On the Central Limit Property of Convex Bodies

S.G. Bobkov ${ }^{1 \star}$ and A. Koldobsky ${ }^{2 \star \star}$

${ }^{1}$ School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church St. S.E., Minneapolis, MN 55455, USA bobkov@math.umn.edu
${ }^{2}$ Department of Mathematics, Mathematical Sciences Building, University of Missouri, Columbia, MO 65211, USA koldobsk@math.missouri.edu

Summary. For isotropic convex bodies K in \mathbf{R}^{n} with isotropic constant L_{K}, we study the rate of convergence, as n goes to infinity, of the average volume of sections of K to the Gaussian density on the line with variance L_{K}^{2}.

Let K be an isotropic convex body in $\mathbf{R}^{n}, n \geq 2$, with volume one. By the isotropy assumption we mean that the baricenter of K is at the origin, and there exists a positive constant L_{K} so that, for every unit vector θ,

$$
\int_{K}\langle x, \theta\rangle^{2} d x=L_{K}^{2}
$$

Introduce the function

$$
f_{K}(t)=\int_{S^{n-1}} \operatorname{vol}_{n-1}\left(K \cap H_{\theta}(t)\right) d \sigma(\theta), \quad t \in \mathbf{R}
$$

expressing the average ($n-1$)-dimensional volume of sections of K by hyperplanes $H_{\theta}(t)=\left\{x \in \mathbf{R}^{n}:\langle x, \theta\rangle=t\right\}$ perpendicular to $\theta \in S^{n-1}$ at distance $|t|$ from the origin (and where σ is the normalized uniform measure on the unit sphere).

When the dimension n is large, the function f_{K} is known to be very close to the Gaussian density on the line with mean zero and variance L_{K}^{2}. Being general and informal, this hypothesis needs to be formalized and verified, and precise statements may depend on certain additional properties of convex bodies. For some special bodies K, several types of closeness of f_{K} to Gaussian densities were recently studied in [B-V], cf. also [K-L]. To treat the general case, the following characteristic σ_{K}^{2} associated with K turns out to be crucial:

$$
\sigma_{K}^{2}=\frac{\operatorname{Var}\left(|X|^{2}\right)}{n L_{K}^{4}}
$$

Here X is a random vector uniformly distributed over K, and $\operatorname{Var}\left(|X|^{2}\right)$ denotes the variance of $|X|^{2}$. In particular, we have the following statement which is proved in this note.

[^0]Theorem 1. For all $0<|t| \leq c \sqrt{n}$,

$$
\begin{equation*}
\left|f_{K}(t)-\frac{1}{\sqrt{2 \pi} L_{K}} e^{-t^{2} /\left(2 L_{K}^{2}\right)}\right| \leq C\left[\frac{\sigma_{K} L_{K}}{t^{2} \sqrt{n}}+\frac{1}{n}\right] \tag{1}
\end{equation*}
$$

where c and C are positive numerical constants.
Using Bourgain's estimate $L_{K} \leq c \log (n) n^{1 / 4}$ ([Bou], cf. also [D], [P]) the right-hand side of (1) can be bounded, up to a numerical constant, by

$$
\frac{\sigma_{K} \log n}{t^{2} n^{1 / 4}}+\frac{1}{n}
$$

which is small for large n up to the factor σ_{K}. Let us look at the behavior of this quantity in some canonical cases.

For the n-cube $K=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$, by the independence of coordinates, $\sigma_{K}^{2}=$ $\frac{4}{5}$.

For K 's the normalized ℓ_{1}^{n} balls,

$$
\sigma_{K}^{2}=1-\frac{2(n+1)}{(n+3)(n+4)} \rightarrow 1, \quad \text { as } \quad n \rightarrow \infty
$$

Normalization condition refers to $\operatorname{vol}_{n}(K)=1$, but a slightly more general definition $\sigma_{K}^{2}=\frac{n \operatorname{Var}\left(|X|^{2}\right)}{\left(\mathbf{E}|X|^{2}\right)^{2}}$ makes this quantity invariant under homotheties and simplifies computations.

For K 's the normalized Euclidean balls,

$$
\sigma_{K}^{2}=\frac{4}{n+4} \rightarrow 0, \quad \text { as } \quad n \rightarrow \infty
$$

Thus, σ_{K}^{2} can be small and moreover, in the space of any fixed dimension, the Euclidean balls provide the minimum (cf. Theorem 2 below).

The property that σ_{K}^{2} is bounded by an absolute constant for all ℓ_{p}^{n} balls simultaneously was recently observed by K. Ball and I. Perissinaki [B-P] who showed for these bodies that the covariances $\operatorname{cov}\left(X_{i}^{2}, X_{j}^{2}\right)=\mathbf{E} X_{i}^{2} X_{j}^{2}-$ $\mathbf{E} X_{i}^{2} \mathbf{E} X_{j}^{2}$ are non-positive. Since in general $\operatorname{Var}\left(|X|^{2}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}^{2}\right)+$ $\sum_{i \neq j} \operatorname{cov}\left(X_{i}^{2}, X_{j}^{2}\right)$, the above property together with the Khinchine-type inequality implies

$$
\operatorname{Var}\left(|X|^{2}\right) \leq \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}^{2}\right) \leq \sum_{i=1}^{n} \mathbf{E} X_{i}^{4} \leq C n L_{K}^{4}
$$

The result was used in $[\mathrm{A}-\mathrm{B}-\mathrm{P}]$ to study the closeness of random distribution functions $F_{\theta}(t)=\mathbf{P}\{\langle X, \theta\rangle \leq t\}$, for most of θ on the sphere, to the normal distribution function with variance L_{K}^{2}. This randomized version of the central limit theorem originates in the paper by V. N. Sudakov [S], cf. also $[\mathrm{D}-\mathrm{F}],[\mathrm{W}]$. The reader may find recent related results in [K-L], [Bob],
[N-R], [B-H-V-V]. It has become clear since the work [S] that, in order to get closeness to normality, the convexity assumption does not play a crucial role, and one rather needs a dimension-free concentration of $|X|$ around its mean. Clearly, the strength of concentration can be measured in terms of the variance of $|X|^{2}$, for example.

Nevertheless, the question on whether or not the quantity σ_{K}^{2} can be bounded by a universal constant in the general convex isotropic case is still open, although it represents a rather weak form of Kannan-LovászSimonovits' conjecture about Cheeger-type isoperimetric constants for convex bodies [K-L-S]. For isotropic K, the latter may equivalently be expressed as the property that, for any smooth function g on \mathbf{R}^{n}, for some absolute constant C,

$$
\begin{equation*}
\int_{K}\left|g(x)-\int_{K} g(x) d x\right| d x \leq C L_{K} \int_{K}|\nabla g(x)| d x \tag{2}
\end{equation*}
$$

By Cheeger's theorem, the above implies a Poincaré-type inequality

$$
\int_{K}\left|g(x)-\int_{K} g(x) d x\right|^{2} d x \leq 4\left(C L_{K}\right)^{2} \int_{K}|\nabla g(x)|^{2} d x
$$

which for $g(x)=|x|^{2}$ becomes $\operatorname{Var}\left(|X|^{2}\right) \leq 16 n C^{2} L_{K}^{4}$, that is, $\sigma_{K}^{2} \leq 16 C^{2}$.
To bound an optimal C in (2), R. Kannan, L. Lovász, and M. Simonovits considered in particular the geometric characteristic

$$
\chi(K)=\int_{K} \chi_{K}(x) d x
$$

where $\chi_{K}(x)$ denotes the length of the longest interval lying in K with center at x. By applying the localization lemma of [L-S], they proved that (2) holds true with $C L_{K}=2 \chi(K)$. Therefore, $\sigma_{K} L_{K} \leq 8 \chi(K)$, and thus the righthand side of (1) can also be bounded, up to a constant, by

$$
\frac{\chi(K)}{t^{2} \sqrt{n}}+\frac{1}{n}
$$

To prove Theorem 1, we need the following formula which also appears in [B-V, Lemma 1.2].

Lemma 1. For all t,

$$
f_{K}(t)=\frac{\Gamma\left(\frac{n}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{n-1}{2}\right)} \int_{K \cap\{|x| \geq|t|\}} \frac{1}{|x|}\left(1-\frac{t^{2}}{|x|^{2}}\right)^{\frac{n-3}{2}} d x .
$$

For completeness, we prove it below (with a somewhat different argument).

Proof. We may assume $t \geq 0$. Denote by $\lambda_{\theta, t}$ the Lebesgue measure on $H_{\theta}(t)$. Then

$$
\lambda_{t}=\int_{S^{n-1}} \lambda_{\theta, t} d \sigma(\theta)
$$

is a positive measure on \mathbf{R}^{n} such that $f_{K}(t)=\lambda_{t}(K)$. This measure has density that is invariant with respect to rotations, i.e.,

$$
\frac{d \lambda_{t}}{d x}=p_{t}(|x|)
$$

where p_{t} is a function on $[t, \infty)$. To find the function p_{t}, note first that, for every $r>t$,

$$
\lambda_{t}(B(0, r))=\int_{B(0, r)} p_{t}(|x|) d x=\left|S^{n-1}\right| \int_{t}^{r} p_{t}(s) s^{n-1} d s
$$

where $B(0, r)$ is the Euclidean ball with center at the origin and radius r, and $\left|S^{n-1}\right|=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)}$ is the surface area of the sphere S^{n-1}. On the other hand, since the section of $B(0, r)$ by the hyperplane $H_{\theta}(t)$ is the Euclidean ball in \mathbf{R}^{n-1} of radius $\left(r^{2}-t^{2}\right)^{1 / 2}$, we have

$$
\lambda_{t}(B(0, r))=\int_{S^{n-1}} \lambda_{\theta, t}(B(0, r)) d \sigma(\theta)=\frac{\pi^{(n-1) / 2}}{\Gamma(1+(n-1) / 2)}\left(r^{2}-t^{2}\right)^{(n-1) / 2}
$$

Taking the derivatives by r, we see that for every $r \geq t$,

$$
\frac{n-1}{2}\left(r^{2}-t^{2}\right)^{(n-1) / 2} 2 r=\frac{2 \pi^{1 / 2} \Gamma\left(\frac{n-1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} p_{t}(r) r^{n-1}
$$

which implies

$$
p_{t}(r)=\frac{\Gamma\left(\frac{n}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{n-1}{2}\right)} \frac{\left(r^{2}-t^{2}\right)^{(n-3) / 2}}{r^{n-2}}
$$

Since $f_{K}(t)=\lambda_{t}(K)$, the result follows.
Proof of Theorem 1. Let $t>0$. By the Cauchy-Schwarz inequality,

$$
\left.\int_{K}| | x\right|^{2}-n L_{K}^{2} \mid d x \leq\left(\left.\int_{K}| | x\right|^{2}-\left.n L_{K}^{2}\right|^{2} d x\right)^{1 / 2}=\sqrt{n} \sigma_{K} L_{K}^{2}
$$

So

$$
\begin{equation*}
\int_{K}| | x\left|-\sqrt{n} L_{K}\right| d x=\int_{K} \frac{\left.| | x\right|^{2}-n L_{K}^{2} \mid}{|x|+\sqrt{n} L_{K}} d x \leq \sigma_{K} L_{K} \tag{3}
\end{equation*}
$$

By Stirling's formula,

$$
\lim _{n \rightarrow \infty} \frac{\sqrt{2 \pi}}{\sqrt{n}} \frac{\Gamma(n / 2)}{\sqrt{\pi} \Gamma((n-1) / 2)}=1
$$

so that the constants $c_{n}=\frac{\Gamma(n / 2)}{\sqrt{\pi} \Gamma((n-1) / 2))}$ appearing in Lemma 1 are $O(\sqrt{n})$.
Now, on the interval $[t, \infty)$ consider the function

$$
g_{n}(z)=\frac{1}{z}\left(1-\frac{t^{2}}{z^{2}}\right)^{(n-3) / 2}
$$

Its derivative

$$
g_{n}^{\prime}(z)=\frac{t^{2}(n-3)}{z^{4}}\left(1-\frac{t^{2}}{z^{2}}\right)^{(n-5) / 2}-\frac{1}{z^{2}}\left(1-\frac{t^{2}}{z^{2}}\right)^{(n-3) / 2}
$$

represents the difference of two non-negative terms. Both of them are equal to zero at t, tend to zero at infinity and each has one critical point, the first at $z=t \sqrt{n-1} / 2$, and the second at $z=t \sqrt{n-1} / \sqrt{2}$. Therefore,

$$
\max _{z \in[t, \infty)}\left|g_{n}^{\prime}(z)\right| \leq \frac{16}{t^{2}(n-1)}
$$

This implies that, for every $x \in K,|x| \geq t$, if $\sqrt{n} L_{K} \geq t$, then

$$
\left|g_{n}(|x|)-g_{n}\left(\sqrt{n} L_{K}\right)\right| \leq \frac{16}{t^{2}(n-1)}| | x\left|-\sqrt{n} L_{K}\right|
$$

and by (3),

$$
\begin{equation*}
\int_{K_{t}}\left|g_{n}(|x|)-g_{n}\left(\sqrt{n} L_{K}\right)\right| d x \leq \frac{16 \sigma_{K} L_{K}}{t^{2}(n-1)}, \tag{4}
\end{equation*}
$$

where $K_{t}=K \cap\{|x| \geq t\}$.
Now, writing

$$
\begin{aligned}
f_{K}(t) & =c_{n} \int_{K_{t}} g_{n}(|x|) d x \\
& =c_{n} g_{n}\left(\sqrt{n} L_{K}\right) \operatorname{vol}_{n}\left(K_{t}\right)+c_{n} \int_{K_{t}}\left(g_{n}(|x|)-g_{n}\left(\sqrt{n} L_{K}\right)\right) d x
\end{aligned}
$$

and applying (4), we see that, for all $t \leq \sqrt{n} L_{K}$,

$$
\left|f_{K}(t)-c_{n} g_{n}\left(\sqrt{n} L_{K}\right) \operatorname{vol}_{n}\left(K_{t}\right)\right| \leq \frac{C \sigma_{K} L_{K}}{t^{2} \sqrt{n}}
$$

where C is a numerical constant. This gives

$$
\begin{equation*}
\left|f_{K}(t)-c_{n} g_{n}\left(\sqrt{n} L_{K}\right)\right| \leq c_{n} g_{n}\left(\sqrt{n} L_{K}\right)\left(1-\operatorname{vol}_{n}\left(K_{t}\right)\right)+\frac{C \sigma_{K} L_{K}}{t^{2} \sqrt{n}} \tag{5}
\end{equation*}
$$

Recall that $L_{K} \geq c$, for some universal $c>0$ (the worst situation is attained at Euclidean balls, cf. eg. [Ba]). Therefore (5) is fulfilled under $t \leq c \sqrt{n}$.

To further bound the first term on the right-hand side of (5), note that $g_{n}(z) \leq 1 / z$, so $c_{n} g_{n}\left(\sqrt{n} L_{K}\right) \leq C_{0}$, for some numerical C_{0}. Also, if $t \leq c \sqrt{n}$,

$$
1-\operatorname{vol}_{n}\left(K_{t}\right) \leq \operatorname{vol}_{n}(B(0, t))=\omega_{n} t^{n} \leq\left(\frac{c_{0}}{\sqrt{n}}\right)^{n}(c \sqrt{n})^{n}<2^{-n}
$$

where ω_{n} denotes the volume of the unit ball in \mathbf{R}^{n}, and where $c_{0} c$ can be made less than $1 / 2$ by choosing a proper c. This also shows that the first term in (5) will be dominated by the second one. Indeed, the inequality $C_{0} 2^{-n} \leq \frac{C \sigma_{K} L_{K}}{t^{2} \sqrt{n}}$ immediately follows from $t \leq c \sqrt{n}$ and the lower bound on σ_{K} given in Theorem 2.

Thus,

$$
\left|f_{K}(t)-c_{n} g_{n}\left(\sqrt{n} L_{K}\right)\right| \leq \frac{C \sigma_{K} L_{K}}{t^{2} \sqrt{n}}
$$

and we are left with the task of comparing $c_{n} g_{n}\left(\sqrt{n} L_{K}\right)$ with the Gaussian density on the line. This is done in the following elementary

Lemma 2. If $0 \leq t \leq \sqrt{n} L_{K}$, for some absolute C,

$$
\left|\frac{\Gamma\left(\frac{n}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{n-1}{2}\right)}\left(1-\frac{t^{2}}{n L_{K}^{2}}\right)^{(n-3) / 2} \frac{1}{\sqrt{n} L_{K}}-\frac{1}{\sqrt{2 \pi} L_{K}} e^{-t^{2} / 2 L_{K}^{2}}\right| \leq \frac{C}{n}
$$

Proof. Using the fact that L_{K} is bounded from below, multiplying the above inequality by $\sqrt{2 \pi} L_{K}$ and replacing $u=t^{2} /\left(2 L_{K}^{2}\right)$, we are reduced to estimating

$$
\begin{aligned}
\left|\frac{\sqrt{2} \Gamma\left(\frac{n}{2}\right)}{\sqrt{n} \Gamma\left(\frac{n-1}{2}\right)}\left(1-\frac{2 u}{n}\right)^{\frac{n-3}{2}}-e^{-u}\right| \leq & \left|e^{-u}-\frac{\sqrt{2} \Gamma\left(\frac{n}{2}\right)}{\sqrt{n} \Gamma\left(\frac{n-1}{2}\right)} e^{-u}\right| \\
& +\frac{\sqrt{2} \Gamma\left(\frac{n}{2}\right)}{\sqrt{n} \Gamma\left(\frac{n-1}{2}\right)}\left|e^{-u}-\left(1-\frac{2 u}{n}\right)^{\frac{n-3}{2}}\right|
\end{aligned}
$$

In order to estimate the first summand, use the asymptotic formula for the Γ-function, $\Gamma(x)=x^{x-1} e^{-x} \sqrt{2 \pi x}\left(1+\frac{1}{12 x}+O\left(\frac{1}{x^{2}}\right)\right)$, as $x \rightarrow+\infty$, to get

$$
\begin{aligned}
\frac{\sqrt{\frac{2}{n}} \Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right)} & =\frac{\left(\frac{n}{2}\right)^{(n-3) / 2} e^{-n / 2} \sqrt{\pi n}\left(1+\frac{1}{6 n}+O\left(\frac{1}{n^{2}}\right)\right)}{\left(\frac{n-1}{2}\right)^{(n-3) / 2} e^{-(n-1) / 2} \sqrt{\pi(n-1)}\left(1+\frac{1}{6(n-1)}+O\left(\frac{1}{n^{2}}\right)\right)} \\
& =e^{-1 / 2}\left(\frac{n}{n-1}\right)^{\frac{n}{2}-1}\left(1+O\left(\frac{1}{n^{2}}\right)\right)
\end{aligned}
$$

Since, by Taylor, $\left(\frac{n}{n-1}\right)^{\frac{n}{2}-1}=e^{\left(-\frac{n}{2}+1\right) \log \left(1-\frac{1}{n}\right)}=e^{1 / 2}\left(1+O\left(\frac{1}{n}\right)\right)$, the first summand is $O\left(\frac{1}{n}\right)$ uniformly over $u \geq 0$.

To estimate the second summand, recall that $0 \leq u \leq n / 2$. The function $\psi_{n}(u)=e^{-u}-\left(1-\frac{2 u}{n}\right)^{\frac{n-3}{2}}$ satisfies $\psi_{n}(0)=0, \psi_{n}(n / 2)=e^{-n / 2}$, and the
point $u_{0} \in[0, n / 2]$ where $\psi_{n}^{\prime}\left(u_{0}\right)=0$ (if it exists) satisfies $\left(1-\frac{2 u_{0}}{n}\right)^{\frac{n-5}{2}}=$ $\frac{n}{n-3} e^{-u_{0}}$ (when $n \geq 4$). Hence, $\psi_{n}\left(u_{0}\right)=\frac{2 u_{0}-3}{n-3} e^{-u_{0}}=O\left(\frac{1}{n}\right)$, and thus $\sup _{u} \psi_{n}(u)=O\left(\frac{1}{n}\right)$. This proves Lemma 2.

Remark. Returning to the inequality (1) of Theorem 1, it might be worthwhile to note that, in the range $|t| \geq c \sqrt{n}$, the function f_{K} satisfies, for some absolute $C>0$, the estimate

$$
f_{K}(t) \leq \frac{C}{|t|} e^{-t^{2} /\left(C n L_{K}^{2}\right)} \leq \frac{C}{c \sqrt{n}},
$$

and in this sense it does not need to be compared with the Gaussian distribution in this range. Indeed, it follows immediately from the equality in Lemma 1 that

$$
f_{K}(t) \leq C \sqrt{n} \max _{z \geq|t|} g_{n}(z) \mathbf{P}\{|X| \geq|t|\}
$$

where X denotes a random vector uniformly distributed over K. When $n \geq 3$, in the interval $z \geq|t|$, the function $g_{n}(z)=\frac{1}{z}\left(1-\frac{t^{2}}{z^{2}}\right)^{(n-3) / 2}$ attains its maximum at the point $z_{0}=|t| \sqrt{n-2}$ where it takes the value $g_{n}\left(z_{0}\right) \leq$ $\frac{1}{|t| \sqrt{n-2}}$. Hence,

$$
C \sqrt{n} \max _{z \geq|t|} g_{n}(z) \leq \frac{C^{\prime}}{|t|} \leq \frac{C^{\prime}}{c \sqrt{n}}
$$

On the other hand, the probability $\mathbf{P}\{|X| \geq|t|\}$ can be estimated with the help of Alesker's ψ_{2}-estimate, [A],

$$
\mathbf{E} e^{|X|^{2} /\left(C^{\prime \prime} n L_{K}^{2}\right)} \leq 2
$$

We finish this note with a simple remark on the extremal property of the Euclidean balls in the minimization problem for σ_{K}^{2}.

Theorem 2. $\sigma_{K}^{2} \geq \frac{4}{n+4}$.
Proof. The distribution function $F(r)=\operatorname{vol}_{n}(\{x \in K:|x| \leq r\})$ of the random vector X uniformly distributed in K has density

$$
F^{\prime}(r)=r^{n-1}\left|S^{n-1} \cap \frac{1}{r} K\right|=\left|S^{n-1}\right| r^{n-1} \sigma\left(\frac{1}{r} K\right), \quad r>0
$$

We only use the property that $q(r)=\left|S^{n-1}\right| \sigma\left(\frac{1}{r} K\right)$ is non-increasing in $r>0$. Clearly, this function can also be assumed to be absolutely continuous so that we can write

$$
q(r)=n \int_{r}^{+\infty} \frac{p(s)}{s^{n}} d s, \quad r>0
$$

for some non-negative measurable function p on $(0,+\infty)$.
We have
$1=\int_{0}^{\infty} d F(r)=\int_{0}^{\infty} r^{n-1} q(r) d r=n \iint_{0<r<s} r^{n-1} \frac{p(s)}{s^{n}} d r d s=\int_{0}^{\infty} p(s) d s$.
Hence, p represents a probability density of a positive random variable, say, ξ. Similarly, for every $\alpha>-n$,

$$
\mathbf{E}|X|^{\alpha}=\int_{0}^{\infty} r^{\alpha+n-1} q(r) d r=\frac{n}{n+\alpha} \int_{0}^{\infty} s^{\alpha} p(s) d s=\frac{n}{n+\alpha} \mathbf{E} \xi^{\alpha}
$$

Therefore,

$$
\begin{aligned}
\operatorname{Var}\left(|X|^{2}\right) & =\frac{n}{n+4} \mathbf{E} \xi^{4}-\left(\frac{n}{n+2} \mathbf{E} \xi^{2}\right)^{2} \\
& =\frac{4 n}{(n+4)(n+2)^{2}}\left(\mathbf{E} \xi^{2}\right)^{2}+\frac{n}{n+4} \operatorname{Var}\left(\xi^{2}\right) \\
& \geq \frac{4 n}{(n+4)(n+2)^{2}}\left(\mathbf{E} \xi^{2}\right)^{2}
\end{aligned}
$$

One can conclude that

$$
\sigma_{K}^{2}=n \frac{\operatorname{Var}\left(|X|^{2}\right)}{\left(\mathbf{E}|X|^{2}\right)^{2}} \geq n \frac{\frac{4 n}{(n+4)(n+2)^{2}}\left(\mathbf{E} \xi^{2}\right)^{2}}{\left(\frac{n}{n+2} \mathbf{E} \xi^{2}\right)^{2}}=\frac{4}{n+4}
$$

Theorem 2 follows.

Acknowledgement. We would like to thank V.D. Milman for stimulating discussions.

References

[A] Alesker, S. (1995): ψ_{2}-estimate for the Euclidean norm on a convex body in isotropic position. Geom. Aspects Funct. Anal. (Israel 19921994), Oper. Theory Adv. Appl., 77, 1-4
[A-B-P] Antilla, M., Ball, K., Perissinaki, I. (1998): The central limit problem for convex bodies. Preprint
[Ba] Ball, K. (1988): Logarithmically concave functions and sections of convex sets. Studia Math., 88, 69-84
[B-P] Ball, K., Perissinaki, I. (1998): Subindependence of coordinate slabs in ℓ_{p}^{n} balls. Israel J. of Math., 107, 289-299
[Bob] Bobkov, S.G. On concentration of distributions of random weighted sums. Ann. Probab., to appear
[Bou] Bourgain, J. (1991): On the distribution of polynomials on high dimensional convex sets. Lecture Notes in Math., 1469, 127-137
[B-H-V-V] Brehm, U., Hinow, P., Vogt, H., Voigt, J. Moment inequalities and central limit properties of isotropic convex bodies. Preprint
[B-V] Brehm, U., Voigt, J. (2000): Asymptotics of cross sections for convex bodies. Beiträge Algebra Geom., 41, 437-454
[D] Dar, S. (1995): Remarks on Bourgain's problem on slicing of convex bodies. Geom. Aspects of Funct. Anal., Operator Theory: Advances and Applications, 77, 61-66
[D-F] Diaconis, P., Freedman, D. (1984): Asymptotics of graphical projection pursuit. Ann. Stat., 12(3), 793-815
[K-L-S] Kannan, R., Lovász, L., Simonovits, M. (1995): Isoperimetric problems for convex bodies and a localization lemma. Discrete and Comput. Geom., 13, 541-559
[K-L] Koldobsky, A., Lifshitz, M. (2000): Average volume of sections of star bodies. Geom. Aspects of Funct. Anal. (Israel Seminar 1996-2000), Lecture Notes in Math., 1745, 119-146
[L-S] Lovász, L., Simonovits, M. (1993): Random walks in a convex body and an improved volume algorithm. Random Structures and Algorithms, 4(3), 359-412
[N-R] Naor, A., Romik, D. Projecting the surface measure of the sphere of ℓ_{p}^{n}. Annales de L'Institut Henri Poincaré, to appear
[P] Paoris, G. (2000): On the isotropic constant of non-symmetric convex bodies. Geom. Aspects of Funct. Anal. (Israel Seminar 1996-2000), Lecture Notes in Math., 1745, 239-244
[S] Sudakov, V.N. (1978): Typical distributions of linear functionals in finite-dimensional spaces of higher dimensions. Soviet Math. Dokl., 19(6), 1578-1582. Translated from Dokl. Akad. Nauk SSSR, 243(6)
[W] von Weizsäcker, H. (1997): Sudakov's typical marginals, random linear functionals and a conditional central limit theorem. Probab. Theory Rel. Fields, 107, 313-324

[^0]: * Supported in part by the NSF grant DMS-0103929.
 ** Supported in part by the NSF grant DMS-9996431.

