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Summary. For isotropic convex bodies K in Rn with isotropic constant LK , we
study the rate of convergence, as n goes to infinity, of the average volume of sections
of K to the Gaussian density on the line with variance L2

K .

Let K be an isotropic convex body in Rn, n ≥ 2, with volume one. By
the isotropy assumption we mean that the baricenter of K is at the origin,
and there exists a positive constant LK so that, for every unit vector θ,∫

K

〈x, θ〉2 dx = L2
K .

Introduce the function

fK(t) =
∫

Sn−1
voln−1

(
K ∩Hθ(t)

)
dσ(θ), t ∈ R,

expressing the average (n−1)-dimensional volume of sections of K by hyper-
planes Hθ(t) = {x ∈ Rn : 〈x, θ〉 = t} perpendicular to θ ∈ Sn−1 at distance
|t| from the origin (and where σ is the normalized uniform measure on the
unit sphere).

When the dimension n is large, the function fK is known to be very close
to the Gaussian density on the line with mean zero and variance L2

K . Being
general and informal, this hypothesis needs to be formalized and verified,
and precise statements may depend on certain additional properties of con-
vex bodies. For some special bodies K, several types of closeness of fK to
Gaussian densities were recently studied in [B-V], cf. also [K-L]. To treat the
general case, the following characteristic σ2

K associated with K turns out to
be crucial:

σ2
K =

Var(|X|2)
nL4

K

.

Here X is a random vector uniformly distributed over K, and Var(|X|2)
denotes the variance of |X|2. In particular, we have the following statement
which is proved in this note.
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Theorem 1. For all 0 < |t| ≤ c
√
n,

∣∣∣∣fK(t) − 1√
2πLK

e−t2/(2L2
K)

∣∣∣∣ ≤ C

[
σKLK

t2
√
n

+
1
n

]
, (1)

where c and C are positive numerical constants.

Using Bourgain’s estimate LK ≤ c log(n)n1/4 ([Bou], cf. also [D], [P]) the
right-hand side of (1) can be bounded, up to a numerical constant, by

σK log n
t2n1/4 +

1
n
,

which is small for large n up to the factor σK . Let us look at the behavior of
this quantity in some canonical cases.

For the n-cube K = [− 1
2 ,

1
2 ]n, by the independence of coordinates, σ2

K =
4
5 .

For K’s the normalized �n1 balls,

σ2
K = 1 − 2(n+ 1)

(n+ 3)(n+ 4)
→ 1, as n → ∞.

Normalization condition refers to voln(K) = 1, but a slightly more general
definition σ2

K = nVar(|X|2)
(E|X|2)2 makes this quantity invariant under homotheties

and simplifies computations.
For K’s the normalized Euclidean balls,

σ2
K =

4
n+ 4

→ 0, as n → ∞.

Thus, σ2
K can be small and moreover, in the space of any fixed dimension,

the Euclidean balls provide the minimum (cf. Theorem 2 below).
The property that σ2

K is bounded by an absolute constant for all �np balls
simultaneously was recently observed by K. Ball and I. Perissinaki [B-P]
who showed for these bodies that the covariances cov(X2

i , X
2
j ) = EX2

i X
2
j −

EX2
i EX

2
j are non-positive. Since in general Var(|X|2) =

∑n
i=1 Var(X2

i ) +∑
i �=j cov(X2

i , X
2
j ), the above property together with the Khinchine-type in-

equality implies

Var(|X|2) ≤
n∑

i=1

Var(X2
i ) ≤

n∑
i=1

EX4
i ≤ CnL4

K .

The result was used in [A-B-P] to study the closeness of random distribu-
tion functions Fθ(t) = P{〈X, θ〉 ≤ t}, for most of θ on the sphere, to the
normal distribution function with variance L2

K . This randomized version of
the central limit theorem originates in the paper by V. N. Sudakov [S], cf.
also [D-F], [W]. The reader may find recent related results in [K-L], [Bob],
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[N-R], [B-H-V-V]. It has become clear since the work [S] that, in order to
get closeness to normality, the convexity assumption does not play a crucial
role, and one rather needs a dimension-free concentration of |X| around its
mean. Clearly, the strength of concentration can be measured in terms of the
variance of |X|2, for example.

Nevertheless, the question on whether or not the quantity σ2
K can be

bounded by a universal constant in the general convex isotropic case is
still open, although it represents a rather weak form of Kannan-Lovász-
Simonovits’ conjecture about Cheeger-type isoperimetric constants for con-
vex bodies [K-L-S]. For isotropic K, the latter may equivalently be expressed
as the property that, for any smooth function g on Rn, for some absolute
constant C,

∫
K

∣∣∣∣g(x) −
∫

K

g(x) dx
∣∣∣∣ dx ≤ CLK

∫
K

|∇g(x)| dx. (2)

By Cheeger’s theorem, the above implies a Poincaré-type inequality

∫
K

∣∣∣∣g(x) −
∫

K

g(x) dx
∣∣∣∣
2

dx ≤ 4(CLK)2
∫

K

|∇g(x)|2 dx

which for g(x) = |x|2 becomes Var(|X|2) ≤ 16nC2L4
K , that is, σ2

K ≤ 16C2.
To bound an optimal C in (2), R. Kannan, L. Lovász, and M. Simonovits

considered in particular the geometric characteristic

χ(K) =
∫

K

χK(x) dx

where χK(x) denotes the length of the longest interval lying in K with center
at x. By applying the localization lemma of [L-S], they proved that (2) holds
true with CLK = 2χ(K). Therefore, σKLK ≤ 8χ(K), and thus the right-
hand side of (1) can also be bounded, up to a constant, by

χ(K)
t2

√
n

+
1
n
.

To prove Theorem 1, we need the following formula which also appears
in [B-V, Lemma 1.2].

Lemma 1. For all t,

fK(t) =
Γ

(
n
2

)
√
π Γ

(
n−1

2

)
∫

K∩{|x|≥|t|}

1
|x|

(
1 − t2

|x|2
)n−3

2

dx.

For completeness, we prove it below (with a somewhat different argu-
ment).
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Proof. We may assume t ≥ 0. Denote by λθ,t the Lebesgue measure on Hθ(t).
Then

λt =
∫

Sn−1
λθ,t dσ(θ)

is a positive measure on Rn such that fK(t) = λt(K). This measure has
density that is invariant with respect to rotations, i.e.,

dλt

dx
= pt(|x|),

where pt is a function on [t,∞). To find the function pt, note first that, for
every r > t,

λt

(
B(0, r)

)
=

∫
B(0,r)

pt(|x|) dx = |Sn−1|
∫ r

t

pt(s)sn−1 ds,

where B(0, r) is the Euclidean ball with center at the origin and radius r,
and |Sn−1| = 2πn/2

Γ (n/2) is the surface area of the sphere Sn−1. On the other
hand, since the section of B(0, r) by the hyperplane Hθ(t) is the Euclidean
ball in Rn−1 of radius (r2 − t2)1/2, we have

λt

(
B(0, r)

)
=

∫
Sn−1

λθ,t

(
B(0, r)

)
dσ(θ) =

π(n−1)/2

Γ
(
1 + (n− 1)/2

) (r2 − t2)(n−1)/2.

Taking the derivatives by r, we see that for every r ≥ t,

n− 1
2

(r2 − t2)(n−1)/2 2r =
2π1/2 Γ

(
n−1

2

)
Γ

(
n
2

) pt(r)rn−1,

which implies

pt(r) =
Γ

(
n
2

)
√
π Γ

(
n−1

2

) (r2 − t2)(n−3)/2

rn−2 .

Since fK(t) = λt(K), the result follows.

Proof of Theorem 1. Let t > 0. By the Cauchy-Schwarz inequality,

∫
K

∣∣|x|2 − nL2
K

∣∣ dx ≤
(∫

K

∣∣|x|2 − nL2
K

∣∣2 dx
)1/2

=
√
nσKL

2
K ,

so ∫
K

∣∣|x| − √
nLK

∣∣ dx =
∫

K

∣∣|x|2 − nL2
K

∣∣
|x| +

√
nLK

dx ≤ σKLK . (3)

By Stirling’s formula,

lim
n→∞

√
2π√
n

Γ (n/2)√
πΓ

(
(n− 1)/2

) = 1



48 S.G. Bobkov and A. Koldobsky

so that the constants cn = Γ (n/2)√
πΓ ((n−1)/2)) appearing in Lemma 1 are O(

√
n).

Now, on the interval [t,∞) consider the function

gn(z) =
1
z

(
1 − t2

z2

)(n−3)/2

.

Its derivative

g′
n(z) =

t2(n− 3)
z4

(
1 − t2

z2

)(n−5)/2

− 1
z2

(
1 − t2

z2

)(n−3)/2

represents the difference of two non-negative terms. Both of them are equal
to zero at t, tend to zero at infinity and each has one critical point, the first
at z = t

√
n− 1/2, and the second at z = t

√
n− 1/

√
2. Therefore,

max
z∈[t,∞)

|g′
n(z)| ≤ 16

t2(n− 1)
.

This implies that, for every x ∈ K, |x| ≥ t, if
√
nLK ≥ t, then

|gn(|x|) − gn(
√
nLK)| ≤ 16

t2(n− 1)

∣∣|x| − √
nLK

∣∣ ,
and by (3), ∫

Kt

|gn(|x|) − gn(
√
nLK)| dx ≤ 16σKLK

t2(n− 1)
, (4)

where Kt = K ∩ {|x| ≥ t}.
Now, writing

fK(t) = cn

∫
Kt

gn(|x|) dx

= cngn(
√
nLK)voln(Kt) + cn

∫
Kt

(
gn(|x|) − gn(

√
nLK)

)
dx

and applying (4), we see that, for all t ≤ √
nLK ,

|fK(t) − cngn(
√
nLK)voln(Kt)| ≤ CσKLK

t2
√
n

,

where C is a numerical constant. This gives

∣∣fK(t) − cngn(
√
nLK)

∣∣ ≤ cngn(
√
nLK)

(
1 − voln(Kt)

)
+
CσKLK

t2
√
n

. (5)

Recall that LK ≥ c, for some universal c > 0 (the worst situation is attained
at Euclidean balls, cf. eg. [Ba]). Therefore (5) is fulfilled under t ≤ c

√
n.

To further bound the first term on the right-hand side of (5), note that
gn(z) ≤ 1/z, so cngn(

√
nLK) ≤ C0, for some numerical C0. Also, if t ≤ c

√
n,
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1 − voln(Kt) ≤ voln
(
B(0, t)

)
= ωnt

n ≤
(
c0√
n

)n (
c
√
n
)n
< 2−n,

where ωn denotes the volume of the unit ball in Rn, and where c0c can be
made less than 1/2 by choosing a proper c. This also shows that the first
term in (5) will be dominated by the second one. Indeed, the inequality
C02−n ≤ CσKLK

t2
√

n
immediately follows from t ≤ c

√
n and the lower bound on

σK given in Theorem 2.
Thus, ∣∣fK(t) − cngn(

√
nLK)

∣∣ ≤ CσKLK

t2
√
n

,

and we are left with the task of comparing cngn(
√
nLK) with the Gaussian

density on the line. This is done in the following elementary

Lemma 2. If 0 ≤ t ≤ √
nLK , for some absolute C,

∣∣∣∣∣
Γ

(
n
2

)
√
πΓ

(
n−1

2

)
(

1 − t2

nL2
K

)(n−3)/2 1√
nLK

− 1√
2πLK

e−t2/2L2
K

∣∣∣∣∣ ≤ C

n
.

Proof. Using the fact that LK is bounded from below, multiplying the above
inequality by

√
2πLK and replacing u = t2/(2L2

K), we are reduced to esti-
mating

∣∣∣∣∣
√

2 Γ
(

n
2

)
√
n Γ

(
n−1

2

)
(
1− 2u

n

)n−3
2

− e−u

∣∣∣∣∣ ≤
∣∣∣∣∣e−u −

√
2 Γ

(
n
2

)
√
n Γ

(
n−1

2

)e−u

∣∣∣∣∣
+

√
2 Γ

(
n
2

)
√
n Γ

(
n−1

2

)
∣∣∣∣∣e−u −

(
1− 2u

n

)n−3
2

∣∣∣∣∣ .

In order to estimate the first summand, use the asymptotic formula for the
Γ -function, Γ (x) = xx−1e−x

√
2πx

(
1 + 1

12x +O( 1
x2 )

)
, as x → +∞, to get

√
2
n Γ

(
n
2

)
Γ

(
n−1

2

) =

(
n
2

)(n−3)/2
e−n/2 √

πn
(
1 + 1

6n +O( 1
n2 )

)
(

n−1
2

)(n−3)/2
e−(n−1)/2

√
π(n− 1)

(
1 + 1

6(n−1) +O( 1
n2 )

)

= e−1/2
(

n

n− 1

)n
2 −1(

1 +O

(
1
n2

))
.

Since, by Taylor, ( n
n−1 )

n
2 −1 = e(−

n
2 +1) log(1− 1

n ) = e1/2
(
1 +O

( 1
n

))
, the first

summand is O( 1
n ) uniformly over u ≥ 0.

To estimate the second summand, recall that 0 ≤ u ≤ n/2. The function

ψn(u) = e−u − (
1 − 2u

n

)n−3
2 satisfies ψn(0) = 0, ψn(n/2) = e−n/2, and the
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point u0 ∈ [0, n/2] where ψ′
n(u0) = 0 (if it exists) satisfies

(
1 − 2u0

n

)n−5
2 =

n
n−3 e

−u0 (when n ≥ 4). Hence, ψn(u0) = 2u0−3
n−3 e−u0 = O( 1

n ), and thus
supu ψn(u) = O( 1

n ). This proves Lemma 2.

Remark. Returning to the inequality (1) of Theorem 1, it might be worthwhile
to note that, in the range |t| ≥ c

√
n, the function fK satisfies, for some

absolute C > 0, the estimate

fK(t) ≤ C

|t| e
−t2/(CnL2

K) ≤ C

c
√
n
,

and in this sense it does not need to be compared with the Gaussian dis-
tribution in this range. Indeed, it follows immediately from the equality in
Lemma 1 that

fK(t) ≤ C
√
n max

z≥|t|
gn(z)P{|X| ≥ |t|},

where X denotes a random vector uniformly distributed overK. When n ≥ 3,
in the interval z ≥ |t|, the function gn(z) = 1

z (1 − t2

z2 )(n−3)/2 attains its
maximum at the point z0 = |t|√n− 2 where it takes the value gn(z0) ≤

1
|t|√n−2 . Hence,

C
√
n max

z≥|t|
gn(z) ≤ C ′

|t| ≤ C ′

c
√
n
.

On the other hand, the probability P{|X| ≥ |t|} can be estimated with the
help of Alesker’s ψ2-estimate, [A],

Ee|X|2/(C′′nL2
K) ≤ 2.

We finish this note with a simple remark on the extremal property of the
Euclidean balls in the minimization problem for σ2

K .

Theorem 2. σ2
K ≥ 4

n+4 .

Proof. The distribution function F (r) = voln({x ∈ K : |x| ≤ r}) of the
random vector X uniformly distributed in K has density

F ′(r) = rn−1
∣∣∣∣Sn−1 ∩ 1

r
K

∣∣∣∣ = |Sn−1| rn−1σ

(
1
r
K

)
, r > 0.

We only use the property that q(r) = |Sn−1|σ( 1
rK) is non-increasing in

r > 0. Clearly, this function can also be assumed to be absolutely continuous
so that we can write

q(r) = n

∫ +∞

r

p(s)
sn

ds, r > 0,
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for some non-negative measurable function p on (0,+∞).
We have

1 =
∫ ∞

0
dF (r) =

∫ ∞

0
rn−1q(r) dr = n

∫∫
0<r<s

rn−1 p(s)
sn

drds =
∫ ∞

0
p(s) ds.

Hence, p represents a probability density of a positive random variable, say,
ξ. Similarly, for every α > −n,

E|X|α =
∫ ∞

0
rα+n−1q(r) dr =

n

n+ α

∫ ∞

0
sαp(s) ds =

n

n+ α
Eξα.

Therefore,

Var(|X|2) =
n

n+ 4
Eξ4 −

(
n

n+ 2
Eξ2

)2

=
4n

(n+ 4)(n+ 2)2
(Eξ2)2 +

n

n+ 4
Var(ξ2)

≥ 4n
(n+ 4)(n+ 2)2

(Eξ2)2.

One can conclude that

σ2
K = n

Var(|X|2)
(E|X|2)2 ≥ n

4n
(n+4)(n+2)2 (Eξ2)2(

n
n+2 Eξ2

)2 =
4

n+ 4
.

Theorem 2 follows.
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[W] von Weizsäcker, H. (1997): Sudakov’s typical marginals, random linear
functionals and a conditional central limit theorem. Probab. Theory
Rel. Fields, 107, 313–324


	References

