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Abstract

A converse Poincar�e-type inequality is obtained within the class of smooth convex functions for the Gaussian distribution.
c© 1999 Elsevier Science B.V. All rights reserved

MSC: primary 60E15; 60E99; secondary 26D10

Keywords: Poincar�e-type inequalities; log-Sobolev inequalities; Gaussian distribution

These notes form a companion to a previous paper of the authors where the question of obtaining converse
Poincar�e-type inequalities was investigated. By a Poincar�e-type inequality for a given probability measure �
on R, one usually means an analytic inequality of the form

Var�(f)6K‖f′‖22; (1)

which relates the �-variance of an arbitrary smooth function f on R to the L2(�)-norm of its derivative f′,
and where the constant K does not depend on f. For example, as �rst noted in Klaassen (1985), the above
inequality is satis�ed by the double exponential distribution � with the optimal constant K = 4. In fact, as
already mentioned in Borovkov and Utev (1983), if � is a random variable with d.f. F and density p such
that, for some x0; 1− F(x)6cp(x), if x¿x0, and F(x)6cp(x), if x6x0, then Eq. (1) holds with K = 4c2.
For the double exponential measure, Eq. (1) can be inverted in the class of all convex f, in the sense that

for some K ¿ 0,

Var�(f)¿K‖f′‖22;
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(see Bobkov and Houdr�e, 1997a). Actually, such a converse “convex” Poincar�e-type inequality holds for
many other symmetric probability measures � with su�ciently heavy tails. It is however not satis�ed by
the canonical Gaussian measure � = , and at the same time, the inequality (1) for � =  holds true with
K =1. Thus, the classical Gaussian Poincar�e-type inequality is relatively rough, and for a suitable “invertible”
estimate of Var(f), we have to look for a quantity somewhat di�erent from ‖f′‖22. As it turns out, the
L2-norm of the derivative can be replaced by a suitable Orlicz norm:

Theorem 1. There exist positive numerical constants K0 and K1 such that; for every convex function
f: R→ R;

K0‖f′‖2 6Var(f)6K1‖f′‖2 ; (2)

where ‖ · ‖ is the Orlicz norm in L () with  (x) = x2=[log(1 + x)]; x¿0.

Recall that the Orlicz norm of a measurable function u in L () is de�ned by

‖u‖ = inf
{
�¿ 0: E 

( |u|
�

)
61

}
;

where the above expectation is with respect to . One easily veri�es that  above is a Young function, i.e.,
it is positive, convex, increasing in x¿0, with  (0) = 0, so that ‖ · ‖ is indeed a norm.
The inequality on the right in (2) is not really new. It holds true for all absolutely continuous f, without

the convexity assumption, and is a consequence of an inequality of Talagrand (1994), Theorem 1:6 on the
discrete cube: for every function f : {0; 1}n → R,

Var�n
p
(f)6K(p)

n∑
i=1

‖�if‖2 : (3)

Here, the variance and the Orlicz norm are understood with respect to the n-fold tensor product �n
p of

the Bernoulli measure on {0; 1} with parameter p ∈ (0; 1), and �if denotes the increment of f along
the ith coordinate. Applying the above discrete inequality (with p = 1=2, for de�niteness) to the functions
fn(x) =f((2(x1 + · · ·+ xn)− n)=

√
n); x ∈ {0; 1}n, with f smooth enough, and letting n → ∞, we obtain by

the central limit theorem the right inequality in (2) with K1 = 4K(1=2).
In addition to the proof of Eq. (3) given in Talagrand (1994), it is also noted there that this inequality

could also be obtained, by duality, from Gross (1976) logarithmic Sobolev inequality on the discrete cube
(in the case p = 1=2). For an arbitrary probability metric space it is shown, in the appendix at the end of
this paper, that the right inequality in (2) implies a log-Sobolev inequality. However, we do not know if
the converse statement is true in general, i.e., we do not know if a log-Sobolev inequality implies the right
inequality in (2). In this connection, it might be worthwhile to note that, in contrast to (2), the Gaussian
log-Sobolev inequality cannot be inverted in the class of all convex functions. Indeed, if we apply

Ef2logf2 − Ef2logEf2¿KEf′2;

to the functions e�f; �¿ 0, with f convex and then let � → 0, we arrive at 2Var(f)¿KEf′2, which is
clearly false.
We can now pass to the proof of the left inequality in (2). To denote the variance, we also write Var(f; �)

instead of Var�(f), and Var(�) instead of Var(f; �) when the function is identity: f(x) = x. We also write
E�f to denote the expectation of f with respect to �. As usual,

�(x) = ((−∞; x]) =
1√
2�

∫ x

−∞
e−t2=2 dt; x ∈ R;

denotes the distribution function of , and ’(x) = (1=
√
2�)e−x2=2 denotes its density.
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It is much easier to prove the left inequality in (2) assuming additionally that f is monotone. To treat the
general case, we will have to consider an inequality such as

Var(f; )¿
∫
R
f′2 dQ (4)

in the class of all convex functions f on R for a suitable �nite positive symmetric measure Q on R, absolutely
continuous with respect to . Before starting, let us note one su�cient condition for Eq. (4). First, we can
assume that for some a ∈ R; f is non-increasing on (−∞; a] and is non-decreasing on [a;+∞). Then, writing

= �(a)−a + (1− �(a))+a ;

where −a and +a are respectively the left and the right conditional restriction of  to the half-lines (−∞; a]
and [a;+∞), i.e.,

−a (A) =
(A ∩ (−∞; a])

�(a)
; +a (A) =

(A ∩ [a;+∞))
1− �(a)

; A⊂R; Borel;

we have

Var(f; ) = �(a)Var(f; −a ) + (1− �(a))Var(f; +a ) + �(a)(1− �(a))(E+a f − E−a
f)2

¿�(a)Var(f; −a ) + (1− �(a))Var(f; +a ):

Therefore, Eq. (4) will follow from

Var(f; −a )¿
1

�(a)

∫ a

−∞
f′2 dQ; (5)

Var(f; +a )¿
1

1− �(a)

∫ +∞

a
f′2 dQ: (6)

Since Eqs. (5) and (6) are equivalent by the symmetry of  (and of Q), and since f is non-decreasing on
[a;+∞), in order to get Eq. (4), it will be su�cient to establish Eq. (6) in the class F+ of non-decreasing
convex functions on R. To do so, we use:

Lemma 1. Let � be a random variable with �nite second moment; and continuous distribution function; and
let Q be a �nite positive measure on R. The following are equivalent:
(a) Cov(f(�); g(�))¿

∫
R f′g′ dQ; for all f; g ∈ F+; such that Ef(�)2 and Eg(�)2 are �nite.

(b) Var(f(�))¿
∫
R f′2 dQ; for all f ∈ F+.

(c) Var((�− a)+)¿Q([a;+∞)); for all a ∈ R.

When Q is the law of �, the above statement is Lemma 1 in Bobkov and Houdr�e (1997a), but the proof
there extends to arbitrary Q. Just note that the functionals

(f; g)→ Cov(f(�); g(�)); (f; g)→
∫

f′g′;

are bilinear, and that the function a → Cov((�− a)+; (�− b)+) is non-decreasing in a ∈ (∞; b] (note also the
fact that any f ∈ F+ is a mixture of functions fa(x) = (x − a)+).
Now, by Lemma 1, the inequality (6) for the class F+ is equivalent to the same inequality with f(x) =

(x − b)+; b¿a, that is, to

Var((x − b)+; +a )¿
1

1− �(a)

∫ ∞

b
dQ =

Q([b;+∞))
1− �(a)

;
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that is, to

Var((x − b)+; +a )
+a ([b;+∞))

¿
Q([b;+∞))
1− �(b)

: (7)

Let us recall another elementary statement (which was observed in the proof of Theorem 1 in Bobkov and
Houdr�e (1997a) and which is needed here only for � = ).

Lemma 2. Let � be a probability measure on R such that �([b;+∞))¿ 0; for all b ∈ R. Then; for all
a6b;

Var((x − b)+; �+a )
�+a ([b;+∞))

¿Var((x − b)+; �+b ) = Var(�
+
b ):

In order words, the left-hand side of the above inequality is minimized for a = b. Using Lemma 2, the
left-hand side of (7) can be estimated from below by Var(+b ), so that Eq. (7) and therefore Eq. (4) will
follow from

Var(+b )¿
Q([b;+∞))
1− �(b)

:

Thus, the measure Q in Eq. (4) can be chosen via the identity

Q([b;+∞)) = (1− �(b))Var(+b ): (8)

Since

Var(+b ) = Var((x − b)+; +b )

=
1

1− �(b)
E(x − b)+2 −

(
1

1− �(b)
E(x − b)+

)2
;

the equality (8) is just

Q([b;+∞)) = E(x − b)+2 − 1
1− �(b)

(E(x − b)+)2: (9)

This leads us to:

Lemma 3. For all convex functions f on R;

Var(f)¿K
∫ +∞

−∞
f′(x)2

1
1 + x2

d(x):

Proof. As it follows from the above discussion, it only remains to show that, for all b ∈ R,

Q([b;+∞))¿K
∫ +∞

b

1
1 + x2

d(x);

where K is a universal constant and where the function Q is de�ned via Eq. (8). For b = −∞, the above
inequality is trivial since, by Eq. (8), Q((−∞;+∞))=Var()=1; so only the behavior, as b → +∞, needs to
be considered on both sides of the above inequality. That is we just need to compute the correct asymptotics
the right-hand side of Eq. (9), as b → +∞. We start with the second term there. Integrating by parts, we
have

E(x − b)+ =
∫ ∞

b
(x − b)’(x) dx = ’(b)− b(1− �(b)):
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Now,

1− �(b) =
’(b)
b

− ’(b)
b3

+ 3
∫ ∞

b

’(x)
x4

dx

¿
’(b)
b

− ’(b)
b3

+ O
(
’(b)
b5

)
:

Hence,

E(x − b)+6
’(b)
b2

(
1 + O

(
1
b

))
;

and thus

(E(x − b)+)26
’(b)2

b4

(
1 + O

(
1
b

))
:

But, since

1− �(b)¿
’(b)
b

(
1− 1

b2

)
;

it follows that

1
1− �(b)

(E(x − b)+)26
’(b)
b3

(
1 + O

(
1
b

))
:

Let us estimate the �rst term on the right-hand side of Eq. (9):

E(x − b)+2 =
∫ ∞

b
(x − b)2 d�(x)

= 2
∫ ∞

b
(x − b) (1− �(x)) dx

¿ 2
∫ ∞

b
(x − b)’(x)

(
1
x
− 1

x3
+ O

(
1
x5

))
dx

= 2
∫ +∞

b
’(x)

[
1− 1

x2
− b

x
+

b
x3
+ O

(
1
x4

)]
dx:

Denote by A this last integral and proceed to estimate every single one of its components.

I :
∫ ∞

b
’(x) dx = 1− �(b) = ’(b)

[
1
b
− 1

b3
+ O

(
1
b5

)]
:

II :
∫ ∞

b

’(x)
x2

dx =
∫ ∞

b

1
x3
d(−’(x)) =

’(b)
b3

+ O
(
’(b)
b5

)
:

III :
∫ ∞

b

’(x)
x
dx=

∫ ∞

b

1
x2
d(−’(x))

=
’(b)
b2

− 2
∫ ∞

b

’(x)
x3

dx
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=
’(b)
b2

+ 2
∫
1
x4
d(−’(x))

=
’(b)
b2

− 2’(b)
b4

+ O
(
’(b)
b6

)
:

Hence,

b
∫ ∞

b

’(x)
x
dx =

’(b)
b

− 2’(b)
b3

+ O
(
1
b5

)
:

IV :
∫ ∞

b

’(x)
x3

dx =
∫ +∞

b

1
x4
d(−’(x)) =

’(b)
b4

+ O
(
’(b)
b6

)
;

thus,

b
∫ ∞

b

’(x)
x3

dx =
’(b)
b3

+ O
(
’(b)
b5

)
:

Finally,

V :
∫ ∞

b

’(x)
x4

dx =O
(
’(b)
b5

)
:

Combining these �ve estimates, we have

A=’(b)
[(
1
b
− 1

b3

)
−
(
1
b
− 2

b3

)
− 1

b3
+
1
b3
+ O

(
1
b5

)]

=
’(b)
b3

(
1 + O

(
1
b2

))
:

Hence,

E(x − b)+2¿2
’(b)
b3

(
1 + O

(
1
b2

))
;

Q([b;+∞))¿ 2
’(b)
b3

− ’(b)
b3

+ O
(
’(b)
b4

)

¿
’(b)
b3

(
1 + O

(
1
b

))

¿K
1− �(b)

b2

(
or ¿K

∫ +∞

b

’(x)
x2

dx
)

;

as b → +∞. This �nishes the proof of Lemma 3.

To continue, recall that given a Young function N , the corresponding Orlicz norm is de�ned by

‖u‖N = inf
{
�¿ 0: EN

( |u|
�

)
61

}
: (10)

Lemma 4. For all measurable functions u; v on some probability space;

|Euv|63‖u‖x log (1+x)‖v‖e x−1:
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Proof. One may assume u; v¿0. By homogeneity, let ‖v‖ex−1 = 1 so that by Eq. (10) Eev = 2. But

sup
Eev=2

Euv= Eu log
(
2u
Eu

)
;

which is just a well-known functional representation of the entropy. Thus to prove the result, it is enough to
show that for all u¿0 such that Eu¿ 0,

Eu log
(
2u
Eu

)
63‖u‖x log (1+x):

Again, by homogeneity, let ‖u‖x log (1+x) = 1, that is let

Eu log(1 + u) = 1:

By Jensen’s inequality, Eu log(1 + u)¿Eu log(1 + Eu), so

Eu log(1 + Eu)61:

Hence Eu62, since 2 log 2¿ 1 and since the function x log(1 + x) is increasing. Therefore, using also that
fact that x log x¿− 1=e for all x¿ 0, we have

Eu log
(
2u
Eu

)
= Eu log 2 + Eu log u− Eu logEu

6 2 log 2 + Eu log(1 + u) + e−1

= 2 log 2 + 1 + e−163;

and Lemma 4 is proved.

Lemma 5. For every measurable function g : R→ R,

‖g‖2 6K
∫ +∞

−∞
g(x)2

1
1 + x2

d(x);

where K is universal constant; and ‖ · ‖ is the Orlicz norm in the space L () with respect to the Young
function  (x) = x2=[log(1 + x)]; x¿0.

Proof. By homogeneity, let ‖g‖ =1; also we can assume that g¿0. Applying Lemma 4 to u= (g(x))=[1+x2]
and v(x) = 1 + x2, we have

1 =
∫ +∞

−∞
 (g) d =

∫ +∞

−∞

 (g)
v

v d

6 3
∥∥∥∥ (g)

v

∥∥∥∥
x log(1+x)

‖v‖ex−1

= C
∥∥∥∥ (g)

v

∥∥∥∥
x log(1+x)

;

where C = 3‖v‖ex−1¡+∞ is universal. Thus,∥∥∥∥ (g)
v

∥∥∥∥
x log(1−x)

¿
1
C
= c
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which is equivalent to saying that

E
 (g)
cv

log
(
1 +

 (g)
cv

)
¿1:

Since v¿1, it follows that

E
 (g)
v
log

(
1 +

 (g)
c

)
¿c:

From the very de�nition of  , we thus have

E
g2

v log(1 + g)
log

(
1 +

g2

c(log(1 + g))

)
¿c: (11)

Now, note for some �= �(c)¿ 0,

log
(
1 +

x2

c log(1 + x)

)
6� log(1 + x); for all x¿0: (12)

Indeed, this inequality holds true near the points x= 0 and x=+∞. Finally, using Eq. (12) in Eq. (11), we
get E(g2=v)¿c=�, that is,∫ +∞

−∞

g(x)2

1 + x2
d(x)¿

c
�
:

Proof of Theorem 1 (the left inequality (2)). Combine Lemmas 3 and 5 (with g= f′).

Appendix

Let (M; �) be a metric space equipped with a Borel probability measure �. For every function f on M ,
one de�nes its “modulus of gradient”

|∇f(x)|= lim sup
�(x;y)→0+

|f(x)− f(y)|
�(x; y)

; x ∈ M;

with the convention that |∇f(x)|=0, when x is an isolated point in M . We apply this de�nition to the class
A of all functions f on M which have a �nite Lipschitz constant on every ball in M : and in this case the
function |∇f| is �nite and Borel measurable (cf. Bobkov and Houdr�e (1997b) for details). Now for  as in
Theorem 1, consider inequalities of the following two types:

Var(f)6K‖ |∇f| ‖2 ; (13)

Ef2 logf2 − Ef2 logEf26K ′E|∇f|2; (14)

where the expectations, the variance and the Orlicz norm are with respect to �, where f is an arbitrary
function in A, and where the constants K and K ′ do not depend on f. Here we prove that:

Proposition 1. The inequality (13) implies the inequality (14) with K ′6cK; where c is a universal constant.

It is probable that the converse statement in the above proposition is not true. The L -norm is weaker
than the L2-norm. So, comparing (13) with (14) is very similar to the analogous problem of comparing the
inequality (a) E|f−Ef|6KE|∇f|, involving the L1-norm of the modulus of the gradient, with a Poincar�e-type
inequality (b) E|f − Ef|26K ′E|∇f|2, involving the L2-norm of the modulus of gradient. It is well known
that (a) implies (b) which is a version of a Cheeger’s inequality. However, the converse is not true. Already
on the real line M=R there exist probability measures which satisfy (b) but do not satisfy (a) with a �nite K .
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Lemma 6. ‖u‖ 62‖u‖2; for all u ∈ L (�).

Proof. It is easy to verify that  (y)6|y|+y2, for all y ∈ R. Thus, if ‖u‖22 ≡ Eu2=1, then E (u)62. Hence,
E ( 12u)6

1
2E (u)61 (since  is convex and  (0) = 0).

Lemma 7. For all measurable functions u and v; ‖uv‖ 624‖u‖e x2−1‖v‖2.

Proof. We use Young’s inequality:

xy6
∫ x

0
�(t) dt +

∫ y

0
�(s) ds ≡ A(x) + B(y); x; y¿0;

where � is an arbitrary continuous increasing function on [0;+∞) with �(0) = 0; �(+∞) =+∞, and where
� is the inverse of �. Set �(s)=

√
2 log(1 + s) so that B(y)6y

√
2 log(1 + y). Since �(t)= et

2=2− 1, we also
have A(x)6xex

2=2. Thus,

xy6xex
2=2 + y

√
2 log(1 + y); x; y¿0: (15)

Now, by the very de�nition of  ;  (�a)6�2 (a), whenever �¿1. Hence, using also the convexity of  , we
have  (a + b)62 (a) + 2 (b), for all a; b¿0. Applying this inequality to a = xex

2=2; b = y
√
2 log(1 + y),

we get from Eq. (15):

 (xy)62 (xex
2=2) + 2 (y

√
2 log(1 + y); x; y¿0: (16)

Since 1 + xex
2=2¿ex

2=2, we have  (xex
2=2) = x2ex

2
=[log(1 + xex

2=2)]62ex
2
. Setting y = ex

2
1=2 − 1, we also have

 (y
√
2 log(1 + y)) =  (x1(ex

2
1=2 − 1))6 (x1ex

2
1=2)62ex

2
1 = 2(1 + y)2:

These two estimates together with (16) give  (xy)64ex
2=2 + 4(1 + y)2. Therefore, if u; v¿0 (this can be

assumed) and ‖u‖ex2−1 = ‖v‖2 = 1, that is, if Eeu
2
= 2 and Ev2 = 1, then E (uv)64Eeu

2
+ 4E(1 + v)2624.

This implies the inequality of the lemma.

Proof of Proposition 1. Introduce the functional

L(f) = sup
c∈R

[E(f + c)2 log (f + c)2 − E(f + c)2 logE(f + c)2];

which is de�ned for all measurable f, is non-negative, and is �nite if and only if Ef2 logf2¡+∞. Since
the modulus of the gradient |∇f| is invariant under translations f → f+ c, the inequality (14) can formally
be strengthened and written as L(f)6K ′E|∇f|2. On the other hand, as shown in Bobkov and G�otze (1999),
Proposition 4:1,

2
3‖f − Ef‖2N6L(f)6 5

2‖f − Ef‖2N ; (17)

where the Orlicz norm is generated by the Young function N (x) = x2 log(1 + x2). Thus, up to a constant,
Eq. (14) is equivalent to the inequality

‖f − Ef‖2N6K ′′E|∇f|2; (18)

where N is as above. To deduce Eq. (18) from Eq. (13), we may assume that f is bounded, Ef = 0 and
E|∇f|2=1=K (and that K ¿ 0). Apply Eq. (13) to the function g=f

√
log(1 + f2). Since |(x

√
log(1 + x2))′|

62
√
log(1 + x2) and thus |∇g|62

√
log(1 + f2) |∇f|, we get:

EN (f) = E(f
√
log(1 + f2))2

6 (Ef
√
log(1 + f2))2 + K‖2

√
log(1 + f2) |∇f| ‖2 : (19)
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Once more by Eq. (13), applied to f, and by Lemma 6,

Ef26K‖ |∇f| ‖2 64K‖ |∇f| ‖22 = 4: (20)

Hence, by Cauchy–Schwarz and Jensen’s inequalities,

(Ef
√
log(1 + f2))26Ef2E log(1 + f2)6Ef2 log(1 + Ef2)64 log 5:

This gives a bound for the �rst term in Eq. (19). In order to estimate the second term, note that, for the
Young function �(x) = ex

2 − 1, we have according to Eq. (20) that E�(
√
log(1 + f2)) = Ef264, so that

‖
√
log(1 + f2)‖�64. Hence, by Lemma 7,
‖
√
log(1 + f2) |∇f| ‖ 624‖

√
log(1 + f2)‖� ‖ |∇f| ‖2696=

√
K:

Combining these bounds, we obtain from Eq. (19) that EN (f)64 log 5+(2:96)2¡ 2002. Hence, ‖f‖N6200,
since N (tx)6t2N (x) for |t|61. This proves Eq. (18) with K ′′=2002K . By the second inequality in (17), we
�nally get L(f)6 5

2200
2K . Thus, Proposition 1 is proved with c = 5

2200
2.
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