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Abstract. We study the behaviour of constants in Khinchine-Kahane-type in-
equalities for polynomials in random vectors which have logarithmically concave
distributions.

It is well known that polynomials on R™ of bounded degree satisfy dimen-
sion free Khinchine-Kahane-type inequalities with respect to the uniform dis-
tribution on convex sets. The best known result, which is due to J. Bourgain
[Bou] and which gave an affirmative answer to a conjecture of V. D. Milman,
indicates the following: there exist universal constants ¢o > 0 and ¢ € (0,1)
such that, for every convex set K C R™ of volume one, every polynomial
f = f(21,...,25) of degree d > 1, we have a distribution inequality

pr{Ifl > |Ifllat} < exp{—t/?}, t>to, (1)

where ux is the Lebesgue measure on K, and ||f||; is L!-norm of f with
respect to k. As usual, for p > 0, one denotes ||f||, = ([ |f|P du)!/? which
also refers to some probability measure p on a space where the function f is
defined. The inequality (1) may also be written in terms of a suitable Orlicz
norm. For a > 1, set ¥4(t) = exp{t*}—1,¢ > 0, and introduce the associated
norm

I fllva = inf{A >0: /¢a(|f|/)\)dy < 1}.
Then, (1) is equivalent to the inequality

I fllera < CHlISll, (2)

with some universal ¢ € (0,1) and C > 0. In particular, this yields the
equivalence between LP and L!-norms in the form of the Khinchine-Kahane-
type inequality

lfllp < C(dsp) || £ll1, (3)

where C(d, p) depends on d and p, only. The case d = 1, with the best constant
¢ = 1in (2), was settled before by M. Gromov and V. D. Milman [G-M1] (cf.
also [M-S]). It is therefore interesting to know whether or not the inequality
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(2) with ¢ = 1 holds true in the general case d > 1. The latter is equivalent to
the statement that the inequality (3) holds in the range p > 1 with constants
C(d, p) = (Cdp)?, for some universal C. In this note, we would like to show,
following R. Kannan, L. Lovész and M. Simonovits [K-L-S}, a short proof and
a refinement of such a statement involving more general classes of probability
measures on R".

Theorem 1. With respect to an arbitrary log-concave probability measure p
on R™, for every polynomial f on R™ of degree d > 1, we have, for some
universal C,

IF119:7a < C*1I£llo- (4)

Here, ||f]lo = limpo||f|lp = exp {flog|f]du} . The log-concavity of u
means (cf. [Bor]) that p is supported by some affine subspace E of R™ where
it has a logarithmically concave density with respect to Lebesgue measure on
E, i.e., a density u: E — [0, +00) such that, for all z,y € E, and all£,5 > 0
witht+ s =1,

u(te + sy) > u(@) u(y)".

As a main statement (Theorem 1.3 in [Bou}), J. Bourgain formulated the
inequality (2) with, however, a constant C instead of C4. As we believe, the
power d was lost when deriving (2) from (1). That the power of a constant
cannot be omitted can be seen on the example of the set K = [0, 1] with
the function f = 1 and with growing d. On the other hand, the power can
be hidden, if one wishes to rewrite for example the inequality (4) in the
equivalent form as

ey, < e,

(with the same constant). This inequality is very much similar to what is
known for norms on R™ in the place of |f|*/4 (cf. [L]).

To prove (4), we use Theorem 2.7 from [K-L-S] which is based on the
localization lemma of L. Lovdsz and M. Simonovits [L-S]. It reduces multi-
dimensional Khinchine-Kahane-type inequalities with respect to log-concave
measures to dimension one that was illustrated in [K-L-S] on the example of
inequalities of the form (3) in the linear case d = 1. It was also mentioned
there that the method applies as well to the general case d > 1 and allows one
to recover Bourgain’s theorem. This is completely true up to a remark that
the one-dimensional case in (3) still requires and deserves a special careful
consideration, since it determines behaviour of constants as a function of d
and p. The localization lemma of [L-S| has also applications to other types
of inequalities. In connection with isoperimetric inequalities on the sphere,
a kind of localization technique was developed by M. Gromov and V. D.
Milman in [G-MZ2], cf. also [A].

For the Gaussian measure on the real line R, using expansions over Hermit
polynomials, the inequality (3) with p = 2 was studied by Yu. V. Prokhorov
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[P1]; he obtained as well similar inequalities when p belongs to the family
of I'(c)-distributions with the parameter a growing with the degree d, cf.
[P2]. As shown in these works, in both cases, the constants C(d,2) grow
exponentially, and this fact cannot be recovered by an inequality such as (2)
or (4). Combining Prokhorov’s approach with the localization method, one
can prove:

Theorem 2. With respect to an arbitrary log-concave probability measure p
on R™, for every polynomial f on R™ of degree d > 1, the Khinchine-Kahane-
type inequality (3) holds with

C(d,p) =p%, p>2,
where C is universal.

Consider the example of the exponential measure p = v on R with density
d’;: =e~%, z > 0, and take f(z) = z%. Then, ||fll, = I'(dp+ 1)*/? and, by
Stirling’s formula,

il P’
€1 2G-1)7 () 1Al < I fllp < €2 1) (38 I1£1l1,

for some c¢;,c3 > 0. Therefore, when p is fixed and d grows, the constant
C(d,p) = p®? gives a correct exponential rate of increase.

To compare with Theorem 1, note that, up to a universal constant, the
inequality (4) is equivalent to

I£llp < (Cdp)?lIfllo, P> 1/d. (5)
Here, since we have replaced || f||1 with a smaller quantity || f||o, the constants
have a different order. Again, for f(z) = z%, we have ||f|lo = ||z||§ with

respect to v, so
(c2dp)? || fllo < |1 fllp < (c2dp)?||fllo,

for some c1,cz > 0. One could also test sharpness of (5) on the example of
the uniform distribution on the £1-ball in R™ for f(z) = =% and with growing
dimension n.

Proof of Theorem 1. First let us comment on the one-dimensional case in (5).
Motivated by the results of {P1][P2], inequalities of the form (5), with respect
to an arbitrary probability measure u on R, were studied in [B-G]. As was
observed there, given p > 0 and d > 1, the optimal constant C = C(d, p; p)
in

1£lle < ClifTlos (6)

where f is an arbitrary polynomial of degree d on R with complex coefficients,
is given by

CY? = sup llz— z”d}’. (7)
zec ||z — 2llo
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Since the argument is straightforward, let us recall it. A remarkable fea-
ture of the functional ||f||o is its multiplicativity property: ||fi...fallo =
lfillo - - - || fallo- Therefore, writing f(2) = A(z — 21)...(z — 24) and applying
Holder’s inequality, we get

d d
Illp < AT llo - 2kllpa < CAT] llz — 2llo = Clifllo,
k=1 k=1

where C is defined according to (7). This proves (6) with this constant which
cannot be improved as the example of the polynomials f(z) = z — z shows.
It might be helpful to note that the sup in (7) can be restricted to the real
line R. Indeed, write z = a + bi so that [¢ —z|? = £+t withé = (z ~a)? > 0
and t = b%? > 0. As can easily be verified by differentiation, for any p > g,
the function of the form g(t) = ||€ + t||p/||€ + t}|; is non-increasing in ¢ > 0,
hence it is maximized at t = 0. Therefore, as a function of b, the value of

1/2
lz—z|lp 1€ + t”p;2

llz=2lla — Jle +tllg73

is maximized at b = 0. So, we may apply this observation with ¢ = 0 to (7).
In the particular case, where 4 is log-concave, the right hand side of (7)

can be bounded by a quantity which is independent of x4 and grows like Cdp.

Indeed, after shifting, one needs to estimate an optimal constant C in

12l llap < Y212l llo, P2 1/d, (8)

with respect to a log-concave measure on R. The fact that such an inequality
holds for an arbitrary log-concave measure y on R™, and for an arbitrary
norm ||z|| instead of |z| was established by R. Latala [L] (cf. also [B] and
[Gu] for different proofs). More precisely, he showed that, for some universal
C1, we always have

[HlIzltllx < Culili2ll -

On the other hand, it had been known, as an application of Borell’s lemma
[Bor], that, for p > 1,

llzltlle < Caplllizll|ls-

These two inequalities give || ||z]||lp < Cop]||||2]||lo- Thus, the constant in
(8), C/4, is bounded by Codp, for some universal Co. This proves (5) with
C = Co.

To treat the multidimensional case in (5), one may assume that p is
absolutely continuous. As proved in [K-L-S], Theorem 2.7, given non-negative
continuous functions fi, f2, fa and f4 on R™, and the numbers a, 3 > 0, the

following two properties are equivalent:
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(a) for every absolutely continuous log-concave probability measure 1 on R™®,

() ([0 < () ([1s)'s o

(b) for every non-degenerate interval A C R™ with directional vector v € R™,
and for every A € R,

(f 2o n@ae) ([ &m0 dz)ﬂ
< ([ eenn@an) ([ 2 ne) dz)ﬁ,

where dz stands for the Lebesgue measure on A.

Thus, (9) reduces to the case where the measure p is supported by a line
and, moreover, represents there the restriction of the exponential measure
e*"2) dz to the interval A. Applying the above equivalence to a« = 1/p,
B = 1/q and to the functions f; = |f|?, fa = CI|f|? (C > 0), and fo =
fa =1, R. Kannan, L. Lovdsz and M. Simonovits made the following striking
conclusion which we state here as a lemma.

Lemma 1. Let p > ¢ > 0 and C > 1. Given a continuous function f on R*,
the inequality
Ifllp < Cl|fllq (10)

holds true with respect to all log-concave probability measures p on R™ if
and only if it holds on all intervals in R™ with respect to the normalized
ezponential measures.

By continuity, one can clearly consider in (10) the case ¢ = 0, as well.

Now, if f is polynomial, its restriction to every line is again a polyno-
mial of the same degree but of one variable. Since the restrictions of the
exponential measures are log-concave, the inequality (10) thus reduces to the
one-dimensional case.

One may therefore conclude that the inequality (5) holds with C = Cp
for all polynomials f on R™ of degree d in the range p > 1/d. Applying (5)
top=k/d, k=1,2,..., we get

d
I11F174 s < Cok 1116’

Finally, by Taylor’s expansion and using k* < e*k!, we obtain that

[ ¥+ (cmgarrs) <

Proof of Theorem 2. First, we consider the growth of the constants C(d,2)
in (3) in the case p = 2. We will now use Lemma 1, with p =2 and ¢ = 1,
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in full volume that gives more than just a reduction of the multidimensional
inequality (10) to dimension one. Let A be a non-degenerate interval in R™
with endpoints @, b and with the directional vector v = (b—a)/|b — a|. Then,
with respect to the normalized exponential measures on A, the norms in (10)
are given by

1

fgb_“‘ e’ de

|b—a]
I£lE = / If(a+ z0)Pe** da.

When f is a polynomial on R™, f(a + zv) represents a polynomialin z € R
of the same degree. Moreover, after rescaling, it suffices to consider the case
A = —1. Therefore, C{d,2) is the optimal constant C in the inequality

( / |f|’dvu)1/2 <c [ iflu (11)

for the class of all polynomials f on R of degree d with respect to all measures
vy on (0, +00) with densities

qu z e %
d:f: - T—e=w low(@) u>0.

The limit case represents the exponential measure v4 o = v on (0, +00) with
density e~%, z > 0. For a related family of densities, z%¢~%/I'(a + 1), the
inequality {11), with exponentially increasing constants, was proved by Yu.
V. Prokhorov [P2]. He assumed that a > cod (for a numerical ¢o), but his
approach proposed before in [P1] actually works in a more general situation
and can be applied in particular to the measures v,. Below, to prove (11),
we follow Prokhorov’s scheme of the proof and simplify his argument about
Laguerre’s polynomials.

Step 1: 0 < u < 8d.

Let f be an arbitrary polynomial on R of degree d (with real coefficients)
such that ||f||z = 1 where L?-norm is understood with respect to vy. Let
zo € [0,u] be such that |f(zo)] = ||fllc = maxze[o,u]|f(Z)l, and assume,
without loss of generality, that f(zo) > 0. By Taylor’s expansion and by
Markov’s inequality || f'llcc < 2%’ || flloo, we get, for every point z € [0, ],

£(2) 2 F(z0) = [If ol ~ ol
2 2
> $(o0) = 22 |flele = 30l = (1~ 2 [z = 2ol 1l

Therefore, in the interval § = [21, 23] = (2o — u/(4d%), zo + u/(4d?)] N [0, u],
we have f(z) > 1 || flloo so that

1]l > /5 £(2) dva(@) > = |l 2 (6)-
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In addition, since z; — z1 > u/(4d?), for some middle point z3 € [y, z,], we
get
el —e™® gy —zy _ 1 v -8a 1 -8
3N = = z2 —_— > —
vu(9) l—e l—e® Zadi T e’ Z3g2°¢

Hence, 8d%¢%||f||1 > ||flleo > ||f]l2 so that (11) is fulfilled with C = 8d%®%.

The second step requires some preparation.

Lemma 2. For every polynomial f on R of degreed > 1,

e —T 1 oo 2 -z
[ereasy [ ire)re e

Proof. Assume that f f(z)|?e =dz = ||f||3 = 1 (with respect to v) and
introduce the Laguerre polynomlals
e dk x k L zi
—zy\ __ ? ey =
Li(z) = 45 g (a*e™®) = Jz_;)(—nfc,, L k=0,1,.... (12

They form a complete orthonormal system of functions in L?(v) so that
there exists a representation f = E::a ar L with Z:=0 lax|? = 1. Hence,
£ < ko | La[? so that

I£112 =111l < Z [l 1Z&1*]]2 = Z [l L [[3- (13)

k=0

According to (12) and since (4j)! < 4% !4, we get

i ll=?
|L||4<ZC F Z

3=0

4_7 |1/4

k
sZi:

Thus, by (13), ||If]2 < % _,25* < 25“ . Now, by Cauchy-Schwarz inequal-
ity,

* 2 2 254+1 1
[ 1) e do < AR I pasony < T e < 5.
8d

Step 2: u > 8d.

Again, let f be an arbitrary polynomial on R of degree d such that || f||2 =
1 where L2-norm is with respect to v,. Now, our basic interval will be [0, 8d).
Let zo be a point of maximum of | f| on this interval, and assume that f(z¢) >
0. Again, by Taylor’s expansion and by Markov’s inequality, for every point

z € [0’ 8d]1

£2) 2 £(ao) = 1 lmlz = 20l 2 (1= § 12 = 2al)
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(L*°-norm is taken on [0, 8d]). Therefore, in the interval
6= [21,22] = [:Bo — 2/d, Zo + 2/d] n [0, Sd]
we have f(z) > 1||f||w so that

1l > /5 F(2) dva(@) 2 5 | flleo 2 (6)- (1)

On the other hand, since u > 8d and by Lemma 2,
8d 2 1 8d 2 z 1 oo 2 z
dvy = —— - —_— -
[itan= = [CW@Petde2 g [ @)

1 “ e, 1
> 2(1—_‘3_;5/0 |f(z)]? e *dz = 7

Therefore, 5 < || 1|2, »u([0,8d] < || f||%, . Combining with (14), we get || f]|1 >
5;175 vu(9). Using z3 — z1 > 2/d, we obtain that, for some middle point z3 €
[211 32],
e —e™™ gy —21 .. 2 _g

v(d) = l—e®* l1-e=*° Zde )
Hence, v/2de®? || f||; > ||f||2 so that (11) is fulfilled with C = v/2d e®4. Note
that this constant is majorized by the constant 8d2¢%% ( < e'!¢ ) obtained on
the first step.

Thus, for every polynomial f on R™ of degree d, with respect to an arbi-
trary log-concave probability measure u on R™,

lIfll2 < €41 fll2. (15)

It remains to consider the general case p > 2, in order to complete the
proof of Theorem 2. One can iterate an inequality of the form (15), ||f||3 <
A?||fl13, starting from f and successively applying it to the polynomials

£ 3 4, ..., f**. This yields
IF < A% 92, k>0
Assume ||f]j; = 1 and pick up k > 1 such that 2* < p < 2*+1. Then,
[I£llp < 1fllaner < ABFDE? < 438 < plioas/los?,
According to {15), we can apply these estimates with A = e?? and thus get

the statement of Theorem 2 with C = 22/log?2.
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