ELSEVIER

Converse Poincaré-type inequalities for convex functions

S.G. Bobkov ${ }^{\text {a,1 }}$, C. Houdré ${ }^{\mathrm{b}, *, 2}$
${ }^{\text {a }}$ Department of Mathematics, University of Syktyvkar, 167001 Syktyvkar, Russian Federation
${ }^{\text {b }}$ Center for Applied Probability, School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA

Received 1 January 1996; revised 1 April 1996

Abstract

Converse Poincaré-type inequalities are obtained within the class of smooth convex functions. This is, in particular, applied to the double exponential distribution.

AMS Classification: Primary 60E15; 60E99; secondary 26D10
Keywords: Poincaré inequality; Double exponential distribution

Let v be the double exponential distribution on the real line of density $2^{-1} \exp (-|x|), x \in \mathbb{R}$. One of the purposes of these notes is to prove that if ξ has distribution v and if f is a convex function on the real line, then

$$
\begin{equation*}
\boldsymbol{E} f^{\prime}(\xi)^{2} \leqslant \operatorname{Var} f(\xi) \leqslant 4 \boldsymbol{E} f^{\prime}(\xi)^{2} \tag{1}
\end{equation*}
$$

with equality on the left-hand side for the function $f(x)=|x|$.
The inequality on the right-hand side in (1) belongs to the class of Poincare inequalities. For the measure v this second inequality is well-known (see, e.g., Klaassen, 1985) and valid without any convexity assumption. In the literature, one can also find a number of lower estimates for the variance of functions of various distributions ((Cacoullos, 1982, 1989; Cacoullos and Papathanasiou, 1992; Houdré and Kagan, 1995) ,...,). We will see here, that within the class of all convex functions, it is sometimes possible to estimate from below the variance of $f(\xi)$ by a quantity similar to the one appearing in Poincaré-type inequalities. This is in contrast to the fact that this is never possible within the class of all functions.

In fact, to consider a more general problem, let μ be an arbitrary non-atomic probability measure on the real line \mathbb{R}. Given $a \in \mathbb{R}$, let μ_{a}^{-}and μ_{a}^{+}be, respectively, the left- and the right-conditional restriction of μ

[^0]to the half-lines $(-\infty, a]$ and $[a,+\infty)$, that is, for any Borel set A, let
$$
\mu_{a}^{-}(A)=\frac{\mu(A \cap(-\infty, a])}{\mu((-\infty, a])}, \quad \mu_{a}^{+}(A)=\frac{\mu(A \cap[a,+\infty))}{\mu([a,+\infty))} .
$$

The above definition makes sense when $a_{0}(\mu)<a<a_{1}(\mu)$, where $a_{0}(\mu)=\inf \operatorname{supp}(\mu), a_{1}(\mu)=\sup \operatorname{supp}(\mu)$, and with supp denoting the support of the corresponding measure. Let $\operatorname{Var}(f, \mu)$ and $\operatorname{Var}(\mu)$ denote, respectively, the variance of a function f and of the identity function $i(x)=x$, with respect to μ. Throughout, it is also always assumed that μ has finite variance.

With these notations, the following gives a sufficient condition for a converse Poincaré inequality to hold within the class of convex functions.

Theorem 1. Let the random variable ξ be distributed according to μ, and let

$$
\begin{equation*}
\sigma^{2}(\mu)=\inf _{a_{0}(\mu)<a<a_{1}(\mu)} \min \left(\operatorname{Var}\left(\mu_{a}^{-}\right), \operatorname{Var}\left(\mu_{a}^{+}\right)\right) . \tag{2}
\end{equation*}
$$

Then, for any convex function f on the real line,

$$
\begin{equation*}
\operatorname{Var} f(\xi) \geqslant \sigma^{2}(\mu) \boldsymbol{E} f^{\prime}(\xi)^{2} \tag{3}
\end{equation*}
$$

The property $\sigma^{2}(\mu)>0$ implies that $a_{0}(\mu)=-\infty$ and that $a_{1}(\mu)=+\infty$. Thus, the infimum in (2) is, in fact, taken over the whole real line. This can easily be seen by applying (3) to the functions $f(x)=(a-x)^{+}$, $f(x)=(x-a)^{+}$, and letting, respectively, $a \rightarrow a_{0}(\mu), a \rightarrow a_{1}(\mu)$. In addition, we then have

$$
\begin{align*}
& \liminf _{a \rightarrow-\infty} \frac{1}{F(a)} \int_{-\infty}^{a}(a-x)^{2} \mathrm{~d} F(x)>0 \tag{4}\\
& \liminf _{a \rightarrow+\infty} \frac{1}{1-F(a)} \int_{a}^{+\infty}(x-a)^{2} \mathrm{~d} F(x)>0 \tag{5}
\end{align*}
$$

where $F(x)=\mu((-\infty, x])$ is the distribution function of μ (and of the random variable ξ). We do not know if the properties (4)-(5) which are necessary for (3) to hold (up to a positive constant), imply that $\sigma^{2}(\mu)>0$. One can however see that (4) and (5) imply that the tails $F(-x), 1-F(x)$ are "big" and decrease at infinity rather slowly (at least as slowly as exponentials). In particular, the normal distribution function does not satisfy (4)-(5). Therefore, one cannot hope to extend (3) to the multidimensional case to get

$$
\operatorname{Var} f\left(\xi_{1}, \ldots, \xi_{n}\right) \geqslant c \boldsymbol{E}\left|\nabla f\left(\xi_{1}, \ldots, \xi_{n}\right)\right|^{2}
$$

where $\left\{\xi_{k}\right\}$ is an i.i.d. sequence, f is an arbitrary smooth convex function on $\mathbb{R}^{n}, \nabla f$ is its gradient, and $c>0$ does not depend on the dimension n. Indeed, assuming $\boldsymbol{E} \xi_{k}=0$ and applying the above inequality to functions of the form $f(x)=g\left(\left(x_{1}+\cdots+x_{n}\right) / \sqrt{n}\right)$, we would obtain by the central limit theorem that

$$
\operatorname{Var} g(\xi) \geqslant c \boldsymbol{E} g^{\prime}(\xi)^{2}
$$

for the class of all convex functions g and for ξ normal.
Note that a convex function f on \mathbb{R} is differentiable except possibly on a countable set, and that in general one defines

$$
\left|f^{\prime}(x)\right|=\max \left\{\left|f^{\prime}\left(x^{-}\right)\right|,\left|f^{\prime}\left(x^{+}\right)\right|\right\} .
$$

Of course, this is essential only for distributions F which have atoms. Denote by $\mathscr{\mathscr { F } _ { + }}+$ the family of all nondecreasing, convex functions on the real line. The proof of Theorem 1 will rely on the following lemma of independent interest.

Lemma 1. Given a random variable ξ with finite second moment and a constant $c>0$, the following are equivalent:
(a) $\operatorname{Cov}(f(\xi), g(\xi)) \geqslant c \boldsymbol{E} f^{\prime}(\xi) g^{\prime}(\xi)$ for any $f, g \in \mathscr{F}_{+}$such that $f(\xi)$ and $g(\xi)$ have finite second moment;
(b) $\operatorname{Var} f(\xi) \geqslant c \boldsymbol{E} f^{\prime}(\xi)^{2}$ for any $f \in \mathscr{F}_{+}$;
(c) $\operatorname{Var}(\xi-a)^{+} \geqslant c \boldsymbol{P}\{\xi \geqslant a\}$ for any a real.

Proof. Clearly, (a) implies (b) which implies (c) (note also that (b) makes sense even if $f(\xi)$ has infinite second moment). To derive (a) from (c), one can assume that the distribution function F of ξ is continuous, and that the functions f and g in (a) are non-negative and vanish at $-\infty$. When this is the case, these functions can be represented as a mixture of functions of the form $f_{a}(x)=(x-a)^{+}$, and since $\operatorname{Cov}(f(\xi), g(\xi))$ is linear in f and in g, it suffices to establish (a) for such functions. Let $a \leqslant b$. By an integration by parts, we easily have

$$
\begin{aligned}
\operatorname{Cov}\left(f_{a}(\xi), f_{b}(\xi)\right) & =\int_{b}^{+\infty}(x-a)(x-b) \mathrm{d} F(x)-\int_{a}^{+\infty}(x-a) \mathrm{d} F(x) \int_{b}^{+\infty}(x-b) \mathrm{d} F(x) \\
& =\int_{b}^{+\infty}(2 x-a-b)(1-F(x)) \mathrm{d} x-\int_{a}^{+\infty}(1-F(x)) \mathrm{d} x \int_{b}^{+\infty}(1-F(x)) \mathrm{d} x .
\end{aligned}
$$

Hence,

$$
\frac{\mathrm{d}}{\mathrm{~d} a} \operatorname{cov}\left(f_{a}(\xi), f_{b}(\xi)\right)=-\int_{a}^{+\infty}(1-F(x)) \mathrm{d} x+(1-F(a)) \int_{b}^{+\infty}(1-F(x)) \mathrm{d} x \leqslant 0
$$

that is, $\operatorname{Cov}\left(f_{a}(\xi), f_{b}(\xi)\right)$ is non-increasing in a, while the right-hand side of $(\mathrm{a}),\left(c \boldsymbol{E} f_{a}^{\prime}(\xi) f_{b}^{\prime}(\xi)=c(1-\right.$ $F(b)$), does not depend on a. Therefore, the inequality (a) is true for all $a \leqslant b$ if and only if it is true for all $a=b$, in which case it becomes (c). The lemma is proved.

Proof of Theorem 1. Let $\operatorname{Var}(f, \mu)$ be finite (otherwise, there is nothing to prove). Also, and without loss of generality, f is assumed to have a finite global minimum, say, at a point a (otherwise, one can approximate f by the sequence of convex functions $f_{n}(x)=\max (f(x),-n)$, and then letting $n \rightarrow \infty$ in (3) with f_{n} gives (3) for f). As noted before, we can also assume that $a_{0}(\mu)=-\infty, a_{1}(\mu)=+\infty$. Now, if v and λ are two probability measures, and if $\boldsymbol{E}_{v} f$ and $\boldsymbol{E}_{\lambda} f$, are the respective expectations of f, we have the identity,

$$
\boldsymbol{\operatorname { V a r }}(f, p v+(1-p) \lambda)=p \operatorname{Var}(f, v)+(1-p) \operatorname{Var}(f, \hat{\lambda})+p(1-p)\left|\boldsymbol{E}_{v} f-\boldsymbol{E}_{\lambda} f\right|^{2}
$$

Putting $v=\mu_{a}^{-}, \lambda=\mu_{a}^{+}$, and $p=F(a)$, we obtain

$$
\begin{equation*}
\operatorname{Var}(f, \mu) \geqslant F(a) \operatorname{Var}\left(f, \mu_{a}^{-}\right)+(1-F(a)) \operatorname{Var}\left(f, \mu_{a}^{+}\right) \tag{6}
\end{equation*}
$$

By assumption, f is non-decreasing on $[a,+\infty)$ and non-increasing on $(-\infty, a]$. Hence, Lemma 1 applied to $\left(f, \mu_{a}^{+}\right.$) and (f, μ_{a}^{-}) gives

$$
\begin{align*}
& \operatorname{Var}\left(f, \mu_{a}^{+}\right) \geqslant c^{+}(a) \int f^{\prime}(x)^{2} \mathrm{~d} \mu_{a}^{+}(x) \tag{7}\\
& \operatorname{Var}\left(f, \mu_{a}^{-}\right) \geqslant c^{-}(a) \int f^{\prime}(x)^{2} \mathrm{~d} \mu_{a}^{-}(x), \tag{8}
\end{align*}
$$

where the optimal values of $c^{+}(a)$ and $c^{-}(a)$ are given by

$$
c^{+}(a)=\inf _{b \geqslant a} \frac{\operatorname{Var}\left((x-b)^{+}, \mu_{a}^{+}\right)}{\mu_{a}^{+}([b,+\infty))}, \quad c^{-}(a)=\inf _{b \leqslant a} \frac{\operatorname{Var}\left((b-x)^{+}, \mu_{a}^{-}\right)}{\mu_{a}^{-}((-\infty, b])} .
$$

Now, for any $b \geqslant a$,

$$
\begin{aligned}
& \frac{\operatorname{Var}\left((x-b)^{+}, \mu_{a}^{+}\right)}{\mu_{a}^{+}([b,+\infty))} \\
& =\frac{1-F(a)}{1-F(b)}\left[\frac{1}{1-F(a)} \int_{b}^{+\infty}(x-b)^{2} \mathrm{~d} F(x)-\left(\frac{1}{1-F(a)} \int_{b}^{+\infty}(x-b) \mathrm{d} F(x)\right)^{2}\right] \\
& =\frac{1}{1-F(b)} \int_{b}^{+\infty}(x-b)^{2} \mathrm{~d} F(x)-\frac{1}{(1-F(a))(1-F(b))}\left(\int_{b}^{+\infty}(x-b) \mathrm{d} F(x)\right)^{2} \\
& \geqslant \frac{1}{1-F(b)} \int_{b}^{+\infty}(x-b)^{2} \mathrm{~d} F(x)-\left(\frac{1}{1-F(b)} \int_{b}^{+\infty}(x-b) \mathrm{d} F(x)\right)^{2} \\
& =\operatorname{Var}\left((x-b)^{+}, \mu_{b}^{+}\right)=\operatorname{Var}\left(\mu_{b}^{+}\right)
\end{aligned}
$$

since $1-F(a) \geqslant 1-F(b)$, and $(x-b)^{+}=x-b\left(\bmod \mu_{b}^{+}\right)$. Thus,

$$
c^{+}(a) \geqslant \min _{b \geqslant a} \operatorname{Var}\left(\mu_{b}^{+}\right) \geqslant \sigma^{2}(\mu),
$$

where $\sigma^{2}(\mu)$ is defined by (2). In the same way, $c^{-}(a) \geqslant \sigma^{2}(\mu)$. Using these estimates in (7)-(8) and then in (6) gives (3). Theorem 1 is proved.

It is clear from Lemma 1 that the optimal constant c in (b) can be found from (c). However, we would like to mention another way of finding this constant when the random variable ζ is exponentially distributed with density $\exp (-x), x>0$.

Theorem 2. Let the random variables ξ, η and ζ be independent, exponentially distributed random variables. Then, for any absolutely continuous functions f, g such that $f(\xi)$ and $g(\xi)$ have finite second moments,

$$
\begin{equation*}
\operatorname{Cov}(f(\xi), g(\xi))=\boldsymbol{E} f^{\prime}(\xi+\eta) g^{\prime}(\xi+\zeta) . \tag{9}
\end{equation*}
$$

In particular, under the additional assumption $f \in \mathscr{F}_{+}$, we have

$$
\begin{equation*}
\operatorname{Var} f(\xi) \geqslant E f^{\prime}(\xi)^{2} \tag{10}
\end{equation*}
$$

Proof. Both sides of (9) are bilinear in f and g, hence, it suffices to verify the equality for the functions $f(x)=\exp (\mathrm{i} t x), g(x)=\exp (\mathrm{i} s x)$. But for such functions, and if $\varphi_{\xi}(t)$ is the characteristic function of ξ, (9) becomes

$$
\varphi_{\xi}(t+s)-\varphi_{\xi}(t) \varphi_{\xi}(s)=-t s \varphi_{\xi}(t+s) \varphi_{\xi}(t) \varphi_{\xi}(s)
$$

This identity can easily be verified directly since $\varphi_{\xi}(t)=1 /(1-\mathrm{it})$. To prove (10), we have from (9) and for $f=g$:

$$
\operatorname{Var} f(\xi)=\int_{0}^{+\infty}\left(E f^{\prime}(\xi+t)\right)^{2} \mathrm{e}^{-t} \mathrm{~d} t \geqslant \int_{0}^{+\infty} f^{\prime}(t)^{2} \mathrm{e}^{-t} \mathrm{~d} t
$$

since f^{\prime} is non-negative and non-decreasing. Theorem 2 follows.
We are now ready to prove the result corresponding to the inequality (1).

Theorem 3. Let the random variable ξ have a double exponential distribution. Then, for any convex function f on the real line,

$$
\begin{equation*}
\boldsymbol{E} f^{\prime}(\xi)^{2} \leqslant \operatorname{Var} f(\xi) \leqslant 4 \boldsymbol{E} f^{\prime}(\xi)^{2} \tag{11}
\end{equation*}
$$

with equality on the left-hand side for the function $f(x)=|x|$.
Proof. Recall that $\mathrm{d} v(x) / \mathrm{d} x=2^{-1} \exp (-|x|), x \in \mathbb{R}$. By symmetry, $\operatorname{Var}\left(\nu_{a}^{-}\right)=\operatorname{Var}\left(\nu_{-a}^{+}\right)$, so we need only to show that $\operatorname{Var}\left(v_{a}^{+}\right) \geqslant 1$, for all a real. When $a \geqslant 0, v_{a}^{+}$is the one-sided exponential distribution, hence, $\operatorname{Var}\left(v_{a}^{+}\right)=1$, and it only remains to consider the case $a \leqslant 0$. To perform some computations, we find it convenient to work with the distribution function $F_{a}(x)=v_{a}^{+}((a, x]) . F_{a}$ is simply a shift of v_{a}^{+}, and thus $\operatorname{Var}\left(v_{a}^{+}\right)=\operatorname{Var}\left(F_{a}\right)$. Clearly, F_{a} has density $\mathrm{e}^{-|a+x|} /\left(2-\mathrm{e}^{a}\right), x \geqslant 0$. Next, we use the elementary formulas

$$
\begin{aligned}
& \int x \mathrm{e}^{x} \mathrm{~d} x=(x-1) \mathrm{e}^{x}, \quad \int x \mathrm{e}^{-x} \mathrm{~d} x=-(x+1) \mathrm{e}^{-x}, \\
& \int x^{2} \mathrm{e}^{x} \mathrm{~d} x=\left(x^{2}-2 x+2\right) \mathrm{e}^{x}, \quad \int x^{2} \mathrm{e}^{-x} \mathrm{~d} x=-\left(x^{2}+2 x+2\right) e^{-x},
\end{aligned}
$$

to find

$$
\begin{aligned}
\left(2-\mathrm{e}^{a}\right) \int_{0}^{-a} x \mathrm{~d} F_{a}(x) & =\int_{0}^{-a} x \mathrm{e}^{(a+x)} \mathrm{d} x=\left.\mathrm{e}^{a}(x-1) \mathrm{e}^{x}\right|_{0} ^{-a} \\
& =\mathrm{e}^{a}\left[-(a+1) \mathrm{e}^{-a}+1\right]=-(a+1)+\mathrm{e}^{a} \\
\left(2-e^{a}\right) \int_{-a}^{\infty} x \mathrm{~d} F_{a}(x) & =\int_{-a}^{\infty} x \mathrm{e}^{-(a+x)} \mathrm{d} x=\left.\mathrm{e}^{-a}(-(x+1)) \mathrm{e}^{-x}\right|_{-a} ^{\infty} \\
& =1-a .
\end{aligned}
$$

Thus,

$$
\int_{0}^{\infty} x \mathrm{~d} F_{a}(x)=\frac{-2 a+\mathrm{e}^{a}}{2-\mathrm{e}^{a}} .
$$

Moreover,

$$
\begin{aligned}
& \left(2-\mathrm{e}^{a}\right) \int_{0}^{-a} x^{2} \mathrm{~d} F_{a}(x)=\left.\mathrm{e}^{a}\left(x^{2}-2 x+2\right) \mathrm{e}^{x}\right|_{0} ^{-a}=\left(a^{2}+2 a+2\right)-2 \mathrm{e}^{a}, \\
& \left(2-\mathrm{e}^{a}\right) \int_{-a}^{\infty} x^{2} \mathrm{~d} F_{a}(x)=-\left.\mathrm{e}^{-a}\left(x^{2}+2 x+2\right) \mathrm{e}^{-x}\right|_{-a} ^{\infty}=a^{2}-2 a+2,
\end{aligned}
$$

and thus,

$$
\int_{0}^{\infty} x^{2} d F_{a}(x)=\frac{2 a^{2}+4+\mathrm{e}^{a}}{2-\mathrm{e}^{a}}
$$

Hence,

$$
\operatorname{Var}\left(F_{a}\right)=\frac{2 a^{2}+4+\mathrm{e}^{a}}{2-\mathrm{e}^{a}}-\left(\frac{-2 a+\mathrm{e}^{a}}{2-\mathrm{e}^{a}}\right)^{2}=\frac{\mathrm{e}^{2 a}-2 a^{2} \mathrm{e}^{a}+4 a \mathrm{e}^{a}-8 \mathrm{e}^{a}+8}{\left(2-\mathrm{e}^{a}\right)^{2}}
$$

At this point, one can verify that $\operatorname{Var}\left(F_{a}\right) \rightarrow 2=\operatorname{Var}(v)$, as $a \rightarrow-\infty$, and that $\operatorname{Var}\left(F_{0}\right)=1$. Finally,

$$
\begin{aligned}
\operatorname{Var}\left(F_{a}\right) \geqslant 1 & \Longleftrightarrow \mathrm{e}^{2 a}-2 a^{2} \mathrm{e}^{a}+4 a \mathrm{e}^{a}-8 \mathrm{e}^{a}+8 \geqslant\left(2-\mathrm{e}^{a}\right)^{2} \\
& \Longleftrightarrow-2 a^{2} \mathrm{e}^{a}+4 a \mathrm{e}^{a}-4 \mathrm{e}^{a}+4 \geqslant 0 \\
& \Longleftrightarrow\left(a^{2}-2 a+2\right) \mathrm{e}^{a} \leqslant 2 \\
& \Longleftrightarrow t^{2}+2 t+2 \leqslant 2 \mathrm{e}^{t}=2\left(1+t+t^{2} / 2+\cdots\right)
\end{aligned}
$$

where $t=-a$. This last inequality is certainly true since $t \geqslant 0$. The left inequality of Theorem 3 is proved.

References

Cacoullos, T. (1982), On upper and lower bounds for the variance of a function of a random variable, Ann. Probab. 10, 799-809.
Cacoullos, T. (1989), Dual Poincaré-type inequalities via the Cramer-Rao and the Cauchy-Schwarz inequalities and related characterizations, in: Y.Dodge, ed., Statistical Data Analysis and Inference (Elsevier, Amsterdam) 239-249.
Cacoullos, T. and V. Papathanasiou (1992), Lower variance bounds and a new proof of the central limit theorem, J. Multivariate Anal. 43, 173-184.
Houdré, C. and A. Kagan (1995), Variance inequalities for functions of Gaussian variables, J. Theoret. Probab. 8, 23-30.
Klaassen, C.A.J. (1985), On an inequality of Chernoff, Ann. Probab. 13, 966-974.

[^0]: * Corresponding author.
 ${ }^{1}$ Research supported in part by the ISF grant NZX000 and NZX300 and by the Russian Foundation for Basic Research Grant 96-01-00201.
 ${ }^{2}$ Research supported in part by an NSF Postdoctoral Fellowship.

