ON MOMENTS OF POLYNOMIALS*

S. G. $\mathrm{BOBKOV}^{\dagger}$ and F. GÖTZE ${ }^{\ddagger}$

Abstract

The equivalence of L^{p}-norms of polynomials of random variables is investigated.

Key words. moment inequalities, polynomials
PII. S0040585X97976386
Let ξ be a random variable with nondegenerate distribution F_{ξ} on \mathbf{R}. For ξ normal, Yu. V. Prokhorov showed [3] that, for any polynomial $Q=Q(x), x \in \mathbf{R}$, of degree $n \geqq 1$ with $\mathbf{E} Q(\xi)=0$,

$$
\begin{equation*}
\left(\mathbf{E}|Q(\xi)|^{2}\right)^{1 / 2} \leqq c \mathbf{E}|Q(\xi)| \tag{1}
\end{equation*}
$$

where $c=c_{n}$ depends on n, only. He proved in [4] a similar inequality for ξ which has $\Gamma(\alpha)$-distribution with large parameter $\alpha(\geqq 400 n \log 2)$. In the first case he used an expansion of Q in Hermite polynomials, and in the second paper, he used an expansion of Q in Laguerre polynomials. In this note, we suggest a simple argument to extend (1) to general r.v. ξ under some integrability assumptions. We show that the condition $\mathbf{E} Q(\xi)=0$ is not necessary. We start with a more general inequality (which is stronger than (1) when $p \geqq 2$), namely,

$$
\begin{equation*}
\|Q(\xi)\|_{p}=\left(\mathbf{E}|Q(\xi)|^{p}\right)^{1 / p} \leqq c\|Q(\xi)\|_{0} \tag{2}
\end{equation*}
$$

for the geometric mean $\|Q(\xi)\|_{0}=\lim _{p \rightarrow 0^{+}}\|Q(\xi)\|_{p}=\exp \mathbf{E} \log |Q(\xi)|$ instead of the L^{1}-norm $\|Q(\xi)\|_{1}$ which is difficult to work with (all the constants $c=c_{n}\left(p, F_{\xi}\right)$ which we deal with may depend on n, p, F_{ξ} but not on Q). In contrast to the L^{1} norm, one may use a general identity $\left\|f_{1} \cdots f_{n}\right\|_{0}=\left\|f_{1}\right\|_{0} \cdots\left\|f_{n}\right\|_{0}$ which reduces (2) to polynomials of type $Q(x)=(x-z)^{n}$. More precisely, we have the following proposition.

Proposition 1. Let $\mathbf{E}|\xi|^{n p}<\infty,(p>0)$. The optimal constant c in (2) is given by

$$
\begin{equation*}
c^{1 / n}=\sup _{z \in \mathbf{C}} \frac{\|\xi-z\|_{n p}}{\|\xi-z\|_{0}} . \tag{3}
\end{equation*}
$$

In the case $c<\infty$ (and only in this case), there exist positive constants a and b such that for any polynomial $Q(x)=\prod_{i=1}^{n}\left(x-z_{i}\right), z_{i} \in \mathbf{C}(1 \leqq i \leqq n)$, and for all $r \in[0, p]$,

$$
\begin{equation*}
a \prod_{i=1}^{n}\left(1+\left|z_{i}\right|\right) \leqq\|Q(\xi)\|_{r} \leqq b \prod_{i=1}^{n}\left(1+\left|z_{i}\right|\right) \tag{4}
\end{equation*}
$$

[^0]Remark 2. Let $\mathbf{E}|\xi|^{n p}<\infty$. The constant c defined by (3) is finite if and only if

$$
\begin{equation*}
\sup _{a \in \mathbf{R}} \int_{0}^{1} \frac{\mathbf{P}\{|\xi-a|<t\}}{t} d t<+\infty \tag{5}
\end{equation*}
$$

Proof. Clearly, for some $c_{1}, c_{2}>0$, we have

$$
c_{1}(1+|z|) \leqq\|\xi-z\|_{n p} \leqq c_{2}(1+|z|)
$$

whenever $z \in \mathbf{C}$. Hence, $c<\infty$ holds if and only if $\inf _{z}\|\xi-z\|_{0} /(1+|z|)>0$. This infimum may be taken over all real $z=a$. Indeed, writing $z=a+b i, a, b \in \mathbf{R}$ and assuming that $\|\xi-a\|_{0} \geqq c_{3}(1+|a|)$, we have

$$
\begin{aligned}
\|\xi-z\|_{0} & =\left\|(\xi-a)^{2}+b^{2}\right\|_{0}^{1 / 2} \geqq\left(\|\xi-a\|_{0}^{2}+b^{2}\right)^{1 / 2} \\
& \geqq\left(c_{3}^{2}(1+|a|)^{2}+b^{2}\right)^{1 / 2} \geqq c_{4}(1+|z|),
\end{aligned}
$$

where we used the property $\|f+g\|_{0} \geqq\|f\|_{0}+\|g\|_{0}$ for f and g non-negative with $f=(\xi-a)^{2}$ and $g=b^{2}$.

Now, write the relation $\inf _{a \in \mathbf{R}}\|\xi-a\|_{0} /(1+|a|)>0$ in the form

$$
\begin{equation*}
\mathbf{E} \log |\xi-a| \geqq D+\log (1+|a|), \quad a \in \mathbf{R} \tag{6}
\end{equation*}
$$

for some $D \in \mathbf{R}$. Since $\mathbf{E} \log (1+|\xi|)<+\infty$, we get, for all $a \in \mathbf{R}$, obvious estimates

$$
\begin{aligned}
& |\mathbf{E} \log (1+|\xi-a|)-\log (1+|a|)| \leqq \mathbf{E} \log (1+|\xi|) \\
& \mathbf{E} \log (1+|\xi-a|)-\mathbf{E} \log |\xi-a| \mathbf{1}_{\{|\xi-a| \geqq 1\}} \leqq \log 2
\end{aligned}
$$

from which it follows that

$$
|\mathbf{E} \log | \xi-a\left|\mathbf{1}_{\{|\xi-a| \geqq 1\}}-\log (1+|a|)\right| \leqq D^{\prime}, \quad a \in \mathbf{R},
$$

for some $D^{\prime} \in \mathbf{R}$. Therefore, (6) may be written as

$$
-\mathbf{E} \log |\xi-a| \mathbf{1}_{\{|\xi-a|<1\}} \leqq D^{\prime \prime}, \quad a \in \mathbf{R}
$$

for some $D^{\prime \prime} \in \mathbf{R}$, which is exactly (5).
For example, when the distribution ξ is unimodal, with mode a_{0}, we have for all a,

$$
\mathbf{P}\{|\xi-a|<t\} \leqq \mathbf{P}\left\{\left|\xi-a_{0}\right|<2 t\right\},
$$

and (5) becomes

$$
\int_{0}^{1} \frac{\mathbf{P}\left\{\left|\xi-a_{0}\right|<t\right\}}{t} d t<\infty
$$

In particular, this condition is satisfied for $\Gamma(\alpha)$-distribution with arbitrary $\alpha>-1$. It should be noted, however, that the method used by Prokhorov yields constants c_{n} in (1) which increase exponentially (as functions of n), while in the case $r=0$, we get a worse rate in (4) unless ξ is bounded: in this case, according to (3), the sequence $c^{1 / n}=c_{n}\left(p, F_{\xi}\right)^{1 / n}$ tends to infinity.

Proof of Proposition 1. Writing $Q(x)=A \prod_{i=1}^{n}\left(x-z_{i}\right), x \in \mathbf{C}$, and defining c as in (3), we get, by Hölder's inequality,

$$
\|Q(\xi)\|_{p} \leqq|A| \prod_{i=1}^{n}\left\|\xi-z_{i}\right\|_{n p} \leqq c|A| \prod_{i=1}^{n}\left\|\xi-z_{i}\right\|_{0}=c\|Q(\xi)\|_{0}
$$

Thus, (2) is proved. Similarly, it suffices to consider in (4) only polynomials of the form $Q(x)=(x-z)^{n}$. In addition, the cases $r=0$ for the left inequality and $r=p$ for the right inequality have to be considered, only. The second case, i.e., the inequality $\|\xi-z\|_{n p} \leqq$ const. $(1+|z|)$ holds due to the assumption $\|\xi\|_{n p}<\infty$. The first case, i.e., the inequality $\|\xi-z\|_{0} \geqq$ const. $(1+|z|)$ is equivalent to $c<\infty$ (as explained in Remark 2).

Remark 3. It would be very interesting to know, whether or not inequalities between L^{p} - and L^{q}-norms like (1) hold for polynomials Q in d random identically distributed random variables $\xi=\left(\xi_{1}, \ldots, \xi_{d}\right)$. One may expect that, under a general assumption such as integrability, such a conjecture is valid, and the constants are independent of the dimension d. This is true, for example, for random variables ξ_{i} which are uniformly distributed in an interval, and thus, by the central limit theorem, for normally distributed ξ_{i} as well (cf. [2] for a more general result). Some related Khinchin-Kahane-type inequalities for Bernoullian random variables may be found in [1] and [5].

REFERENCES

[1] W. Beckner, Inequalities in Fourier analysis, Ann. Math., 102 (1975), pp. 159-182.
[2] J. Burgain, On the distribution of polynomials on high dimensional convex sets, Lecture Notes in Math., 1466 (1991), pp. 127-137.
[3] Yu. V. Prokhorov, On polynomials in normally distributed random values, J. Theoret. Probab., 37 (1992), pp. 692-694.
[4] Yu. V. Prokhorov, On polynomials in random variables with Gamma-distribution, J. Theoret. Probab., 38 (1993), pp. 198-202.
[5] M. Talagrand, On Russo's approximate zero-one law, Ann. Probab., 22 (1994), pp. 1576-1587.

[^0]: *Received by the editors June 17, 1997. The work was partially supported by the Alexander von Humboldt Foundation.
 http://www.siam.org/journals/tvp/42-3/97638.html
 \dagger Department of Mathematics, Syktyvkar University, 167001 Syktyvkar, Russia; Department of Mathematics, Bielefeld University, Bielefeld 33501, Germany.
 \ddagger Department of Mathematics, Bielefeld University, Bielefeld 33501, Germany.

