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Converse Poincaré-type inequalities for convex functions
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Abstract

Converse Poincaré-type inequalities are obtained within the class of smooth convex functions. This is, in particular,
applied to the double exponential distribution.
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Let v be the double exponential distribution on the real line of density 27! exp(—|x|), x € R. One of the
purposes of these notes is to prove that if ¢ has distribution v and if f is a convex function on the real line,
then

Ef'(&Y <Varf(§)<4Ef'(¢), 1)

with equality on the left-hand side for the function f(x) = |x|.

The inequality on the right-hand side in (1) belongs to the class of Poincaré inequalities. For the measure v
this second inequality is well-known (see, e.g., Klaassen, 1985) and valid without any convexity assumption.
In the literature, one can also find a number of lower estimates for the variance of functions of various
distributions ((Cacoullos, 1982, 1989; Cacoullos and Papathanasiou, 1992; Houdré and Kagan, 1995) ,...,).
We will see here, that within the class of all convex functions, it is sometimes possible to estimate from
below the variance of f(£) by a quantity similar to the one appearing in Poincaré-type inequalities. This is
in contrast to the fact that this is never possible within the class of all functions.

In fact, to consider a more general problem, let ¢ be an arbitrary non-atomic probability measure on the
real line R. Given a € R, let u; and p be, respectively, the left- and the right-conditional restriction of u
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to the half-lines (—o0,a] and [a, +00), that is, for any Borel set 4, let

HA N (=o00,a]) H4 N [a,+00))
p((—o0,a]) w(a, +o0))

The above definition makes sense when ag(¢) < a < a;(u), where ag(y) = inf supp(u), a1(¢) = sup supp(g),
and with supp denoting the support of the corresponding measure. Let Var(f, u) and Var(u) denote, respec-
tively, the variance of a function f and of the identity function i(x) = x, with respect to p. Throughout, it is
also always assumed that y has finite variance.

With these notations, the following gives a sufficient condition for a converse Poincaré inequality to hold
within the class of convex functions.

Ko (4) = s M) =

Theorem 1. Let the random variable ¢ be distributed according to p, and let

o*(u)= inf  min (Var(u, ), Var(u})). (2)

ac(p)<a<ai(p)

Then, for any convex function f on the real line,
Varf(&) =0 (WE f'(£). 3)

The property ¢?(u) > 0 implies that ag() = —oc and that a,(u) = +oo. Thus, the infimum in (2) is, in
fact, taken over the whole real line. This can easily be seen by applying (3) to the functions f(x) = (@ —x)*,
f(x)=(x—a)*, and letting, respectively, a — ag(¢), @ — a;(u). In addition, we then have

. 1 ‘ 2

lau_n'_ugm [m(a —x)* dF(x) > 0, )
o 1 +00 )

imin Ty [, a0 ©)

where F(x) = u((—o0,x]) is the distribution function of u (and of the random variable £). We do not know if
the properties (4)—(5) which are necessary for (3) to hold (up to a positive constant), imply that ¢%(u) > 0.
One can however see that (4) and (5) imply that the tails F(—x), 1 — F(x) are “big” and decrease at infinity
rather slowly (at least as slowly as exponentials). In particular, the normal distribution function does not
satisfy (4)—(5). Therefore, one cannot hope to extend (3) to the multidimensional case to get

Var f(¢1,..., &) 2c EIVf(&,.... &)

where {&} is an i.id. sequence, f is an arbitrary smooth convex function on R”", V f is its gradient, and
¢ > 0 does not depend on the dimension n. Indeed, assuming E¢; = 0 and applying the above inequality to
functions of the form f(x) = g((x; + - - - + x,)/+/n), we would obtain by the central limit theorem that

Varg(¢)>c Eg'(¢)?

for the class of all convex functions g and for £ normal.
Note that a convex function f on R is differentiable except possibly on a countable set, and that in general
one defines

£/ = max{| /"), [£/ I}

Of course, this is essential only for distributions ¥ which have atoms. Denote by & ;. the family of all non-
decreasing, convex functions on the real line. The proof of Theorem 1 will rely on the following lemma of
independent interest.
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Lemma 1. Given a random variable ¢ with finite second moment and a constant ¢ > 0, the following are
equivalent:
(@) Cov(f (&), g(EN) = cEf'(&)g (&) for any f.g€ F such that f(&) and g(&) have finite second moment,
(b) Varf(&)=cEf'(¢Y for any f € F 4,
(c) Var(¢ — a)* =cP{¢=a} for any a real.

Proof. Clearly, (a) implies (b) which implies (c) (note also that (b) makes sense even if f(£) has infinite
second moment). To derive (a) from (c), one can assume that the distribution function F of ¢ is continuous,
and that the functions f and g in (a) are non—negative and vanish at —oco. When this is the case, these functions
can be represented as a mixture of functions of the form fa(x) = (x — a)*, and since Cov(f(&), g(£)) is
linear in f and in g, it suffices to establish (a) for such functions. Let a<b. By an integration by parts, we
easily have

+o0

+oo +o0
Cov( fo(), o) = /b (x — a)(x — b)dF(x) — / (c—adF) [ = p)are

+o0 +o0 +oo
:/ (Zx-a—b)(l—F(x))dx-—/ (l—F(x))dx/ (1 — F(x))dx.
b a b

Hence,

d +00 +o0
aCOV(fa(é),fb(é))=~/a (l—F(X))dx+(1—F(a))/b (I - F(x))dx <0,

that is, Cov(f4(¢), f5(£)) is non-increasing in a, while the right-hand side of (a), (cE FUEL(E) = (1 —
F(b))), does not depend on a. Therefore, the inequality (a) is true for all a<b if and only if it is true for
all a = b, in which case it becomes (c¢). The lemma is proved. [

Proof of Theorem 1. Let Var(f, ) be finite (otherwise, there is nothing to prove). Also, and without loss of
generality, f is assumed to have a finite global minimum, say, at a point a (otherwise, one can approximate
f by the sequence of convex functions f,(x) = max(f(x),—n), and then letting n — oo in (3) with f, gives
(3) for f). As noted before, we can also assume that ag(u) = —o0, ai(¢) = +oo. Now, if v and A are two
probability measures, and if E, f and E, f, are the respective expectations of f, we have the identity,

Var(f, pv+ (1 — p)i) = pVar(f,v) + (1 — p)Var(f, 1)+ p(1 = p)|E.f — E.f.
Putting v = u;, A= pu}, and p = F(a), we obtain
Var(f, 1) = F(a)Var(f, ;) + (1 — F(a))Var(f, u7). (6)

By assumption, / is non-decreasing on [a,+0oc) and non-increasing on (~00,a]. Hence, Lemma 1 applied to
(f,uf) and (f,pu; ) gives

Var(f, i) = (@) [ 167 4o, ™

Var(g) = ¢ (@) [ 10 ), ®)
where the optimal values of ¢*(a) and ¢~ (a) are given by

) — g YEEDD)  e Var( o0 )

b2a  pr([b,+00)) b<a g ((—oo,b])
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Now, for any b>a,
Var((x - b)*, 1)
pd ([b, +00))

_1-F(a)
T 1-F(b)

1 +o0 1 +oo 2
0 —F(a)/,, (x — by’ dF(x) — <——1 —F(a)/,, (x— b)dF(x)) ]
_ ———1_— +oo e B 1 +00 _
“rm ), O ey (<o)

1 +oo ) 1 +00 2

= Var((x — b)", iy ) = Var(y),

2

since 1 — F(a)=1 — F(b), and (x — b)* =x — b (mod ;). Thus,

c*(a)> min Var(i') > a*(w),
=a

where ¢?(u) is defined by (2). In the same way, ¢~ (a)>d?(u). Using these estimates in (7)~(8) and then in
(6) gives (3). Theorem 1 is proved. [

It is clear from Lemma 1 that the optimal constant ¢ in (b) can be found from (c). However, we would
like to mention another way of finding this constant when the random variable & is exponentially distributed
with density exp(—x),x > 0.

Theorem 2. Let the random variables &, n and { be independent, exponentially distributed random variables.
Then, for any absolutely continuous functions f,g such that f(£) and g(&) have finite second moments,

Cov(f(£), (&) = Ef'(E+mg' (& +0). )
In particular, under the additional assumption f € %, we have
Varf(&)ZEf'(¢) (10)

Proof. Both sides of (9) are bilinear in f and g, hence, it suffices to verify the equality for the functions
f(x) = exp(itx), g(x) = exp(isx). But for such functions, and if @s(¢) is the characteristic function of £, (9)
becomes

Pe(t +5) — @:(1)@e(s) = —ts@e(t + $)Qe(t)Pe(s).

This identity can easily be verified directly since ¢s(¢t) = 1/(1 —it). To prove (10), we have from (9) and
for f=g:

+0o0

+00
Varf(€)=/ (Ef’(§+t))2e"dt> fl()e" dt,
0 0
since f’ is non-negative and non-decreasing. Theorem 2 follows.

We are now ready to prove the result corresponding to the inequality (1).
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Theorem 3. Let the random variable & have a double exponential distribution. Then, for any convex Sfunction
f on the real line,

Ef(E<Varf(5)<4Ef'(&), (11)
with equality on the left-hand side for the function f(x) = |x|.
Proof. Recall that dv(x)/dx = 27! exp(—|x|), x € R. By symmetry, Var(v;') = Var(v',), so we need only
to show that Var(v})>1, for all a real. When a>0, v} is the one-sided exponential distribution, hence,

Var(v) = 1, and it only remains to consider the case a<0. To perform some computations, we find it
convenient to work with the distribution function F,(x) = vJ((a,x]). F, is simply a shift of v}, and thus

a:?

Var(v} ) = Var(F,). Clearly, F, has density e~latxl /(2 — e?), x>0. Next, we use the elementary formulas
/xe" dx = (x — 1)¢*, /xe_" dx=—-(x+ 1),
/x2ex dx = (x* — 2x + 2)¢%, /xZe—x dx = —(x* + 2x +2)e ™,
to find
2 - e")/o_axdFa(x) = /O—er(““)dx =e(x — 1)ef|g”
=e[—(a+ e +1] =—(a+1)+e

(2-¢€ " rdF(x) = / " ke @) dy = o~ (x + 1))

—a

—a —a
=1-a.
Thus,
> —2a+¢?
dF, =
/0 x dFg(x) 7 _ea
Moreover,

2- e")/ P dF,(x) =e°(? — 2x + 2)e*|;* = (&® +2a+2)—2¢,
0

o
Q2-¢) | XPdF(x)=—eP +2x+2)e S, = & —2a+2,

—a
—a

and thus,
oo 28 +4+¢°
2
dF,(x) = —————.
/0 x (x) 7 e
Hence,
22 +4+¢"  [—2a+e\> ¥ —2d" +4ae® —8e® +8
Var(Fa) = - = .
2—ef 2—ed (2 —e2)?
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At this point, one can verify that Var(F,) — 2 = Var(v), as a — —o0, and that Var(Fy) = 1. Finally,

Var(F,)>1 <= ¢ — 2a°¢® + 4ae® — 8e” + 8 > (2 — &°)?
& —2d%" 4 dae® — 4e° +4 20
= (@ —2a+2)e*<2
=P +2 <2 = 21 +t+22+--0),

where ¢t = —a. This last inequality is certainly true since ¢>0. The left inequality of Theorem 3 is proved.

References

Cacoullos, T. (1982), On upper and lower bounds for the variance of a function of a random variable, Ann. Probab. 10, 799-809.

Cacoullos, T. (1989), Dual Poincaré-type inequalities via the Cramer-Rao and the Cauchy-Schwarz inequalities and related
characterizations, in: Y.Dodge, ed., Statistical Data Analysis and Inference (Elsevier, Amsterdam) 239-249.

Cacoullos, T. and V. Papathanasiou (1992), Lower variance bounds and a new proof of the central limit theorem, J. Multivariate Anal.
43, 173-184.

Houdré, C. and A. Kagan (1995), Variance inequalities for functions of Gaussian variables, J. Theoret. Probab. 8, 23-30.

Klaassen, C.A.J. (1985), On an inequality of Chemoff, Ann. Probab. 13, 966-974.



