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1. Introduction

Let ì be a probability measure on the real line R, and let ìn be the n-fold tensor product of

ì with itself. Given a notion of enlargement enl(A) for sets A � Rn, inequalities of

isoperimetric type have the form

ìn(enl(A)) > R(n)(ì(A)):

Moreover, if R � R(n) is dimension-free, such inequalities are often viewed as concentration

inequalities. One question of interest which will be addressed here is whether or not such a

function (of course, such that R( p) . p) exists. Besides the measure, the answer depends in

an essential manner on the enlargement which is usually built with the help of a metric, say

r, by putting

enl(A) � Ah � fx 2 Rn : r(x, a) < h, for some a 2 Ag,
where h . 0 is a ®xed number (for A compact, Ah is the closed h-neighbourhood of A with

respect to r). To consider the weakest possible type of enlargement, we equip Rn with the

supremum distance

r1(x, y) � sup
1<i<n

jxi ÿ yij,

and consider the value

R
(n)
h ( p) � inf

ìn(A)> p
ìn(Ah), (1:1)

where the in®mum is taken over all the Borel sets of measure ìn(A) > p, p 2 (0, 1). In his
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work on isoperimetry, Talagrand (1991) made the following observation (see Proposition 5.1

there): if inf n R
(n)
h (1

2
) . 1

2
, then ì has ®nite exponential moment, that is,�

R

exp(åjxj) dì(x) ,�1,

for some å. 0. In proving this result, he studied the behaviour of ìn(Ah) for the cubes A. It

turns out that studying the enlargements of the cubes also allows us to ®nd necessary and

suf®cient conditions for the validity of the concentration inequality ìn(Ah) > R(ì(A)), for

some R such that R( p) . p. This property turns out to be equivalent to the stochastic

boundedness of centered extreme samples. This boundedness was previously studied by de

Haan and Ridder (1979) who explicitly described the corresponding class of underlying

probability measures ì. For the exponential measure (and for all Lipschitz images of the

exponential measure), Talagrand (1995) proved a concentration inequality for a notion of

enlargement much smaller than the one de®ned by the supremum distance (cf. also Bobkov

and Ledoux 1997). As we will see, beyond the class of Lipschitz images of the exponential

measure, there exist probability distributions still enjoying some concentration property (as

de®ned above).

De®nition. A function U de®ned on some interval Ä � R is said to have ®nite modulus of

continuity if, for all (equivalently, for some) h . 0,

U�(h) � supfjU (x)ÿ U (y)j : x, y 2 Ä, jxÿ yj < hg,�1:

The function U� is then called the modulus of continuity generated by U. Clearly, since

U�(h1 � h2) < U�(h1)� U�(h2), for all h1, h2 > 0, U has ®nite modulus of continuity if

and only if, for some a, b > 0, jU (x)ÿ U (y)j < a� bjxÿ yj whenever x, y 2 Ä.

Now let Uì be de®ned as follows:

Uì(x) � Fÿ1
ì

1

1� eÿx

� �
, x 2 R,

where Fì(x) � ì((ÿ1, x]) is the distribution function of the measure ì, and where

Fÿ1
ì ( p) � inffx 2 R : Fì(x) > pg, p 2 (0, 1),

is the minimal quantile of order p of ì. The meaning of this de®nition is that the map Uì

transforms the logistic probability measure í (í((ÿ1, x]) � (1� eÿx)ÿ1) into the measure ì.

The aim of these notes is to prove the following.

Theorem 1.1. Let p 2 (0, 1). The following properties are equivalent:

(a) There exists h . 0 such that inf n R
(n)
h ( p) . p.

(b) There exist ä. 0 and c . 0 such that, for all x 2 R,

Fì(x)ÿ Fì(xÿ ä) > cFì(x)(1ÿ Fì(x)): (1:2)

(c) The function Uì has ®nite modulus of continuity. In this case, for every h . 0, setting

h� � U�ì (h), we have
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inf
n

R
(n)

h� ( p) >
p

p� (1ÿ p)exp(ÿh)
, (1:3)

with equality for ì � í. In particular, the following alternative holds: either inf n R
(n)
h ( p) � p,

for all h . 0, or inf n R
(n)
h ( p)! 1, as h! �1.

In more probabilistic language, inequality (1.3) can be expressed as follows. Let în,

n > 1, be a sequence of independent random variables de®ned on some probability space

(Ù, F , P), with common law ì and associated distribution function Fì. Let æ be a logistic

random variable (with law í). Then, the right-hand side of (1.3) is simply

Pfæÿ mp(æ) < hg, where mp(æ) � Fÿ1
í ( p) is the quantile of order p of æ. Let

f : Rn ! R be an arbitrary Lipschitz function, with Lipschitz constant at most 1 with

respect to r1, and let ç � f (î1, . . . , în). If (1.3) is applied to sets of the form

f f < const:g, it is easily seen that

Pfçÿ mp(ç) < h�g > Pfæÿ mp(æ) < hg,
for all p 2 (0, 1) and h . 0. Furthermore, this can be shown to be equivalent to the following

property: there exists a non-decreasing function Uf : R! R with U�f < U�ì such that the

random variables ç and Uf (æ) are identically distributed. Thus, at the level of distributions,

all the random variables f (î1, . . . , în) where f is r1-Lipschitz can be viewed as random

variables of the form U (æ) with U� < U�ì . A simple consequence of this property is the fact

that the variance var( f (î1, . . . , în)) can be bounded by a quantity which only depends on

U�ì . This is in particular true for the functions f n(x) � maxfx1, . . . , xng and gn(x) �
minfx1, . . . , xng which play a crucial role below.

Corollary 1.2. Let p 2 (0, 1). There exists h . 0 such that inf n R
(n)
h ( p) . p, if and only if the

random variables în have ®nite second moment and the following two conditions hold:

(1a) supn var maxfî1, . . . , îng,�1,

(2a) supn var minfî1, . . . , îng,�1;

or equivalently, and more generally, if and only if, for any ®xed á > 1,

(1b) supn Ejmaxfî1, . . . , îng ÿ E maxfî1, . . . , îngjá ,�1;

(2b) supn Ejminfî1, . . . , îng ÿ E minfî1, . . . , îngjá ,�1.

Moreover, in (1b) and (2b) the second expectations can be replaced by the quantiles of order

p 2 (0, 1).

The properties (1a), (2a) can also be written (together but not separately) in a weaker

form as follows: for some real numbers an and bn, the random variables

maxfæ1, . . . , îng ÿ an, minfæ1, . . . , îng ÿ bn,

are stochastically bounded, or using different terminology, their distributions form a

precompact family in the space of all probability measures on R with respect to the topology

of weak convergence. That is,
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(1c) supn Pfjmaxfæ1, . . . , îng ÿ anj. hg ! 0, as h! �1;

(2c) supn Pfjminfæ1, . . . , îng ÿ bnj. hg ! 0, as h! �1.

De Haan and Ridder (1979) found, directly in terms of Fì, several necessary and suf®cient

conditions for (1c) (cf. their Proposition 2.2.1 and Theorem 3.1), one of which is the

following property: there exist x0 and h0 such that, for all x > x0 and h > h0,

1ÿ Fì(x� h) < c(1ÿ Fì(x)), for some c 2 (0, 1):

When combining the above inequality with a similar inequality for ÿî1, we arrive exactly at

(1.2), with possibly another constant depending on ì only.

The description (1.2) is explicit and certainly convenient to use in the case of speci®c

examples of probability distributions ì. However, for our purposes it will be essential to

connect (1.2) with the moduli of continuity. When ì � í, inequality (1.3) is known (cf.

Bobkov 1996, Bobkov and HoudreÂ 1997), and in fact, it is easy to prove (1.3) transporting

í into ì via Uì. The non-trivial part of Theorem 1.1 will be to show that Uì has ®nite

modulus of continuity provided that inf n R
(n)
h ( p) . p. Property (c) in Theorem 1.1 also

allows us to make the following observation: it is possible for the tails

h! ìfx 2 R : jxj. hg to tend to zero exponentially fast (as h! �1), or as fast as we

want, without the products ìn satisfying the concentration property (a). Indeed, given a

decreasing, continuous function å : [0, �1)! (0, 1
2
] with å(0) � 1

2
and å(h)! 0, as

h! �1, one can construct an even, continuous, strictly increasing function U on R with

U (0) � 0 such that U� � �1 but such that the measure ì � íUÿ1, the image of í under

U , has the tails bounded by the function å(h). Thus, concentration property (a) is not

determined by the tail behaviour of ì.

It is of course natural to ask if there exist necessary and suf®cient conditions on Fì for

the (stronger) concentration property inf n R
(n)
h ( p) . p when one takes in (1.1) the

enlargement Ah with respect to the usual Euclidean metric r2 in Rn. As far as we know,

this question is still open. However, if we restrict ourselves in (1.1) to the class of sets

A � Rn which are convex or whose complement is convex, the property inf n R
(n)
h ( p) . p

will again be equivalent to (1.2) and thus we will obtain the same class of generating

distributions ì (cf. Bobkov and GoÈtze 1999). Moreover, for such and only such measures,

the variances of all convex r2-Lipschitz functions are bounded by a constant independent of

the dimension.

The proofs of Theorem 1.1 and Corollary 1.2 are respectively given in Sections 3 and 4.

Here we also discuss property (1b) in Corollary 1.2. We start (Section 2) with

characterizations of the concentration property for the distributions of maxima. The paper

®nishes with some remarks.

2. Concentration of maxima

Below and throughout, let Mn � maxfæ1, . . . , îng.

Lemma 2.1. The following are equivalent:
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(1a) For some p 2 (0, 1) and h . 0, inf n PfMn ÿ mp(Mn) < hg. p.

(1b) For some p 2 (0, 1) and h , 0, supn PfMn ÿ mp(Mn) < hg, p.

(1c) For a sequence of real numbers an, supn PfjMn ÿ anj. hg ! 0, as h! �1.

(1d) There exists å. 0 such that, for any p 2 (0, 1),

supn E expfå(Mn ÿ mp(Mn))g,�1:
(2) For all (equivalently, for some) a 2 R, the function U (x) � Fÿ1

ì (1=(1� exp(ÿx)))

has ®nite modulus of continuity in the interval x > a.

The equivalence between (1c) and (1d) is essentially known and is due to de Haan and

Ridder (1979).

Proof. It will be convenient to work with another (equivalent) condition:

(29) For all (equivalently, for some) a 2 R, the function V (x) � Fÿ1
ì (exp(ÿexp(ÿx))),

x > a, has ®nite modulus of continuity. In addition, for any p 2 (0, 1) and h . 0,

sup
n

PfMn ÿ mp(Mn) . V�p(h)g < PfZ ÿ mp(Z) . hg, (2:1)

where the random variable Z has distribution PfZ < xg � exp(ÿexp(ÿx)), and where V�p is

a modulus of continuity generated by V on the interval [ÿlog log(1=p), �1).

The main step in the proof is the implication (1a) ) (29). Let p, q 2 (0, 1) and h0 . 0

be such that

inf
n

PfMn ÿ mp(Mn) < h0g > q . p,

that is, such that Fì(Fÿ1
ì ( p1=n)� h0) > q1=n. By the very de®nition of Fÿ1

ì , this implies

Fÿ1
ì (q1=n)ÿ Fÿ1

ì ( p1=n) < h0: (2:2)

Putting a0 � ÿlog log(1=p), b0 � ÿlog log(1=q), (2.2) can be rewritten as

V (b0 � log(n))ÿ V (a0 � log(n)) < h0, (2:3)

which holds for all n > 1. We need to deduce from (2.3) that

V�p(h) � supfV (y)ÿ V (x) : a < x < y, yÿ x < hg,�1, (2:4)

whenever a 2 R and h . 0. Now, ®x any real number c such that 1 , c , exp(b0 ÿ a0), and

let n0 be any positive integer such that

log(n0 � 1)ÿ log(n0) < b0 ÿ a0, (exp(b0 ÿ a0)ÿ c)n0 > 1: (2:5)

Clearly, V is a non-decreasing function on R, hence the property (2.4) does not depend on a

and h, so we can let a � a0 � log(n0), h � h0. Thus, in order to prove (2.4), it can be

assumed that a0 � log(n0) < x < y < x� h0.

Now de®ne a sequence nk , k > 1, recursively in the following way: let n1 be the largest

integer such that a0 � log(n1) < x; and if k > 1, let nk�1 be the largest integer such that

a0 � log(nk�1) < b0 � log(nk). Then n0 < nk , nk�1, for all k > 1, since a0 � log(nk �
1) < b0 � log(nk) which holds due to (2.5) and since nk > n0.

Denote by K the smallest k such that b0 � log(nk) > y. By construction, the intervals
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Äk � [a0 � log(nk), b0 � log(nk)], 1 < k < K, cover the interval [x, y]. Therefore, using

(2.3), we obtain

V (y)ÿ V (x) <
XK

k�1

V (b0 � log(nk))ÿ V (a0 � log(nk)) < Kh0:

Our aim is now to ®nd an estimate of K depending on yÿ x; we would then have an

estimate for V (y)ÿ V (x) in terms of yÿ x. Denote by [u] the integer part of a real u. Then

nk�1 � [exp(b0 ÿ a0)nk], hence

nk�1 > exp(b0 ÿ a0)nk ÿ 1 > cnk ,

since nk > n0 and since exp(b0 ÿ a0)n0 > cn0 � 1. By induction, it is easy to see that

nk > ckÿ1 n1, that is, log(nk) > (k ÿ 1)log(c)� log(n1). Thus, the inequality b0 �
log(nk) > y follows from b0 � (k ÿ 1)log(c)� log(n1) > y. The last inequality can be

rewritten as

k > 1� yÿ b0 ÿ log(n1)

log(c)
: (2:6)

By the very de®nition of n1, we also have log(n1 � 1) . xÿ a0, and since log(n1 � 1) ÿ
log(n1) < b0 ÿ a0, we have the estimate log(n1) . xÿ b0. Therefore, (2.6) is ful®lled if we

take k such that k > 1� (yÿ x)=log(c). Hence

K < 2� yÿ x

log(c)
:

We thus have proved (2.4) and the ®rst part of (29).
To prove the second part of (29), ®x p 2 (0, 1), h . 0, and set r � PfZ ÿ mp(Z) < hg,

a � ÿlog log(1=p), b � ÿlog log(1=r). Then, as easily veri®ed, bÿ a � h. As previously

seen, inequalities of the form

PfMn ÿ mp(Mn) < V�p(h)g > r (2:7)

are equivalent to

V (b� log(n))ÿ V (a� log(n)) < V�p(h)

(this is (2.3) with V�p(h) instead of h0). Since bÿ a � h, the above inequality holds true by

the very de®nition of V�p. It just remains to note that (2.7) and (2.1) coincide.

(29)) (1a). Let p � exp(ÿexp(ÿa)). Then, as shown in the previous steps, (1a) holds if

and only if (2.4) holds for some b . a, some h . 0 and all n > 1. But (2.4) holds for all

b . a and h . 0 since V (b� log(n))ÿ V (a� log(n)) < V�p(bÿ a).

(2)) (29). Note that U (x) � V (T (x)), where T (x) � ÿlog log(1� eÿx). Then T is an

increasing bijection from R to R, and has a ®nite Lipschitz constant on every interval

[a, �1), and similarly for its inverse Tÿ1. Therefore, U has ®nite modulus of continuity

on [a, �1) if and only if V has ®nite modulus of continuity on [a, �1).

(1a)) (1b). Simply note (recalling (2.2)) that, for all 0 , p , q , 1 and all h . 0,

PfMn ÿ mp(Mn) , hg > q) PfMn ÿ mq(Mn) < ÿhg, p: (2:8)
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(29)) (1c). Let an � mp(Mn). Then (2.1) implies that supn PfMn ÿ an . hg ! 0, as

h! 0, so we need to estimate the left deviations supn PfMn ÿ an , hg. Take an � mq(Mn)

with ®xed (but arbitrary) q 2 (0, 1). Inserting in (2.8) V�p(h)� å instead of h (å. 0), and

letting å! 0�, gives, for all p 2 (0, q) and for all h . 0:

PfMn ÿ mp(Mn) < V�p(h)g > q, (2:9)

PfMn ÿ mq(Mn) < ÿh9g, p, for all h9 . V�p(h): (2:10)

If p is chosen so that q � PfZ ÿ mp(Z) < hg, that is, log log(1=p)ÿ log log(1=q) � h, then

(2.9) is true, thanks to (2.4), hence (2.10) holds. It remains to note that p! 0 as h! �1,

and since V�p(h) is ®nite, we conclude that PfMn ÿ an < ÿh9g ! 0 as h9! �1.

(1c)) (1a). Without loss of generality, we may prove (1a) for p � 1
2
. By assumption,

there exists h0 such that PfjMn ÿ anj. h0g, 1
2
, for all n > 1. Hence, jmp(Mn)ÿ anj < h0.

Therefore,

sup
n

PfMn ÿ mp(Mn) . hg < sup
n

PfMn ÿ an . hÿ h0g ! 0, as h! �1:

Finally, it is clear that (29) implies (1d) which in turn implies (1a). Thus, Lemma 2.1 is

proved. h

3. Proof of Theorem 1.1

(a)) (c). Assume that there exist h . 0 and 0 , p , q , 1, such that inf n R
(n)
h ( p) > q. Thus,

for all integers n > 1 and for all Borel sets A � Rn with ìn(A) > p, we have

ìn(Ah) > q: (3:1)

Applying (3.1) ®rst to the cubes An( p) � (ÿ1, Fÿ1
ì ( p1=n)]n, and since ìn(An( p)) �

F n
ì(Fÿ1

ì ( p1=n)) > p and An( p)h � (ÿ1, Fÿ1
ì ( p1=n)� h]n, gives

PfMn ÿ mp(Mn) < hg � F n
ì(Fÿ1

ì ( p1=n)� h) � ìn(An( p)h) > q,

that is, property (1a) of Lemma 2.1 is ful®lled. Therefore, so is property (2): the function Uì

has ®nite modulus of continuity on the interval [0, �1). Now, apply (3.1) to the cubes

Bn( p) � [ÿFÿ1
ì (1ÿ p1=n), �1)n. By applying the same argument to the random variables

ÿîn, n > 1, we see that Uì has ®nite modulus of continuity on (ÿ1, 0], and therefore on

the whole real line.

(c)) (a). It is known that, for the measure í with í((ÿ1, x]) � 1=(1� exp(ÿx)),

í n(Ah) >
p

p� (1ÿ p)exp(ÿh)
, (3:2)

whenever í n(A) > p, with equality at the standard half-spaces A � fx : x1 < const:g ±

different proofs of (3.2) can also be found in Bobkov (1996) and in Bobkov and HoudreÂ

(1997, Corollary 15.3). Introduce the function i(x1, . . . , xn) � (Uì(x1), . . . , Uì(xn)) which

transforms í n into ìn. Let h . 0, h� � U�ì (h). Now observe the following inclusion: for any

set A � Rn,
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(iÿ1(A))h � iÿ1(Ah�): (3:3)

Indeed, if x 2 (iÿ1(A))h, then for some y 2 iÿ1(A) we have r1(x, y) < h, that is,

jxk ÿ yk j < h, for all 1 < k < n. Since i(y) � (Uì(y1), . . . , Uì(yn))A and since

jUì(xk)ÿ Uì(yk)j < h�, we obtain r1(i(x), i(y)) < h, and therefore i(x) 2 Ah� , hence

x 2 iÿ1(Ah� ). Now combine (3.2) and (3.3) to prove (1.3). Let í n(A) � ìn(iÿ1(A)) > p; then

ìn(Ah� ) � í n(iÿ1(Ah� )) > í n((iÿ1(A))h) >
p

p� (1ÿ p)exp(ÿh)
:

To complete the proof of Theorem 1.1, it remains to see the equivalence of (b) and (c). A

quantitative version of this equivalence is given by the following lemma.

Lemma 3.1. Given ä. 0 and c . 0, assume that

Fì(x)ÿ Fì(xÿ ä) > cFì(x)(1ÿ Fì(x), for all x 2 R: (3:4)

Then U�ì (h) < ä with h � log(1� c). Conversely, if, for some positive h and ä, U�ì (h) < ä,

then (3.4) holds with c � 1ÿ eÿh.

Proof. Recall that Uì(x) � Fÿ1
ì (Fí(x)), x 2 R. De®ne the values Uì(ÿ1) and Uì(�1) in

the usual limiting sense. De®ne also the function Uÿ1
ì : R! [ÿ1, �1] by Uÿ1

ì (a) �
Fÿ1
í (Fì(a)) so that Fì(a) � Fí(Uÿ1

ì (a)), for all a 2 R. It is straightforward to verify that, for

all z 2 R,

Uì(Uÿ1
ì (z)) < z < Uÿ1

ì (Uì(z)): (3:5)

To prove the lemma, we ®rst assume that U�ì (h) < ä and derive (3.4). Fix x 2 R and assume

that 0 , F(xÿ ä) < F(x) , 1 (otherwise (3.4) is immediate). Thus, the value a � Uÿ1
ì (xÿ ä)

is ®nite. By the assumption and by the left inequality in (3.5) with z � xÿ ä, we obtain

Uì(a� h)ÿ ä < Uì(a) < xÿ ä,

that is, x > Uì(a� h). Taking Uÿ1
ì of both sides and applying the right-hand inequality in

(3.5), we obtain

Uÿ1
ì (x) > a� h � Uÿ1

ì (xÿ ä)� h: (3:6)

We also need the following trivial inequalities for the logistic distribution:

1ÿ evÿu <
Fí(u)ÿ Fí(v)

Fí(u)(1ÿ Fí(u))
< euÿv ÿ 1, for all u > v: (3:7)

Applying (3.6) and the left-hand inequality in (3.7) with u � Uÿ1
ì (x), v � Uÿ1

ì (x)ÿ h, we

obtain that
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Fì(x)ÿ Fì(xÿ ä) � Fí(Uÿ1
ì (x))ÿ Fí(Uÿ1

ì (xÿ ä))

> Fí(U
ÿ1
ì (x))ÿ Fí(Uÿ1

ì (x)ÿ h)

> (1ÿ eÿh)Fí(Uÿ1
ì (x))(1ÿ Fí(Uÿ1

ì (x)))

� (1ÿ eÿh)Fì(x)(1ÿ Fì(x)):

This proves the second assertion of Lemma 3.1. The ®rst assertion can be proved in a similar

way, with the help of the right-hand inequality in (3.7). Actually it is also proved, as Lemma

4.5 in Bobkov and GoÈtze (1999), for the related two-sided exponential distribution (instead of

í), with h � log(1� c=2). h

Corollary 3.2. In Theorem 1.1, for every h . 0, the concentration inequality (1.3) holds with

h� � h

log(1� c)
� 1

� �
ä,

where c and ä are from (1.2).

Indeed, by the ®rst assertion of Lemma 3.1, U�ì (log(1� c)) < ä. Hence, for any integer

k > 1, we have U�ì (k log(1� c)) < kä. Taking k � [h=log(1� c)]� 1, we obtain h <
k log(1� c), so that U�ì (h) < (h=log(1� c)� 1)ä.

4. Concentration of maxima and minima in Lá-norm

Proof of Corollary 1.2.

Suf®ciency. Assume that (1b) is true. Then, for the sequence an � EMn, or an � mp(Mn) (as

stated at the end of Corollary 1.2), Chebyshev's inequality implies that supn PfjMn ÿ
anj. hg ! 0 as h! �1. Thus, property (1c) of Lemma 2.1 is ful®lled, so the function Uì

has ®nite modulus of continuity on the interval [0, �1). Assumption (2b) is just (1b) for the

sequence (ÿîn), n > 1. Hence, again by Lemma 2.1, the function Uì has ®nite modulus of

continuity on the interval (ÿ1, 0]. As a result, Uì has ®nite modulus on the whole real line.

It now remains to make use of Theorem 1.1.

Necessity. As before, let Mn � max fî1, . . . , îng. Let æn, n > 1, be a sequence of

independent random variables with common (logistic) distribution í, and let

Zn � maxfæ1, . . . , æng. Since Uì transforms í into ì, Mn and Uì(Zn) are identically

distributed. Therefore,

EjMn ÿ M9njá � EjUì(Zn)ÿ Uì(Z9n)já, (4:1)

where (M9n, Z9n) is an independent copy of (Mn, Zn). By Theorem 1.1, there exist constants

a, b > 0 such that jUì(x)ÿ Uì(y)j < a� bjxÿ yj whenever x, y 2 R. Thus, for all á > 1,

the left-hand side of (4.1) is bounded as n!1, if the same is true for Zn instead of Mn.

That is to say, we have reduced our attempt at a proof to the case ì � í. So, one may assume
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that în � æn, and that Mn � Zn, for all n. In this special case, Uì is the identity function.

Therefore, applying a remark following the statement of Theorem 1.1 to the functions

f n(x) � max1<k<n xk , there exist Lipschitz functions Un : R! R, with Lipschitz constants at

most 1, such that the random variables Mn and Un(î1) are identically distributed (of course,

in this particular case, this is easily veri®ed directly). Therefore, for all n > 1,

EjMn ÿ M9njá � EjUn(î1)ÿ Un(î91)já < Ejî1 ÿ î91já � Cá,

where î91 is an independent copy of î1. Now, by HoÈlder's inequality,

EjMn ÿ EMnjá � EjE9(Mn(ù)ÿ M9n(ù9))já < EjMn ÿ M9njá < Cá,

where E9 is taken with respect to the random variable M9n. This proves (1b). Property (2b) is

proved in a similar way, taking into account that í is symmetric about 0. In order to prove the

last statement on the quantiles, one can apply (1.3) to the cubes fx : xi < const:, for all

i < ng. This gives

PfMn ÿ mp(Mn) . h�g < Pfæ1 ÿ mp(æ1) . hg,
PfMn ÿ mp(Mn) ,ÿh�g < Pfæ1 ÿ mp(æ1) ,ÿhg,

for all p 2 (0, 1), h . 0. Since h� < a� bh, these inequalities immediately imply that

sup
n

EjMn ÿ mp(Mn)já ,�1:

Corollary 1.2 follows. h

One may wonder how to express (1b), the concentration property of maxima in Lá-norm,

separately from (2b). Using Corollary 1.2, one can derive the following description.

Corollary 4.1. Let Ejî1já ,�1, á > 1. The following are equivalent:

(1) supn EjMn ÿ EMnjá ,�1.

(2) There exist a, b > 0 such that, for all 1
2

< p < q , 1,

Fÿ1
ì (q)ÿ Fÿ1

ì ( p) < a� b log
1ÿ p

1ÿ q
: (4:2)

Corollary 4.1 (generalizing a statement of the authors in the case á � 1) and its elegant

proof were kindly indicated to us by a referee. As also mentioned to us, these arguments

also apply to more general norms.

Recall that Fÿ1
ì ( p) is the minimal quantile of order p of Fì. Thus, condition (4.2)

expresses the fact that the function Uì(x) � Fÿ1
ì (1=(1� exp(ÿx))) sending í into ì has a

®nite modulus of continuity on the interval [0, �1). This implies that E(î�1 )á ,�1, and

moreover that E exp(åî1) ,�1, for some å. 0 (as usual, x� � maxfx, 0g). However, it

says nothing about the behaviour of Fì at ÿ1.

Proof of Corollary 4.1. When îi > 0, the proof is immediate since then 0 < minfî1,

. . . , îng < î1, which implies (2b). In general, one can observe that
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M�n ÿ jî1j < Mn < M�n ,

so that

jMn ÿ EMnj < jM�n ÿ EM�n j � jî1j � Ejî1j:
Therefore, supn EjMn ÿ EMnjá ,�1 if and only if supn EjM�n ÿ EM�n já ,�1. On the

other hand, M�n � maxfæ�1 , . . . , î�n g corresponds to non-negative random variables. Hence,

by the previous step, the sequence EjM�n ÿ EM�n já is bounded if and only if Uì has ®nite

modulus of continuity on [0, �1). This ®nishes the proof. h

In the case á � 1, condition (2) together with Ejî1j,�1 can equivalently be written as

one property: �1

0

pn(1ÿ p) dFÿ1
ì ( p) � O

1

n

� �
, as n!1:

In turn, this leads to another formulation.

Corollary 4.2. Let î be a random variable with values in (0, 1) and with distribution

function Fî. Then,

Eî n � O
1

n

� �
, as n!1,

if and only if there exist a, b > 0 such that, for all 1
2

< p < q , 1,�q

p

1

1ÿ t
dFî(t) < a� b log

1ÿ p

1ÿ q
:

5. Concluding remarks

Let (X , r, ì) be a metric space equipped with a Borel probability measure ì. As in Section

1, de®ne the open h-neighbourhood of a set A � X by

Ah � fx 2 Rn : r(x, a) , h for some a 2 Ag, h . 0,

and the associated (`integral') isoperimetric function

Rh( p) � inf
ì(A)>p

ì(Ah), 0 , p , 1,

where the in®mum is taken over all Borel sets of measure ì(A) > p. With this notation, one

can easily prove the following statement which contrasts with the pÿ 1 alternative of

Theorem 1.1, and deals with n ®xed.

Proposition 5.1. Rh( p)! 1 as h! �1 whenever p 2 (0, 1).

This statement remains true if the metric is replaced by a pseudo-metric r such that
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r(x, y) ,�1, for almost all (x, y) with respect to measure ì
 ì. In Section 1, the

concentration property inf n R
(n)
h ( p) . p could also have been expressed as Rh( p) . p, for the

space X � R1 equipped with the pseudo-metric

r1(x, y) � sup
i>1

jxi ÿ yij,

and with the product measure ì1. In this case, r(x, y) � �1, for almost all (x, y) with

respect to ì1, whenever the measure ì does not have compact support on the real line.
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