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Abstract 

Converse Poincarr-type inequalities are obtained within the class of smooth convex functions. This is, in particular, 
applied to the double exponential distribution. 
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Let v be the double exponential distribution on the real line of density 2 -1 exp(-lxl) ,  x E R. One of the 
purposes of these notes is to prove that if ~ has distribution v and if f is a convex function on the real line, 
then 

E f ' ( ~ )  2 ~< Var f (~)  ~< 4 E f ' ( ~ )  2, (1) 

with equality on the left-hand side for the function f (x )  = Ix I. 
The inequality on the right-hand side in (1) belongs to the class of Poincar6 inequalities. For the measure v 

this second inequality is well-known (see, e.g., Klaassen, 1985) and valid without any convexity assumption. 
In the literature, one can also find a number of lower estimates for the variance of functions of various 
distributions ((Cacoullos, 1982, 1989; Cacoullos and Papathanasiou, 1992; Houdr6 and Kagan, 1995) . . . . .  ). 
We will see here, that within the class of all convex functions, it is sometimes possible to estimate from 
below the variance of f ( ~ )  by a quantity similar to the one appearing in Poincarr-type inequalities. This is 
in contrast to the fact that this is never possible within the class of all functions. 

In fact, to consider a more general problem, let # be an arbitrary non-atomic probability measure on the 
real line ~. Given a E ~, let p~- and p+ be, respectively, the left- and the right-conditional restriction of # 
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to the half-lines ( -oo ,  a] and [a,+c~), that is, for any Borel set A, let 

#~,-(A) = #(A N ( - o c ,  a]), #+(A) = #(An [a, +oo))  
# ( ( - e c ,  a]) #([a, +c~))  

The above definition makes sense when a0(#) < a < al(#),  where a0(#) = inf supp(#), al(#)  = sup supp(#), 
and with supp denoting the support of the corresponding measure. Let V a t ( f , # )  and Var(#) denote, respec- 
tively, the variance of a function f and of the identity function i(x) = x, with respect to #. Throughout, it is 
also always assumed that # has finite variance. 

With these notations, the following gives a sufficient condition for a converse Poincar6 inequality to hold 
within the class of convex functions. 

Theorem 1. Let  the random variable ~ be distributed according to #, and let 

a2(#) = inf min (Var(#~-), Var(# +)). 
aoOO<a <affp) 

Then, f o r  any convex function f on the real line, 

Vary( i ) />  a2 ( # ) E f ' ( ~ )  2. 

(2) 

(3) 

The property 0"2(#) > 0 implies that ao(#) = - o c  and that al (p)  = +c~. Thus, the infimum in (2) is, in 
fact, taken over the whole real line. This can easily be seen by applying (3) to the functions f ( x )  = ( a - x )  +, 
f ( x )  = (x - a) +, and letting, respectively, a --* ao(#), a ~ al(#).  In addition, we then have 

lim inf 1 [ 7  a~-o~ F - ~  j _  (a - x) 2 dF(x) > 0, (4) 

lim inf 1 f+o~  a~+o~ 1 - F (a )  __ (x - a) 2 dF(x) > 0, (5) 

where F(x )  = #( ( -oo ,  x]) is the distribution function of # (and of the random variable 4). We do not know if 
the properties (4)-(5) which are necessary for (3) to hold (up to a positive constant), imply that a2(#) > 0. 
One can however see that (4) and (5) imply that the tails F ( - x ) ,  1 - F ( x )  are "big" and decrease at infinity 
rather slowly (at least as slowly as exponentials). In particular, the normal distribution function does not 
satisfy (4)-(5). Therefore, one cannot hope to extend (3) to the multidimensional case to get 

Var f ( ~ l  . . . . .  in) >~e E lVf (~ l  . . . . .  ~n)[ 2, 

where {~k} is an i.i.d, sequence, f is an arbitrary smooth convex function on ~", V f  is its gradient, and 
e > 0 does not depend on the dimension n. Indeed, assuming E~k = 0 and applying the above inequality to 
functions of the form f ( x ) =  g((xl + . . .  + x~)/v/-n), we would obtain by the central limit theorem that 

Vat 9(4) I> e E f ( ~ )  2 

for the class of all convex functions g and for ~ normal. 
Note that a convex function f on R is differentiable except possibly on a countable set, and that in general 

one defines 

If '(x)l = max{ I f ' ( x -  )l, I f ' (  x+)l }. 

o f  course, this is essential only for distributions F which have atoms. Denote by ~ +  the family of all non- 
decreasing, convex functions on the real line. The proof of Theorem 1 will rely on the following lemma of 
independent interest. 
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Lemma 1. Given a random variable ~ with finite second moment and a constant c > 0, the followin9 are 
equivalent: 

(a) Cov(f(~.) ,  g(~)) >t cE f'(~)g'(~) for any f ,  9 E ~+ such that f (4)  and 9(4) have finite second moment; 
(b) Varf(4)>.cEf '(¢) 2 for any f C ~ + ;  
(c) Var(4 - a)  + >~cP{(>~a} for any a real. 

Proof. Clearly, (a) implies (b) which implies (c) (note also that (b) makes sense even if f ( ( )  has infinite 
second moment).  To derive (a) from (c), one can assume that the distribution function F of  ( is continuous, 
and that the functions f and 9 in (a) are non-negative and vanish at - c ~ .  When this is the case, these functions 
can be represented as a mixture of  functions of  the form f~(x) = (x - a) +, and since C o y ( f ( 4 ) ,  9(4))  is 
linear in f and in 9, it suffices to establish (a) for such functions. Let a<~b. By an integration by parts, we 

easily have 

/7 /7 = fL (x - a)(x - b)dF(x) - (x - a)df (x)  (x - b)dF(x) Cov(f  a( ~), f b( ~)) 
~ u 

= f _ (2x - a - b)(1 - F(x))dx - (1 - f (x ) )dx  (1 - F(x))dx. 
Jb 

Hence, 

/a /7 deov(fa(~) , fb(~))  = - (1 - f ( x ) )dx  + (1 - F(a)) (1 - f (x) )dx~O,  

that is, Cov( fa (~) ,  fb(~)) is non-increasing in a, while the right-hand side of  (a), (cEf'a(~)f~(~) = c(1 - 
F(b))), does not depend on a. Therefore, the inequality (a) is true for all a~b  if  and only if it is true for 
all a = b, in which case it becomes (c). The lemma is proved. [] 

Proof of Theorem 1. Let V a r ( f ,  #)  be finite (otherwise, there is nothing to prove). Also, and without loss of  
generality, f is assumed to have a finite global minimum, say, at a point a (otherwise, one can approximate 
f by the sequence of  convex functions fn(X) = max(f  (x),-n),  and then letting n -*  oo in (3) with f n  gives 
(3) for f ) .  As noted before, we can also assume that a0(#) -- - c ~ ,  al(p) = +oo.  Now, if v and 2 are two 
probability measures, and if Evf  and E;~f, are the respective expectations of  f ,  we have the identity, 

V a r ( f ,  pv + (I - p)2) = pVar( f  ,v) + (1 - p)Var(f  ,2) + p(1 - p ) [ E v f  - E;~f l  2 

Putting v = #a ,  )~ = #+, and p -- F(a), we obtain 

V a r ( f ,  #) >>. F(a)Var( f ,  #~- ) + (1 - F ( a ) ) V a r ( f ,  #+ ). (6) 

By assumption, f is non-decreasing on [a, +oo) and non-increasing on ( -oo ,  a]. Hence, Lemma 1 applied to 

( f ,  #+ ) and ( f ,  #a  ) gives 

V a r ( f ,  #+)  > c+(a) f f'(x) 2 dp+(x),  (7) 

V a r ( f , # ~ - )  >~ c-(a) f f ' (x)  2 d#a(X), (8) 

where the optimal values of  c+(a) and c-(a) are given by 

Var((x  - b) +, #+ ) c+(a)- -  inf , c-(a) = inf V a r ( ( b - x ) + ' # a )  
b>~a #~+([b, + ~ ) )  b<.a pg ( ( - c o ,  b]) 
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Now, for any b/> a, 

Var((x - b) +, tta + ) 

p+([b, +c~))  
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- 1 - F ( b )  1 - F ( a )  ( x - b )  2 d F ( x ) -  1 - F ( a )  ( x - b ) d F ( x  

- 1 - F ( b )  ( x - b ) 2 d F ( x ) -  (I - F(a))(1 - F ( b ) )  ( x - b ) d F ( x )  

>1 1 -F(b-~) ( x - b ) 2 d F ( x ) -  1 - F ( b )  ( x - b ) d F ( x )  

= Var( (x  - b) +, tt + )  = Var(#~-),  

since 1 - F(a)>~ 1 - F(b),  and (x - b) + = x  - b (mod tt~-). Thus, 

c+(a) >~ min Var(tt~-) ~> a2(t0, 
b>~a 

where tr2(tt) is defined by (2). In the same way, c-(a)~a2(tO. Using these estimates in (7)-(8) and then in 
(6) gives (3). Theorem 1 is proved. [] 

It is clear from Lemma 1 that the optimal constant c in (b) can be found from (c). However, we would 
like to mention another way of finding this constant when the random variable ~ is exponentially distributed 
with density exp( -x) ,x  > 0. 

Theorem 2. Let the random variables 4, ~l and ~ be independent, exponentially distributed random variables. 
Then, for any absolutely continuous functions f , y  such that f (~)  and g( ~) have finite second moments, 

Cov(f(~),  g(¢)) = E f ' ( {  + ~l)g'(~ + ~). (9) 

In particular, under the additional assumption f E ~+,  we have 

Varf (~)  ~> E f ' ( ¢ ) : .  (10) 

Proof. Both sides of (9) are bilinear in f and g, hence, it suffices to verify the equality for the functions 
f ( x )  = exp(itx), g(x) = exp(isx). But for such functions, and if ~0¢(t) is the characteristic function of ~, (9) 
becomes 

q~(t + s) - (p¢(t)tp¢(s) = -ts~o¢(t + s)tp~(t)qg~(s). 

This identity can easily be verified directly since (pc(t) = 1/(1 - it). To prove (10), we have from (9) and 
for f = 9: 

/0 /0 Varf (~)  = (Ef ' (~ + t)) 2 e - '  dt t> f '(t)2e - '  dt, 

since f~ is non-negative and non-decreasing. Theorem 2 follows. 

We are now ready to prove the result corresponding to the inequality (1). 
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Theorem 3. Let the random variable ~ have a double exponential distribution. Then, for  any convex function 

f on the real line, 

E f ' ( ~ )  2 <~ V a r f ( ~ )  <~4Ef ' (~ )  2, (11 ) 

with equality on the left-hand side for the function f ( x )  = Lx[. 

Proof .  Recall that dv(x)/dx = 2 -1 exp( - Ix [ ) ,  x E •. By symmetry, Var(v a )  = Var(v+_~), so we need only 
+ is the one-sided exponential distribution, hence, to show that Var (v+)>~l ,  for all a real. When a>~O, v a 

Var(v +)  = 1, and it only remains to consider the case a~<0. To perform some computations, we find it 

convenient to work with the distribution function Fa(x) = V+a((a,x]). F~ is simply a shift o f  v +, and thus 
Var(v +)  = Var(Fa) .  Clearly, F~ has density e - I ~ + x l / ( 2 -  ea), x~>0. Next, we use the elementary formulas 

f x e X d x  1)e x, Jxe-Xdx = - ( x +  1)e -x,  
f 

(x 

f x 2 e X d x = ( x 2 - 2 x + 2 ) e  x, f x 2 e - X d x = - ( x 2 + 2 x + 2 ) e  -x, 

to find 

Thus, 

fO a fO --a 
(2 - e a) xdFa(x)  = xe (a+x) dx = ea(x - 1)e~[o a 

= e  a [ - ( a + l ) e - a + l ]  = - ( a + l ) + e  a 

F F (2 - e ~) xdFa(x)  = 
a a 

e - X  oo x e  - ( a + x )  d x  = e - a ( - ( x  + 1)) ]--a 

fo  ~ - 2 a  + e a x d F a ( x ) =  2 - e  a 

Moreover,  

fo -° 
(2 - e a) x 2 dF~(x) = e~(x 2 - 2x + 2)eX[o a = (a 2 + 2a + 2) - 2e a, 

/? (2 - e a) x a dF~(x) = - e - ~ ( x ;  + 2x + 2)e-Xl_~ = a 2 - 2a + 2, 
a 

and thus, 

fo ~ x2dFa(x) _ 2a 2 + 4 + e a 
2 - e a 

Hence, 

Var(F~)  - 
2a 2 -+- 4 + e a (-_2a_ 2 = 

2 - e  a J 2 -- e a 

e 2a  - 2 a 2 e  a + 4ae a -- 8e a + 8 

(2 -- e a)z 
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At this point,  one can verify that Var(Fa) ~ 2 = Vat(v) ,  as a ~ - ~ ,  and that Var(Fo) = 1. Finally,  

Var(Fa)~> 1 -'. '.- e 2a - 2a2e a + 4 a e  a - 8e a + 8 ~> (2 - e~) 2 

- 2 a 2 e  ~ + 4 a e  a - 4 e  ~ + 4  ~>0 

.:  :. (a2 - 2a  + 2)ea~<2 

-~ ;- t 2 + 2t + 2 ~< 2e t = 2(1 + t + t2/2 + . . . ) ,  

where t = - a .  This last inequal i ty  is certainly true since t ~>0. The left inequal i ty  o f  Theorem 3 is proved. 
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