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Abstract. We study some discrete isoperimetric and Poincaré-type inequal-
ities for product probability measures µn on the discrete cube {0, 1}n and on
the lattice Zn. In particular we prove sharp lower estimates for the product
measures of ’boundaries’ of arbitrary sets in the discrete cube. More gen-
erally, we characterize those probability distributions µ on Z which satisfy
these inequalities on Zn. The class of these distributions can be described by
a certain class of monotone transforms of the two-sided exponential mea-
sure. A similar characterization of distributions on R which satisfy Poincaré
inequalities on the class of convex functions is proved in terms of variances
of suprema of linear processes.

Mathematics Subject Classification (1991):Primary 60E15; Secondary
26D15

1. Introduction

Let (�, P) be a product probability space, � = �1 × · · · × �n, P =
µ1⊗· · ·⊗µn. In this paper we derive some discrete isoperimetric inequalities
of the form

P+(A) ≥ c I (P(A)), A ⊆ �, c > 0 , (1.1)
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connecting suitably defined ‘surface’ measures P+(A) and the ‘volume’
P(A) via some non-negative functions I on [0, 1].

Various discrete and continuous isoperimetric inequalities may be
written in the form (1.1). For instance for Gauss spaces (Rn, γn), i.e., Eu-
clidean spaces equipped with the canonical Gaussian measure with density
(2π)−n/2 exp(−|x|2/2), x ∈ Rn, the surface measure is defined by the so-
called lower outer Minkowski γn-content, (or Gaussian perimeter)

γ +
n (A) = lim inf

h→0+

γn(A
h) − γn(A)

h
,

where Ah denotes the h-neighbourhood of A in the Euclidean metric in Rn.
Let ϕ denote the density of γ1 and let 8−1 denote the inverse of the stan-
dard Gaussian distribution function 8(x) = γ1((−∞, x]). The Gaussian
isoperimetric inequality due to V.N. Sudakov, B.S. Tsirel’son [ST] and C.
Borell [Bor] then asserts that, for any measurable set A ⊂ Rn,

γ +
n (A) ≥ I (γn(A)) (1.2)

with the Gaussian isoperimetric function I (t) = ϕ(8−1(t)), t ∈ [0, 1]. Here
equality holds for an arbitrary half-space A. The most remarkable feature
of this inequality is that the function I is independent of the dimension n.

1.1. Product measures on{0, 1}n

In the case of the probability counting measure, say P, on the discrete
cube � = {0, 1}n we are looking for suitable surface measures P+ which
approximate the corresponding Gaussian perimeter (1.2) for growing n and
satisfy (1.1). To this end it may be helpful to review some measures used
in related extremal set problems. Denote by si(x) the ‘neighbour’ of x ∈
{0, 1}n obtained by changing the i-th coordinate: [si(x)]j = xj , for j 6= i,
and [si(x)]i = 1 − xi . For any A ⊂ {0, 1}n, the sets

∂+A = {x ∈ A : si(x) /∈ A, for some i ≤ n} ,

∂−A = {x /∈ A : si(x) ∈ A, for some i ≤ n}

represent the inner-respectively the outer boundary of A with respect to
the Hamming distance in {0, 1}n, or the inner- and the outer parts of the
(two-sided) boundary ∂A = ∂+A ∪ ∂−A.

The classical discrete (vertex-)isoperimetric problem is to minimize
P(∂−A) over all sets A with fixed probability, say P(A) = t . It has been
solved by L.H. Harper [H2] (cf. also [WW], [FF]). In the case, when t is of
the form 2−n

∑
i≤k Ci

n , the extremal sets are the balls A = {x ∈ {0, 1}n :
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x1 + · · · + xn ≤ k} (which may also be regarded as half-spaces). The cor-
responding isoperimetric inequalities are of the type (1.1)

P(∂−A) ≥ 1√
n
In(P(A)) (1.3)

with functions In closely related to the Gaussian isoperimetric function I .
Note however, that these inequalities essentially depend on the dimension
n through the factor 1/

√
n, and that the connection with (1.2) is not clear. It

seems more promising to weight boundary points (or vertices) x of subsets
A of {0, 1}n according to the number of outbound edges by introducing the
functions

h̄A(x) = card{i ≤ n : (x ∈ A, si(x) /∈ A) or (x /∈ A, si(x) ∈ A)},

hA = h̄A1A .

In particular, we may define boundaries and inner boundaries as well via
∂A = {h̄A > 0}, ∂+A = {hA > 0}. For example, one might look at
the socalled edge-isoperimetric problem corresponding to minimizing the
functional ∫

h̄A dP

(which is, up to the constant 2−n−1, just the number of all boundary edges of
A ) over all sets A with prescribed value P(A) = t . For the discrete cube, the
problem of (edge-) extremal sets was solved by L.H. Harper [H1] and J.H.
Lindsey [Lin] (cf. R. Ahlswede and N. Cai [AC] for history of the problem
and more general results). The edge-extremal sets are given by the first
points in the lexicographic order of �. In particular, when t = 2−k, these
are the subcubes A = {(0, . . . , 0)} × {0, 1}n−k. For such sets,

∫
h̄A dP =

2t log2(1/t) while for balls this quantity grows to infinity with n like
√

n.
Thus, similar to (1.3), this surface measure does not recover, even up to a
multiplicative constant, the continuous isoperimetric inequality (1.2).

An appropriate normalization of
∫

h̄A dP by multiplication with P(∂A)

yields a closer analogue of (1.2). This is due to G.A. Margulis [M] who
proved that P(∂A)

∫
h̄A dP can be bounded below in terms of P(A), only.

More generally, for p ∈ (0, 1), let µn
p denote the product measure on {0, 1}n

of the Bernoulli measure assigning weights q = 1 − p and p to 0 and 1
respectively. Margulis investigated the (connectivity-) threshold behaviour
of the function p → µn

p(A) for monotone sets A such that hA is large on
∂+A, by means of the inequality, ([M], Theorem 2.4),

µn
p(∂+A)

∫
hA dµn

p ≥ c (p, α) , (1.4)
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where c (p, α) depends on p and α = µn
p(A) but not on n. Using Cauchy-

Schwarz’ inequality, we have µn
p(∂+A)

∫
hA ≥ ( ∫ √

hA

)2
. Thus the lower

bound c (p, α) can be derived from lower bounds (which do not involve n

directly) for
∫ √

hA . Using the latter as a new surface measure, M. Talagrand
[T1] sharpened (1.4), proving that there exists a positive constant cp such
that, for each subset A of {0, 1}n,∫ √

hA(x) dµn
p(x) ≥ cp J (µn

p(A) (1 − µn
p(A))) , (1.5)

where J (t) = t
√

log(1/t), t ≥ 0. He studied as well the related Cheeger-
type inequality∫ √

hA(x) dµn
p(x) ≥ c′

p µn
p(A) (1 − µn

p(A)) (1.6)

and applied it to get a quantitative version of Margulis’ theorem on thresh-
old behaviour. The ‘surface measures’

∫ √
hA dµn

p and
∫ √

h̄A dµn
p turn

out to be the desired discrete analogues of the Gaussian perimeter γ +
n (A).

Moreover, since J (t (1 − t)) behaves like the Gaussian isoperimetric func-
tion I (t), the inequality (1.5) itself may be viewed, up to a multiplicative
absolute constant, as a discrete version of the Gaussian isoperimetric in-
equality (1.2). Using a different approach, we will study a correct order of
constants in (1.5) and (1.6) as functions of parameter p and prove in section
2 (Propositions 2.3–2.4):

Theorem 1.1. The functionscp resp.c′
p of p in (1.5) and (1.6) can be

chosen as

cp ≈ 1/
√

log(1/p), p small, and c′
p = 1 .

Exact values for cp are more involved and provided in Lemma 2.2 in-
cluding more general functions J in (1.5). The value c′

p = 1 implies in par-
ticular that in Margulis’ lower bound we may choose c(p, α) = α2(1−α)2,
independent of p.

For the two sided boundary surface measures P+(A) = ∫ √
h̄A dµn

p, we
prove in section 3 (Proposition 3.1):

Theorem 1.2. For all p ∈ (0, 1),

∫ √
h̄A(x) dµn

p(x) ≥ 1√
2pq

ϕ
(
8−1(µn

p(A))
)
, A ⊂ {0, 1}n . (1.7)

Thus, compared to (1.5) the two sided surface measure is bounded from
below by a much more larger quantity, especially, when p is small.
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1.2. Functional inequalities on general product spaces

The bound (1.7) will be extended in section 3 (Theorem 3.2) to finite prod-
ucts of arbitrary probability spaces under an appropriate adaption of the
notion of surface measure. As we believe, this illustrates a very general
principle behind the Gaussian isoperimetric inequality. Our approach is
based on the idea that the inequalities like (1.5)–(1.7) are particular cases of
the following functional type inequalities on abstract product spaces (�, P)

c I

(∫
f dP

)
≤

∫ √
c2I (f )2 + D(f )2 dP (1.8)

involving some measure of the size of a ‘discrete gradient’ D(f ) of an
arbitrary (measurable) function f on � with values in [0, 1]. On indicator
functions f = 1A, (1.8) turns into an isoperimetric inequality (1.1) for the
‘surface measure’

P+(A) =
∫

D(1A) dP . (1.9)

For instance, in (1.7) we obtain the surface measure P+(A) = ∫ √
h̄A dµn

p

defined by (1.9) via the operator Df (x) =
√∑n

i=1 |f (x) − f (si(x))|2, i.e.,
the Euclidean length of the usual discrete gradient of f .

Functional inequalities like (1.8) were introduced in [B1] for the discrete
cube and the uniform Bernoulli measure. Starting from dimension 1 with
an arbitrary given function I , these inequalities can be extended by simple
induction to the n-dimensional case for a wide class of operators D. This
reduces the multidimensional isoperimetric problem of estimating of P+(A)

within all the sets with given (product-)measure P(A) to a one-dimensional
problem about an optimal function I or an optimal constant c in (1.8). Of
course, (1.1) is a weaker inequality than (1.8). However, in many cases of
interest, (1.8) saves a lot of information about optimal constants in (1.1). This
concerns in particular the inequalities (1.5)–(1.7). The induction argument
for the general setting is isolated in section 2 (Lemma 2.1).

1.3. Product measures onZn

For subsets A of Zn, the boundary function hA is given by

hA(x) = card{i ≤ n : x ∈ A, (x + ei /∈ A or x − ei /∈ A)} ,

where (ei)i≤n denotes the canonical basis in Rn. Using the functional form
(1.8) with I (t) = t (1 − t), we obtain the following result (section 4, The-
orem 4.1) which characterizes probability measures µ on Z satisfying a
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Cheeger-type inequality on Zn. For the Minkowski perimeter with respect to
continous probability measures µn on Rn, an analogous problem of whether
or not Cheeger-type inequalities extend from dimension 1 to dimension n

with a dimension free constant has been affirmatively settled in [BH1].
Let Fµ(x) = µ((−∞, x]) denote the distribution function of µ. Then

we have

Theorem 1.3. The following statements are equivalent:
(1) For somec > 0, the following Cheeger type inequality holds:∫

Zn

√
hA(x) dµn(x) ≥ c µn(A) (1−µn(A)), for all n ≥ 1 and A ⊂ Zn .

(1.10)
(2) For somec > 0, the distribution function ofµ satisfies

µ({x}) ≥ c Fµ(x) (1 − Fµ(x)), for all x ∈ Z . (1.11)

(3) There is a constantC > 0 such that a discrete Poincar´e inequality on
Z holds:∫

Z
f 2 dµ −

(∫
Z

f dµ

)2

≤ C

∫
Z

(f (x + 1) − f (x))2 dµ(x),

for all f on Z . (1.12)

(4) The measureµ is a functional transform of the two-sided exponential
distribution ν, with density1

2 exp(−|x|), x ∈ R, under a nondecreasing
mapU : R → Z such that, for someh > 0, supx∈R |U(x +h)−U(x)| ≤ 1.

Note that (1.11) is just a particular case of (1.10) when n = 1 and
A = (−∞, x] ∩ Z. Two different characterizations of probability measures
µ on Z satisfying the discrete Poincaré inequality (1.12) have recently been
obtained by J.-H. Lou [Lou] in continuation of an earlier joint work with
L.H.Y. Chen [CL].

The properties (1)–(4) in Theorem 1.3 are satisfied for example by the
Poisson measures. This important case will be considered separately in
section 3 on the basis of the functional form (1.8) for inequality (1.7) with
the Gaussian isoperimetric function I . Using Poisson’s limit theorem, we
will obtain an isoperimetric inequality for products of Poisson measures
which is very similar to the Gaussian isoperimetric inequality (1.2) (cf.
Proposition 3.6).

1.4. Poincaré inequalities for probability measures onR

The discrete Poincaré inequality (1.12) makes sense for an arbitrary proba-
bility measure µ on R, if we restrict it to the class of all monotone functions
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f on R. More generally, one may wonder whether or not, for some couple
(C, a) of positive numbers, for all monotone f ,∫

R
f 2 dµ −

(∫
R

f dµ

)2

≤ C

∫
R
(f (x + a) − f (x))2 dµ(x) .

Up to a constant, this inequality can be shown to be equivalent to the Poincaré
inequality ∫

R
f 2 dµ −

(∫
R

f dµ

)2

≤ C

∫
R

|f ′|2 dµ (1.13)

in the class of all convex functions f on R. Such ‘convex’ Poincaré inequal-
ities are motivated by the study of maximum of random processes of the
form

x(t) = a0(t) +
∞∑

n=1

an(t) ξn, t ∈ T ,

where (ξn)n≥1 is a sequence of independent random variables with common
distribution µ, and where an are arbitrary functions on a parametric set T .
In analogy with Theorem 1.3 we will prove the following characterization
(cf. Theorem 4.2):

Theorem 1.4. For every probability measureµ on R with finite second
moment, it is equivalent that:
(1) There exists a constantC such that, for every bounded processx(t) as
above,

Var (sup
t

x(t)) ≤ C sup
t

Var (x(t)) , (1.14)

whereVar denotes the variance.
(2) There exists a constantC such that(1.13) holds for all convex functionsf
onR.
(3) There exist constantsc > 0 andh > 0 such that

Fµ(x) − Fµ(x − h) ≥ c Fµ(x) (1 − Fµ(x)), for all x ∈ R .

(4) The measureµ is a functional transform ofν under a nondecreasing
mapU : R → R such thatsupx∈R |U(x + h) − U(x)| < +∞, for some
(or, all) h > 0.

For the Gaussian measure γn, the property (1.14) with optimal constant
C = 1 is well-known as a consequence of the isoperimetric inequality
(1.2). It is also a direct consequence of the Gaussian Poincaré inequality,
i.e., (1.13) for γn.

Throughout the paper, we will often use probabilistic notations E µf =
E f , Varµf = Varf for the mathematical expectation and the variance of
a function f with respect to probability measure µ.
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2. Induction step. Sharp constants in Talagrand’s inequalities (1.5)
and (1.6)

First we separate the induction step which has been already shown to hold
for some special cases in [B1] and [BaL]. For application to different forms
of (1.8), we describe some general situation. Let (�, P) be a product proba-
bility space, � = �1 ×· · ·×�n, P = µ1 ⊗· · ·⊗µn. Assume that, for each
i ≤ n, Di denotes an operator acting on the set of all bounded measurable
functions on �i . Set, for any function f on �,

D(f ) =
√√√√ n∑

i=1

Di(fi)2

where fi denotes the function of xi defined via fi(xi) = f (x), x ∈ �. The
basic assumption on Di is that

(a) for any bounded measurable function f on �i , Di(f ) represents a
non-negative measurable function on �i ;

(b) Di(f ) = Di(f
′) µi-almost surely, if f = f ′ µi-almost surely;

(c) Di is ‘convex’ in the following sense: for any probability space (Y, λ)

and for any bounded measurable function f on the product probability space
(�i × Y, µi ⊗ λ), the function y → Di(f (xi, y)) is λ-measurable and, for
µi-almost all xi ,

Di(E λf (xi, y)) ≤ E λDi(f (xi, y)) .

Under an appropriate continuity assumption, the above property will follow
from inequality Di(tu + (1 − t)v) ≤ tDi(u) + (1 − t)Di(v), 0 ≤ t ≤ 1.

Lemma 2.1. LetI be a non-negative, Borel measurable function on[0, 1].
For eachi ≤ n, assume thatDi satisfies the inequality

I (E µi
f ) ≤ E µi

√
I (f )2 + Di(f )2 ,

for every bounded measurable functionf on�i . ThenD satisfies the same
inequality

I (E f ) ≤ E
√

I (f )2 + D(f )2 ,

for any bounded measurable functionf on� (with mathematical expecta-
tions taken with respect toP ).

The proof does not differ from that of Lemma 2 in [B1] and is omitted.
The statement of Lemma 2.1 remains also true in a more general situation,
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when, for example, the above inequalities are considered for smaller classes
of functions closed under the operation xi → E λf (xi, y) (for f as in c)).

Now, in order to obtain inequalities (1.5)–(1.6) for product measures
on � = {0, 1}n, it suffices to establish ‘one-dimensional’ functional in-
equalities (1.8) for the space ({0, 1}, µp) with I (t) = J (t (1 − t)) and
I (t) = t (1 − t), respectively, and for Df = (f (1) − f (0))+, where we
write a+ = max(a, 0). Recall that µp assigns the value p ∈ [0, 1] to 1 and
q = 1−p to 0. Following M. Talagrand [T1], for any function f on {0, 1}n,
define

Mf (x) =
√√√√ n∑

i=1

((f (x) − f (si(x))+)2 ,

so that M1A = √
hA. Such operators were used in [T1] in discrete Sobolev-

type inequalities cp I (Varµn
p
(f )) ≤ ∫

Mf dµn
p to establish (1.5)–(1.6) with

c′
p = √

2 min(p, q)/
√

pq, cp = c′
p/K where K is universal. In addition, on

the class of monotone sets A ⊂ {0, 1}n, i.e., such that 1A is a non-decreasing
function in each coordinate, the inequality (1.6) was proved with a better
constant c′′

p = √
2p/q. The advantage of (1.6) over (1.5) was that the

constant c′′
p is explicit, and the form (1.6) is better adapted for applications

to Margulis’ theorem about threshold behaviour of functions p → µn
p(A).

With every function I on [0, 1], we connect a constant

dp(I ) = sup
1≥a>b≥0

((I (pa + qb) − qI (b))+)2 − p2I (a)2

p2(a − b)2
. (2.1)

Applying Lemma 2.1 to Df = Mf , we immediately obtain:

Lemma 2.2. Let I be a non-negative function on[0, 1] such thatI (0) =
I (1) = 1. With respect to the measureµn

p on {0, 1}n, the optimal constant
c in the inequality

c I (E f ) ≤ E
√

c2I (f )2 + M(f )2 , (2.2)

for an arbitrary functionf on{0, 1}n, is given byc = min
{

1√
dp(I )

, 1√
dq(I )

}
.

Thus, ∫ √
hA(x) dµn

p(x) ≥ c I (µn
p(A)) , (2.3)

for any subsetA of {0, 1}n. In addition, for the class of monotone functions
f (resp., for the class of monotone setsA) (2.2)–(2.3) hold with c =
1/

√
dp(I ).
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Indeed, it suffices to consider the case n = 1. Setting f (1) = a,
f (0) = b, d = 1/c2 and assuming a ≥ b, (2.2) may be written as

I (pa + qb) ≤ p
√

I (a)2 + d(a − b)2 + qI (b) (2.4)

which is equivalent to d ≥ dp(I ). Thus, c = 1/
√

dp(I ) is optimal in (2.2)
for the class of monotone functions f . Repeating this argument for the case
a < b gives an equivalent condition d ≥ max{dp(I ), dq(I )} for (2.2) to
hold with arbitrary f .

Clearly, the relations (2.2)–(2.3) with c = infp cp(I ) remain true for
product measures on {0, 1}n with arbitrary marginal distributions.

In the particular case I (t) = t (1 − t), it is easy to compute dp(I ): the
expression under the sup in (2.1) is just q((a − b)2 + 2p(a − a2)), and
its maximum is attained for b = 0, a = 1/(2 − q). This gives dp(I ) =
q/(2 − q) ≤ 1 and leads to the following:

Proposition 2.3. For any product measureP on {0, 1}n with possibly dif-
ferent marginal distributions, and for any subsetA of {0, 1}n,∫ √

hA(x) dP(x) ≥ P(A) (1 − P(A)) . (2.5)

It might be worthwile to note that the optimal function I in∫ √
hA(x) dP(x) ≥ I (P(A)) should satisfy I (p) ≤ p. This follows from

the particular case n = 1, P = µp, A = {1}. Hence, the right-hand side
of (2.5) is of correct order when P(A) is close to 0. On the other hand, by
Lemma 2.2, (2.5) can be sharpened for P = µn

p and for monotone A: it
holds with constant

√
(2 − q)/q in front of P(A) (1 − P(A)). As shown in

[T1], the connection of a (2.5)-type inequality with Margulis’ theorem is
the following. Using the identity d

dp
µn

p(A) = 1
p

∫
hA dµn

p, where A is an
arbitrary monotone set (Margulis–Russo’s Lemma), one obtains from (2.5)
that

d

dp
µn

p(A) ≥
√

k

p
µn

p(A)(1 − µn
p(A)) ,

provided hA ≥ k on ∂+A. Hence, for ε ∈ (0, 1/2), if µn
p1

(A) = ε, µn
p2

(A) =
1 − ε,

2 log
1 − ε

ε
=

∫ p2

p1

d

dp
log

µn
p(A)

1 − µn
p(A)

dp ≥
∫ p2

p1

√
k

p
dp =

√
k log

p2

p1
.

Thus,

log
p2

p1
≤ 1√

k
log

1 − ε

ε
. (2.6)
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Since p2 − p1 ≤ log p2

p1
, the function µn

p(A) jumps from ε to 1 − ε on an

interval of the length at most K(ε)/
√

k with K(ε) of order log 1−ε
ε

. The
last is a quantitative version of Margulis’ theorem due to M. Talagrand [T1]
(cf. also [T2] for related results). And the relation (2.6) gives a little more
information, especially when p1 is small.

Let us return to the inequalities (2.3). For many functions I , it seems
difficult to compute dp(I ) exactly on the basis of (2.1) but its behaviour
can be explored in some special cases. But even in this case, one can not
guarantee that the constant c = min{1/

√
dp(I ), 1/

√
dq(I )} will be optimal

(or, asymptotically optimal) in the inequality (2.3) which is weaker than its
functional form (2.2). Nevertheless, for I (t) = J (t (1 − t)), where J (t) =
t
√

log(1/t) is as in (1.5), we have the following:

Proposition 2.4. Let I (t) = J (t (1 − t)). t ∈ [0, 1]. For some positiveK0

andK1, and for all p ∈ (0, 1), the optimal constantc in (2.3) as well as
the optimal constantc in (2.2) satisfies

K0√
log(1/(pq))

≤ c ≤ K1√
log(1/(pq))

.

Proof . Fix p ∈ (0, 1) and q = 1 − p. Since (2.2) is stronger than (2.3),
and therefore the optimal constant c in (2.2) is not grater than the optimal
constant c in (2.3), we need only to prove the upper estimate for c in (2.3)
and the lower estimate for c in (2.2), for one dimension in the last case. To
obtain the upper estimate, let us test (2.3) on the sets A = {Sn = 0} where
Sn = x1 + · · · + xn. Since hA = n1∂+A, (2.3) becomes

√
nqn ≥ c qn(1 − qn)

√
log

1

qn(1 − qn)
.

Letting n → ∞, we obtain c ≤ 1/
√

log(1/q). Testing (2.3) on the sets
A = {Sn = n}, we arrive at c ≤ 1/

√
log(1/p). Both estimates give c ≤

1/
√

log(1/p′) where p′ = min(p, q). But p′ is of order pq.
The proof of the lower bound is rather routine, and we will omit some

technical details. We need to show that (2.4) holds, for all 1 ≥ a > b ≥ 0,
with some constant d such that K2

0 d ≤ log(1/(pq)). Set

L(a, b) = I (pa + qb) − (pI (a) + qI (b)) .

The inequality (2.4) may be rewritten, in terms of L, as L
pI (a)

≤ √
1 + s2−1,

where s =
√

d (a−b)

I (a)
. Since 1

3 min(s, s2) ≤ √
1 + s2 − 1, (2.4) is a conse-

quence of the
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3
L(a, b)

p (a − b)
≤

√
d, and 3

L(a, b)I (a)

p (a − b)2
≤ d . (2.7)

We use the following elementary properties of the function I : 1
3 ≤ −I ′′(x)

I (x) ≤ 1,for all x ∈ (0.1), I is thus concave on [0, 1], and for all a ∈ (0, 1),

Qp(a) ≡ I 2(pa) − p2I 2(a)

(pa)2
≤ 3 log

1

pq
, (2.8)

Rp(a) ≡ I (pa) − pI (a)

a
≤ 4pq

√
log

1

pq
(2.9)

(of course, the value of numerical constants in (2.8)–(2.9) is not essential).
We start with the second inequality in (2.7). To prove it, first we observe
that for all 1 > a > b ≥ 0,

L(a, b)

(a − b)2
≤ pq

2I (a)
+ 3

L(a, 0)

a2
. (2.10)

Indeed, by Taylor’s formula, for all x ∈ [0, 1] and c ∈ (0, 1),

I (x) = I (c) + I ′(c) (x − c) +
∫ 1

0
I ′′(t c + (1 − t) x ) t dt (x − c)2 .

Writing there c = pa + qb and x = a, x = b, and averaging with weights
p and q, we get a general identity:

L(a, b)

(a − b)2
= pq

[
q

∫ 1

0
−I ′′(t c + (1 − t) a ) t dt

+p

∫ 1

0
−I ′′(t c + (1 − t) b ) t dt

]
. (2.11)

Since −I ′′ ≤ 1/I ,

L(a, b)

(a − b)2
≤ pq

[
q

∫ 1

0

1

I (t c + (1 − t) a )
t dt

+p

∫ 1

0

1

I (t c + (1 − t) b )
t dt

]
. (2.12)

The function 1/I decreases in [0, 1/2] and increases in [1/2, 1], so, the
maximum of 1/I on every interval [α, β] is attained at one of the endpoints
of the interval. Therefore, 1

I (x)
≤ 1

I (α)
+ 1

I (β)
, for all x ∈ [α, β]. If t and a

are fixed, and b varies in [0, a], then x = t c+ (1− t) a varies in the interval
[α, β] = [t pa + (1 − t) a, a]. Therefore,
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1

I (t c + (1 − t) a)
≤ 1

I (a)
+ 1

I (t pa + (1 − t) a)
.

In the same way, 1
I (t c+(1−t) b)

≤ 1
I (a)

+ 1
I (t pa)

. Using these estimates in (2.12)
yields

L(a, b)

(a − b)2
≤ pq

2I (a)
+ pq

[
q

∫ 1

0

1

I (t pa + (1 − t) a)
t dt

+p

∫ 1

0

1

I (t pa)
t dt

]
.

Applying the inequality 1/I ≤ −3I ′′, we get

L(a, b)

(a − b)2
≤ pq

2I (a)
+ 3 pq

[
q

∫ 1

0
−I ′′(t pa + (1 − t) a) t dt

+p

∫ 1

0
−I ′′(t pa) t dt

]
.

But the second term (without the constant 3) corresponds to the right hand
side of (2.11) with b = 0 and is equal to L(a, 0)/a2. This proves (2.10). As
a result,

3
L(a, b)I (a)

p(a − b)2
≤ 3q

2
+ 9

L(a, 0)I (a)

pa2
. (2.13)

Since I is concave, and I (0) = 0, we have I (pa) ≥ pI (a). Therefore,

L(a, 0) = I (pa) − pI (a) = I 2(pa) − p2I 2(a)

I (pa) + pI (a)

≤ I 2(pa) − p2I 2(a)

2pI (a)
= (pa)2Qp(a)

2pI (a)
.

Using (2.8), we arrive at L(a,0)I (a)

pa2 ≤ 3
2 log 1

pq
, and by (2.13),

3
L(a, b)I (a)

p(a − b)2
≤ 3q

2
+ 27

2
log

1

pq
≤ 15 log

1

pq
.

Thus, the second inequality in (2.7) holds with d = 15 log 1
pq

. To establish
the first one, consider, for 1 ≥ a ≥ b ≥ 0, the inequality

L(a, b) = I (pa + qb) − (pI (a) + qI (b)) ≤ C(p) (a − b) . (2.14)

Since I is concave, for any c ∈ (0, 1), the left hand side of (2.14) is a convex
function on the segment
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1(c) = {(a, b) : pa + qb = c, 1 ≥ a ≥ b ≥ 0}

while the right hand side of (2.14) is a linear function. Therefore, (2.14)
holds for all (a, b) ∈ 1(c) if and only if it holds for the endpoints of the
segment. Note that, for each of these endpoints with coordinates (a, b),
either b = 0, or a = 1. When b = 0, (2.14) becomes

I (pa) − pI (a) ≤ C0(p) a (2.15)

with C0(p) = C(p), and for a = 1, it becomes, after a formal change of
the variable b to a, I (qa) − qI (a) ≤ C0(q) a, where again C0(q) = C(p).
Thus, the optimal constants C(p) in (2.14) are connected with the optimal
constants C0(p) in (2.15) via

C(p) = max(C0(p), C0(q)) .

By (2.9), C0(p) ≤ 4pq
√

log 1
pq

, so, C(p) ≤ 4pq
√

log 1
pq

. Therefore,

3 L(a,b)

p(a−b)
≤ 12

√
log 1

pq
. As a result, the first inequality in (2.7) holds with

d = 144 log 1
pq

. Thus, Proposition 2.4 is proved with K0 = 1/12. ut

3. Gaussian-type isoperimetric inequality in abstract product spaces

As noted in [T1], the dependence of the right hand side of (1.5) on µn
p(A)

given p is of the right order. This is readily seen by checking (1.5) on the
sets

An(a) =
{
x ∈ {0, 1}n :

Sn − np√
npq

≤ a

}

where Sn = x1 + · · · + xn. And as we have seen, the optimal constant in
(1.5) as a function of p is of order 1/

√
log(1/(pq)). For the two-sided

boundaries, the constants in (1.5) will change considerably:

Proposition 3.1. Let I (t) = ϕ(8−1(t)), 0 ≤ t ≤ 1. For any subsetA of
{0, 1}n, ∫ √

h̄A(x) dµn
p(x) ≥ 1√

2pq
I (µn

p(A)) . (3.1)

Recall that

h̄A(x) = card{i ≤ n : (x ∈ A, si(x) /∈ A) or (x /∈ A, si(x) ∈ A)} .
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In particular, h̄An(a) = (n − k) 1{Sn=k} + (k + 1) 1{Sn=k+1} where k =[
np + a

√
npq

]
(here [ · ] denotes the integer part of a real number). By

the de Moivré-Laplace’ local limit theorem,∫ √
h̄An(a) dµn

p = √
n − k µn

p(Sn = k)

+√
k + 1 µn

p(Sn = k + 1) −→
√

p + √
q√

pq
ϕ(a) ,

as n → ∞. On the other hand, by the central limit theorem,

1√
2pq

I (µn
p(An(a))) −→ 1√

2pq
ϕ(a) .

Therefore, since 1 ≤√
p+√

q ≤√
2, the dependence on the pair (p, µn

p(A))

on the right-hand side of (3.1) is sharp. A remarkable feature of (3.1) how-
ever is that it can be extended to arbitrary product measures, and (3.1)
follows from a more general and a simpler inequality. Let (�, P) be the
product of a finite number of probability spaces (�i, µi), i = 1, 2, . . . , n.
For every (measurable) function f on �, we set

D(f ) =
√√√√ n∑

i=1

Varxi
(f )

where Varxi
(f ) denotes the variance of f with respect to the i-th coordinate

while the remaining of the variables are fixed. The function D(f ) is related
to the modulus of the gradient of a smooth function on Euclidean space.
Thus, given a measurable set A ⊂ �, one may consider the quantity

P+(A) = E D(1A)

as a certain ‘P-perimeter’ of A (the mathematical expectation is taken with
respect to P). We shall prove the following result:

Theorem 3.2. For every measurable functionf on� with values in[0, 1],

I (E f ) ≤ E
√

I (f )2 + 2 D(f )2 . (3.2)

In particular, for any measurable subsetA of �,

P+(A) ≥ 1√
2

I (P(A)) . (3.3)
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The inequality (3.3) reduces to (3.1) choosing �i = {0, 1} with distri-
bution µp. We do not know an optimal function I0 for which

P+(A) ≥ I0(P(A)) (3.4)

holds for all product probability spaces (�, P). However, let us note that if
we apply (3.4) to � = {0, 1}n, P = µn

p with p = t1/n and to A = {Sn = n},
and then let n → ∞, we will arrive in the limit at J (t) = t

√
log(1/t) ≥

I0(t). Thus, by (3.3), and by symmetry of I0(t) around 1/2,

1√
2

I (t) ≤ I0(t) ≤ min{J (t), J (1 − t)} , (3.5)

for any t ∈ (0, 1). Both sides of (3.5) represent equivalent functions as
t → 0 or t → 1, so, the dependence of the right-hand side of (3.3) in P(A)

is sharp, and the factor 1/
√

2 in (3.3) and therefore the constant 2 in (3.2)
can not be improved.

One may wonder of course whether (3.2) can be sharpened for some
special measures, and in particular, when the constant 2 may be improved,
e.g., replaced by 1 as the best possible case. Let us apply (3.2) with n = 1 to
the functions f = c + εg with g bounded such that E g = 0. If c ∈ (0, 1),
Taylor’s expansion around ε = 0 yields

E
√

I (f )2 + Var(f ) = E
√

I (c + εg)2 + ε2Var(g)

= I (c) + I ′(c)
6 I (c)2

E g3 ε3 + O
(
ε4

)
.

Therefore, validity of the inequality I (c) = I (E f ) ≤ E
√

I (f )2 + Var(f )

requires that E g3 = 0. But if µ1 (= P) is different from a Dirac measure in
one point, the equality E g3 = 0 holds for all bounded g with E g = 0 if and
only if µ1 has two support points with probability 1/2 each. Thus inequality
(3.2) may hold in product spaces with the factor 2 replaced by 1 only if we
restrict ourselves to the discrete cube {0, 1}n with the normalized uniform
measure. As shown in [B1], this is indeed the case.

To prove (3.2), it suffices to consider the case n = 1: here we apply
Lemma 2.1 with Di(f ) = √

2Var(f ) (which is a functional rather than an
operator) and with the Gaussian isoperimetric function

I (t) = ϕ(8−1(t)), 0 ≤ t ≤ 1 .

In order to treat the case n = 1, we note several elementary properties of
this function (the important property 3) below was for the first time noticed
and used apparently in [AGK]):
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(1) I is concave on [0, 1] and is symmetric around the point 1/2;
(2) I increases on [0, 1/2] and decreases on [1/2, 1]; I (0) = I (1) = 1;
(3) I satisfies differential equation I ′′I = −1.

Lemma 3.3. For every measurable functionf on� with values in[0, 1],

I (E f ) − E I (f ) ≤ 1

I (E f )
Var(f ) . (3.6)

Consequently,

I (E f ) ≤ E
√

I (f )2 + 2 Var(f ) . (3.7)

Proof . (A two-point analogue of (3.6) for the function J appears in [T1],
Lemma 3.2). First let us see how (3.6) implies (3.7). We apply (3.6) and
Jensen’s inequality to get

(I (E f ))2 − (E I (f ))2 = (I (E f ) − E I (f )) (I (E f ) + E I (f ))

≤ (I (E f ) − E I (f )) 2I (E f )

≤ 2 Var(f ).

Hence, (I (E f ))2 ≤ (E I (f ))2 + 2 Var(f ) ≤ (
E

√
I (f )2 + 2 Var(f )

)2

where we used the triangle inequality
(∫

u
)2 + (∫

v
)2 ≤

(∫ √
u2 + v2

)2

with u = I (f ) and v = √
2 Var(f ).

To prove (3.6), we may assume that 0 < f < 1. Fix c = E f . By
Taylor’s formula with integral remainder term, we have

I (f ) = I (c)+I ′(c) (f −c)+
∫ 1

0
I ′′(t c+(1− t)f ) t dt (f −c)2 . (3.8)

By properties (1) and (3), we obtain that

−I ′′(tc+(1−t)f ) t = t

I (tc + (1 − t)f )
≤ t

tI (c) + (1 − t)I (f )
≤ 1

I (c)
.

Therefore, by (3.8),

I (c) − I (f ) ≤ −I ′(c) (f − c) + 1

I (c)
(f − c)2 . (3.9)

It remains to take the expectations of the both sides in (3.9). This proves
Lemma 3.3, and thus Theorem 3.2 is proved, as well. ut
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Remark 3.4. The functional inequality (3.2) can be essentially stronger
than (3.3). For an illustration, let �i = Rd and let µi = µ be a proba-
bility measure with mean 0 and with identity correlation operator. Given
a smooth function f on Rd , consider the function fn on � = Rnd of the
form fn(x1, . . . , xn) = f ((x1 + · · · + xn)/

√
n ), x1, . . . , xn ∈ Rd . If f has

bounded first and second partial derivatives, then

D(fn) (x1, . . . , xn) = ∣∣∇f
(
(x1 + · · · + xn)/

√
n

)∣∣ (1 + O
(
1/

√
n

))
,

as n → ∞ .

The application of the central limit theorem to the functions fn in (3.2)
yields

I (E γd
f ) ≤ E γd

√
I (f )2 + 2 |∇f |2 (3.10)

where the expectations are taken with respect to the Gaussian measure γd

on Rd . Approximating the indicator function 1A by smooth functions yields
in (3.10)

γ +
d (A) ≥ 1√

2
I (γd(A)) . (3.11)

And, as noted, in the special case where µ is the standard Bernoulli measure
on {−1, 1}d , the factor 2 can be replaced by 1 in (3.2) and (3.10). On this way,
one can recover the Gaussian isoperimetric inequality (1.2) but it is unlikely
to reach (1.2) or even (3.11) via a direct application of the isoperimetric-
type inequality (3.3): the quantity P+(A) does not represent the perimeter
of A in the ‘usual’ geometric sense as in (1.2) and (3.11). Indeed, it could be
natural to expect that similarly to the case of smooth functions fn defined
above, for ‘regular’ sets A ⊂ Rd and normalized measure P on the cube({−1, 1}d)n

, the convergence

lim
n→∞ P+{

(x1, . . . , xn) : xi ∈ {−1, 1}d, x1 + · · · + xn√
n

∈ A
} = γ +

d (A)

(3.12)
holds. Unexpectedly, (3.12) is false. For half-planes A = {(x1, x2) ∈ R2 :
a1x1 +a2x2 ≤ a} with a2

1 +a2
2 = 1, the limit in (3.12) exists but depends on

(a1, a2) while the right-hand side does not depend on (a1, a2) and is equal
to ϕ(a).

Remark 3.5. Another unexpected observation is that Poisson probability
measures satisfy inequalities of type (3.10) for moduli of discrete gradients
(instead of usual gradients). D. Bakry and M. Ledoux proved in [BaL] that if
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a probability measure µ on the metric space � satisfies, for any (‘smooth’)
function f with values in [0, 1],

I (E µf ) ≤ E µ

√
I (f )2 + c2 |∇f |2 ,

then, every function f on � with Lipschitz constant equal to or less than
1/c has Gaussian tails and, more precisely, the distribution of f represents
a contraction of the canonical Gaussian measure γ1. In contrast to this prop-
erty, we shall derive the following corollary from Theorem 3.2.

Denote the Poisson distribution with parameter λ > 0 by 5λ. This
measure is concentrated on Z+ = {0, 1, 2, . . .} and, for k ∈ Z+, 5λ({k}) =
e−λλk/k!. Note that the tails 5λ({i : i ≥ k}) are ‘heavier’ than Gaussian
tails and behave like 5λ({k}), as k → ∞. Let 5n

λ denote the corresponding
product measure on Zn

+. For any subset A of Zn
+, define

h̄A(x) = card{i ≤ n : (x ∈ A, x + ei /∈ A) or (x /∈ A, x + ei ∈ A)} ,

where (ei)1≤i≤n denotes the canonical basis in Rn. Put ∂A = {x ∈ Rn :
h̄A(x) > 0}. Define the difference operator 1f (x) = f (x + 1) − f (x),
x ∈ Z+.

Proposition 3.6. Let I (t) = ϕ(8−1(t)), 0 ≤ t ≤ 1. For every functionf
onZ+ with values in[0, 1], we have

I

(∫
f d5λ

)
≤

∫ √
I (f )2 + 2λ |1f |2 d5λ . (3.13)

Consequently, for any subsetA of Zn
+,∫ √

h̄A d5n
λ ≥ 1√

2λ
I (5n

λ(A)) , (3.14)

5n
λ(∂A) ≥ 1√

2λn
I (5n

λ(A)) . (3.15)

Proof . By Lemma 2.1, (3.13) extends to n-dimensional case for the op-

erator Df (x) =
√∑n

i=1(f (x + ei) − f (x))2. For indicator functions, the
n-dimensional variant of (3.13) implies (3.14). To prove (3.13), we apply
(3.2) for the discrete cube � = {0, 1}n with p = λ/n to functions fn of
the form fn(x) = f (x1 + · · · + xn). Letting n → ∞, it remains to apply
Poisson’s theorem. At last, (3.14) implies (3.15) since h̄A ≤ n 1∂A.

In particular, Poisson measures satisfy an inequality similar to (1.3)
for the normalized Bernoulli measure. There is another interesting parallel
with the discrete cube, connected with Talagrand’s quantitative version of
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Margulis’ theorem. Let A be a monotone subset of Zn
+, i.e., such that x ∈

A ⇒ x + ei ∈ A, for all i ≤ n. Assume that h̄A ≥ k ≥ 1 on ∂A.
This is equivalent to saying that x /∈ A ⇒ x + ei ∈ A, for k values of
i ≤ n, provided there is at least one such i. Using an obvious identity
d
dλ

5n
λ(A) = ∫

h̄A d5n
λ, one obtains from (3.14) that

d

dλ
5n

λ(A) ≥
√

k√
2λ

I (5n
λ(A)) .

Hence, for ε ∈ (0, 1/2), if 5n
λ1

(A) = ε, 5n
λ2

(A) = 1 − ε,

8−1(1 − ε) − 8−1(ε) =
∫ λ2

λ1

d

dλ
8−1(5n

λ(A)) dλ

≥
∫ λ2

λ1

√
k√

2λ
dλ =

√
k

(√
λ2 −

√
λ1

)
.

Thus,
√

λ2 − √
λ1 ≤ 2 8−1(1−ε)√

k
, so, the function λ → 5n

λ2(A) jumps from

ε to 1 − ε on an interval of the length at most K(ε)/
√

k. ut

4. Inequalities on the lattice Zn. Discrete Poincaŕe inequalities on the
real line

For any subset A of Zn, we introduced the function

hA(x) = card{i ≤ n : x ∈ A, (x + ei /∈ A or x − ei /∈ A)} ,

where (ei)i≤n is the canonical basis in Rn. The interior boundary ∂+A =
{hA > 0} consists of those points x in A which can leave A at least in one
of the n directions. For functions f on Zn, the corresponding definition of
Mf should be

Mf (x) =
√√√√ n∑

i=1

((f (x) − f (x − ei))+)2 + ((f (x) − f (x + ei))+)2 ,

so that hA = M 1A. Define also the operator Df (x)

=
√∑n

i=1(f (x + ei) − f (x))2. In dimension one Df (x) = |f (x + 1) −
f (x)| is the modulus of the difference operator 1.

For every probability measure µ on the real line R with distribution
function Fµ(x) = µ((−∞, x]), x ∈ R, define the quantile function

F−1
µ (p) = inf{x : Fµ(x) ≥ p}, p ∈ (0, 1] ,
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which takes values in (−∞, +∞]. As usual, we denote the corresponding
product measure on Rn by µn. As in section 1, we denote by ν the measure
with density 1

2 exp(−|x|). Note that there always exists the (unique) left
continuous non-decreasing map Uµ : R → R which transports ν to µ.
Indeed, Uµ(x) = F−1

µ (Fν(x)). If µ is concentrated on Z, then Fµ is a step
function, and Uµ takes values in Z.

In this section, first we will describe the class of all probability measures
on Zn which satisfy (1.6)-type inequality with a dimension free constant.

Theorem 4.1. Let a probability measureµ be concentrated onZ. Assume
that the support ofµ represents an interval inZ. The following properties
(a)–(g) are equivalent:

(a) There existsc > 0 such that, for everyn ≥ 1 and every subsetA of Zn,∫ √
hA(x) dµn(x) ≥ c µn(A) (1 − µn(A)) . (4.1)

(b) There existsc > 0 such that, for everyn ≥ 1 and every subsetA of Zn,

µn(∂+A) ≥ c√
n

µn(A) (1 − µn(A)) . (4.2)

(c) There existsc > 0 such that, for every subsetA of Z,

µ(∂+A) ≥ c µ(A) (1 − µ(A)) . (4.3)

(d) There existsc > 0 such that, for all x ∈ Z,

µ({x}) ≥ c Fµ(x)(1 − Fµ(x)) . (4.4)

(e) There existsc > 0 such that, for every functionf onZ,

c Varµ(f ) ≤ E µ(Mf )2 . (4.5)

(f) There existsc > 0 such that, for every functionf onZ,

c Varµ(f ) ≤ E µ(Df )2 . (4.6)

(g) supx∈R [Uµ(x + h) − Uµ(x)] ≤ 1, for someh > 0.

Clearly, the assumption on the support of µ is necessary for all properties
(a)–(g).

The discrete Poincaré-type inequality (4.6) has recently been studied by
J.-H.Lou [Lou]. He proves that µ satisfies (4.6) if and only if, for some
c > 0, the linear difference equation

1f (x − 1) p(x − 1) − (1f (x) + cf (x)) p(x) = 0,

where p(x) = µ({x}), x ∈ Z , (4.7)
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has a strictly monotone solution f such that
∫

Z |f | dµ < +∞. Another
equivalent condition he found indicates that, for some point x0 ∈ Z in the
support of µ,

sup
x≥x0

(1 − Fµ(x))

x∑
k=x0

1

p(k)
< +∞, sup

x≤x0−1
Fµ(x)

x0−1∑
k=x

1

p(k)
< +∞ .

(4.8)
J.-H. Lou considers (4.8) as a discrete analogue of the so-called Mucken-
houpt’s condition for a probability measure µ on R satisfying the ‘usual’
Poincaré-type inequality (1.13) in the class of all smooth functions f :

sup
x>x0

(1−Fµ(x))

∫ x

x0

1

p(t)
dt < +∞, sup

x<x0

Fµ(x)

∫ x0

x

1

p(t)
dt < +∞ .

(4.9)
Here p is the density of the absolutely continuous component of µ, and x0

is an arbitrary point such that 0 < Fµ(x0) < 1. The description (4.9) is a
particular case of a result due to M. Artola, G. Talenti and G. Tomaselli about
Hardy-type inequalities (cf. [Mu]). Apparently it remained unknown for a
long time in Probability Theory, since certain attempts have been made to
find a characterization of probability measures satisfying (1.13), especially
after the rediscovery of the Gaussian Poincaré inequality by H. Chernoff
[C] (cf. e.g. [BU], [K], [CL]).

As for the first condition (4.7), it is similar to another characterization for
(1.13) due L.H.Y. Chen and J.-H. Lou [CL], formulated in terms of properties
of an appropriate Sturm–Liouville equation. Our approach to (4.6) is based
on some special properties of the two-sided exponential distribution ν and
leads to different conditions d) and g). It is however easy to see why (4.4)
is equivalent to a formally stronger property (4.8). By (4.4), for all k ≥ x0,
1−Fµ(k) ≤ α(1−Fµ(k −1)) where α = 1

1+cFµ(x0)
. It follows by induction

that 1−Fµ(x)

1−Fµ(k)
≤ αx−k whenever x0 ≤ k ≤ x. Hence, once more applying

(4.4), we get:
x∑

k=x0

1 − Fµ(x)

p(k)
≤

x∑
k=x0

1 − Fµ(x)

cFµ(x0)(1 − Fµ(k))

≤ 1

cFµ(x0)

x∑
k=x0

αx−k ≤ 1 + cFµ(x0)

(cFµ(x0))2
.

This proves the first statement in (4.8), and a similar argument yields the
second one.

As announced, we will also prove the following analogous statement for
probability measures µ on the real line:
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Theorem 4.2. The following properties are equivalent:
(a) There existh > 0 andc > 0 such that, for every non-decreasing function
f onR,

c Varµ(f ) ≤
∫

|f (x + h) − f (x)|2 dµ(x) . (4.10)

(b) There existsc > 0 such that, for every differentiable convex functionf
onR,

c Varµ(f ) ≤ E µ|f ′|2 . (4.11)

(c) There existsc > 0 such that, for all n ≥ 1 and every convex functionf
onRn with Lipschitz constant at most1,

c Varµn(f ) ≤ 1 . (4.12)

(d) There exist constantsc > 0 andh > 0 such that, for anyx ∈ R,

Fµ(x) − Fµ(x − h) ≥ c Fµ(x)(1 − Fµ(x)) . (4.13)

(e) For some(or, equivalently, for all ) h > 0,

sup
x∈R

[Uµ(x + h) − Uµ(x)] < +∞ . (4.14)

The ‘convex’ Poincaré inequality (4.11) is of course a weaker property
than the ‘usual’ Poincaré-type inequality when no assumption on f (except
absolute continuity or, equivalently, smoothness) is made. It is known, for
example, that any probability measure µ on R with a compact support
satisfies (b) (cf. [Led], [B2]). A simple argument of getting (4.11) for such
measures is the following: for any f convex and differentiable, we have
(f (x) − f (y))2 ≤ (f ′(x)2 + f ′(y)2) (x − y)2. Hence, if µ([a, b]) = 1,

Varµ(f ) = 1

2

∫ b

a

∫ b

a

(f (x) − f (y))2 dµ(x) dµ(y)

≤ (b − a)2
∫ b

a

f ′(x)2 dµ(x) .

On the other hand, the characterization (4.9) of measures µ satisfying (4.11)
for all smooth f implies in particular that µ should have a non-trivial abso-
lutely continuous component which is positive on the interval support of µ.
Compactness of the support is not sufficient: the measure µ with density |x|
on the interval [−1, 1] provides a counter-example. To compare the ‘usual’
Pioncaré-type inequality with the property (4.14), one can also express the
condition (4.9) in terms of the map Uµ. When µ has a density which is
positive a.e. on the interval support, (4.9) may be written as follows:
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sup
x>0

e−x

∫ x

0
[U ′

µ(t)2 + U ′
µ(−t)2] et dt < +∞ .

Let us return to Theorem 4.1 and discuss how to connect isoperimetric-
type inequalities (4.1)–(4.3) with discrete Poincaré-type inequalities (4.5).
Poincaré-type inequalities are well-known to be of additive type, that
is, they can be extended to higher dimensions without any loss in constants.
However, the multidimensional variant of (4.5) is unlikely to be appropriate
to yield (4.1). To perform the induction step, it is better to work instead with
the inequality

I (E µf ) ≤ E µ

√
I (f )2 + d (Mf )2 (4.15)

where I (t) = t (1 − t) and f takes values in [0, 1], as in the proof of
Proposition 2.3. According to Lemma 2.1, this inequality is additive as well,
and the application of the multidimensional variant of (4.15) to indicator
functions yields (4.1) (while the multidimensional variant of (4.5) yields on
indicator functions just an estimate for

∫
hA dµn).

Now we are left with the question whether (4.5) and (4.15) are equivalent
in one dimension. Ifµ is continuous andMf = |f ′|, then (4.5) and (4.15) are
not equivalent ((4.15) is stronger). However, for the discrete-type gradient,
the situation changes considerably. The crucial observation is that Mf ≤√

2 holds whenever 0 ≤ f ≤ 1. Indeed, first let us apply (4.15) to functions
1
2 + εf with f bounded and such that E µf = 0. We obtain, as ε → 0,

Varµ(f ) ≤ 2d E µ(Mf )2 .

Hence, (4.15) implies (4.5) with c = 1/(2d). To prove the converse, note
that, for all u ∈ [0, 1/4] and v ∈ [0,

√
2],

√
u2 + dv2 − u ≥ Cv2 with

d = C
2 + 2C2. For u = I (f ), v = Mf , and for C = 1/c, we thus obtain

E µ

[√
I (f )2 + d (Mf )2 − I (f )

]
≥ C E µ(Mf )2 ≥ Varµ(f ) = I (E µf ) − E µI (f ) .

Hence, (4.5) also implies (4.15) with the constant d = 1
2c

+ 2
c2 .

Note also that hA ≤ n1∂+A so that (4.2) is a direct consequence of (4.1).
In turn, (4.3) is one-dimensional variant of (4.2), and (4.4) is a particular
case of (4.3) when A = (−∞, x] ∩ Z. Thus, via (4.15) and Lemma 2.1, we
have reduced Theorem 3.1 to one dimension. With the above remarks, in
order to prove the theorem, it remains to show the implications (e) & (f) ⇒
(d) ⇒ (g) ⇒ (e) & (f), only. We start with some preparations.
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Lemma 4.3. If x ≤ z ≤ y, then

Fν(y) − Fν(x)

Fν(z) (1 − Fν(z))
≤ 2

(
ey−x − 1

)
.

Proof . Clearly, it suffices to consider the cases z = x and z = y, only.
These cases are equivalent since ν is symmetric around 0, so let z = x.
Recall that Fν(u) = 1

2 exp(u), for u ≤ 0, and Fν(u) = 1 − 1
2 exp(−u), for

u ≥ 0. Set h = y − x. If 0 ≤ x ≤ y, then

Fν(y) − Fν(x)

Fν(x) (1 − Fν(x))
= 1 − e−h

Fν(x)
≤ 2 (1 − e−h) ≤ 2 (eh − 1) .

If x ≤ y ≤ 0, then

Fν(y) − Fν(x)

Fν(x) (1 − Fν(x))
= eh − 1

1 − Fν(x)
≤ 2 (eh − 1) .

Finally, if x ≤ 0 ≤ y, then

Fν(y) − Fν(x)

Fν(x) (1 − Fν(x))
= 2e−x − e−2x−h − 1

1 − Fν(x)

≤ 2 (2e−x − e−2x−h − 1) ≤ 2 (eh − 1) .

ut
Lemma 4.4. Properties(e) and(f ) imply (d).

Proof . We obtain (4.4) applying (4.5) or (4.6) to the indicator function
f = 1A of the set A = (−∞, x] ∩ Z, x ∈ Z in which case we have for both
operators Mf = Df = 1{x}.

Now we show that the property (d) implies the property (g). For the
purpose of Theorem 4.2, we actually need a more general statement (the
particular case δ = 1 below corresponds to the implication (d) ⇒ (g) in
Theorem 4.1). ut
Lemma 4.5. Letµ be a probability measure on the real lineR. Letc > 0
andδ > 0 be such that, for all a ∈ R,

Fµ(a) − Fµ(a − δ) ≥ c Fµ(a) (1 − Fµ(a)) . (4.16)

Then, supx∈R [Uµ(x + h) − Uµ(x)] ≤ δ, with h = log(1 + c/2).

Proof . Define the function U−1
µ : R → [−∞, +∞], using the identity

{t : Uµ(t) ≤ a} = (−∞, U−1
µ (a)], a ∈ R .
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Since Uµ is left continuous, we may define the function U−1
µ via U−1

µ (a) =
F−1

ν (Fµ(a)). From this definition, Fµ(a) = Fν(U
−1
µ (a)), for all a ∈ R.

Hence, for x = U−1
µ (a − δ), z = y = U−1

µ (a), (4.16) takes the form

Fν(y) − Fν(x) ≥ c Fν(z) (1 − Fν(z)) .

By Lemma 4.3, c ≤ 2
(
ey−x − 1

)
, provided x and y are finite. Anyway,

y ≥ x + log
(
1 + c

2

)
, that is,

U−1
µ (a) ≥ U−1

µ (a − δ) + log(1 + c/2) , (4.17)

for all a ∈ R. Since, by definition of U−1
µ ,

(−∞, x] ⊂ {t : Uµ(t) ≤ Uµ(x)} = (−∞, U−1
µ (Uµ(x))] ,

we get U−1
µ (Uµ(x)) ≥ x, for all x ∈ R. Therefore, putting in (4.17) a =

Uµ(x) + δ and recalling that h = log(1 + c
2 ), we obtain

U−1
µ (Uµ(x) + δ) ≥ U−1

µ (Uµ(x)) + h ≥ x + h .

The definition of U−1
µ implies Uµ(U−1

µ (a)) ≤ a, for all a ∈ R, where, if
necessary, we understand the values Uµ(−∞) and Uµ(+∞) in the usual
(limit) sense. Thus

Uµ(x + h) ≤ Uµ(U−1
µ (Uµ(x) + δ)) ≤ Uµ(x) + δ ,

and therefore, supx∈R [Uµ(x +h)−Uµ(x)] ≤ δ, which proves Lemma 4.3.
ut

For the part (g) ⇒ (e) & (d), we need to study some properties of the
measure ν.

Lemma 4.6. For any non-negative measurable functionf on R, and for
all h ∈ R,

e−|h| E νf (x) ≤ E νf (x + h) ≤ e|h| E νf (x) ,

e−2|h| Varνf (x) ≤ Varνf (x + h) ≤ e2|h| Varνf (x) .

Proof . The density pν of ν satisfies pν(x + h)/pν(x) ≤ e|h|. ut
The second inequality of Lemma 4.6 will only be used to prove Lemma

4.8 below. So, while referring to Lemma 4.6 in other places, we mean the
first inequality. The following two lemmas will be used in the proof of
Lemma 4.9 in order to establish (4.5)–(4.6).
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Lemma 4.7. For anya ∈ R andh > 0, there existsc = c(a, h) > 0 such
that, for every non-decreasing functionf onR with f (a) = 0,

c E νf (x)2 ≤ E ν

[
(f (x) − f (x − h))21{x>a}

+(f (x + h) − f (x))21{x≤a−h}
]

.

Proof . By Lemma 4.6, the above inequality holds with c(a, h)

= e−2|a|c(0, h), so we may only consider the case a = 0. First we show,
that for any non-decreasing function f such that f ≡ 0 on (−∞, 0],

E νf (x + h) ≥ (2 − e−h) E νf (x) . (4.18)

Indeed, this inequality is linear in f , so it suffices to check it on indicator
functions f = 1(a,+∞), a ≥ 0 (since every non-decreasing, left continuous
function f vanishing on (−∞, 0] can be represented as a mixture of such
indicators). For f = 1(a,+∞), (4.18) takes the form

1 − Fν(a − h) ≥ (2 − e−h) (1 − Fν(a)), a, h ≥ 0 .

When a ≥ h ≥ 0, this is simply eh +e−h ≥ 2. When 0 ≤ a ≤ h, it becomes

1 − 1

2
ea−h ≥ 1

2
(2 − e−h) e−a

which is also evident (with equality for a = 0). Let us now rewrite (4.18)
in the following way:

(1 − e−h) E νf (x) ≤ E ν(f (x + h) − f (x)) (4.19)

When f ≡ 0 on (−∞, 0], one can also apply (4.19) to f 2 so that, by
Cauchy-Schwarz inequality and by Lemma 4.6,

(1 − e−h) ‖f ‖2
2 = (1 − e−h) E νf (x)2

≤ E ν(f (x + h) − f (x)) (f (x + h) + f (x))

≤ ‖f (x + h) − f (x)‖2 ‖f (x + h) + f (x)‖2

≤ ‖f (x + h) − f (x)‖2
(
eh/2‖f ‖2 + ‖f ‖2

)
.

Hence,
(

1−e−h

1+eh/2

)2
E νf (x)2 ≤ E ν(f (x + h) − f (x))2. Estimating the right-

hand side of this inequality by Lemma 4.6, and noting that f (x)−f (x−h) =
0 for x ≤ 0, we obtain
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c(h) E νf (x)2 ≤ E ν(f (x) − f (x − h))21{x>0} (4.20)

where c(h) = e−h
(

1−e−h

1+eh/2

)2
. By symmetry, for any non-decreasing function

f such that f ≡ 0 on [0, +∞), we get as well

c(h) E νf (x)2 ≤ E ν(f (x + h) − f (x))21{x<0} . (4.21)

Consider now the general case. Let f0 = f 1(−∞,0] and f1 = f 1[0,+∞).
Applying (4.20) to f1 and (4.21) to f0, adding these inequalities and noting
that, for all x ∈ R,

f1(x + h) − f1(x) ≤ f (x + h) − f (x), and

f0(x) − f0(x − h) ≤ f (x) − f (x − h) ,

we obtain

c(h) E νf (x)2 ≤ E ν(f (x) − f (x − h))21{x>0}

+ E ν(f (x + h) − f (x))21{x<0} .

But, again by Lemma 4.6,

E ν(f (x + h) − f (x))21{−h<x<0} ≤ eh E ν(f (x) − f (x − h))21{0<x<h}

≤ eh E ν(f (x) − f (x − h))21{x>0} ,

so,

c(h) E νf (x)2 ≤ (1 + eh) E ν(f (x) − f (x − h))21{x>0}

+E ν(f (x + h) − f (x))21{x≤−h} .

This yields the desired result with c(0, h) = c(h)/(1 + eh). ut
Lemma 4.8. For any reala > b, there exists a constantc = c(a, b) > 0
such that, for every non-decreasing functionf ,

c Varν(f (x)) ≤ E ν(f (x + a) − f (x + b))2 .

Proof . Due to Lemma 4.6, it suffices to consider the case a = h > 0,
b = −h. In addition, one may assume that f (0) = 0. Then, apply Lemma
4.7 with a = 0 and note that f (x) − f (x − h) ≤ f (x + h) − f (x − h),
f (x + h) − f (x) ≤ f (x + h) − f (x − h). ut

The last step in the proof of Theorem 4.1 is the following:
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Lemma 4.9. Property(g) implies properties(e) and(f).

Proof . Let h > 0 be such that Uµ(x + h) ≤ Uµ(x) + 1, for all x ∈ R. Let
f be a non-decreasing function on Z. Applying Lemma 4.8 with a = h and
b = 0 to the function f (Uµ), we obtain

c Varµ(f (y)) = c Varν(f (Uµ(x))) ≤ E ν(f (Uµ(x + h)) − f (Uµ(x)))2

≤ E ν(f (Uµ(x) + 1) − f (Uµ(x)))2

= E µ(f (y + 1) − f (y))2 .

That is, c Varµ(f ) ≤ E µ(Df )2, and (4.6) is thus proved for the class of
non-decreasing functions f . To prove this inequality in general, we may
assume that µ is not a Dirac measure. Let for definiteness p = µ({0}) > 0
and p1 = µ({1}) > 0. Then, for any function f ∈ L2(Z, µ) with f (0) = 0,
we get by the Cauchy-Schwarz inequality,

(E µf )2 = (E µf 1{x 6=0})2 ≤ (1 − p) E µf 2 .

Hence, Varµ(f ) ≥ p E µf 2. For every non-decreasing f with f (0) = 0,
we arrive at

cp E µf (y)2 ≤ E µ(Df (y))2 . (4.22)

We will also need an analogous inequality for the operator M . Let a ∈ R be
the maximal solution to the equation Uµ(a) = 0 (such an a exists since the
function Uµ is left continuous and µ([1, +∞)) > 0). Then, for all x > a,
we have y = Uµ(x) ≥ 1, while, for x ≤ a − h, we have y = Uµ(x) ≤ 0.
Applying Lemma 4.7 with these values of a and h to the function f (Uµ)

and noting that f (Uµ(a)) = f (0) = 0, we obtain in the same way as above
that

c E µf (y)2 ≤ E µ(Df (y − 1))21{y≥1} + E µ(Df (y))21{y≤0} , (4.23)

where c = c(a, h) is from Lemma 4.7. The second expectation on the
right contains the term (Df (0))2p which can be estimated from above by
p

p1
E µ(Df (y − 1))21{y≥1}. Thus, we get from (4.23)

c1 E µf (y)2 ≤ E µ(Df (y − 1))21{y≥1} + E µ(Df (y))21{y≤−1} , (4.24)

with the constant c1 = c/(1 + p

p1
). Now we extend (4.22) and (4.24) to an

arbitrary function f with f (0) = 0. Define the function g as follows. Let
g(0) = 0,
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g(y) =
y∑

i=1

|f (i) − f (i − 1)|, for y ≥ 1,

g(y) = −
−1∑
i=y

|f (i) − f (i + 1)|, for y ≤ −1 .

Then, for all y ∈ Z, |g(y)| ≥ |f (y)| and g(y + 1) − g(y) = |f (y + 1) −
f (y)|. Since g is non-decreasing and g(0) = 0, we get, by (4.22):

cp E µf (y)2 ≤ cp E µg(y)2 ≤ E µ(Dg(y))2 = E µ(Df (y))2 .

By similar arguments, (4.24) holds forf , too. Thus, cp Varµ(f )≤E µ(Df )2,
and, since the condition f (0) = 0 can be assumed in (4.6), (4.6) is proved
in general. Now we prove (4.5) using (4.24). First let us observe that, for all
y ∈ Z,

(Df (y))2 ≤ (Mf (y))2 + (Mf (y + 1))2 .

Hence, by (4.24),

c1 Varµ(f ) ≤ c1 E µf (y)2

≤ E µ

[
(Mf (y))21{y≥1} + (Mf (y − 1))21{y≥1}

]
+E µ

[
(Mf (y))21{y≤−1} + (Mf (y + 1))21{y≤−1}

]
.

Therefore, it suffices to show that the inequalities

E µ(Mf (y − 1))21{y≥1} ≤ α E µ(Mf (y))21{y≥0} , (4.25)

E µ(Mf (y + 1))21{y≤−1} ≤ β E µ(Mf (y))21{y≤0} (4.26)

hold with some constants α and β not depending on f . In fact, (4.25)–(4.26)
are valid for an arbitrary non-negative function V and thus for V = (Mf )2

in particular. Indeed, since we have proved (4.6), we can use the inequality
(4.4) which is its consequence. From (4.4), for any y ≥ 0 integer,

µ({y}) ≥ c Fµ(y) (1 − Fµ(y)) ≥ c Fµ(0) µ({y + 1}) .

Hence, E µV (y−1) 1{y≥1} = ∑∞
y=0 V (y)µ({y+1}) ≤ 1

c Fµ(0)
E µV (y) 1{y≥0}.

This proves (4.25). Analogously, for y ≤ −1,

µ({y}) ≥ c Fµ(y) (1 − Fµ(y)) ≥ c µ({y − 1}) (1 − Fµ(−1)) .
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Hence,

E µV (y + 1) 1{y≤−2} =
−1∑

y=−∞
V (y)µ({y − 1})

≤ 1

c (1 − Fµ(−1))
E µV (y) 1{y≤−1} .

In addition,

E µV (y + 1) 1{y=−1} = V (0) µ({−1}) ≤ 1

p
E µV (y) 1{y=0} .

Since Fµ(0) ≥ p > 0 and 1 − Fµ(−1) ≥ p > 0, we get (4.26) summing
the above inequalities. Thus Lemma 4.9 and Theorem 4.1 are proved. ut
Proof of Theorem 4.2.We go according to (a) ⇒ (d) ⇒ (e) ⇒ (a), and
then (e) ⇒ (b) ⇒ (c) ⇒ (e).

(a) ⇒ (d): (4.10) becomes (4.13) on indicator functions f = 1(x,+∞).

(d) ⇒ (e): by Lemma 4.5, (4.14) holds with h = log(1 + c/2).

(e) ⇒ (a). Since (4.10) holds for ν (apply Lemma 4.8 to a = h and
b = 0), we get (4.10) for µ with h∗ = supx∈R [Uµ(x + h) − Uµ(x)] which
replaces h.

(e) ⇒ (b). Again apply Lemma 4.8, but now to a = 0 and b = −h:
there exists a constant C(h) such that, for any non-decreasing function g,

Varν(g(x)) ≤ C(h) E ν(g(x) − g(x − h))2 . (4.27)

Assuming that f is non-decreasing, apply now (4.27) to g = f (Uµ). We
then obtain

Varµ(f (y)) ≤ C(h) E µ(f (y) − f (y − h∗))2

with h∗ defined in the previous step. Since f is convex and non-decreasing,

0 ≤ f (y) − f (y − h∗) ≤ h∗f ′(y) .

Hence, (4.11) holds with constant c = 1/(C(h) h∗2) for all convex and
non-decreasing functions f . Similarly, it holds for all convex and non-
increasing functions f . Consider now the third case: f is non-increasing on
an interval (−∞, a] and is non-decreasing on [a, +∞). One may assume
that f (a) = 0. As already proved, (4.27) holds for functions f0 = f 1[a,+∞)

and f1 = f 1(−∞,a] since these functions are convex and monotone. Writing
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a0 = E µf0, a1 = E µf1, and noting that f = f0 + f1, we obtain√
Varµ(f ) = ‖f − E µf ‖2 ≤ ‖f0 − a0‖2 + ‖f1 − a1‖2

≤
√

C(h) h∗ ‖f ′
0‖2 +

√
C(h) h∗ ‖f ′

1‖2

≤
√

2C(h) h∗ ‖f ′‖2 ,

where ‖ · ‖2 denotes the norm in the space L2(µ). In the last inequality we
applied

√
u0 + √

u1 ≤ √
2(u0 + u1) to u0 = E µ(f ′

0)
2 and u1 = E µ(f ′

1)
2.

Thus, (4.11) is proved in the general case with C = 2 C(h)h∗2.

(b) ⇒ (c). Apply the multidimensional variant of (4.11) to f .

(c) ⇒ (e). One can apply (4.12) to the functionsfn(x) = max(x1, . . . , xn)

and fn(x) = − min(x1, . . . , xn), for arbitrary n. As shown in [BH2], the
variances of such functions are bounded if and only if the property (e) is
satisfied.
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[AGK] Ahlswede, R., Gács, P., Körner, J.: Bounds on conditional probabilities with appli-
cations in multi-user communication. Z. Wahrscheinlichkeitstheorie verw. Gebiete
34, 157–177 (1976)
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[BH1] Bobkov, S.G., Houdré, C.: Isoperimetric constants for product probability measures.
Ann. Probab. 25, No. 1, 184–205 (1997)
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