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ISOPERIMETRIC AND ANALYTIC INEQUALITIES FOR
LOG-CONCAVE PROBABILITY MEASURES1

BY S. G. BOBKOV

Syktyvkar University

We discuss an approach, based on the Brunn�Minkowski inequality,
to isoperimetric and analytic inequalities for probability measures on
Euclidean space with logarithmically concave densities. In particular, we
show that such measures have positive isoperimetric constants in the
sense of Cheeger and thus always share Poincare-type inequalities. We´
then describe those log-concave measures which satisfy isoperimetric
inequalities of Gaussian type. The results are precised in dimension 1.

1. Introduction. It is often useful to know whether or not a given
probability measure � on Euclidean space Rn satisfies certain isoperimetric
or analytic inequalities. Of most interest are the isoperimetric inequalities of
Cheeger and Gaussian types,

1.1 �� A � c min � A , 1 � � A ,� 4Ž . Ž . Ž . Ž .
1.2 �� A � c� ��1 � A .Ž . Ž . Ž .Ž .Ž .

Here c � 0, ��1 is the inverse of the normal distribution function � with
� 2'Ž . Ž . Ž . Ž . Ž .density � x � � x � 1� 2� exp �x �2 x � R , A is an arbitrary mea-

n �Ž .surable set in R and � A denotes the �-perimeter of A defined by

� Ah � � AŽ . Ž .�� A � lim inf ,Ž .
� hh�0

h � n � � 4where A � x � R : �a � A, x � a � h is an h-neighborhood of A. The
Ž . Ž �1Ž .. Ž .function I p � � � p appearing in 1.2 is the so-called Gaussian

isoperimetric function: for the canonical Gaussian measure � � � on Rn,n
Ž .1.2 holds with c � 1 for all n and represents a form of the Gaussian

Ž � � � �. Ž .isoperimetric inequality cf. 13 , 32 . Inequality 1.1 is weaker and is
known to hold for a large family of product probability measures. For exam-
ple, with a dimension free constant c � 0, it is satisfied by the products

n Ž .� � � of the two-sided exponential distribution with density d� x �dx
1 �� x � Ž � �.� e , x � R cf. 11 .2

Received March 1998; revised March 1999.
1Supported in part by Russian Foundation for Fundamental Research Grant 96-01-00201 and

Alexander von Humboldt Foundation.
AMS 1991 subject classifications. 60E15, 46G12, 60B11.
Key words and phrases. Logarithmically concave measures, isoperimetric inequalities,

Poincare-type inequalities, logarithmic Sobolev inequalities, isoperimetric constants.´
1903



S. G. BOBKOV1904

Ž . Ž .In general, there is a probabilistic way to express 1.1 and 1.2 : with
respect to �, the distribution of every Lipschitz function on Rn with Lipschitz
seminorm less than or equal to 1 represents a Lipschitz image of measure �
Ž .resp., � , with Lipschitz seminorm less than or equal to 1�c. These inequali-1
ties may equivalently be written in a functional form as certain analytic

Ž . Ž .inequalities. In particular, 1.1 and 1.2 imply, respectively, that, for every
Ž . nsmooth or even locally Lipschitz function f on R with gradient 	f ,

� � 21.3 
 Var f 	 	f d� ,Ž . Ž . H1 �

� 22 � �1.4 Ent f 	 	f d�.Ž . Ž . H�2

Ž . 2 Ž .2Here Var f � Hf d� � Hf d� denotes the variance of f , and�

Ent f 2 � f 2 log f 2 d� � f 2 d� log f 2 d�Ž . H H H�

denotes the entropy of f 2 with respect to �. As first shown in 1970 by
� � Ž . 2Cheeger 17 , Poincare-type inequalities 1.3 hold with 
 � c �4, and the´ 1

Ž . Ž . Ž .optimal value of c � Is � in 1.1 is now often referred to as the Cheeger
isoperimetric constant of �. The second, logarithmic Sobolev inequalities
Ž . � �1.4 , were introduced in 1975 by Gross 20 , and later Ledoux connected

Ž . 2them with 1.2 ; the logarithmic Sobolev constant � of � satisfies � � Kc for
Ž� �.some universal K 24 .

In this note, we consider the above isoperimetric and analytic inequalities
in the case of an absolutely continuous log-concave probability measure � on

n Ž . Ž Ž ..R . By definition, this means that � has a density d� x �dx � exp �V x ,
n n Ž �x � R , with an arbitrary convex function V: R � ��, �� . In addition to

Ž n. Ž Ž ..convexity, the only requirement on V is that � R � H exp �V x dx � 1.
As a main result, we present an inequality which relates �-perimeter of sets
to their size and to �-distribution of the Euclidean norm.

THEOREM 1.1. Let � be a log-concave probability measure on Rn. For all
measurable sets A 
 Rn, for every point x � Rn and every number r � 0,0

1 1
�2r� A � � A log � 1 � � A logŽ . Ž . Ž .Ž .

� A 1 � � AŽ . Ž .1.5Ž .
� �� log � x � x 	 r .� 40

Ž .Inequality 1.5 will be derived from the Brunn�Minkowski inequality in
the Prekopa�Leindler functional form. If one takes x to be the barycenter of´ 0

Ž Ž ..� and r � r � A to be sufficiently large, the sum of the last two terms in
Ž .1.5 will be positive. This leads to an isoperimetric inequality

p 1
�1.6 � A � I � A with I p � log ,Ž . Ž . Ž . Ž .Ž .

2r p pŽ .
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Ž .that is, with a function I p whose behavior near zero is determined by
� � � 4 Ž .behavior of the tails � x � x � r for large r. In such a form, 1.6 unites a0

few known results obtained by different methods and in different contexts.
First, in the worst case, by the well-known Borell’s theorem, the tails
� � � 4 Ž .� x � x � r have exponential decreasity, and 1.6 gives an inequality of0

Cheeger type together with a bound for the isoperimetric constant:

THEOREM 1.2. For every log-concave probability measure � on Rn,

1
1.7 Is � � ,Ž . Ž .

� � � �K x � x L Ž � .0 2

Ž .where K is a universal constant, and x � Hx d� x is barycenter of �.0

� � � � 2 Ž � � 2 Ž ..1�2 2Ž .Here x � x � H x � x d� x denotes the L � -norm ofL Ž � .0 0
� �the function x � x � x . Theorem 1.2 is due to Kannan, Lovasz and Si-´0

� � Ž .monovits 22 proving 1.7 , in an equivalent form, with the help of the
Ž � �.so-called localization method cf. 28 . They considered the case where � is a

uniform distribution on an arbitrary convex set, but their proof covers
actually the general log-concave case.

Ž .In particular, Poincare-type inequalities 1.3 hold for all log-concave mea-´
sures �, and, by Cheeger’s theorem, we have an estimate,

1
1.8 
 � .Ž . 1 22

2� � � �4K x � x L Ž � .0

This property cannot, however, be improved by replacing 
 with �, since the1
Ž .logarithmic Sobolev inequality 1.4 requires that � possesses a stronger

Ž � � 2 . Ž .integrability property: H exp  x d� x � ��, for some  � 0. This is the
well-known Herbst necessary condition. We will show, again on the basis of
Ž . Ž .1.5 and 1.6 , that this condition is also sufficient in order that log-concave

Ž . Ž .measures satisfy 1.2 and 1.4 .

THEOREM 1.3. The following properties are equivalent:

Ž . Ž .a � satisfies 1.2 for some c � 0;
Ž . Ž .b � satisfies 1.4 for some � � 0;
Ž . Ž � � 2 . Ž .c H exp  x d� x � �� for some  � 0.

Ž .In addition, for the optimal value of � in 1.4 , we have

1
1.9 � � ,Ž . 2

�� � � �K x � x L Ž � .0

� � �where K is universal, x is barycenter of � and where � denotes theL Ž � .0
Ž . Ž 2 .Orlicz norm generated by the Young function � u � exp u � 1.

� � � � � � Ž � � 2 2 . Ž . 4Recall that x � x � inf t � 0: H exp x � x �t d� x 	 2 .L Ž � .0 0
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Ž . Ž .b � a was proved by Bakry and Ledoux in an abstract framework of
Ž� � .Markov diffusion generators and semigroups 2 , Section 4 . Actually, the

Ž . Ž .equivalence of a � c can be shown as an application of the semigroup
approach even for a bigger class of densities. Namely, this equivalence
remains to hold in the case V � � c Id, c � R, where V � is Hessian, that is,

Ž � �.the matrix of the second derivatives of V cf. 27 . Under this condition and
Ž . Ž . � �in a more general setting, c � b was first proved by Wang 33 .

Ž . Ž .All the estimates 1.7 � 1.9 may be reversed provided that the function
Ž . � � Ž� x � x � x is replaced with � � E� where E� is the expectation the0

.average value of � over �. Thus, we have, for example,

1 1
	 
 	 ,12 2

2 2� � � �K � � � E�L Ž � . L Ž � .0

with some universal K . There can be, however, a big gap between the left-0
and right-hand sides of this inequality that may easily be seen in spaces of

� �large dimensions. It was conjectured in 22 that, for any uniform distribution
Ž . Ž .� on a convex set, the value of Is � is, up to an absolute dimension free

Ž .constant, just an optimal value of c in the inequality 1.1 restricted to the
class of all linear functions. There is a good reason to believe that the same
holds in the general log-concave case and concerns also the constant 
 in the1

Ž .Poincare-type inequality 1.3 . If true, this would be a very remarkable´
observation, providing in particular a natural generalization of the concentra-
tion property of product measures to the case of dependent noncorrelated
coordinates. Behind the class of product measures, sharp estimates for 
 are1
of course known in many important situations. For example, for every
log-concave probability measure � on Rn such that V is everywhere twice
continuously differentiable with a positively definite Hessian, we have a

� �remarkable Brascamp�Lieb’s inequality 16

�1�Var f 	 	f x , V x 	f x d� x ,² :Ž . Ž . Ž . Ž . Ž .H�

�Ž .�1 �Ž . �where V x is the inverse of V x . In the case V � c Id, c � 0, it implies
that 
 � c. In particular, this gives the Gaussian Poincare-type inequality,´1

Ž .that is, 1.3 for � with the best constant 
 � 1. The latter property wasn 1
� � �sharpened in 2 , proving under the same hypothesis V � c Id the stronger

Ž .inequality 1.2 . This provides already a certain generalization of the Gauss-
ian isoperimetric inequality.

The organization of the paper is as follows.
Theorem 1.1 is proved in Section 2. Here we also consider log-concave

Ž .measures with a compact support, in which case 1.5 becomes an isoperimet-
Ž . �ric inequality which is somewhat sharper than 1.2 in the sense of small

Ž .�values of � A . As an application, we obtain a lower estimate for � in terms
� �of 
 very similar to the one presented recently in 27 in the context of1

Riemannian geometry.
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Theorems 1.1 and 1.2 are proved in Section 3.
Section 4 is devoted to the one-dimensional case; here we show that the

Ž . Ž .estimates 1.7 � 1.9 are sharp. Thus, the logarithmic Sobolev constant � of �
� � � ��2

�turns out to be roughly x � x . This simplifies a description of �L Ž � .0
� �obtained by different tools in 10 in the class of all probability measures on

R. We discuss also a connection of two-sided estimates for the Cheeger
Ž .isoperimetric constant Is � with the Hensley theorem on the ratio of

Ž . nvolumes of n � 1 -dimensional sections of convex isotropic bodies in R . We
� �will observe that this theorem, with the optimal constant of Ball 4 , still

holds for sets without a point of symmetry.
In the last section, we study some related problems about distribution of

norms under log-concave measures.

2. Proof of Theorem 1.1. Compactly supported log-concave mea-
sures. Given a symmetric bounded convex set B 
 Rn with the nonempty

� � � 4interior, define an associate norm x � inf t � 0: x � tB , and the dualB

norm
� � � ² : nx � sup x , b , x � R ,B

b�B

² : Ž . Ž .where � , � is the usual scalar product. Set B x � x � B. Inequality 1.50 0
is a particular case of the following functional inequality.

PROPOSITION 2.1. For every locally Lipschitz function f on Rn with values
� � nin 0, 1 , and every x � R ,0

�2.1 2 	f x d� x � Ent f � Ent 1 � f � log � B x .Ž . Ž . Ž . Ž . Ž . Ž .Ž .H B � � 0

� �PROOF. The argument is close to the one used by B. Maurey 29 to get a
sharp concentration inequality for the Gaussian measure. First of all, we may
assume that f is smooth, is constant outside a compact set and is such that

Ž . n Ž � �0 � f x � 1, for all x � R . By Prekopa�Leindler’s theorem cf., e.g., 16 ,´
� �.30 , for all t, s � 0 with t � s � 1, and for all nonnegative measurable

n Ž . Ž .t Ž . sfunctions u, v, w on R such that w tx � sy � u x v y whenever x, y �
Rn, we have

st

w z dz � u x dx v y dy .Ž . Ž . Ž .H H Hž / ž /
Applying this inequality to

1�tu x � f x exp �V x , v y � 1 y exp �V y ,Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .BŽ x .0

w z � f z exp �V zŽ . Ž . Ž .Ž .t

Ž Ž ..where 1 is the indicator function of the set B x , we getBŽ x . 00

t
s1� t2.2 f d� � f d� � B x ,Ž . Ž .Ž .H Ht 0ž /
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Ž . Ž . Ž . nprovided the function f satisfies f tx � sy � f x 1 y , for all x, y � R .t t BŽ x .0

In particular, we can take

s
f z � sup f z � z � b � x .Ž . Ž .t 0ž /tb�B

For s small,

2² :�f z � f z � 	f z � 	f z , z � x s � O sŽ . Ž . Ž . Ž . Ž .Bt 0

n Ž .uniformly over all z � R . Letting in 2.2 s � 0, we then arrive at the
following inequality:

² :�	f x d� x � 	f x , x � x d� xŽ . Ž . Ž . Ž .H HB 0

� Ent f � f d� log � B x .Ž . Ž .Ž .H� 0

Ž .Summing it with the same inequality for the function 1 � f , we obtain 2.1 .
� Ž .� �When B � B is a Euclidean ball with center 0 and radius r, 	f x �Br

� Ž . � Ž .r 	f x , and 2.1 becomes

� �2.3 2r 	f d� x � Ent f � Ent 1 � f � log � B x .Ž . Ž . Ž . Ž . Ž .Ž .H � � r 0

One can further approximate the indicator function of a measurable set
n � � Ž . Ž .A 
 R by Lipschitz functions with values in 0, 1 , and then 2.3 yields 1.5 ,

�� AŽ .
� A log 1�� A � 1�� A log 1�1�� A �log � B x2.4 Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž . Ž . Ž .r 0� ,

2r

which holds for all x � Rn and r � 0. Choosing somewhat optimal r with x0 0
the barycenter of �, we will reach in the next section the isoperimetric

Ž . Ž .inequalities of the form 1.1 and 1.2 . Now let us look at the particular case
Ž . Ž . Ž .of a compactly supported measure. Applying 2.3 and 2.4 to the ball B xr 0

supporting the measure �, we get one corollary.

COROLLARY 2.2. Assume � is concentrated in an Euclidean ball of radius
n � �r. Then, for every locally Lipschitz function f on R with values in 0, 1 , and

for every measurable set A 
 Rn,

� �2.5 2r 	f d� � Ent f � Ent 1 � f ,Ž . Ž . Ž .H � �

1 1
�2.6 2r� A � � A log � 1 � � A log .Ž . Ž . Ž . Ž .Ž .

� A 1 � � AŽ . Ž .

It is of course very natural that these inequalities are stronger than
Ž . Ž . Ž . �Ž . Ž . � Ž . Ž .41.1 � 1.4 . For example, 2.6 implies � A � log 2�r min � A , 1 � � A ,
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so that
log 2

2.7 Is � � .Ž . Ž .
r

In particular, by Cheeger’s inequality,

log2 2
2.8 
 � .Ž . 1 24r

In connection with randomized volume algorithms, inequalities similar to
Ž .2.7 , in terms of diameter of the convex set supporting �, were successively

Ž � �.and by different methods studied by a number of authors cf. 22 .
Ž . Ž .Another interesting feature of inequalities of the form 2.5 and 2.6 , with

� being even an arbitrary probability measure on a metric space M, is that
they show, in terms of r, a certain equivalence between the spectral gap 
1

Ž .and the logarithmic Sobolev constant�, the optimal constants in 1.3 and
Ž . Ž .1.4 . Indeed, in general, � 	 
 . Now, starting from 2.5 and following an1

� � 2argument of Rothaus 31 , apply this inequality to f . We have, by the
Schwarz inequality,

2 � 2 � � � � �Ent f 	 2r 	f d� � 4r f 	f d�Ž . H H�

1�2 1�2
22 � �	 4r f d� 	f d� .H Hž / /

2 Ž . � � 2If Hf d� � 0, then Hf d� 	 1�
 H 	f d�; hence,1

4r 22 � �Ent f 	 	f d�.Ž . H�

' 1

Ž 2 . ŽŽ .2 . Ž .In general, by Rothaus’ inequality Eng f 	 Ent f � Hf d� � 2 Var f� � �

Ž � � .cf. 31 , Lemma 9 , we finally conclude that

4r 2 22 � �Ent f 	 � 	f d�.Ž . H� ž /

' 11

We can now summarize

COROLLARY 2.3. If � is concentrated in an Euclidean ball of radius r, then


1
2.9 	 � 	 
 .Ž . 11 � 2r 
' 1

Ž .In particular, by virtue of 2.8 ,

1
2.10 � � .Ž . 210r

Ž .Thus, we have arrived exactly at the same left estimate in 2.9 and, up to
Ž .the constant, at the same estimate 2.10 , which have recently been proved
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Ž � �. � �after a prior contribution by Wang 33 by Bakry, Ledoux and Qian 3 for a
compact Riemannian manifold M with nonnegative Ricci curvature, of diam-

Ž � � � �eter 2r, and with its Riemannian measure � cf. 3 , 27 , Theorem 7.3, and
� � . Ž .also 31 , Theorem 10, for a similar inequality . The left estimate in 2.9 can

� � Ž .be shown to be sharp for the measures � on 0, 1 with densities d� x �dxk k
Ž . k Ž . 2� k � 1 x k � 1 . In this case, 
 is of order k while � is of order k.1

3. Proof of Theorems 1.2 and 1.3. We may and do assume that x � 0.0
Ž .In the proof of Theorem 1.1, we will optimize 2.4 using an inequality due to

Ž � � .Borell cf. 12 , Lemma 3.1 .

LEMMA 3.1. For all t � 1 and for every convex set B 
 Rn, symmetric
1Ž .about the origin, with � � � B � ,2

Ž .t�1 �21 � �
3.1 1 � � tB 	 1 � � .Ž . Ž . Ž . ž /�

PROOF OF THEOREM 1.2. We apply the above estimate to the Euclidean
2 1Ž . ŽŽ . .ball B � B with r such that � B � , so that 1 � � �� � . Since forr r 3 2

Ž . Ž . Ž . Ž .x � 0, 1 , �log 1 � x 	 x� 1 � x , we get, by 3.1 ,

1 �Ž t�1.�2 �Ž t�1.�2�log � tB 	 �log 1 � 2 	 2 .Ž . Ž .r 3

Ž . Ž .Therefore, according to 2.4 with tr instead of r , for every measurable set
n Ž .A 
 R of measure p � � A ,

p log 1�p � 1 � p log 1� 1 � p � log � tBŽ . Ž . Ž . Ž .Ž . r�� A �Ž .
2rt

3.2Ž .
p log 1�p � 1 � p log 1� 1 � p � 2�Ž t�1.�2Ž . Ž . Ž .Ž .

� .
2rt

1 Ž . Ž .Assume 0 � p 	 and apply 3.2 to t � 3 log 1�p . Then, t � 1, for all2
1Ž � Ž . Ž Ž ..p � 0, , and the second term 1 � p log 1� 1 � p in the right-hand side of2

Ž . �Ž t�1.�23.2 majorizes the third one 2 . To see this, consider the function

1 1 1
�Ž t�1.�2 3 log 2�2u p � 1 � p log � 2 � 1 � p log � p .Ž . Ž . Ž . '1 � p 1 � p 2

1� � Ž .This function is concave on 0, , and u 0 � 0. Hence, u will be nonnegative,2
1 1 �Ž3 �2.log 2'Ž . Ž .if u � 0, that is, if log 2 � 1� 2 2 . The latter can easily be2 2

Ž . �Ž . Ž .verified. As a result, we obtain from 3.2 that � A � 1�6r p. In the same
1 �Ž . Ž .Ž .way, for 	 p � 1, we have � A � 1�6r 1 � p . As a result, we arrive at2

1
�3.3 � A � min � A , 1 � � A .� 4Ž . Ž . Ž . Ž .

6r
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To complete the proof, it remains to note that, by Chebyshev’s inequality, we
1n ' '� � � � � � � 4 � � � �have an estimate � x � R : x � 3 x 	 , so that r 	 3 x , and2 23

1
�3.4 � A � min � A , 1 � � A .� 4Ž . Ž . Ž . Ž .' � � � �6 3 x 2

'Ž .Thus, inequality 1.7 holds with K � 6 3 . �

� �REMARK. 3.1. In 22 , extending and using the ‘‘localization lemma’’ of
� �28 , Kannan, Lovasz and Simonovits proved that, for every measurable set´
A of Rn,

log 2
�3.5 � A � � A 1 � � A .Ž . Ž . Ž . Ž .Ž .

� � � �x 1

Ž . Ž .Up to numerical constants, inequalities 3.3 � 3.5 are equivalent to each
Ž .other. The advantage of 3.5 is, however, the property that the constant log 2

is optimal. When � is uniform distribution on a convex set B with barycenter
� � � � � � � � Ž . Ž .0, the quantities r, x and x in 3.3 � 3.5 may be viewed as an2 1

‘‘average’’ diameter of B. It can be essentially smaller in comparison with the
usual diameter. For example, it is the case for the regular symplex in Rn, as

� �noted in 22 .

Ž . Ž . Ž .PROOF OF THEOREM 1.3. The property c is weaker than a and b , so we
may assume that

� � 2x
�� � � �d � x � inf t � 0: exp d� x 	 2 � ��.Ž .L Ž � . H 2½ 5t

First we show that, for all measurable A 
 Rn,

1
�3.6 � A � I � A ,Ž . Ž . Ž .Ž .'2 d 6

Ž �1Ž ..where I � � � p is the Gaussian isoperimetric function. As in the previ-
Ž .ous proof, we use 2.4 : for all r � 0,

p log 1�p � 1 � p log 1� 1 � p � log � BŽ . Ž . Ž . Ž .Ž . r�� A � , p � � A ,Ž . Ž .
2r

where B is the Euclidean ball with center 0 and radius r. By Chebyshev’sr
inequality,

n � � 2 2 � � 2 2� 41 � � B � � x � R : x � r 	 exp �r �d exp x �d d� xŽ . Ž .Ž . Ž .Hr

� 2 exp �r 2�d 2 .Ž .
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Ž 2 2 .Hence, as soon as 2 exp �r �d � 1,

�� AŽ .
2 23.7 p log 1�p � 1 � p log 1� 1 � p � log 1 � 2 exp �r �dŽ . Ž . Ž . Ž .Ž . Ž .Ž .

� .
2r

1 Ž . 'Assume 0 � p 	 and apply 3.7 to r � d � log 1�p with � to be chosenŽ .2
Ž 2 2 . � Ž .later. We have 2 exp �r �d � 2 p , and 3.7 becomes

1 1
�� A � p logŽ . (' p2 d �

3.8Ž .
1 � p log 1� 1 � p � log 1 � 2 p�Ž . Ž . Ž .Ž .

� .
2r

Ž . Ž . Ž Ž .. Ž � .For � � 1, the function v p � 1 � p log 1� 1 � p � log 1 � 2 p is clearly
1 �� �concave on 0, , and also the requirement 2 p � 1 is satisfied. In addition,2

1 ��2 'Ž . Ž . Ž .v 0 � 0, so, v will be nonnegative, if v � 0, that is, if 2 � 1� 2 � 2 .2
Ž .In particular, we may take � � 3, and from 3.8 we get

1 1
�� A � p log .Ž . (' p2 d 3

'Ž . Ž . Ž � �.'Now, p log 1�p � 1� 2 I p cf. the discussion after Theorem 2.2 in 9 ,Ž .
� 'Ž . Ž . Ž .and we arrive at � A � 1�2d 6 I p . By a similar argument and noting

1Ž . Ž . � . Ž .that I 1 � p � I p , this inequality holds for all p � , 1 . As a result, 3.62

has been proved.
Ž . Ž . Ž . Ž .Thus, we have shown that c � a . That a � b , as mentioned, was

� � 2proved by Ledoux 24 : � � Kc , for some universal K. This is true in the
Ž .general situation of an arbitrary probability metric space M, d, � . The fact

that the optimal constant here is K � 1 has become known recently, and we
will just mention an argument which yields this result. Let us consider
for simplicity the case of a probability measure � on the Euclidean space
M � Rn.

LEMMA 3.2. Assume that, for all measurable subsets A of Rn,

3.9 �� A � cI � A ,Ž . Ž . Ž .Ž .
where c � 0, and I is the Gaussian isoperimetric function. Then, for all locally

n � �Lipschitz functions f on R with values in 0, 1 ,

� �3.10 c I f d� � I f d� 	 	f d�.Ž . Ž .H H Hž /
Ž .LEMMA 3.3. Inequality 3.10 implies that, for every locally Lipschitz

function f on Rn,

c2
22 � �3.11 Ent f 	 	f d�.Ž . Ž . H�2



ISOPERIMETRIC INEQUALITIES 1913

Ž . Ž .The inequality 3.10 represents a functional form for 3.9 . It was proved
� �in 6 in the case of the Gaussian measure � � � with c � 1, but the proofn

extends to arbitrary measures. A more general case involving functions I
� � Žassociated to perfect multiplicative moduli was considered in 7 Proposition

� � .4.1 and Remark 4.2; cf. also 8 for a full account on this question .
Lemma 3.3 was established, on the basis of Gross’s logarithmic inequality,

Ž � �by Bakry and Ledoux in a slightly different context cf. 2 , Theorem 3.2 and
.the following remark .

Ž . Ž .We can now combine these two lemmas. Since 3.9 implies 3.11 , and
'Ž . Ž . Ž .since we have proved 3.6 , that is, 3.9 with c � 1� 2 d 6 , we arrive at

2'Ž . Ž . Ž .3.11 , that is, at 1.7 with universal constant K � 2 6 � 24. The proof of
Theorem 1.3 is now complete. �

4. Log-concave measures on the real line. In this section we obtain
Ž .two-sided estimates for the isoperimetric constant Is � , the spectral gap 
1

and the logarithmic Sobolev constant � in the case of an arbitrary log-con-
cave probability measure � on the real line R. We will consider the identity

Ž .function � x � x as a random variable with respect to �. Denote by � the
1Ž . Ž � �.measure on R with density d� x �dx � exp � x .2

PROPOSITION 4.1. For every log-concave probability measure � on R, we
have

1 2
24.1 	 Is � 	 .Ž . Ž .

3 Var � Var �Ž . Ž .

Equality on the left is possible if and only if � is a uniform distribution on
some finite interval, while equality on the right is possible if and only if � is
image of � under an affine transformation.

As will be explained in the proof of this proposition,

4.2 Is � � 2 f m ,Ž . Ž . Ž .
where f and m are, respectively, the density and the median of �. When � is

Ž .symmetric around 0, m � 0 and 4.1 becomes

��21 24.3 	 8 f 0 x f x dx 	 2.Ž . Ž . Ž .H3
0

� .The inequality on the right, for decreasing log-concave functions f on 0, �� ,
� �has been established by Ball 4 in his study of sections of convex isotropic

� Ž .bodies in Euclidean space the left inequality in 4.3 is a particular case of a
�more general observation of Hensley . Let us recall that a convex compact set

n Ž .B 
 R of Lebesgue measure Vol B � 0 is called isotropic if:n

1. B is symmetric around the origin.
2. The correlation operator of the normalized Lebesgue measure 
 on B isB

up to a constant the identity operator.
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Ž .In other words, the property b requires that, with respect to 
 , theB
variances of linear functionals on Rn of Euclidean norm one are equal to each
other.

Ž . Ž .Let B be isotropic with for definiteness Vol B � 1. Distributions ofn
linear functions with respect to 
 are log-concave on R as linear images of aB

Ž .log-concave measure. If we take two arbitrary linear functions g i � 1, 2 ofi
Euclidean norm 1 and denote by f the densities of their distributions, theni

Ž . Ž . � n Ž . 4clearly f 0 � Vol B � H for H � x � R : g x � 0 , whilei n�1 i i i
2 Ž . 2 Ž . Ž . Ž . Ž .Hx f x dx � Hx f x dx due to 1 and 2 . Using 4.3 , we then can con-1 2

clude that for all hyperplanes H and H in Rn containing the origin,1 2

Vol B � HŽ .n -1 1 '4.4 	 6 .Ž .
Vol B � HŽ .n�1 2

Ž . Ž . ŽThis is an argument which led Ball from 4.3 to 4.4 he actually considered
'.intersections of B with k-codimensional subspaces . The constant 6 can be

improved for fixed values n; however, it is optimal if the dimension is
arbitrary. With a suboptimal constant, this inequality was discovered by

� � Ž � �Hensley 21 and later was rediscovered by Milman according to 15 ; cf. also
� � . Ž . Ž .18 for related results . In view of 4.1 and 4.2 , with the same argument we
have the following generalization.

COROLLARY 4.2. Let B be a convex compact set in Rn of positive Lebesgue
Ž . nmeasure which satisfies 2 . Then, for all hyperplanes H and H in R which1 2

Ž .divide B into pieces of equal volumes, the inequality 4.4 still holds.

Ž . Ž .Thus, we can drop the symmetry assumption 1 and involve in 4.4 many
n Ž .‘‘nonsymmetric’’ sets such as the regular simplex in R like a tetrahedron .

Ž .Let us also observe that the assumption 2 , that is, the property

² : ² :² : ² :R g , g � g , x � x g , x � x dx � c g , gHB 1 2 1 0 2 0 B 1 2
B

for all g , g � Rn
1 2

Ž .where x is barycenter of B , has a matter of normalization, only. One can0
start, more generally, from an arbitrary convex set B and consider two

� n Ž . 4hyperplanes H � x � R : g x � c which divide B into equal piecesi i i
Ž . Ž .c � R, and g are linear functionals of Euclidean norm 1 . Then 4.4 shouldi i
turn into

Vol B � H Var g �Ž . Ž .n�1 1 2 n	 6 	 6 ,( (Vol B � H Var g �Ž . Ž .n�1 2 1 1

where the variances of g are with respect to 
 , and � and � are thei B 1 n
smallest and the largest eigenvalues of the correlation operator R of 
 .B B

Ž .Using the Cheeger theorem, we can now derive from 4.1 some estimates
for 
 .1
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COROLLARY 4.3. For every log-concave probability measure � on R, we
have

1 1
	 
 	 .112 Var � Var �Ž . Ž .

We do not know, however, if the constant on the left is optimal. The
right-hand side inequality trivially holds for all �, without log-concavity
assumption. An equality here is possible only for Gaussian measures; such a

� �characterization was established by Borovkov and Utev 14 who studied a
connection of Poincare-type inequalities with the central limit theorem.´

At last we have similar estimates for the logarithmic Sobolev constant.

PROPOSITION 4.4. For every log-concave probability measure � on R, we
have

1 8
4.5 	 � 	 ,Ž . 2 2� � � �24 � � E� 3 � � E�� �

� � Ž . Ž 2 .where � is the Orlicz norm associated with the function � x � exp x�

�1.

Here, the constant on the left is apparently far from the best. The constant
Ž8�3 on the right is however optimal equality is achieved for Gaussian

.measures . As above, the right-hand side inequality holds for all �, without
Ž � �.log-concavity assumption cf. 1 .

Ž .PROOF OF PROPOSITION 4.1. Let a, b be a minimal interval, finite or not,
Ž . ŽŽ �.which supports �. The distribution function F x � � ��, x is continu-

Ž .ously differentiable and is increasing on a, b , and, moreover, the density of
�, f � F�, is logarithmically concave on that interval. Up to a shift parameter,
there is 1�1 correspondence between the family of all log-concave probability

Ž .measures � on R and the family of all concave positive functions I on 0, 1 ,�

defined by

I p � f F�1 p , 0 � p � 1,Ž . Ž .Ž .�

�1 Ž . Ž . Ž � � .where F : 0, 1 � a, b is the inverse of F cf. 5 , Proposition A.1 . For
example, the function

� 4I p � min p , 1 � p , 0 � p � 1,Ž .�

determines the two-sided exponential measure � . Thus, we can pass from I�

to � using an identity

p dt
�1 �14.6 F p � F q � , p , q � 0, 1 ,Ž . Ž . Ž . Ž .H I tŽ .q �
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Ž .and may think of � as of an arbitrary concave positive function I on 0, 1 .�

Ž .By concavity, for all p � 0, 1 ,
1 1� 44.7 I p � 2 I min p , 1 � p � 2 I I p ,Ž . Ž . Ž .Ž . Ž .� � � �2 2

1since there is equality at p � . Therefore,2

I pŽ .� 1inf � 2 I .Ž .� 2� 4min p , 1 � p0�p�1

� �On the other hand, by Theorem 1.3 from 11 , there is a general identity,

f x I pŽ . Ž .�
Is � � inf � inf .Ž . � 4min F x , 1 � F x min p , 1 � p� 4a�x�b 0�p�1Ž . Ž .

1Ž . Ž . Ž . Ž . Ž .Since, by definition, I � f m , we get Is � � 2 f m , that is, 4.2 .� 2
Ž . �1Now we will try to estimate Var � using the fact that the function F

Ž . Ž .has distribution � with respect to Lebesgue measure on 0, 1 . In view of 4.6
Ž .and 4.7 ,

1 1 1 2�1 �1Var � � F p � F q dp dqŽ . Ž . Ž .Ž .H H2 0 0

2
p1 dt1 1

� dp dqH H Hž /2 I tŽ .0 0 q �
4.8Ž .

2
p1 dt1 1

	 dp dq.H H H 1ž /2 2 I I tŽ .Ž .0 0 q � �2

By the same reason, if a random variable � has distribution � ,
2

p1 dt1 1
Var � � dp dq.Ž . H H Hž /2 I tŽ .0 0 q �

1Ž . Ž . Ž . Ž .Since Var � � 2 and Is � � 2 I , we can conclude that Var � 	� 2
2Ž . Ž .2�Is � . This corresponds to the right inequality in 4.1 . Also note that

1Ž . Ž . Ž . Ž . Ž .equality in 4.8 is possible only if, for all t � 0, 1 , I t � 2 I I t , that is,� � �2

if � is an image of � under an affine function.
Ž .To prove the left-hand side inequality in 4.1 , we should estimate the

function I from above. To this aim, let us again note that, by concavity, for�

some � ,
1 1I p 	 I p � I � � p � , 0 � p � 1.Ž . Ž . Ž . Ž .� � � 2 2

1� � Ž . Ž .Because I is nonnegative, we have a restriction � 	 2 I . As in 4.8 ,� � 2

2
p1 dt1 1

Var � � dp dqŽ . H H Hž /2 I tŽ .0 0 q �

2
p1 dt1 1

� dp dq � u � .Ž .H H Hž /2 I tŽ .0 0 q �
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Ž .The function � � 1�I t is convex, so is the function u. Since the later is also�

Ž . Ž .symmetric around 0, we get u � � u 0 , for all � . Therefore,

2
p1 dt1 1

Var � � dp dqŽ . H H Hž /2 I tŽ .0 0 q 0

1 11 1 2� p � q dp dq � ,Ž .H H12 22 I 3Is �Ž .Ž . 0 0� 2

Ž .where we have used once more the identity 4.2 . Thus, we arrived at the
Ž .left-hand side inequality in 4.1 . It should also be clear that an equality is

1Ž . Ž . Ž . Ž .possible only if I t � I t � I , for all t � 0, 1 . But this is equivalent to� 0 � 2
1Ž .saying that � is a uniform distribution on some interval of length 1�I .� 2

Proposition 4.1 follows. �

PROOF OF PROPOSITION 4.4. We may assume that x � E� � 0 and that0
� � Ž .d � � is finite. The left inequality in 4.5 has been proved in the multidi-�

mensional case with the same constant. To prove the converse estimate, one
can use the following inequality:

1
24.9 exp tf d� 	 , 0 	 t � ��2,Ž . Ž .H '1 � 2 t��

� �which holds for all f with f 	 1 and Hf d� � 0. This is an observation ofLip
� � Ž� �Gross 1 based on Ledoux’s inequality for exponential moments of f 25 ,

� �. Ž . Ž .26 . We come to the right-hand side inequality in 4.5 , applying 4.9
Ž 2 . � �to f � � and t � 3��8: in this case H exp t� d� 	 2, hence � 	�

' '1� t � 8�3� .

5. Norms of random vectors with log-concave distribution. Let X
Ž � �.be a random vector in a linear normed space E, � with a log-concave

distribution �. By definition, � is log-concave, if for all nonempty �-measura-
Ž .ble subsets A and B of E and for all 
 � 0, 1 ,

1�
 
5.1 �	 1 � 
 A � 
B � � A � B ,Ž . Ž . Ž . Ž .Ž .

� Ž .where �	 is the inner measure for a possible case when 1 � 
 A � 
B is
�not measurable . For E finite dimensional and � absolutely continuous, this

definition reduces, by Prekopa-Leindler’s theorem, to log-concavity of density´
Ž � �.of �, that is, to the original definition cf. also 12 . We will assume that � is

not a Dirac measure at a point.
� � Ž .Distribution � of X is already not a log-concave measure on R , but itX

inherits some of the properties of log-concave measures which we studied
before. In particular, we have the following proposition.
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PROPOSITION 5.1. For any random vector X in a linear normed space
Ž � �.E, � with a log-concave distribution �,

1
5.2 Is � � ,Ž . Ž .X 6r

� �where r is a quantile of X of order 2�3.

Ž .This is exactly inequality 3.3 which was obtained in the proof of Theorem
1.2 for a log-concave measure � on Rn. As we will see, that proof can easily be
adapted to the case of the norm-image of �. However, we do not know if the
Ž . 2Ž . Ž� �.much stronger left inequality of Proposition 4.1, Is � � 1�K Var X ,X
remains true for such measures � .X

Ž .Inequality 5.2 , as noted before, is equivalent to the property that the
nondecreasing map T : R � R which transforms the two-sided exponential

� � Ž .measure � into � has Lipschitz norm T 	 6r. Here, as well as in 3.3 ,LipX
the quantile r of order 2�3 can actually be replaced by median and by other
quantiles r at the expense of the constant in front of r . This cannot,p p
however, be deduced from the Borell Lemma 3.1 in its present form because
of the assumption � � 1�2. An attempt to recover an exponential decay, as in

Ž . Ž .Lemma 3.1, for 1 � � tB with an arbitrary fixed value of � B leads to the
problem of small probabilities,

� � � �� 4 � 4F t � � x � E : x 	 t � � tB , B � x � E : x 	 1Ž . Ž .
Ž .with t small . In connection with Khinchine�Kahane inequalities, the prob-

� �lem has been studied by Latala 23 who showed that there exist constants
Ž .C depending on p � 0, 1 only, such thatp

5.3 F t 	 C t if � B 	 p , 0 	 t 	 1.Ž . Ž . Ž .p

It then follows immediately that the quantile r of Proposition 5.1 can be
Ž �estimated in terms of quantiles r of order p � 0, 2�3 as r � r C �p.p p p

Ž . � �Inequality 5.3 has recently been quantified by Gideon 19 showing that

1
F t 	 2 t log , 0 	 t 	 1.Ž .

1 � � BŽ .

This was derived from a sharpened form of Borell’s Lemma 3.1, namely,

Ž .t�1 �25.4 1 � � tB 	 1 � � B , t � 1Ž . Ž . Ž .Ž .
� Ž . � nnow without the condition � � � B � 1�2 . For B the Euclidean ball in R ,
the above inequality was earlier obtained by Lovasz and Simonovits as a´

� �consequence of a ‘‘localization’’ lemma 28 , and Gideon adapted their proof to
Ž .get the general result. Clearly, inequality 5.4 may also be used to improve

numerical constants in Theorems 1.2 and 1.3, but we have chosen the root
independent of the localization method. Here we would like to show another

Ž .way giving a property somewhat related to 5.3 .
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Ž . Ž .PROPOSITION 5.2. In the interval 0 � F t 	 e� e � 1 , the function
Ž . 1�Ž2 e.F t �t is nondecreasing.

Ž .PROOF. By definition 5.1 , the function log F is concave in the interval
� Ž . 4� � t: 0 � F t � 1 , so F has a left-continuous Radon�Nikodym derivative

f on �. Moreover, using a simple approximation argument, we may assume
that the function f is continuous on �. For t, s � �, s � t, consider a set

1� � � 4 Ž �A � x � E: t � x 	 s . Since for 
 � 0, ,2

� �1 � 
 A � 
 tB 
 x � E : 1 � 2
 t � x 	 1 � 
 s � 
t ,� 4Ž . Ž . Ž . Ž .
Ž .we obtain, by 5.1 , that

1�
 
5.5 F 1 � 
 s � 
t � F 1 � 2
 t � F s � F t F t .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .
Ž .There is equality in 5.5 for 
 � 0, and comparing the derivatives of both

sides at 
 � 0, we arrive at

F tŽ .
f s t � s � 2 f t t � F s � F t log .Ž . Ž . Ž . Ž . Ž .Ž .

F s � F tŽ . Ž .

Hence, since t � s,

F tŽ .
5.6 2 f t t � F s � F t log .Ž . Ž . Ž . Ž .Ž .

F s � F tŽ . Ž .
Ž . Ž .Now, given t � � such that F t � e� e � 1 , we can choose s so that

Ž . Ž . Ž . Ž .F s � F t � F t �e, and then 5.6 becomes

F tŽ .
2 f t t � ,Ž .

e

Ž . Ž . Ž .that is, f t �F t � 1� 2 et . However, this is equivalent to saying that the
Ž . 1�Ž2 e.function log F t � log t is nondecreasing. Proposition 5.2 follows. �

Ž � � . Ž � � . Ž .The example E, � , � � R, � , � shows that the exponent 1� 2 e in
Proposition 5.2 cannot be replaced by 1 even for smaller intervals. However,
in the present form the above property is, for example, sufficient to yield
together with Lemma 3.1 an inequality for arithmetic and geometric means,

1���� � � � � �X � E X 	 c � X ,Ž . Ž .� 0

� � � � � � Ž .where X � lim X � exp E log X , and where the constants c �0 �� � 0
� � Ž .depend on � � 0 only. This was proved in 23 on the basis of 5.3 .

� Ž . 4 ŽPROOF OF PROPOSITION 5.1. Set � � t: 0 � F t � 1 , r � inf � note that0
.� may have an atom at r . By log-concavity of F, for all s � �, s � r ,X 0 0

Ž .every t � 1 and every 
 � 0, 1 ,

1�
 
5.7 F 1 � 
 s � 
tr � F s F tr .Ž . Ž . Ž . Ž .Ž .
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Ž . � � � 4Applying now 5.1 to A � x � E: x � s and to rtB with sufficiently small
Ž . Ž . � � � Ž . 4
 so that 1 � 
 A � 
 rtB 
 x � E: x � 1 � 
 s � 
rt � r , we obtain0

for such 
 that
1�
 
5.8 1 � F 1 � 
 s � 
tr � 1 � F s F tr .Ž . Ž . Ž . Ž .Ž . Ž .

Ž . Ž .Then 5.7 and 5.8 become equalities for 
 � 0, and comparing the corre-
sponding derivatives of both sides at 
 � 0, we arrive, respectively, at

f s tr � s � F s log F tr � F s log F s ,Ž . Ž . Ž . Ž . Ž . Ž .
f s tr � s � 1 � F s log F tr � 1 � F s log 1 � F s ,Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .

Ž .where f is the lower derivative of F. Setting F s � p, B � rB, and sum-r
ming the above inequalities, we get

p log 1�p � 1 � p log 1� 1 � p � log � tBŽ . Ž . Ž . Ž .Ž . r
5.9 f s � .Ž . Ž .

2rt
Ž .This is exactly the first inequality in 3.2 . Optimizing the right-hand side of

Ž . Ž . Ž .5.9 over t � 1 as in the pass from 3.2 to 3.3 , we come to

1
f s � min F s , 1 � F s ,� 4Ž . Ž . Ž .

6r
Ž .which holds at least for almost all s � R with respect to Lebesgue measure .

It remains to recall that, in general,

f sŽ .
Is � � essinfŽ . s min F s , 1 � F s� 4Ž . Ž .

Ž � � .cf. 11 , Theorem 1.3 . Proposition 5.1 is thus proved. �
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