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Summary. For isotropic convex bodies K in R" with isotropic constant Lx, we
study the rate of convergence, as n goes to infinity, of the average volume of sections
of K to the Gaussian density on the line with variance L%.

Let K be an isotropic convex body in R™, n > 2, with volume one. By
the isotropy assumption we mean that the baricenter of K is at the origin,
and there exists a positive constant L so that, for every unit vector 6,

/ (2,0)? do = L%.
K
Introduce the function
Fie(l) = / volu_1 (K N Hy(8)) do(6), € R,
Snfl

expressing the average (n — 1)-dimensional volume of sections of K by hyper-
planes Hy(t) = {x € R": (z,0) =t} perpendicular to § € S"~! at distance
[t| from the origin (and where o is the normalized uniform measure on the
unit sphere).

When the dimension n is large, the function fx is known to be very close
to the Gaussian density on the line with mean zero and variance L3.. Being
general and informal, this hypothesis needs to be formalized and verified,
and precise statements may depend on certain additional properties of con-
vex bodies. For some special bodies K, several types of closeness of fx to
Gaussian densities were recently studied in [B-V], cf. also [K-L]. To treat the
general case, the following characteristic 0% associated with K turns out to
be crucial:

o _ Var([X[]?)
O = ——1 -
nL3

Here X is a random vector uniformly distributed over K, and Var(|X|?)
denotes the variance of |X|2. In particular, we have the following statement
which is proved in this note.
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Theorem 1. For all 0 < [t| < ¢/,

1 2 2 oxL 1
t—tW%W<C{KK+}, 1
fK() mLKe = tz\/ﬁ n ( )

where ¢ and C are positive numerical constants.

Using Bourgain’s estimate Lx < clog(n)n'/* ([Bou], cf. also [D], [P]) the
right-hand side of (1) can be bounded, up to a numerical constant, by

oxlogn 1

2ttt
which is small for large n up to the factor og. Let us look at the behavior of
this quantity in some canonical cases.

For the n-cube K = [f%, %}", by the independence of coordinates, 0% =

(S

For K’s the normalized ¢7 balls,

2(n+1)
2
o =1———+—"—""——1, as n— oo.
K (n+3)(n+4)
Normalization condition refers to vol,(K) =1, but a slightly more general
2
definition 0% = % makes this quantity invariant under homotheties

and simplifies computations.
For K’s the normalized Euclidean balls,

4
n+4

o = —0, as n—oo.
Thus, 0% can be small and moreover, in the space of any fixed dimension,
the Euclidean balls provide the minimum (cf. Theorem 2 below).

The property that 0% is bounded by an absolute constant for all £y balls
simultaneously was recently observed by K. Ball and I. Perissinaki [B-P]
who showed for these bodies that the covariances cov(X?, X7) = EX? X7 —
EX?EX? are non-positive. Since in general Var(|X|?) = 7", Var(X7?) +
Dit cov(X7, X7), the above property together with the Khinchine-type in-
equality implies

Var(|X[?) <) " Var(X7) < ) EX;' < CnLi.
i=1 i=1

The result was used in [A-B-P] to study the closeness of random distribu-
tion functions Fyp(t) = P{(X,0) < t}, for most of 6 on the sphere, to the
normal distribution function with variance L%. This randomized version of
the central limit theorem originates in the paper by V. N. Sudakov [S], cf.
also [D-F], [W]. The reader may find recent related results in [K-L], [Bob],
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[N-R], [B-H-V-V]. It has become clear since the work [S] that, in order to
get closeness to normality, the convexity assumption does not play a crucial
role, and one rather needs a dimension-free concentration of | X| around its
mean. Clearly, the strength of concentration can be measured in terms of the
variance of | X|?, for example.

Nevertheless, the question on whether or not the quantity o2 can be
bounded by a universal constant in the general convex isotropic case is
still open, although it represents a rather weak form of Kannan-Lovéasz-
Simonovits’ conjecture about Cheeger-type isoperimetric constants for con-
vex bodies [K-L-S]. For isotropic K, the latter may equivalently be expressed
as the property that, for any smooth function g on R", for some absolute

constant C,
/ ’ (x) dz

By Cheeger’s theorem, the above implies a Poincaré-type inequality

[ 1~ [ st

which for g(z) = |z|? becomes Var(|X|?) < 16nC%L%, that is, 0% < 16C2.
To bound an optimal C in (2), R. Kannan, L. Lovdsz, and M. Simonovits
considered in particular the geometric characteristic

dx<CLK/ [Vg(z)|dz. (2)

2

dr < 4(CLk) /|vg )|? dx

X(K) = /K Xk () dx

where x i () denotes the length of the longest interval lying in K with center
at z. By applying the localization lemma of [L-S], they proved that (2) holds
true with CLg = 2x(K). Therefore, ox Lx < 8x(K), and thus the right-
hand side of (1) can also be bounded, up to a constant, by

X(K) 1
t2/n '

To prove Theorem 1, we need the following formula which also appears
in [B-V, Lemma 1.2].

Lemma 1. For allt,

(3 1( N >
Jiet) = val (%51) /Kn{z|>|t} )

For completeness, we prove it below (with a somewhat different argu-
ment).



On the Central Limit Property of Convex Bodies 47

Proof. We may assume ¢t > 0. Denote by A\g,; the Lebesgue measure on Hy(t).

Then
)\t = / >\0,t dJ(G)
Sn—l

is a positive measure on R™ such that fx(¢) = A (K). This measure has
density that is invariant with respect to rotations, i.e.,

dr = pe(|z]),

where p; is a function on [¢t,00). To find the function p;, note first that, for
every r > t,

A (B0, 7)) = /

B(0,r)

pe(J2]) de =:L9"‘1IJ/ pe(s)s" ds
t

where B(0,r) is the Euclidean ball with center at the origin and radius r,

and |S"7 = % is the surface area of the sphere S"~!. On the other

hand, since the section of B(0,r) by the hyperplane Hpy(t) is the Euclidean
ball in R*~! of radius (r2 — t2)'/2, we have

n—1)/2
)/ (7,2 _ t2)(n—1)/2.

-
M (B(0,r)) = /S L P0a(BO) do(®) = T

Taking the derivatives by r, we see that for every r > ¢,
-1
_ 2 PL(ng)
r(3)

n—1

pe(r)r" 7,

n ; 1 (7"2 . t2)(n—1)/2 9

which implies
I (z r2 _ $2)(n=3)/2
D (T) — (2n)_1 ( )_2 )
VT (251 rn

Since fi(t) = A\t(K), the result follows.

Proof of Theorem 1. Let t > 0. By the Cauchy-Schwarz inequality,

1/2
/ ||z]* = nL¥| dx < </ ||z* = nL¥ ’ dx) = VnogL%
S0

o —nL
—vnLg| dx = ’7d< L. 3
Jolwt =izl e = [ e e < okt @

By Stirling’s formula,

b V2T I(n/2)

N TN (CESO
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so that the constants ¢, = % appearing in Lemma 1 are O(y/n).
Now, on the interval [t,c0) consider the function

NG
gn(z) = = (1 — ) )

Its derivative

2 2\ (n=5)/2 2\ (n—=3)/2
— 1
gmzw(l_t) _<1_t>

z

represents the difference of two non-negative terms. Both of them are equal
to zero at t, tend to zero at infinity and each has one critical point, the first

at z = ty/n — 1/2, and the second at z = tv/n — 1/4/2. Therefore,

max [g)()] < o
z€[t,00) In - tz(n — ].)

This implies that, for every © € K, |z| > t, if v/nLg > t, then

16

lgn(Jz]) = gn(VnLx)| < 2T ||| — v/nLk

)

and by (3), Lo I
OK LK

[ lanthah = anlvL) de < 7 (@

t
where K; = K N{|z| > t}.
Now, writing

Fr(t) = e /K gn () da
= eogn (VAL Jvoln(K7) + / (gn(2]) — gn(VALK)) da

K
and applying (4), we see that, for all ¢ < \/nLg,

CoxL
i (t) = engn (VL )vol, (Ky)| < %ﬁff

where C' is a numerical constant. This gives

OO’KLK

2/n
Recall that Lx > ¢, for some universal ¢ > 0 (the worst situation is attained
at Euclidean balls, cf. eg. [Ba]). Therefore (5) is fulfilled under ¢ < ¢y/n.

To further bound the first term on the right-hand side of (5), note that
gn(2) < 1/z, 80 crngn(v/nLi) < Cp, for some numerical Cy. Also, if t < cy/n,

| fK(t) = engn(VnLi)| < cngn(VnLi) (1 = vola (Ky)) + ()
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1 — vol,, (K;) < vol,, (B(0,1)) = wyt" < (\C/%)n (ev/n)" <27,

where w,, denotes the volume of the unit ball in R"™, and where cyc can be
made less than 1/2 by choosing a proper c¢. This also shows that the first
term in (5) will be dominated by the second one. Indeed, the inequality
Co2™ " < Cf;f}"‘ immediately follows from ¢ < ¢y/n and the lower bound on
ok given in Theorem 2.
Thus,

CO’K LK

t2/n ’
and we are left with the task of comparing ¢, g, (y/nLk) with the Gaussian
density on the line. This is done in the following elementary

|fK(t) - Cngn(\/ﬁLK” §

Lemma 2. If0 <t <./nLg, for some absolute C,

LI (nT—l> TLL%( VnLg 2n Lk ~n

Proof. Using the fact that Ly is bounded from below, multiplying the above
inequality by v27 Ly and replacing u = t?/(2L%), we are reduced to esti-
mating

S (-2

_u ff() -
m(g) A

In order to estimate the first summand, use the asymptotic formula for the
I-function, I'(z) = 2 e *V2rx (1 + 3= + O(3)), as ¢ — +o0, to get

= I (3) ()" ez m (14 L+ O(L))

g
r (= (nT_l)(n—s)m e=(=1/2 /(0 — 1) (1 + s + O(%))

- (5) (0o 6)

Since, by Taylor, ( ﬁl)%_l = =5+ log(1—3) — (1/2 (1 + 0 (%)), the first

n

summand is O(2) uniformly over u > 0.
To estimate the second summand, recall that 0 < u < n/2. The function

n—3
Up(u) = e — (1 — 24) % satisfies ©,,(0) = 0, ¥ (n/2) = e™™/2, and the
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n—>5
point ug € [0,n/2] where ¥, (ug) = 0 (if it exists) satisfies (1 — 22) 2 =
e~ (when n > 4). Hence, ¥, (ug) = 223 ¢~v = O(1), and thus

n—3 n—3 n

sup,, ¥, (u) = O(L). This proves Lemma 2.

Remark. Returning to the inequality (1) of Theorem 1, it might be worthwhile
to note that, in the range [t| > c¢y/n, the function fx satisfies, for some
absolute C' > 0, the estimate

C 2 2 C
1) < et /(Cnly) « 2
fr(®) < It] ~evn’
and in this sense it does not need to be compared with the Gaussian dis-

tribution in this range. Indeed, it follows immediately from the equality in
Lemma 1 that

fr(t) <CvVn gﬁgn@)P{\Xl > [t[},

where X denotes a random vector uniformly distributed over K. When n > 3,
2

in the interval z > |¢|, the function g,(2) = 1 (1 — 5)("=3)/2 attains its

maximum at the point zy = |t|v/n — 2 where it takes the value g,(z9) <

1
V=" Hence,

c’ c’
c (2) < — < ——.
M R
On the other hand, the probability P{|X| > |t|} can be estimated with the
help of Alesker’s 1-estimate, [A],

EelX12/(C"nLi) < o,

We finish this note with a simple remark on the extremal property of the
Euclidean balls in the minimization problem for o2 .

4

2
Theorem 2. o3 > 7.

Proof. The distribution function F(r) = vol,({x € K : |z| < r}) of the
random vector X uniformly distributed in K has density

F'(r)y=r""1

st 1K' =S r”10(1K> , r>0.
T T

We only use the property that g(r) = |[S""!|o(1K) is non-increasing in
r > 0. Clearly, this function can also be assumed to be absolutely continuous
so that we can write

STL

—+00
q(r) = n/ p(s) ds, r >0,
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for some non-negative measurable function p on (0, +00).
We have

lzfooodF(r):/Ooor"1q(r)dr:n//0<r<sr"1p§:)d7‘ds:/ooop(s)ds.

Hence, p represents a probability density of a positive random variable, say,
£. Similarly, for every a > —n,

Eix[e = [ oty dr = /ooa ds = e,
i = [T = 2 [T s - e
Therefore,
n n 2
X2 :7}34_ 7E2
Var(X ) = 2 Bet - (et
4n n
- = E22 V. 2
mrDm 2z B+ g V)
4n
> - 0000 E22,
Z mrdmrzp B
One can conclude that
4in 2\2
g2 Var(XP) nm(EE) 4
K (E|X|2>2 o n E22 7’L+4
<n+2 g)

Theorem 2 follows.
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