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Abstract. We study the behaviour of constants in Khinchine-Kahane-type in- 
equalities for polynomials in random vectors which have logarithmically concave 
distributions. 

I t  is well known tha t  polynomials  on R'* of bounded degree satisfy dimen- 
sion free Khinchine-Kshane-type inequalities with respect to the uniform dis- 
tr ibution on convex sets. The best known result, which is due to J. Bourgain 
[Bou] and which gave an affirmative answer to a conjecture of V. D. Milman, 
indicates the following: there exist universal constants to > 0 and c E (0, 1) 
such that ,  for every convex set K C R'* of volume one, every polynomial  
f = f ( z t , . . . ,  z,,) of degree d > 1, we have a distribution inequality 

~K{Ifl > Ilflllt} <_ exp{-tc/~},  t_> t0, (1) 

where PK is the Lebesgue measure on K ,  and [[f]]l is L t -norm of f with 
respect to ~K- As usual, for p > 0, one denotes II/11~ = (Y I/I ~ d~) ~/" which 
also refers to some probabil i ty measure p on a space where the function f is 
defined. The inequality (1) may  also be written in terms of a suitable Orlicz 
norm. For a >_ 1, set ¢~(~) -- exp~t ~ ) -  1, t _> 0, and introduce the associated 
norm 

Then, (1) is equivalent to the inequality 

Ilfll,p°/~ < cd Ilfll~, (2) 

with some universal c E (0, 1) and C > 0. In particular, this yields the 
equivalence between/_P and Lt -norms  in the form of the Khinchine-Kahane- 
type inequality 

HfHv <_ C(d,p)II/llt, (3) 

where C(d, p) depends on d and p, only. The case d -- 1, with the best constant 
c = 1 in (2), was settled before by M. Gromov and V. D. Milman [G-M1] (cf. 
also [M-S]). I t  is therefore interesting to know whether or not the inequality 
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(2) with c : 1 holds true in the general case d > 1. The latter is equivalent to 
the statement that the inequality (3) holds in ~he range p >_ 1 with constants 
C(d, p) = (Cdp) ~, for some universal C. In this note, we would like to show, 
following R. Kannan, L. Lovgsz and M. Simonovits [K-L-S], a short proof and 
a refinement of such a statement involving more general classes of probability 
measures on R n. 

T h e o r e m  1. With respect to an arbitrary log-concave probability measure p 
on R ~, for every polynomial f on R ~ of degree d >_ 1, we have, for some 
universal C, 

I1:11 ,/, <_ cd IlYll0. (4) 

Here, Ilfllo = limp-,o Ilfllp = exp { f  log Ill dp} .  The log-concavity of/  
means (cf. [Bor]) tha t  p is supported by some affine subspace E of R "  where 
it has a logarithmically concave density with respect to Lebesgue measure on 
E,  i.e., a density u : E -+ [0, +oo)  such that,  for all z, y E E,  and all t, s > 0 
with t + s = 1, 

u ( tz  + sy) >_ u (~ ) ' u (~ ) ' .  

As a main s ta tement  (Theorem 1.3 in [Bou]), J. Bourgain formulated the 
inequality (2) with, however, a constant C instead of C ~. As we believe, the 
power d was lost when deriving (2) from (1). Tha t  the power of a constant 
cannot be omit ted can be seen on the example of the set K = [0, 1] with 
the function f = 1 and with growing d. On the other hand, the power can 
be hidden, if one wishes to rewrite for example the inequality (4) in the 
equivalent form as 

II I:11/' I1 , -< c II I:1 x/' Iio 
(with the same constant).  This inequality is very much similar to what is 
known for norms on R n in the place of lYl (cf. [L]). 

To prove (4), we use Theorem 2.7 from [K-L-S] which is based on the 
localization l emma of L. Lovgsz and M. Simonovits [L-S]. It  reduces multi- 
dimensional Khinchine-Kahane-type inequalities with respect to log-concave 
measures to dimension one that  was illustrated in [K-L-S] on the example of 
inequalities of the form (3) in the linear case d = 1. I t  was also mentioned 
there that  the method applies as well to the general case d > 1 and allows one 
to recover Bourgain's  theorem. This is completely true up to a remark tha t  
the one-dimensional case in (3) still requires and deserves a special careful 
consideration, since it determines behaviour of constants as a function of d 
and p. The localization l emma of [L-S] has also applications to other types 
of inequalities. In connection with isoperimetric inequalities on the sphere, 
a kind of localization technique was developed by M. Gromov and V. D. 
Milman in [G-M2], cf. also [A]. 

For the Gaussian measure on the real line R,  using expansions over Hermit  
polynomials, the inequality (3) with p = 2 was studied by Yu. V. Prokhorov 
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[P1]; he obtained as well similar inequalities when p belongs to the family 
of F(a)-distr ibutions with the parameter a growing with the degree d, cf. 
[P2]. As shown in these works, in both cases, the constants C(d, 2) grow 
exponentially, and this fact cannot be recovered by an inequality such as (2) 
or (4). Combining Prokhorov's approach with the localization method, one 
can prove: 

T h e o r e m  2. With respect to an arbitrary log-concave probability measure p 
on R n, for every polynomial f on R n of degree d >_ 1, the Khinchine-Kahane- 
type inequality (3) holds with 

C ( d , p )  = pod ,  p > 2, 

where C is universal. 

Consider the example of the exponential measure p = v on R with density 
d~(~) 

d.  = e *, . > 0, and take f ( z )  = z d. Then, [[f[Ip = F ( d p +  1) */v and, by 
Stirling's formula, 

pd pd 
C,d(p_,)/(2p) llflSx < fillip __S C2d(p_,)/(2,)llfllx, 

for some cl, c2 > 0. Therefore, when p is fixed and d grows, the constant 
C(d, P) = pVd gives a correct exponential rate of increase. 

To compare with Theorem 1, note that ,  up to a universal constant, the 
inequality (4) is equivalent to 

Ilfl[p _< (Cdp) d II111o, P >_ Ud. (5) 

Here, since we have replaced II/lll with a smaller quantity [If H0, the constants 
have a different order. Again, for f ( z  / -- z a, we have I l f l l0  = I1~110 ~ with 
respect to v, so 

(cxdp) d Ilfllo < Hf[[p <_ (cadp) d II/llo, 

for some cl, c2 > 0. One could also test sharpness of (5 / on the example of 
the uniform distribution on the el-ball in R "  for f ( z )  = z~ and with growing 
dimension n. 

Proof of Theorem I. First let us comment on the one-dimensional case in (5 I. 
Motivated by the results of [PI][P2], inequalities of the form (5), with respect 
to an arbitrary probability measure p on R, were studied in [B-G]. As was 
observed there, given p > 0 and d >_ i, the optimal constant C = C(dsp;pl 
in 

II/II, ___ c llfllo, (61 
where f is an arbitrary polynomial of degree d on R with complex coefficients, 
is given by 

IL~ - zlldp C */d = sup (7) 
• e c  ~ -  z-~o " 



30 S.G. Bobkov 

Since the a rgument  is s t raightforward,  let us recall it. A remarkable  fea- 
ture  of  the funct ional  lifl]o is its mul t ip l icat iv i ty  proper ty :  I l fx . . .  faRGo = 
l l f l l to . . -  Ilfai[0. Therefore,  writ ing f ( z )  = A(z  - z l ) . . .  (z - za) and applying 
Hhlder 's  inequality, we get 

a a 

Ilfll,, __% A H I1~ - =,11,,, _< C A  I - [  I1= - z, llo = Cl l f l lo,  
k = l  k = l  

where C is defined according to (7). This proves (6) with this constant which 
cannot be improved as the example of the polynomials f(z) : z - z shows. 

It might be helpful to note that the sup in (7) can be restricted to the real 
line R.  Indeed, write z = a + bi so tha t  Ix - z[ ~ = ~ + ~ with ~ = (z - a) ~ > 0 
and ~ : b 2 > 0. As can easily be verified by differentiation, for any p > q, 
the funct ion of the form g(t)  = II~ + tllp/ll~ + tltq is non-increasing in t _> 0, 
hence it is maximized at  t = 0. Therefore,  as a funct ion of  b, the value of 

.~111/~- I1=- =ll, I1,~ +-,, , /~ 

is maximized at b = 0. So, we may apply this observation with q = 0 to (7). 

In the particular case, where/~ is log-concave, the right hand side of (7) 
can be bounded by a quantity which is independent of/~ and grows like Cdp. 
Indeed, after shifting, one needs to estimate an optimal constant C in 

{I I=111a, < c 1/a II I=l Iio, p_> l /d ,  (8) 

with respect to  a log-concave measure  on R .  The  fact t ha t  such an inequal i ty  
holds for an a rb i t ra ry  log-concave measure  p on R'*, and for an a rb i t ra ry  
norm II~ll instead of I~l was established by R. Lata la  [L] (cf. also [B] and 
[Gu] for different proofs). More precisely, he showed tha t ,  for some universal 
Cx, we always have 

II II~ll II1 _< ci II [l~ll II0. 
On the other  hand,  it had been known, as an appl icat ion of  Borell 's  l emma  
[Bor], that ,  for p _> 1, 

II II~tl lip <_ c~ , l l  II~ll Ill. 

These two inequalities give Ji tl~ll II, -< CoPll il~ll lio- Thus, the constant in 
(8), U 1/a, is bounded  by Codp, for some universal Co. This  proves (5) with 

C = Co. 
To treat the multidimensional case in (5), one may assume that p is 

absolutely continuous. As proved in [K-L-S], Theorem 2.7, given non-negative 
continuous functions fl, f2, fs and f4 on R 'L, and the numbers a,/~ > 0, the 
following two properties are equivalent: 
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(a) for every absolutely continuous log-concave probability measure # on R ~, 

(b) for every non-degenerate interval A C R n with directional vector v E R n, 
and for every ~ E R, 

( f  eX("f) fl(z)dz)~ ( /  ex("f)Y2(z)dz) ~ 

<_ (f, eX("=> f3(z)dz)~ (fzeX("f> f,(z)dz) ~ , 
where dz stands for the Lebesgue measure on Zi. 

Thus, (9) reduces to the case where the measure p is supported by a line 
and, moreover, represents there the restriction of the exponential measure 
e x(*'®) dz to the interval A. Applying the above equivalence to a = l /p ,  
3 = 1/q and to the functions fa = Ill n, • =- cq l f l  q (C > 0), and f2 = 
fz = 1, R. Kannan, L. Lov£sz and M. Simonovits made the following striking 
conclusion which we state here as a lemma. 

L e r n m a  1. Let p > q > 0 and C >_ 1. Given a continuous function f on R'*, 
the inequality 

Ilfllv -< Cllfllq (10) 

holds true with respect to all log-concave probability measures lz on R'* i f  
and only i f  it holds on all intervals in R n with respect to the normalized 
ezponential measures. 

By continuity, one can clearly consider in (10) the case q = 0, as well. 
Now, if f is polynomial, its restriction to every line is again a polyno- 

mial of the same degree but of one variable. Since the restrictions of the 
exponential measures are log-concave, the inequality (10) thus reduces to the 
one-dimensional case. 

One may therefore conclude that the inequality (5) holds with C = Co 
for all polynomials f on R '~ of degree d in the range p >__ l id .  Applying (5) 
to p = k/d,  k = 1 ,2 , . . . ,  we get 

II Ifl 1/d Ilk _< c'0k Ilfll0 ~/a 

Finally, by Taylor's expansion and using k k < ekk!, we obtain that  

f 
f ¢ l /d  ( (2eCo)dllfl,o ) d# < l. 

Proof of Theorem 2. First, we consider the growth of the constants C(d, 2) 
in (3) in the case p = 2. We will now use Lemma 1, with p = 2 and q = 1, 
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in full volume that  gives more than just a reduction of the multidimensional 
inequality (10) to dimension one. Let A be a non-degenerate interval in R '~ 
with endpoints a, b and with the directional vector v = (b - a)/Ib - al. Then, 
with respect to the normalized exponential measures on za, the norms in (10) 
are given by 

1 fo Ib-~l II:ll~ : flob_al eX~. dz If(a + mv)l'e x= dz. 

When f is a polynomial on R n, f (a  q- zv) represents a polynomial in z E R 
of the same degree. Moreover, after rescaling, it suffices to consider the case 

= - 1. Therefore, C(d, 2) is the optima! constant C in the inequality 

\ 1 / 2  

< C /  (11) ( /  Ifl2d~,,,) _ [fl dv,, 

for the class of all polynomials f on R of degree d with respect to all measures 
~ on (0, +oo) with densities 

d . ~ ( s )  e - =  
d-----z- - 1 - e -----------~ l(0,,,)(z), u > 0. 

The limit case represents the exponential measure v+oo -- u on (0, +co)  with 
density e -=, z > 0. For a related family of densities, z~e-=/F(c~ + 1), the 
inequality (11), with exponentially increasing constants, was proved by Yu. 
V. Prokhorov [P2]. He assumed that  a > cod (for a numerical co), but his 
approach proposed before in [P1] actually works in a more general situation 
and can be applied in particular to the measures v,,. Below, to prove (11), 
we follow Prokhorov's scheme of the proof and simplify his argument about  
Laguerre's polynomials. 

Step l : 0 < u < 8 d .  
Let f be an arbitrary polynomial on R of degree d (with real coefficients) 

such that Ilfl12 = 1 where L2-norm is understood with respect to v,,. Let 
z0 E [0, u] be such that  If(z0)l = Ilfll® = m~x~g0,~l I f ( s )h  and assume, 
without loss of generality, that  f ( so )  > 0. By Taylor's expansion and by 

2d a Markov's inequality IIfll~o < -if-Ilflloo, we get, for every point z E [0, u], 

f(s) __> f(so) -llf'll~Is - sol 

> :(so)_ __2d  ll:ll Is- sol = -(1- Is- sol  II:II , 
-- I~ \ "{g / 

Therefore, in the interval ~ = [zl, z~] -- [So - u/(4d~), so + ~/(4d~)] n [0, ~], 
1 we have f ( z )  ~_ ~ Ilflloo so that  
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In addition, since z2 - Zl ~ u/(4d2), for some middle point zs E [zl, z2], we 
get 

V u ( ~  ) - -  e - z x  - -  e - z a  Z 2 - -  Z 1 1 u e_Sd > 1 e_Sd" 
i - e - "  -- i - e  ---q e-®' > 4d 2 1 - e  -a' - 4-~ 

Hence, 8d2e s'~ Ilfllt > Ilfll~ >- [If[12 so that  (11) is fulfilled with C : 8d% s'~. 

The second step requires some preparation. 

L e m m a  2. For every polynomial f on R of degree d >_ 1, 

//- /o d [f(z)12e-=dm < -2 I f ( z ) l~e- 'dz"  

Proof. Assume that  f :oo  if(~)l 2 e -"  d~ = IIfll~ = 1 (with respect to u) and 
introduce the Laguerre polynomials 

L~(z) - -  e" d h h zj 
k! dz k(zke-')= E(-1)#C~ j-~" k=0,1,.... (12) 

j=0 

They form a complete orthonormal system of functions in L2(v) so that 
d d there exists a representation f = ~-]~k=oakLk with ~k=0  lakl 2 = 1. Hence, 

d Ifl 2 -< ~k=0 ILkl 2 so that 

d d 

Ilfl14 2 = II If] 2 112 _~ E II [Lkl 2112 = E IILkH~" (13) 
k=0 k=0 

According to (12) and since (4j)! < 44./3'!4 , we get 

• - ( 4 j ) !  1/4 = 5 k. IIL II, <_ _ ? < c 43. 
3"=0 j = 0  j = 0  

d ~ .  Thus, by (13), Ilflll _< )-]~k=O 25k < Now, by Cauchy-Schwarz inequal- 
ity, 

f s  ~ 25 ~+t 1 d If(z)[~ e-= dz  < Ilfll l II t tsd,+~)112 < ~ e -4d < ~. 

Step 2: u > 8d. 
Again, let f be an arbitrary polynomial on R of degree d such that  Ilfl12 = 

1 where L2-norm is with respect to vu. Now, our basic interval will be [0, 8 4 .  
Let z0 be a point of maximum of Ifl on this interval, and assume that  f (zo) 
0. Again, by Taylor's expansion and by Markov's inequality, for every point 

f ( z )  > f ( z o )  - - I I f ' l l o o l z  - z01 _> 1 - 
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(L°°-norm is taken on [0, 8~).  Therefore, in the interval 

we have f (z )  ~_ ~ [[f[[oo so that  

]]fIlx >_ f (z )  d~, (z)  ~> ~ HfHoo t/,,(~). (14) 

On the other hand, since u > 84 and by Lemma 2, 

fo sd 1 foSd 1 fo+°c ]f]2dv~' - 1 --e-~' If(z)]2e-®dz >- 2(1 -e-") If(z)]2e-" dz 

I" 1 ]f(z)]2e_.  dz = 1. 
--~ 2(1 -- e - ' )  

Therefore, ~ ~ []f[[~ ~u([0, 8~ ~ [[f[[~. Combining with (14), we get ]]fill 
uu(~). Using z2 - zx ~ 2/4, we obtain that ,  for some middle point z3 E 

l /u(~) --  e--~'i -- e--z" •2 -- Z l  2 e_Sd" 

Hence, .¢~de sa [If[[1 _> 1[$[[2 so that  (11) is fulfilled with C : v ~ d e  sd. Note 
that  this constant is majorized by the constant 8d2e sg ( ~_ e 11d ) obtained on 
the first step. 

Thus, for every polynomial f on R"  of degree d, with respect to an arbi- 
trary log-concave probability measure ~ on R '~, 

]lflb _< exxd Ilfllx- (153 

It remains to consider the general case p _~ 2, in order to complete the 
proof of Theorem 2. One can iterate an inequality of the form (15), HfH] _< 
Ad IIfll~, starting from f and successively applying it to the polynomials 
f ,  f2, f4 . . . ,  f2 ~. This yields 

]lf]l]~ ~ Ak2"-~'~]lf]]~ ~, k >_ 1. 

Assume ]]f]]l : i and pick up k _> 1 such that 2 k ~ p < 2 k+l. Then, 

[Ifllp ~ HfH2 I.+x _~ A(k'l 'X)d/2 ~ A k d  <~ P dl°sA'/l°g2" 

According to (15), we can apply these estimates with A : e 22 and thus get 
the statement of Theorem 2 with C -- 22/log 2. 
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