under (1), for all δ > 0,

µn

{
ε : L(Fε, F ) ≥ δ

} ≤ Cn1/4 e−cnδ8
, (4)

where C and c are certain positive numerical constants.

Note that the condition (1) is invariant under rotations, i.e., it is fulfilled
for random vectors U(X) with an arbitrary linear unitary operator U in Rn.
Being applied to such vectors, the inequality (4) will involve the average
F = FU which of course depends on U . However, under mild integrability
assumptions on the distribution of X, all these FU (not just most of them)
turn out to be close to the one appearing in Sudakov’s theorem as the typical
distribution for the uniformly distributed (on the sphere) or suitably squeezed
Gaussian coefficients. In particular, one can give an analogue of (4) with a
certain distribution F not depending on the choice of the basis in Rn. On
the other hand, some additional natural assumptions lead to the following
version of the central limit theorem. We will denote by µ∞ the canonical
infinite product measure µ1 ⊗ µ1 ⊗ . . . on the product space {−1, 1}∞.
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Theorem 2. Let {Xn,k}n
k=1 be an array of random variables satisfying (1)

for all n and such that in probability, as n → ∞,

a) max{|Xn,1|,...,|Xn,n|}√
n

→ 0,

b) X2
1,1+...+X2

n,n

n → 1.

Then, for µ∞-almost all sequences {εk}k≥1 of signs,

1√
n

n∑
k=1

εkXn,k → N(0, 1), as n → ∞.

If we consider the sum 1√
n

∑n
k=1 εkXn,k with εk regarded as independent

Bernoullian random variables which are independent of all Xn,k, then the
above statement will become much weaker and will express just the prop-
erty that the average distribution F defined by (3) for the random vector
(X1,1, . . . , Xn,n) is close to N(0, 1) (here is actually a step referring to the
assumptions a) and b)). In addition to this property, we need to have a suf-
ficiently good closeness (in spaces of finite dimension) of most of Fε’s to F
and thus to the normal law.

Both the assumption a) and b) are important for the conclusion of The-
orem 2. Under a), the property b) is necessary. To see that a) cannot be
omitted, assume that the underlying probability space (Ω,P) is non-atomic
and take a partition An,1, . . . , An,n of Ω consisting of the sets of P-measure
1/n. Then, the array Xn,k =

√
n 1An,k

, 1 ≤ k ≤ n, satisfies (1), and

max{|Xn,1|, . . . , |Xn,n|}√
n

= 1,
X2

1,1 + . . . + X2
n,n

n
= 1,

so, the property b) is fulfilled, while a) is not. On the other hand, for any
sign sequence (ε1, . . . , εn), the random variable 1√

n

∑n
k=1 εkXn,k takes only

the two values ±1, so it cannot be approximated by the standard normal
distribution. Note, however, that Theorem 1 still holds in this degenerate
case, with the µn-typical distribution F having two equal atoms at ±1.

It might be worthwhile also noting that in general it is not possible to
state Theorem 2 for any prescribed coefficients, say, for εk = 1 – similarly to
the case of independent variables, even if, for each n, {Xn,k} are bounded,
symmetrically distributed and pairwise independent. For example, start from
a sequence of independent Bernoullian random variables ξ1, . . . , ξd (with
P{ξk = ±1} = 1

2 ) and construct a double index sequence Xn,(k,j) = ξkξj ,
1 ≤ k < j ≤ d. The collection

{
Xn,(k,j)

}
, of cardinality n = d(d − 1)/2,

satisfies the basic correlation condition (1), and since |Xn,(k,j)| = 1, both the
assumption a) and b) are fulfilled. Nevertheless, in probability, as d → ∞,

1√
n

∑
1≤k<j≤d

Xn,(k,j) =
1

2
√

n

(
d∑

k=1

ξk

)2
− d

2
√

n
−→ ζ2 − 1√

2
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where ζ ∈ N(0, 1).
We turn to the proof of Theorem 1. To this task, we first study the

concentration property of the family {Fε} on the level of their characteristic
functions

fε(t) = E eitSε , t ∈ R.

Concentration of {fε} around its µn-mean

f(t) =
∫

fε(t) dµn(ε) =
∫ +∞

−∞
eitx dF (x)

can be then converted, with the help of standard facts from Fourier analysis,
into the concentration of distributions in the form (4). This route somewhat
different than that of [A-B-P] or [B] has apparently to be chosen in view of
a specific form of concentration on the discrete cube.

With every complex-valued function f on {−1, 1}n, we connect the length
of the discrete gradient |∇f | defined by

|∇f(ε)|2 =
n∑

k=1

∣∣∣∣f(ε) − f(sk(ε))
2

∣∣∣∣
2

, ε ∈ {−1, 1}n,

where sk(ε) is the neighbour of ε along kth coordinate, i.e., (sk(ε))j = εj for
j 
= k, and (sk(ε))k = −εk. Set ‖∇f‖∞ = maxε |∇f(ε)|.
Lemma 1. For every f such that ‖∇f‖∞ ≤ σ,

µn

{∣∣∣∣f −
∫

f dµn

∣∣∣∣ ≥ h

}
≤ 4e−h2/(4σ2), h > 0.

This Gaussian bound is standard. It can be obtained using the so-called
modified logarithmic Sobolev inequalities, see e.g. [B-G], [L]. In fact, for real-
valued f , a sharper estimate holds true,

µn

{∣∣∣∣f −
∫

f dµn

∣∣∣∣ ≥ h

}
≤ 2e−h2/(2σ2),

while in general the latter can be applied separately to the real and the
imaginary part of f to yield the inequality of Lemma 1.

Lemma 2. Under (1), for every t ∈ R,

‖∇fε(t)‖∞ ≤ |t| + t2√
n

.

Proof. Using the equality fε(t) − fsk(ε)(t) = E eitSε(1 − e−2it εkXk/
√

n ), we
may write
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|∇fε(t)| = sup

∣∣∣∣∣E eitSε

n∑
k=1

ak
1 − e−2it εkXk/

√
n

2

∣∣∣∣∣
≤ sup E

∣∣∣∣∣
n∑

k=1

ak
1 − e−2it εkXk/

√
n

2

∣∣∣∣∣ ,

where the supremum runs over all complex numbers a1, . . . , an such that
|a1|2 + . . . + |an|2 = 1. Using the estimate |eiα − 1 − iα| ≤ 1

2 α2 (α ∈ R) and
the assumption EX2

k = 1, we can continue to get

|∇fε(t)| ≤ |t|√
n

sup E

∣∣∣∣∣
n∑

k=1

akεkXk

∣∣∣∣∣+ t2

n
sup E

n∑
k=1

|ak|X2
k

=
|t|√
n

sup E

∣∣∣∣∣
n∑

k=1

akεkXk

∣∣∣∣∣+ t2√
n

.

It remains to note that, by Schwarz’ inequality and (1), (E |∑n
k=1 akεkXk |)2 ≤

E |∑n
k=1 akεkXk |2 = 1.

We also need the following observation due to H. Bohman [Bo].

Lemma 3. Given characteristic functions ϕ1 and ϕ2 of the distribution func-
tions F1 and F2, respectively, if |ϕ1(t)−ϕ2(t)| ≤ λ|t|, for all t ∈ R, then, for
all x ∈ R and a > 0,

F1(x − a) − 2λ

a
≤ F2(x) ≤ F1(x + a) +

2λ

a
.

The particular case a =
√

2λ gives an important relation

1
2

L(F1, F2)2 ≤ sup
t>0

∣∣∣∣ϕ1(t) − ϕ2(t)
t

∣∣∣∣ . (5)

Proof of Theorem 1. Fix a number h > 0. For 0 < t ≤ 2
h , by Lemma 2,

‖∇fε(t)‖∞ ≤ t+t2√
n

≤ t√
n

(1+ 2
h ), so that, by Lemma 1 applied to the function

ε → fε(t), we get

µn

{
ε :
∣∣∣∣fε(t) − f(t)

t

∣∣∣∣ ≥ h

}
≤ 4e−nh4/4(h+2)2 . (6)

In the case t > 2
h , this inequality is immediate, since |fε(t)−f(t)| ≤ 2 < th, for

all ε. Thus, we have the estimate (6) for all t separately, but in order to apply
Lemma 3, we need a similar bound holding true for the supremum over all
t > 0. To this end, apply (6) to the points tr = rh2, r = 1, 2, . . . , N =

[ 2
h

]
+1,

to get
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µn

{
ε : max

1≤r≤N

∣∣∣∣fε(tr) − f(tr)
tr

∣∣∣∣ ≥ h

}
≤ 4Ne−nh4/4(h+2)2 . (7)

Since ESε = 0, ES2
ε = 1, we have |f ′

ε(t)| ≤ 1, f ′
ε(0) = 0, |f ′′

ε (t)| ≤ 1,
and similarly for f . Therefore, |fε(t) − f(t)| ≤ t2 ≤ th, for all ε, as soon
as 0 ≤ t ≤ h. In case h ≤ t ≤ 2

h , since tN ≥ 2
h , one can pick an index

r = 1, . . . , N − 1 such that tr < t ≤ tr+1. Assuming that | fε(tr)−f(tr)
tr

| < h,
and recalling that tr+1 − tr = h2, we may write

|fε(t) − f(t)| ≤ |fε(t) − fε(tr)| + |fε(tr) − f(tr)| + |f(tr) − f(t)|
< 2|t − tr| + trh ≤ 2h2 + trh < 3th.

Consequently, (7) implies

µn

{
sup
t>0

∣∣∣∣fε(t) − f(t)
t

∣∣∣∣ ≥ 3h

}
≤ 4Ne−nh4/4(h+2)2

≤ 4
(

2
h

+ 1
)

e−nh4/4(h+2)2 .

Therefore, by (5),

µn

{
1
2

L(Fε, F )2 ≥ 3h

}
≤ 4

(
2
h

+ 1
)

e−nh4/4(h+2)2 .

Replacing 6h with δ2 and noticing that only 0 < δ ≤ 1 should be taken
into consideration, one easily arrives at the estimate µn{L(Fε, F ) ≥ δ} ≤
C
δ2 e−cnδ8

with some positive numerical constants C and c. On the other
hand, in the latter inequality, we may restrict ourselves to values δ > c1n

−1/8

which make the bound C
δ2 e−cnδ8

less than 1, and then we arrive at the desired
inequality (4).

Theorem 1 has been proved, and we may state its immediate consequence:

Corollary 1. Under (1), for at least 2n−1 sequences ε = (ε1, . . . , εn) of signs,
L(Fε, F ) ≤ C( log n

n )1/8, where C is a universal constant.

Let us now turn to the second task: approximation of the µn-typical F by
more canonical distributions. Namely, denote by G the distribution function
of the random variable ζ |X|√

n
where ζ is a standard normal random variable

independent of the Euclidean norm |X| = (X2
1 + . . . + X2

n)1/2. Clearly, G
represents a mixture of a family of centered Gaussian measures on the line
and has characteristic function

g(t) = Ee−t2|X|2/(2n), t ∈ R, (8)

while F has characteristic function
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f(t) = E
n∏

k=1

cos
(

tXk√
n

)
. (9)

In order to bound the Lévy distance L(F, G), the following general elementary
observation, not using the condition (1), can be applied.

Lemma 4. Assume E|X|2 ≤ n. For all α > 0 and |t| ≤ 1
2α ,

|f(t) − g(t)| ≤ 1
9

α2t4 + 2P
{

max{|X1|, . . . , |Xn|}√
n

> α

}
.

Proof. By Taylor’s expansion, in the interval |s| ≤ 1
2 , we have cos(s) =

e− s2
2 −u(s) with u satisfying 0 ≤ u(s) ≤ s4

9 . Therefore, provided that | Xk√
n
| ≤ α,

for all k ≤ n, and α|t| ≤ 1
2 ,

n∏
k=1

cos
(

tXk√
n

)
= exp

{
− t2|X|2

2n
−

n∑
k=1

u

(
tXk√

n

)}

with 0 ≤∑n
k=1 u( tXk√

n
) ≤ 1

9 maxk | tXk√
n

|2∑n
k=1 | tXk√

n
|2 ≤ α2t4

9
|X|2

n . So,

e− t2|X|2
2n ≥

n∏
k=1

cos
(

tXk√
n

)
≥ e− t2|X|2

2n − α2t4
9

|X|2
n .

Taking the expectations and using |∏n
k=1 cos( tXk√

n
) − e−t2|X|2/(2n)| ≤ 2 for

the complementary event max{|X1|,...,|Xn|}√
n

> α, we thus get

|f(t)−g(t)| ≤ 2P
{

max{|X1|, . . . , |Xn|}√
n

> α

}
+E e− t2|X|2

2n

(
1−e− α2t4

9
|X|2

n

)
.

The last term is bounded by E(1 − e− α2t4
9

|X|2
n ) ≤ 1 − e− α2t4

9
E|X|2

n ≤ α2t4

9
where we applied Jensen’s inequality together with the assumption E|X|2≤n.

Lemma 4 follows.

Via the inequality of Lemma 4, with mild integrability assumptions on
the distribution of X, one can study a rate of closeness of F and thus of Fε

to the distribution function G. One can start, for instance, with the moment
assumption

E|Xk|4 ≤ β, 1 ≤ k ≤ n, (10)

implying P{max{|X1|,...,|Xn|}√
n

> α} ≤ β
α4n , so that, by Lemma 4,

|f(t) − g(t)| ≤ 1
9

α2t4 +
2β

α4n
, as soon as |t| ≤ 1

2α
.

Minimizing the right-hand side over all α > 0, we obtain that
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|f(t) − g(t)| ≤ β1/3|t|16/3

3n1/3 , provided that |t| ≤ n1/4

24β1/2 .

Now apply Zolotarev’s estimate, [Z], [P], to get

L(F, G) ≤ 1
π

∫ T

0

∣∣∣∣f(t) − g(t)
t

∣∣∣∣ dt + 2e
log T

T
(T > 1.3)

≤ β1/3 T 16/3

16π n1/3 + 2e
log T

T
, if 1.3 < T ≤ n1/4

24β1/2 .

Taking T = n1/19

β1/19 and using β ≥ 1, we will arrive at the estimate of the form

L(F, G) ≤ C
β1/19 + log n

n1/19 , n ≥ Cβ37/15,

up to some numerical constant C. Higher moments or exponential integra-
bility assumption improve this rate of convergence, but it seems, with the
above argument, the rate of Corollary 1 cannot be reached.

On the other hand, the closeness of G to the normal distribution func-
tion Φ requires some additional information concerning the rate of conver-
gence of X2

1+...+X2
n

n to 1. For example, the property Var(|X|2) ≤ O(n) guar-
antees a rate of the form L(G, Φ) = O(n−c) with a certain power c > 0.
Thus, together with the moment assumption (10), one arrives at the bound
L(F, Φ) = O(n−c).

Finally, let us note that G is determined via the distribution of the Eu-
clidean norm |X|, so it is stable under the choice of the basis in Rn. The
condition (10) is stated for the canonical basis in Rn, and the appropriate
basis free assumption may read as

sup
θ∈Sn−1

E |〈θ, X〉|p ≤ βp, p > 2. (11)

Then, at the expense of the rate of closeness, one may formulate an analogue
of Theorem 1 for the distribution G in the place of F and with respect to an
arbitrary basis in Rn. The inequality (11) includes many interesting classes
of distributions such as log-concave probability measures satisfying (1), for
example.

Proof of Theorem 2. Denote by fn and gn the characteristic functions defined
for the random vectors (Xn,1, . . . , Xn,n) according to formulas (9) and (8),
respectively. Also, according to (3), denote by F (n) the corresponding average
distribution functions.

In view of the assumption a), one can select a sequence αn ↓ 0 such that
P{max{|X1,1|,...,|Xn,n|}√

n
> αn} → 0, as n → ∞. Then, by Lemma 4, for all

t ∈ R, |fn(t) − gn(t)| → 0, as n → ∞. On the other hand, the condition b)
readily implies gn(t) → e−t2/2, so fn(t) → e−t2/2. Thus, L(F (n), Φ) → 0.
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Now, given an infinite sequence ε ∈ {−1, 1}∞, denote by Tn(ε) its projec-
tion (ε1, . . . , εn). It remains to show that L(FTn(ε), F

(n)) → 0, for µ∞-almost
all ε. Fix any small number p > 0, and take a sequence δn → 0+ such that

∞∑
n=1

Cn1/4 e−cnδ8
n ≤ p,

where C and c are numerical constants from Theorem 1 (δn may depend
on p). Then the application of (4) yields

µ∞
{
ε : L(FTn(ε), F

(n)) > δn, for some n ≥ 1
}

≤
∞∑

n=1

µ∞
{
L(FTn(ε), F

(n)) > δn

}

=
∞∑

n=1

µn

{
ε=(ε1, . . . , εn) : L(Fε, F

(n)) > δn

} ≤ p.

Therefore, L(FTn(ε), F
(n)) ≤ δn, for all n ≥ 1 and for all ε except for a set of

µ∞-measure at most p. That is,

µ∞

{
ε : sup

n≥1

(
L(FTn(ε), F

(n)) − δn

)
≤ 0
}

≥ 1 − p. (12)

But since δn → 0,

sup
n≥1

(
L(FTn(ε), F

(n)) − δn

)
≥ lim sup

n→∞

(
L(FTn(ε), F

(n)) − δn

)
= lim sup

n→∞
L(FTn(ε), F

(n)).

Consequently, (12) implies µ∞
{

lim supn→∞ L(FTn(ε), F
(n)) = 0

} ≥ 1 − p.
The probability on the left does not depend on p, and letting p → 0 finishes
the proof.
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inequalities. Séminaire de Probabilités, XXXIII, Lecture Notes in Math.,
1709, 120–216

[P] Petrov, V.V. (1987): Limit theorems for sums of independent random
variables. Moscow, Nauka (in Russian)

[S] Sudakov, V.N. (1978): Typical distributions of linear functionals in finite-
dimensional spaces of higher dimension. Soviet Math. Dokl., 19, No. 6,
1578–1582. Translated from: Dokl. Akad. Nauk SSSR, 243, No. 6
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