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FROM BRUNN–MINKOWSKI TO BRASCAMP–LIEB
AND TO LOGARITHMIC SOBOLEV INEQUALITIES

S.G. Bobkov and M. Ledoux

Abstract

We develop several applications of the Brunn–Minkowski inequality in
the Prékopa–Leindler form. In particular, we show that an argument
of B. Maurey may be adapted to deduce from the Prékopa–Leindler
theorem the Brascamp–Lieb inequality for strictly convex potentials.
We deduce similarly the logarithmic Sobolev inequality for uniformly
convex potentials for which we deal more generally with arbitrary
norms and obtain some new results in this context. Applications to
transportation cost and to concentration on uniformly convex bodies
complete the exposition.

1 Introduction

The Prékopa–Leinder theorem [Pr1,2], [Le], is a functional form of the geo-
metric Brunn–Minkowski inequality which indicates that whenever t, s > 0,
t + s = 1, and u, v, w are non-negative measurable functions on Rn such
that for all x, y ∈ Rn,

w(tx+ sy) ≥ u(x)tv(y)s ,
then ∫

w dx ≥
(∫

udx

)t(∫
v dx

)s
. (1.1)

Applied to the characteristic functions of bounded measurable sets A and B
in Rn, it yields the multiplicative form of the Brunn–Minkowski inequality

vol(tA+ sB) ≥ vol(A)t vol(B)s

for every t, s > 0, t+s = 1 (cf. e.g. [P2] for a short proof, due to K. Ball, of
(1.1)). As is well known, the Brunn–Minkowski inequality may be used to
produce a direct proof of the classical isoperimetric inequality in Euclidean
space. The Prékopa–Leindler theorem has been strengthened and studied
extensively by H. Brascamp and E. Lieb in their paper [BrL]. Its dimen-
sion free character makes it a useful tool for infinite dimensional analysis
illustrated by Gaussian measures. For example, Maurey used it in [Ma] to
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give a simple proof of the Gaussian concentration property∫
e

1
4d( · ,A)2

dγ ≤ 1
γ(A)

where d( · , A) denotes the (Euclidean) distance to the set A in Rn, as well
as of the Poincaré, or spectral gap, inequality

Varγ(f) ≤
∫
|∇f |2dγ (1.2)

where Varγ(f) stands for the variance of f : Rn → R with respect to the
canonical Gaussian measure γ on Rn, and where |∇f | denotes the Euclidean
length of the gradient ∇f of the smooth function f . (In inequalities such as
(1.2), smooth usually means locally Lipschitz for example.) For an arbitrary
Gaussian measure µ with covariance matrix Γ, (1.2) takes the form

Varµ(f) ≤
∫
〈Γ∇f,∇f〉dµ . (1.3)

By means of the isoperimetric inequality in Euclidean space and an asymp-
totic argument, W. Beckner [Be] recently recaptured Gross logarithmic
Sobolev inequality [Gr]

Entγ(f2) =
∫
f2 log f2dγ −

∫
f2dγ log

∫
f2dγ ≤ 2

∫
|∇f |2dγ (1.4)

that is well known to contain both the spectral gap inequality and the
concentration properties of γ (cf. [L]).

Now, let µ be a log-concave measure on Rn thus given by
dµ
dx = e−V (x) , x ∈ Rn ,

where V is a convex function on Rn. Brascamp and Lieb proved in their pa-
per (although somewhat independently of their investigation of the Prékopa–
Leindler theorem) that whenever V is strictly convex, for every smooth
function f on Rn,

Varµ(f) ≤
∫ 〈

V ′′
−1∇f,∇f

〉
dµ (1.5)

where V ′′−1 denotes the inverse of the Hessian of V , an inequality that
considerably extends the Gaussian case (1.2), (1.3). In particular, if, as
symmetric matrices, V ′′(x) ≥ c Id for some c > 0 and every x,

Varµ(f) ≤ 1
c

∫
|∇f |2dµ (1.6)

(a result known earlier in Riemannian geometry). On the other hand, it
has been shown recently in [Bo] that this inequality (1.6) actually holds for
any convex V with a constant however depending on the dimension n.



1030 S.G. BOBKOV AND M. LEDOUX GAFA

Under the condition V ′′ ≥ c Id, c > 0, the inequality (1.6) has been
strengthened into a logarithmic Sobolev inequality by means of the Γ2
criterion of Bakry–Emery and semigroup methods (see [B]) as

Entµ(f2) ≤ 2
c

∫
|∇f |2dµ (1.7)

for any smooth function f on Rn. As developed in the notes [L], such a
logarithmic Sobolev inequality entails, by the Herbst argument, Gaussian
concentration properties for the measure µ. In particular,∫

eα|x|
2
dµ(x) <∞ (1.8)

for some α > 0 (actually every α < 1/2c). It is further shown in [W],
[A], [Bo] (cf. [L]) that a log-concave measure µ such that (1.8) holds for
some α > 0 satisfies the logarithmic Sobolev inequality (1.7) (again with a
constant essentially depending on the dimension).

In the first part of this work, we show how Maurey’s method may be
adapted to deduce the Brascamp–Lieb inequality (1.5) from the Prékopa–
Leindler theorem. We observe furthermore that one cannot hope for the
entropic version of the Brascamp–Lieb inequality

Entµ(f2) ≤ 2
∫
〈V ′′−1∇f,∇f〉dµ

to hold. However, we prove at the end of section 3 that it actually holds
(up to a multiplicative constant) under an additional convexity assumption
on V . Next, we show how to deduce the logarithmic Sobolev inequality
(1.7) again from the Prékopa–Leindler theorem. With respect to [Ma], we
make use of the Prékopa–Leindler inequality for the full range of values of
t, s > 0, t + s = 1 (rather than only t = s = 1/2), following in this the
recent contribution [Bo]. This approach actually allows us to deal with
more general convexity conditions involving arbitrary norms ‖ · ‖ on Rn
(or on a finite dimensional vector space). For example, if for some c > 0
and all x, y ∈ Rn,

V (x) + V (y)− 2V
(x+ y

2

)
≥ c

2
‖x− y‖2 ,

then, for every smooth function f on Rn,

Entµ(f2) ≤ 2
c

∫
‖∇f‖2∗dµ

where ‖ · ‖∗ denotes the dual norm. We further discuss a similar result for
p-convex V ’s, p ≥ 2. A typical example is given by V (x) = ‖x‖p, p ≥ 2, for
a p-uniformly convex norm. In section 4, we describe a transportation cost
version of our results, while in the last section we recover the concentration
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results of M. Gromov and V. Milman [GM] in uniformly convex spaces.
In particular, we describe there logarithmic Sobolev inequalities for the
uniform measure on a uniformly convex body. Our result similarly apply to
measures with log-concave densities with respect to µ, and thus in particular
to the conditional probabilities with respect to arbitrary convex sets (of
positive measure).

2 From Prékopa–Leindler to Brascamp–Lieb

In this section, we develop Maurey’s method [Ma] to deduce the Brascamp–
Lieb inequality (1.5) from the Prékopa–Leindler theorem. Let E be a finite
dimensional linear space with a fixed Lebesgue measure dx. Consider a
probability measure µ on E with density e−V (x), x ∈ Ω, with respect to
Lebesgue measure where V is a convex function on some open convex set
Ω ⊂ E (in particular, µ is supported by Ω.) The following statement is just
the Brascamp–Lieb inequality of [BrL].

Proposition 2.1. Assume that V is twice continuously differentiable and
strictly convex on Ω. Then, for every smooth enough function f on Ω,

Varµ(f) ≤
∫ 〈

V ′′
−1∇f,∇f

〉
dµ

where V ′′−1 denotes the inverse of the Hessian of V .

Proof. We assume for simplicity that E = Rn (equipped with its Eu-
clidean scalar product 〈 · , · 〉). We may further assume that f is smooth
with compact support and takes non-negative values. Finally, by a simple
perturbation argument, we can also assume that V ′′ ≥ ρ Id for some ρ > 0.
For t, s > 0, t+s = 1, apply the Prékopa–Leindler theorem to the functions
on Ω

u(x) = e(f(x)/t)−V (x) , v(y) = e−V (y) , w(z) = eft(z)−V (z) ,

to get ∫
eftdµ ≥

(∫
ef/tdµ

)t
(2.1)

for the optimal ft given by

ft(z) = sup
z=tx+sy, x,y∈Ω

(
f(x)− [tV (x) + sV (y)− V (tx+ sy)]

)
, z ∈ Ω .

When z = tx+ sy, then x = z + s
t (z − y). Hence, setting z − y = h,

ft(z) = sup
h

(
f
(
z + s

t h
)
−
[
tV
(
z + s

t h
)

+ sV (z − h)− V (z)
])

(2.2)
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where the supremum is running over all h’s such that z + s
th, z − h ∈ Ω.

Now, let us fix t = s = 1/2. Let further δ > 0 and denote by f̃δ the optimal
function in (2.2) for δf . For each z ∈ Ω, the supremum in (2.2) is attained
at some point hδ such that

δf ′(z + hδ) = 1
2

[
V ′(z + hδ)− V ′(z − hδ)

]
,

where we write for simplicity f ′ and V ′ for the gradients of f and V . Since
f is smooth with compact support, and since V is strictly convex, hδ → 0
as δ → 0. Actually, since V ′′ ≥ ρ Id and f ′ is bounded, hδ = O(δ) as δ → 0.
Therefore, by Taylor’s formula,

δf ′(z) = V ′′(z)hδ + o(δ) (2.3)

where o(δ) can be chosen uniform in z. Then, again by Taylor’s formula,

f̃δ(z) = δf(z + hδ)−
[1

2 V (z + hδ) + 1
2 V (z − hδ)− V (z)

]
= δf(z) + δ

〈
f ′(z), hδ

〉
− 1

2

〈
V ′′(z)hδ, hδ

〉
+ o(δ2) .

By (2.3), it follows that

f̃δ(z) = δf(z) + δ2

2

〈
V ′′(z)−1f ′(z), f ′(z)

〉
+ o(δ2) (2.4)

where, as before, o(δ2) is uniform in z. Now, (2.1) reads for t = s = 1/2 as∫
e2δfdµ ≤

(∫
ef̃δdµ

)2

.

Clearly, ∫
e2δfdµ = 1 + 2δ

∫
fdµ+ 2δ2

∫
f2dµ+ o(δ2)

while, by (2.4),(∫
ef̃δdµ

)2

= 1 + 2δ
∫
f dµ+ δ2

(∫
f dµ

)2

+ δ2
∫
f2dµ

+ δ2
∫
〈V ′′−1

f ′, f ′〉dµ+ o(δ2)

from which the Brascamp–Lieb inequality easily follows as δ → 0. The
proof of the proposition is complete. �

As announced in the introduction, we now ask for the entropic version
of the Brascamp–Lieb inequality, that is, does the inequality

Entµ(f2) ≤ 2
∫
〈V ′′−1∇f,∇f〉dµ (2.5)

hold for every smooth function f? It is classical (replacing f by 1 + εf and
letting ε → 0) that (2.5) would strengthen the Brascamp–Lieb inequality.
On the other hand, such a logarithmic Sobolev inequality would imply by
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the Herbst argument (cf. [L]) that every f with 〈V ′′−1∇f,∇f〉 ≤ 1 almost
everywhere is such that ∫

eαf
2
dµ <∞

for every α < 1/2. However this cannot hold in general. Let us consider for
example, in dimension 1, V (x) = − log(2x) on Ω = (0, 1) and f(x) = log(x).
Then V is strictly convex and |f ′|2/V ′′ = 1. However,∫

eαf
2
dµ = 2

∫ 1

0
eα(log x)2

x dx =∞

for every α > 0 so that, by the preceding, (2.5) cannot hold for this V , even
with some constant instead of 2 on the right-hand side. It is easy to modify
this example to define V on all R. It might be worthwhile mentioning that
this example does not contradict the exponential integrability result under
a Poincaré inequality (cf. e.g. [L]) since

∫
eα|f |dµ <∞ for every α < 2.

Although (2.5) does not hold in general, we will show at the end of
the next section that it holds under a further (rather strong) convexity
condition on V .

3 From Prékopa–Leindler to Logarithmic Sobolev
Inequalities

In this section, we present an approach to logarithmic Sobolev inequalities
based on the Prékopa–Leindler theorem. It might be helpful to start with
the Gaussian case. However, the general case is no more difficult so that we
directly turn to it. Moreover, we can formulate our main result with respect
to arbitrary norms yielding some new inequalities in this context. Let thus
(E, ‖ · ‖) be a finite dimensional normed space (with a fixed Lebesgue
measure dx). Denote by (E∗, ‖ · ‖∗) the dual normed space. Consider an
arbitrary probability measure µ on E with density e−V (x), x ∈ Ω, with
respect to Lebesgue measure where V is a convex function on some open
convex set Ω ⊂ E. Moreover, assume that, for all t, s > 0 with t + s = 1
and all x, y ∈ Ω,

tV (x) + sV (y)− V (tx+ sy) ≥ cts
2 ‖x− y‖

2 (3.1)

for some c > 0. As mentioned in the introduction, when the norm is
Euclidean, the proposition below follows from the Bakry–Emery criterion
[BE], [B] (cf. [L]). It does not seem that the semigroup methods developed
in [BE] allow the extension to arbitrary norms.
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Proposition 3.1. Under (3.1), for every smooth function f on Ω,

Entµ(f2) ≤ 2
c

∫
‖∇f‖2∗dµ .

Proof. We start as in the proof of Proposition 2.1. We may and do assume
that f2 = eg where g is a smooth function on Ω with compact support.
Let t, s > 0, t + s = 1, and apply the Prékopa–Leindler theorem to the
functions on Ω

u(x) = e(g(x)/t)−V (x) , v(y) = e−V (y) , w(z) = egt(z)−V (z) ,

to get ∫
egtdµ ≥

(∫
eg/tdµ

)t
(3.2)

where the optimal function gt is given by
gt(z) = sup

z=tx+sy, x,y∈Ω

(
g(x)− [tV (x) + sV (y)− V (tx+ sy)]

)
, z ∈ Ω .

Since for every x, y ∈ Ω,
tV (x) + sV (y)− V (tx+ sy) ≥ cts

2 ‖x− y‖
2 ,

we see that
gt(z) ≤ sup

z=tx+sy, x,y∈Ω

(
g(x)− cts

2 ‖x− y‖
2) , z ∈ Ω .

The idea of the proof is to let t → 1 (s → 0) in (3.2) to deduce the loga-
rithmic Sobolev inequality. To this task, it might be helpful to notice that
entropy naturally arises as the derivative of Lp-norms so that by Taylor’s
formula, (∫

eg/tdµ
)t

=
∫

egdµ+ s Entµ(eg) +O(s2) (3.3)

as t→ 1 (s→ 0).
Now, when z = tx + sy, then x = z + s

t (z − y), x − y = 1
t (z − y), and

setting h = z − y and η = s/t, the above inequality yields
gt(z) ≤ sup

h∈E

[
g(z + ηh)− cη

2 ‖h‖
2] .

By a Taylor expansion,
g(z + ηh) = g(z) + η

〈
∇g(z), h

〉
+ ‖h‖2O(η2)

as η → 0 (equivalently as s → 0). Noticing that |O(η2)| ≤ C η2 with a
constant C independent of z, we get that

gt(z) ≤ g(z) + η sup
h∈E

[〈
∇g(z), h

〉
−
(
c
2 − Cη

)
‖h‖2

]
.

To identify the last supremum, consider a function ψ on E of the form
ψ(h) = 〈v, h〉 − θ

2‖h‖2 where h ∈ E, v ∈ E∗ and θ > 0. Writing h = λe
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with ‖e‖ = 1, we see that

sup
h∈E

ψ(h) = sup
λ∈R

sup
‖e‖=1

(
λ〈v, e〉 − θλ2

2

)
= sup

λ∈R

(
λ‖v‖∗ − θλ2

2

)
= 1

2θ ‖v‖
2
∗ .

Applying this observation to v = ∇g(z), θ = c − 2Cη > 0 for small
enough η’s, we conclude that, uniformly over all z ∈ Ω,

gt(z) ≤ g(z) + η
2c

∥∥∇g(z)
∥∥2
∗ +O(η2) .

Hence, uniformly over all z ∈ Ω,
egt(z) ≤ eg(z) + η

2c

∥∥∇g(z)
∥∥2
∗ eg(z) +O(η2)

and thus ∫
egtdµ ≤

∫
egdµ+

η

2c

∫
‖∇g‖2∗egdµ+O(η2) .

Together with (3.2) and (3.3), we thus get the logarithmic Sobolev inequal-
ity

Entµ(eg) ≤ 1
2

∫
‖∇g‖2∗ egdµ .

Since f2 = eg, the proof is complete. �
We now collect some remarks on the convexity condition (3.1). If V is

twice continuously differentiable on Ω, the condition (3.1) is equivalent to
the property that for all x ∈ Ω, h ∈ E,〈

V ′′(x)h, h
〉
≥ c‖h‖2 . (3.4)

It is actually enough that (3.1) holds for some t, s > 0, t+s = 1. However, it
might be worthwhile noting that the proof of Proposition 3.1 only requires
that for all t, s > 0 with t+ s = 1, and all x, y ∈ Ω,

tV (x) + sV (y)− V (tx+ sy) ≥ c
2

(
s+ o(s)

)
‖x− y‖2

where o(s) is a function of s ∈ (0, 1) such that o(s)/s→ 0 as s→ 0.
Applying Proposition 3.1 to 1 + εf and letting ε→ 0 yields classically

the Poincaré inequality

Varµ(f2) ≤ 1
c

∫
‖∇f‖2∗dµ (3.5)

for every smooth f on Ω. By (3.4), this actually follows directly from the
Brascamp–Lieb inequality (1.5).

Proposition 3.1 may be extended to p-convex potentials V , p ≥ 2.
Again, let (E, ‖ · ‖) be a finite-dimensional normed space with a fixed
Lebesgue measure dx, and let (E∗, ‖ · ‖∗) be the dual normed space. Con-
sider a probability measure µ on E with density e−V , where V is a convex
function on some open convex set Ω ⊂ E, such that, for some c > 0, all
t, s > 0 with t+ s = 1 and all x, y ∈ Ω,

tV (x) + sV (y)− V (tx+ sy) ≥ c
p

(
s+ o(s)

)
‖x− y‖p (3.6)
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where p ≥ 2, and where o(s) is a function of s ∈ (0, 1) such that o(s)/s→ 0
as s→ 0. Denote by q = p

p−1 the conjugate number of p.
Before stating our result, it is worthwhile mentioning that the following

property of a (continuous) function V is sufficient for (3.6) to hold: for all
x, y ∈ Ω, p ≥ 2,

V (x) + V (y)− 2V
(
x+ y

2

)
≥ c

p
‖x− y‖p . (3.7)

To derive (3.6) from (3.7), first note that since V is convex on Ω, for all
x, y ∈ Ω,

tV (x) + sV (y)− V (tx+ sy) ≥ cmin(t, s)
p

‖x− y‖p .

Indeed, this inequality holds for s = 0 and s = 1/2. In addition, its
left-hand side is concave in s ∈ [0, 1/2], while the right-hand side is a
linear function on that interval. Hence, the above inequality holds for all
s ∈ [0, 1/2] (and for all s ∈ [1/2, 1] after replacing x by y). It remains to
note that min(t, s) ≥ ts.
Proposition 3.2. Under (3.6), for every smooth non-negative function f
on Ω,

Entµ(f q) ≤
( q
c

)q−1
∫
‖∇f‖q∗dµ .

Proof. Let g be a smooth function on Ω with compact support, and let
t, s > 0 with t + s = 1. As in the proof of Proposition 3.1, the inequality
(3.2) holds true with optimal gt given by
gt(z) = sup

z=tx+sy, x,y∈Ω

(
g(x)− [tV (x) + sV (y)− V (tx+ sy)]

)
, z ∈ Ω .

By the assumption on V ,

gt(z) ≤ sup
z=tx+sy, x,y∈Ω

(
g(x)− c

p

(
s+ o(s)

)
‖x− y‖p

)
, z ∈ Ω .

Again, since x = z + s
t (z − y), x− y = 1

t (z − y), setting h = z − y, η = s
t ,

we have that s+ o(s) = η+ o(η), and the above inequality reads, for every
z ∈ Ω,

gt(z) ≤ sup
h∈E

(
g(z + ηh)−

(
cη
p + o(η)

)
‖h‖p

)
.

By Taylor’s formula,
g(z + ηh) = g(z) + η

〈
∇g(z), h

〉
+ ‖h‖2O(η2) ,

as η → 0 (equivalently as s → 0). Using that |O(η2)| ≤ C η2, |o(η)| ≤ Dη
with D = D(η)→ 0 as η → 0, we get that

gt(z) ≤ g(z) + η sup
h∈E

(〈
∇g(z), h

〉
−
(
c
p −D

)
‖h‖p + Cη‖h‖2

)
.



Vol. 10, 2000 FROM BRUNN–MINKOWSKI TO BRASCAMP–LIEB 1037

The next lemma will allow us to estimate the last supremum and to show
that the term Cη‖h‖2 does not make any influence when η is small.

Lemma 3.3. Consider a function ψ of the form
ψ(h) = 〈v, h〉 − a

p‖h‖
p + b‖h‖2 , h ∈ E ,

where v ∈ E∗, a, b > 0. Then, if b ≤ 1
2

(
a

1+‖v‖∗
)q−1,

sup
h∈E

ψ(h) ≤ ‖v‖
q
∗

qaq−1 + b

(
1 + ‖v‖∗

a

)2(q−1)

.

Proof. Writing h = λe with ‖e‖ = 1,

sup
h∈E

ψ(h) = sup
λ∈R

sup
‖e‖=1

(
λ〈v, e〉 − a

p |λ|
p + bλ2

)
= sup

λ∈R

(
λ‖v‖∗ − a

p |λ|
p + bλ2

)
.

The value λ‖v‖∗ − a
p |λ|p is maximized at λ0 =

(‖v‖∗
a

)q−1 and is equal to
‖v‖q∗/qaq−1 at this point. On the other hand, consider the function

ϕ(λ) = λ‖v‖∗ − a
pλ

p + bλ2 , λ ≥ 0 ,
and assume that ‖v‖∗ > 0. Clearly, ϕ is maximized for some λ1 > 0 at
which point

ϕ′(λ1) = ‖v‖∗ − aλ
p−1
1 + 2bλ1 = 0.

Moreover, ϕ′′(λ) = −a(p − 1)λp−2 + 2b, so that, for some λ2 ≥ 0, ϕ is
convex on [0, λ2] and concave on [λ2,∞). Since ϕ′(0) = ‖v‖∗ > 0, we may
conclude that ϕ increases on [0, λ1] and decreases on [λ1,∞). Now, for a
fixed θ > 1 to be chosen later on, we have

ϕ′(θq−1λ0) = −(θ − 1)‖v‖∗ + 2b
(
θ ‖v‖∗a

)q−1
≤ 0

provided that
b ≤ b0 = 1

2

(
a
θ

)q−1 (θ − 1)‖v‖2−q∗ .

Hence, for b ≤ b0, λ1 ≤ θq−1λ0. Choose than θ = 1 + 1
‖v‖∗ so that b0 =

1
2

(
a

1+‖v‖∗
)q−1. Thus, for b ∈ (0, b0], ϕ′(θq−1λ0) ≤ 0. This implies that

λ1 ≤ θq−1λ0 =
(

1 + ‖v‖∗
a

)q−1

.

Therefore, for b ≤ b0,

sup
h∈E

ψ(h) = ϕ(λ1) ≤ sup
λ∈R

(
λ‖v‖∗ − a

p |λ|
p
)

+ bλ2
1

= ‖v‖q∗
qaq−1 + bλ2

1

≤ ‖v‖q∗
qaq−1 + b (1 + ‖v‖∗a)2(q−1)

which is the result. Lemma 3.3 is proved. �
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We may now conclude the proof of the proposition. In our case v =
∇g(z), a = c−Dp, b = Cη. In particular, the condition b ≤ 1

2

(
a

1+‖v‖∗
)q−1

is satisfied for sufficiently small η’s. Therefore, since ‖∇g(z)‖∗ is bounded
above and since D = o(1), we get that

sup
h∈E

ψ(h) ≤ q−1c1−q
∥∥∇g(z)

∥∥q
∗ + o(1) ,

and thus, uniformly over all z ∈ Ω,
gt(z) ≤ g(z) + ηq−1c1−q

∥∥∇g(z)
∥∥q
∗ + o(η) .

Hence, uniformly in z ∈ Ω,
egt(z) ≤ eg(z) + ηq−1c1−q

∥∥∇g(z)
∥∥q
∗e
g(z) + o(η) .

Arguing then as in the proof of Proposition 3.1, we get as η → 0 that

Entµ(eg) ≤ q−1c1−q
∫
‖∇g‖q∗egdµ

which amounts to the inequality of the proposition, replacing eg by f q.
Proposition 3.2 is thus established. �

As was mentioned to us by M. Schmuckenschläger, one may consider, as
a more general condition than (3.6), potentials V such that for all t, s > 0
with t+ s = 1 and all x, y ∈ Ω,

tV (x) + sV (y)− V (tx+ sy ≥
(
s+ o(s)

)
Φ
(
‖x− y‖

)
where Φ is a convex non-negative function on R+. Under some techni-
cal assumptions on Ψ in order to achieve the analogue of Lemma 3.3,
Proposition 3.2 extends to yield that, for every smooth function f on Ω,

Entµ(ef ) ≤
∫

Φ∗
(
‖∇f‖∗

)
efdµ (3.8)

where Φ∗(u) = supv>0[uv−Φ(v)] is the Legendre transform of Φ. Inequality
(3.8) is of particular interest for its formal relation to large deviations. For
the applications below to transportation inequalities and uniformly convex
bodies, we however only consider the classical case Φ(u) = up, p ≥ 2.

We would like to mention that the main results, Propositions 3.1 and 3.2,
still hold for measures with log-concave densities with respect to µ, µ satis-
fying the hypotheses of either Proposition 3.1 or 3.2. In particular, one may
choose for h the characteristic function of some convex set B (of positive
measure), and the results apply to the conditional probability

µB(A) =
µ(A ∩B)
µ(B)

, A Borel set in E .

For example, if γ is the canonical Gaussian measure on Rn, each measure
γB will satisfy the logarithmic Sobolev inequality

EntγB(f2) ≤ 2
∫
|∇f |2dγB ,
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with thus a constant uniform in B. Such a result has to be compared with
the corresponding inequalities for the conditional restriction with respect
to Lebesgue measures that essentially depends on the size and shape of B.

To conclude this section, we show how the preceding techniques may
be used to produce a version of the Brascamp–Lieb inequality for entropy
under some restriction on V .

Proposition 3.4. As in Proposition 2.1, assume that V is twice contin-
uously differentiable and strictly convex on Ω. Assume furthermore that,
for any h ∈ E, the function x → 〈V ′′(x)h, h〉 is concave on Ω. Then, for
every smooth function f on Ω,

Entµ(f2) ≤ 3
∫
〈V ′′−1∇f,∇f〉dµ .

Proof. We start as in the proof of Propositions 2.1 and 3.1, and let E = Rn
with its Euclidean structure. Let g be a smooth function with compact
support in Ω. We also assume that V ′′ ≥ ρ Id for some ρ > 0. We start from
(3.2) of the proof of Proposition 3.1, but now bound below the expression
L(s) = tV (x)+sV (y)−V (tx+sy), t, s > 0, t+s = 1, x, y ∈ Ω, z = tx+sy,
with the help of the representation

L(s) =
ts

2

∫ 1

0

[
s〈V ′′(rz + (1− r)x)k, k〉+ t〈V ′′(rz + (1− r)y)k, k〉

]
dr2

where z = tx+ sy and k = x− y. By concavity of V ′′ and convexity of V ,〈
V ′′(rz + (1−r)x)k, k

〉
≥ r
〈
V ′′(z)k, k

〉
+ (1−r)

〈
V ′′(x)k, k

〉
≥ r
〈
V ′′(z)k, k

〉
and similarly with y instead of x. Therefore

L(s) ≥ ts

2

∫ 1

0
r dr2〈V ′′(z)k, k〉 =

ts

3
〈
V ′′(z)k, k

〉
.

Thus,
gt(z) ≤ sup

z=tx+sy, x,y∈Ω

(
g(x)− ts

3

〈
V ′′(z)k, k

〉)
, z ∈ Ω , k = y − x .

Since x = z + sk, by Taylor’s formula,
gt(z) ≤ sup

k;z+sk,z−tk∈Ω

(
g(z + sk)− ts

3

〈
V ′′(z)k, k

〉)
≤ g(z) + s sup

k

(〈
g′(z), k

〉
− t

3

〈
V ′′(z)k, k

〉
+ |k|2O(s)

)
where O(s) is uniform in z. Since V ′′ ≥ ρ Id, for s small enough, it is easily
seen that

gt(z) ≤ g(z) + 3s
4

〈
V ′′(z)−1

g′(z), g′(z)
〉

+O(s2)
where, again, the constant in O(s2) can be chosen independent of z. Hence,
uniformly over all z ∈ Ω

egt(z) ≤ eg(z) + 3s
4

〈
V ′′(z)−1

g′(z), g′(z)
〉

eg(z) +O(s2) ,
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and thus ∫
egtdµ ≤

∫
egdµ+

3s
4

∫ 〈
V ′′
−1
g′, g′

〉
egdµ+O(s2) .

As in the proof of Proposition 3.1, it then follows from (3.2) and (3.3) as
s→ 0 (t→ 1), that

Entµ(eg) ≤ 3
4

∫
〈V ′′−1

g′, g′〉egdµ .

Applying this inequality to g such that eg = f2, we get that

Entµ(f2) ≤ 3
∫
〈V ′′−1

f ′, f ′〉dµ .
This inequality readily extends to all locally Lipschitz function f on Ω.
Proposition 3.4 is thereby established. �

The following example illustrates the applicability of Proposition 3.4.
Let E = R, Ω = (0,∞), and let µ with density C e−x

p/p, x > 0, with
respect to Lebesgue measure on Ω. Proposition 3.4 can be applied in the
case 2 ≤ p ≤ 3 since then V ′′(x) = (p − 1)xp−2 is a concave function in
x > 0. Thus, for every smooth function f on (0,∞),

Entµ(f2) ≤ 3
p− 1

∫ ∞
0

x2−pf ′(x)2
dµ(x).

On the other hand, it is plain that the example developed after (2.5) does
not satisfy the requirements of Proposition 3.4.

4 Infimum-convolution and Transportation Inequalities

The logarithmic Sobolev inequality of Proposition 3.2 may be used to pro-
duce in an easy way sharp concentration inequalities for the measure µ by
means of the Herbst argument. The argument consists in applying Propo-
sition 3.2 to f q = eλg, λ ∈ R, where g is Lipschitz and mean-zero to deduce
a differential inequality on the Laplace transform of g. We refer to [AMS],
[L] for details.

Corollary 4.1. Under (3.6), for every Lipschitz function g on Ω ⊂ E
with respect to ‖ · ‖ and with Lipschitz semi-norm less than or equal to 1
(equivalently ‖∇g‖∗ ≤ 1 almost everywhere), and every t ≥ 0,

µ

(
g ≥

∫
g dµ+ t

)
≤ exp

(
− ctp

p(p− 1)p−1

)
.

As is classical (cf. [L]), this concentration property on functions implies
(is essentially equivalent to the fact) that for every measurable set A with
µ(A) ≥ 1/2, and every ε > 0,

µ(Aε) ≥ 1− e−cpε
p

(4.1)
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where Aε is the ε-neighborhood of A with respect to the norm on E and
where cp > 0 only depends on p and c.

There is however an other way to concentration via transportation in-
equalities put forward recently in the work of K. Marton [M]. This approach
has been further developed in the papers [T], [D], [BoG] etc (cf. [L]).

Let as before (E, ‖ · ‖) be a finite dimensional normed space (with a
fixed Lebesgue measure). Given p ≥ 1 and two probability measures µ and
ν on E, define the Kantorovich–Rubinstein distance

Wp(µ, ν) = inf
(∫ ∫

‖x− y‖pdπ(x, y)
)1/p

,

where the infimum is taken over all probability measures π on E ×E with
marginal distributions µ and ν. As is well known, Wp represents a metric
on the space of all probability measures on E with finite moment of order p.
The value W p

p (µ, ν) may be viewed as the minimal cost needed to transport
the measure µ into ν provided that the cost to transport the point x into
y is equal to ‖x− y‖p.

Let us take again the framework of Proposition 3.2, and consider a Borel
probability measure µ on E with density e−V with respect to Lebesgue
measure, where V is a convex function on E satisfying (3.6) that is, for all
t, s > 0 with t+ s = 1 and all x, y ∈ E,

tV (x) + sV (y)− V (tx+ sy) ≥ c
p

(
s+ o(s)

)
‖x− y‖p ,

where p ≥ 2, c > 0, and where o(s) is a function of s ∈ (0, 1) such that
o(s)/s→ 0 as s→ 0. (One may consider more generally V defined on some
open convex subset of E. We leave this to the interested reader.)

If ν is a probability measure on E that is absolutely continuous with
respect to µ with density dν/dµ, we denote by

D
(
ν ||µ

)
=
∫
dν

dµ
log

dν

dµ
dµ

the informational divergence or relative entropy of ν with respect to µ.

Proposition 4.2. For every probability measure ν on E with a finite
moment of order p which is absolutely continuous with respect to µ,

W p
p (µ, ν) ≤ p

cD
(
ν||µ

)
. (4.2)

Proposition 4.2 provides a kind of extension of a recent observation by
M. Talagrand [T] in the case E = Rn, p = 2 and µ = γ the canonical Gaus-
sian measure for which he establishes (4.2) by induction over the dimension
with best constant c = 1. The proof we present extends the proof given in
[BoG] in the Gaussian case. To view the concentration content of Propo-
sition 4.2, consider, following [M], two measurable sets A and B in E with
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µ(A), µ(B) > 0 at distance ε > 0. Apply then (4.2) to the conditional prob-
abilities µA( · ) = µ( · ∩A)/µ(A) and µB( · ) = µ( · ∩B)/µ(B). By definition,
D(µA||µ) = log 1/µ(A), D(µB||µ) = log 1/µ(B), while Wp(µA, µB) ≥ ε
(since every measure π on E × E with marginals µA and µB is supported
by A×B). Hence, by (4.2) and the triangle inequality for Wp,

ε ≤Wp(µA, µB)
≤Wp(µA, µ) +Wp(µ, µB)

≤
(p
c

)1/p ((log 1
µ(A)

)1/p (
log 1

µ(B)

)1/p )
.

Choosing for B the complement of the neighborhood of order ε > 0 of a
set A with µ(A) ≥ 1/2 then easily yields a concentration result of the type
(4.1) (even with sharper numerical constants). As emphasized by Marton,
transportation inequalities describe in this way a more symmetric version
of concentration.

In the recent contribution [OV], F. Otto and C. Villani remarkably
showed that the Euclidean transportation inequality (with p = 2) may
actually be deduced from the corresponding logarithmic Sobolev inequality.
Their argument is based on dissipation of entropy along the associated heat
semigroup. Moreover, as was recently mentioned to us by G. Blower [Bl], an
alternate proof of Proposition 4.2 may be given using the Brenier–McCann
theorem [Bre], [Mc] about monotone measure preserving maps.
Proof of Proposition 4.2. Given t, s > 0 with t+ s = 1, and x, y ∈ E, let

Ls(x, y) = 1
ts

[
tV (x) + sV (y)− V (tx+ sy)

]
.

Applying Prékopa–Leindler’s theorem to
u(x) = e−sg(x)−V (x) , v(y) = etf(y)−V (y) , w(z) = e−V (z) ,

we get

1 ≥
(∫

e−sg dµ
)t(∫

etf dµ
)s

(4.3)

provided the functions f and g satisfy
f(y) ≤ g(x) + Ls(x, y) , x, y ∈ E . (4.4)

Given g, the optimal function f = Lsg in (4.4) is defined by
Lsg(y) = inf

x∈E

[
g(x) + Ls(x, y)

]
so that (4.3) becomes(∫

e−sgdµ
)1/s(∫

etLsgdµ
)1/t

≤ 1 . (4.5)

According to Maurey’s terminology [Ma], the function Lsg is the infimum-
convolution of the function g with Ls(x, y), and nowadays inequalities of
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the form (4.5) are often called infimum-convolution inequalities. In general,
the function Lsg does not need to be measurable, and the left integral
in (4.5) should then be understood as the lower integral. If g is upper
semicontinuous, then Lsg is also upper semicontinuous (as an infimum of
upper semicontinuous functions). In particular, Lsg is measurable in this
case. By a continuity argument, (4.5) extends to measurable functions
possibly taking the value +∞.

Now, as a consequence of the convexity assumption on V ,
lim inf
s→0

Ls(x, y) ≥ c
p‖x− y‖

p .

As a result, letting s → 0 in (4.5), we arrive at an infimum-convolution
inequality of another form, ∫

efdµ ≤ e
∫
g dµ (4.6)

which thus holds true for at least all bounded measurable functions f and
g satisfying

f(y) ≤ g(x) + c
p‖x− y‖

p , x, y ∈ E . (4.7)
Now, we can write (4.6) equivalently with the help of the entropy functional
as ∫ (

f −
∫
g dµ

)
udµ ≤ Entµ(u)

where u is an arbitrary non-negative µ-integrable function on E. We used
here that

Entµ(u) = sup
∫
uv dµ

where the supremum is running over all functions v with
∫

evdµ ≤ 1. For
u = dν/dµ, Entµ(u) = D(ν||µ) so that the above inequality takes the form∫

f dν −
∫
g dµ ≤ D

(
ν ||µ

)
. (4.8)

We should therefore maximize the left-hand side of (4.8) subject to (4.7).
To this end, we may apply the duality relations put forward in [K], [Lev],
[R] that show in particular that

sup
{∫

f dν−
∫
g dµ; f(y)−g(x)≤ c

p
‖x−y‖p for all x, y ∈ E

}
=
c

p
W p
p (µ, ν).

Proposition 4.2 then immediately follows. �
When V is twice continuously differentiable, Proposition 4.2 can be

generalized as follows. Note that
T (x, y) ≡ lim

s→0
Ls(x, y) = V (y)− V (x) +

〈
V ′(x), x− y

〉
=

1
2

∫ 1

0

〈
V ′′(rx+ (1− r)y)(x− y), (x− y)

〉
dr2 .
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As above, we may therefore conclude that, for all bounded measurable
functions f and g on E satisfying f(x) ≤ g(y) +T (x, y) for all x, y ∈ E, we
have ∫

efdµ ≤ e
∫
g dµ .

According to [K], and under the mild condition that for some measurable
functions a and b defined on E, T (x, y) ≤ a(x)+b(y), this general infimum-
convolution inequality is equivalent to the transportation inequality

inf
{∫ ∫

T (x, y)dπ(x, y);π has marginals ν and µ

}
≤ D

(
ν ||µ

)
.

This holds in particular as soon as ‖V ′′‖ is bounded on E.
It is worthwhile mentioning that the transportation inequality of Propo-

sition 4.2 with p = 2 may also be seen to imply the Poincaré inequality (3.5).
Start indeed from the equivalent formulation (4.6) holding for all functions
f and g satisfying (4.7) (with thus p = 2), and assume for simplicity that∫
g dµ = 0. Then, apply (4.6) to δg, where g is smooth with compact sup-

port, and denote by fδ the optimal function f satisfying (4.7) with δg. As
in the proof of Proposition 2.2, it is easily seen that

fδ(y) = δg(y)− δ2

2c

∥∥∇g(y)
∥∥2
∗ + o(δ2)

uniformly over the support of g. Then (4.6) yields

1 ≥
∫

efδdµ = 1 +
δ2

2

∫
g2dµ− δ2

2c

∫
‖∇g‖2∗dµ+ o(δ2)

from which (3.5) follows as δ → 0.

5 Logarithmic Sobolev Inequalities for Uniformly Convex
Bodies

Proposition 3.2 and Corollary 4.1 may be applied to norms of uniformly
p-convex Banach spaces. Concentration in the form of Corollary 4.1 was
actually established directly from the Maurey argument in [S]. The modulus
of convexity δE of a Banach space (E, ‖ · ‖) is defined as the function of
0 < ε ≤ 2

δE(ε) = inf
{

1−
∥∥∥x+ y

2

∥∥∥; ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε
}
.

E is uniformly convex if δE(ε) > 0 for each ε > 0. It is said to have
a modulus of convexity of power type p ≥ 2 (with constant C > 0) if
δ(ε) ≥ Cεp for every ε. Equivalently (see for example [P1]), for every x, y
in E,

‖x‖p + ‖y‖p − 2
∥∥∥x+ y

2

∥∥∥p ≥ c

p
‖x− y‖p (5.1)
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for some c > 0. Our result will thus applicable to V (x) = ‖x‖p for p ≥ 2.
`p-norm on Rn, 1 < p <∞,

‖x‖p =
( n∑
i=1

|xi|p
)1/p

, x = (x1, . . . , xn) ∈ Rn,

have moduli of convexity of power type max(p, 2) (cf. [LiT]). As proved by
G. Pisier [P1], every uniformly convex Banach space admits an equivalent
norm with a modulus of convexity of power type p for some p ≥ 2.

Assume now that E is finite dimensional with dimension n and unit ball
B with norm ‖ · ‖ satisfying (5.1). According to (3.7), Proposition 3.2 and
Corollary 4.1 may thus be applied to the measure µ on E with density with
respect to Lebesgue measure

dµ

dx
=

1
Γ(1 + n

p )vol(B)
exp(−‖x‖p) . (5.2)

For the `p-norms ‖ · ‖p, p ≥ 2, (5.1) actually holds with optimal c = p2−p

(cf. [LiT]). Therefore, by (3.7), for all t, s > 0, t+ s = 1, and all x, y ∈ Rn,
t‖x‖pp + s‖x‖pp − ‖tx+ sy‖pp ≥ 21−p min(t, s)‖x− y‖pp. (5.3)

As developed by Schmuckenschläger [S], the preceding may be used to
recover some aspects of the concentration of measure phenomenon of Gro-
mov and Milman [GM] for uniformly convex bodies. Recall B the unit ball
of the uniformly convex finite dimensional Banach space (E, ‖ · ‖) satisfy-
ing (5.1). Properly transferring the measure µ of (5.2) to the normalized
surface measure λ∂B of B with respect to itself defined by

λ∂B(A) =
vol
(⋃

0≤t≤1 tA
)

vol(B)
, A ⊂ ∂B,

yields that, for every Lipschitz function g on ∂B with respect to the metric
induced by B, with Lipschitz coefficient less than or equal to 1, and every
t ≥ 0,

λ∂B

(
g ≥

∫
g dλ∂B + t

)
≤ 2 e−ncpt

p
(5.4)

where cp > 0 only depends on c and p. The argument relies on the ob-
servation that if g is Lipschitz on ∂B, G(x) = ‖x‖g(x/‖x‖) on E is such
that ‖G‖Lip ≤ 4‖g‖Lip, and the fact that if µ has a density that is invari-
ant under the norm, then the distribution of g under λ∂B coincides with
the distribution of g(x/‖x‖) under µ. In addition, medλ∂B (g) = medλµ(G)
(cf. [S]). By standard arguments, (5.4) implies that, for every measurable
set A with λ∂B(A) ≥ 1/2, and every ε > 0,

λ∂B(Aε) ≥ 1− e−nc
′
pε
p

(5.5)
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where Aε denotes the neighborhood of order ε > 0 in the metric on ∂B
induced by the norm ‖ · ‖ (and where c′p > 0 is another constant only
depending on p). It has been shown by Gromov and Milman [GM] that if
λ∂B is the surface measure on the unit sphere ∂B of a uniformly convex
n-dimensional normed space E,

λ(Aε) ≥ 1− e−αnδ
′
E(ε) (5.6)

for some α > 0 and every ε > 0 where δ′E(ε) > 0 is determined by δE(ε) > 0.
A simple proof of this result, also based on the Brunn–Minkowski inequality,
was provided recently by J. Arias-de-Reyna, K. Ball and R. Villa [ArBV].
Given two non-empty sets A,A′ ⊂ B at distance ε ∈ (0, 1), we have by
definition of the modulus of convexity that

1
2 (A+A′) ⊂

(
1− δE(ε)

)
B,

so that, by the Brunn–Minkowski inequality,
λ

1/2
B (A)λ1/2

B (A′) ≤
(
1− δE(ε)

)n
where we denote by λB uniform measure on B. Taking for A′ the comple-
ment of Aε, we get, when λB(A) ≥ 1/2,

λB(Aε) ≥ 1− 2
(
1− δE(ε)

)2n ≥ 1− 2 e−2nδE(ε) .

One needs however to transfer this result to the surface measure which can
be performed in the same spirit as the arguments developed in [S].

While the preceding arguments yield concentration results for both the
uniform and surface measures on a uniformly convex body B, we would
like to follow here a similar route but at the level of logarithmic Sobolev
inequalities. Following section 3, we prove here some logarithmic Sobolev
inequality for the uniform distribution λB on B by pushing in an appro-
priate way the measure (5.2) to λB. We first illustrate the procedure for
the uniform distribution on the Euclidean unit ball in Rn for which we
determine in particular the order in n of its logarithmic Sobolev constant.

Recall (1.4) the logarithmic Sobolev inequality for the canonical Gaus-
sian measure γ on Rn,

Entµ(f2) ≤ 2
∫
|∇f |2dγ

holding for all smooth functions f . Applying this inequality to functions of
the form f(U) with a map U : Rn → B that pushes forward γ to λB, we
get

EntλB(f2) ≤ 2‖U‖2Lip

∫
|∇f |2dλB , (5.7)

where ‖U‖Lip is Lipschitz seminorm of U . Therefore, our task will be to
find a map U with Lipschitz constant as small as possible. Since both γ
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and λB are spherically invariant it seems natural to try to choose U in the
class of spherically invariant maps, that is, of the form,

U(x) = u(|x|) x
|x| , x ∈ Rn \ {0}

where u is function on (0,∞). For such maps, we have:

Lemma 5.1. ‖U‖Lip <∞ if and only if ‖u‖Lip <∞ and u(0+) = 0. In this
case,

‖U‖Lip = ‖u‖Lip .

Proof. Write arbitrary points x1, x2 ∈ Rn \ {0} as x1 = λ1e1, x2 = λ1e2
with λ1 > 0, λ2 > 0, |e1| = |e2| = 1, so that

U(x1) = u(λ1)e1 , U(x2) = u(λ2)e2 .

Set t = 〈e1, e2〉 ∈ [−1, 1]. Since
|x1 − x2|2 = λ2

1 + λ2
2 − 2λ1λ2 t

and ∣∣U(x1)− U(x2)
∣∣2 = u(λ1)2 + u(λ2)2 − 2u(λ1)u(λ2)t ,

the inequality |U(x1)− U(x2)| ≤ C |x1 − x2| for some C ≥ 0 is equivalent
to

u(λ1)2 + u(λ2)2 − 2u(λ1)u(λ2) t ≤ C2 (λ2
1 + λ2

2 − 2λ1λ2 t) .
This inequality is linear in t. Hence, it holds for all t ∈ [−1, 1] if and only
if it holds for the end points t = 1 and t = −1. In the case t = 1, i.e. when
e1 = e2, it reads ∣∣u(λ1)− u(λ2)

∣∣ ≤ C|λ1 − λ2|
where the best constant is C = ‖u‖Lip. In the case t = −1, i.e., when
e1 = −e2, it reads ∣∣u(λ1) + u(λ2)

∣∣ ≤ C|λ1 + λ2| .
Clearly, it holds for all λ1, λ2 > 0 if and only if it holds for λ1 = λ2 = λ > 0,
in which case it becomes |u(λ)| ≤ Cλ. It is necessary for C to be finite that
u(0+) = 0. But in this case, the above inequality holds with C = ‖u‖Lip
and the lemma is proved in this way. �

In order to determine a sharp constant in the logarithmic Sobolev in-
equality (5.7) for the uniform measure λB on the Euclidean unit ball B,
we thus reduced the problem to find u : [0,∞) → [0, 1) with u(0) = 0 and
smallest Lipschitz norm. If we restrict ourselves to increasing non-negative
functions, the function u such that U pushes forward γ into λB is uniquely
determined by the relation

γ
(
x ∈ Rn; |U(x)| < s

)
= λB

(
y ∈ B; |y| < s

)
, s ∈ (0, 1) ,

which is just
γ
(
x ∈ Rn;u(|x|) < s

)
= sn , s ∈ (0, 1) .
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Lemma 5.2. ‖u‖Lip = ω
1/n
n /
√

2π where ωn = πn/2/Γ(n2 + 1) is the volume
of B.

Proof. Setting s = u(r), r > 0, the definition of u becomes

u(r)n = γ
(
x ∈ Rn; |x| < r

)
=

0
(2π)n/2

∫
{|x|<r}

e−|y|
2/2dy

=
nωn

(2π)n/2

∫ r

0
tn−1e−t

2/2dt .

Clearly, u is strictly increasing, positive and of class C∞(0,∞). We will
show that u is concave so that

‖u‖Lip = u′(0+) . (5.8)

Indeed, set g(r) =
∫ r

0 t
n−1e−t

2/2dt so that

u(r) =
(nωn)1/n
√

2π
g(r)1/n .

Thus, u is concave if and only if g1/n is concave. For a positive function g,
we have in general

(g1/n)′ = 1
ng

(1/n)−1g′

and
(g1/n)′′ = 1

n

( 1
n − 1

)
g(1/n)−2g′

2 + 1
ng

(1/n)−1g′′

so that (g1/n)′′ ≤ 0 if and only if gg′′ ≤
(
1− 1

n

)
g′2. In our case

g′(r) = rn−1e−r
2/2 and g′′(r) =

(
(n− 1)− r2)rn−2e−r

2/2 .

Therefore the inequality gg′′ ≤
(
1− 1

n

)
g′2 amounts to(

(n− 1)− r2)g(r) ≤
(
1− 1

n

)
rne−r

2/2 .

Since equality holds at r = 0, in order to check the preceding inequality it
suffices to compare the derivatives of both sides. This yields
−2r g(r)+

(
(n−1)−r2)rn−1e−r

2/2 ≤ (n−1) rn−1e−r
2/2−

(
1− 1

n

)
rn+1e−r

2/2

that reduces to −2g(r) ≤ 1
n r

ne−r
2/2. Since the latter is clearly satisfied, we

conclude that g1/n is indeed concave on (0,∞). Now, from the definition,
g(r) = rn

n +O(rn+1) as r → 0+. Hence g1/n(r) is equivalent to n−1/nr near
zero. Therefore,

(g
1
n )′(r) = 1

ng
1
n
−1(r)g′(r) = 1

ng
1
n
−1(r) rn−1e−r

2/2 → n−
1
n as r → 0+.

As a result,

u′(0+) =
(nωn)1/n
√

2π

(
g1/n)′(0+) =

ω
1/n
n√
2π

.

By (5.8), Lemma 5.2 is established. �
Combining Lemmas 5.1 and 5.3 with (5.7), we may conclude to the

following result.
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Proposition 5.3. For the uniform measure λB on the Euclidean unit
ball B,

EntλB (f2) ≤ ω
2/n
n
π

∫
|∇f |2dλB .

Note that ω
2/n
n
π = Γ

(
n
2 +1

)−2/n behaves as 1
n for large n. The inequality

is, up to a constant, sharp as can be seen by testing it on the functions
x → eλx1 , λ ∈ R. It may be shown that the Poincaré constant is of the
same order. Somewhat surprisingly, when restricted to radial functions
on B, the logarithmic Sobolev constant is still of the order of 1/n while the
Poincaré constant behaves as 1/n2 (cf. [Bo], [L]).

On the basis of this example, it is possible to extend similarly Propo-
sition 5.3 to uniformly convex bodies. Let (E, ‖ · ‖) be an n-dimensional
normed space with unit ball B = {x ∈ E : ‖x‖ ≤ 1} equipped with the
uniform distribution λB on B.

As in the preceding sections, assume B is uniformly convex in the sense
that, for all t, s > 0 with t+ s = 1 and all x, y ∈ E (equivalently, x, y ∈ B),

t‖x‖p + s‖y‖p − ‖tx+ sy‖p ≥ c
p

(
s+ o(s)

)
‖x− y‖p (5.9)

where p ≥ 2, c > 0, and where o(s) is a function of s ∈ (0, 1) such that
o(s)/s → 0, as s → 0. Denote by q the conjugate number of p, and by
(E∗, ‖ · ‖∗) the dual space.

Proposition 5.4. For every smooth non-negative function f on B,

EntλB (f q) ≤ 4

Γ
(
n
p + 1

)2/n(qc)q−1
∫
‖∇f‖q∗dλB .

Proof. As for Proposition 5.3, the proof is based on two steps corresponding
to Lemma 5.1 and Lemma 5.2.

Lemma 5.5. Let U : E → E be a map defined by
U(x) = u(‖x‖) x

‖x‖ , x ∈ E ,
where u is function on [0,∞) with a finite Lipschitz constant and such that
u(0) = 0 (by continuity, U(0) = 0). Then,

‖U‖Lip ≤ 3 ‖u‖Lip .

If moreover, u is non-decreasing, then ‖U‖Lip ≤ 2 ‖u‖Lip.

Proof. As we have seen from Lemma 5.1, the constants 3 and 2 may be
replaced by 1 in the case of the Euclidean norm. In general however, we
have to use another argument which deteriorates the original constant.
The function x→ ‖x‖ has a finite Lipschitz constant, so, by Rademacher’s
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theorem, it is differentiable at almost every point x 6= 0. For such points,
for all h ∈ E, we have Taylor’s representation

‖x+ εh‖ = ‖x‖+
〈
D(x), h

〉
ε+ o(ε) as ε→ 0

where D(x) ∈ E∗, and moreover ‖D(x)‖∗ ≤ 1. By an approximation
argument, we may assume that u is everywhere differentiable, so that

u
(
‖x+ εh‖

)
= u

(
‖x‖
)

+ u′
(
‖x‖
)〈
D(x), h

〉
ε+ o(ε) .

Therefore,

U(x+εh) = u
(
‖x+ εh‖

) x+ εh

‖x+ εh‖
= U(x) + ε

[(
−u(‖x‖)
‖x‖2 + u′(‖x‖)

‖x‖

) 〈
D(x), h

〉
x+ u(‖x‖)

‖x‖ h
]

+o(ε) .

Hence, U is differentiable at x, and its derivative U ′(x) : E → E is given
by

U ′(x)h = lim
ε→0

U(x+ εh)− U(x)
ε

=
(
−u(‖x‖)
‖x‖ + u′(‖x‖)

) 〈
D(x), h

〉
x
‖x‖ + u(‖x‖)

‖x‖ h .

Since u is Lipschitz, |u(‖x‖)| ≤ ‖u‖Lip‖x‖ and |u′(‖x‖)| ≤ ‖u‖Lip, while
|〈D(x), h〉| ≤ ‖h‖. Consequently,

‖U ′(x)h‖ ≤ 3 ‖u‖Lip‖h‖ .
In case u is non-decreasing, for some t0 ∈ (0, ‖x‖), u(‖x‖) = u′(t0)‖x‖, so
that∥∥∥(−u(‖x‖)

‖x‖ + u′(‖x‖)
) 〈
D(x), h

〉
x
‖x‖

∥∥∥ ≤ ∣∣u′(‖x‖)− u′(t0)
〈
D(x), h

〉∣∣
which is clearly bounded by ‖u‖Lip‖h‖. The lemma follows. �

As in the proof of Proposition 5.3, one can uniquely push forward the
measure µ of (5.2) to λB by a map U of the form

U(x) = u
(
‖x‖
)
x
‖x‖ , x ∈ E ,

where u : [0,∞) → [0, 1) is an increasing non-negative function. This
function is defined by the relation

µ
(
x ∈ E; ‖U(x)‖ < s

)
= λB

(
y ∈ B : ‖y‖ < s

)
, s ∈ (0, 1) ,

that is,
µ
(
x ∈ E;u(‖x‖) < s

)
= sn , s ∈ (0, 1) .

Exactly as in Lemma 5.2, (replacing e−t
2/2 by e−t

p
) one can show that

‖u‖Lip = Γ
(
n
p + 1

)−1/n
.

It is then easy to conclude the proof of Proposition 5.4 as the proof of
Proposition 5.3 by means of the logarithmic Sobolev inequality of Proposi-
tion 3.2 applied to the measure µ of (5.2). �
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