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Summary. We present a simple proof, based on modi�ed logarithmic Sobolev
inequalities, of Talagrand’s concentration inequality for the exponential distri-
bution. We actually observe that every measure satisfying a Poincar�e inequality
shares the same concentration phenomenon. We also discuss exponential in-
tegrability under Poincar�e inequalities and its consequence to sharp diameter
upper bounds on spectral gaps.
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1 Introduction

The concentration phenomenon for the canonical Gaussian measure n on
Rn (cf. e.g. [L-T], [Le2]) expresses that for every Borel set A in Rn with
n(A)= 1

2 and every r = 0;

n(A+ rB2)= 1− e−r2=2 ; (1.1)

where B2 is the Euclidean unit ball in Rn. Equivalently, if f is a Lipschitz
map on Rn with Lipschitz coe�cient ‖f‖Lip 5 1 (with respect to the Euclidean
metric), for every t = 0;

n(f = M + t)5 e−t
2=2 ; (1.2)

where M is either the mean or a median of f for n. A few years ago,
M. Talagrand [Ta1] proved an isoperimetric inequality for the product mea-
sure of the exponential distribution which implies the following concentration
property. Let �n be the product measure on Rn when each factor is endowed
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with the measure of density 1
2e
−|x| with respect to Lebesgue measure. Then,

for every Borel set A with �n(A)= 1
2 and every r = 0;

�n(A+
√
rB2 + rB1)= 1− e−r=K ; (1.3)

where K¿0 is some numerical constant and where B1 is the ‘1 unit ball in
Rn, i.e.

B1 =
{
x = (x1; : : : ; xn) ∈ Rn;

n∑
i=1
|xi|5 1

}
:

A striking feature of (1.3) is that it may be used to improve some aspects of
the Gaussian concentration (1.1), especially for cubes (cf. [Ta1], [Ta2]).
As for (1.1), inequality (1.3) may be translated equivalently on functions

in the following way (see the end of Sect. 2 for details). For every real-valued
function f on Rn such that ‖f‖Lip 5 � and

|f(x)− f(y)|5 �
n∑
i=1
|xi − yi |; x; y ∈ Rn ;

for every t = 0;

�n(f=M + t)5 exp
(
− 1
K
min
(
t
�
;
t2

�2

))
(1.4)

for some numerical constant K¿0 where M is either the mean or a median
of f for �n. By Rademacher’s theorem, the hypotheses on f are equivalent to
saying that f is almost everywhere di�erentiable with

n∑
i=1
|@if|2 5 �2 and max

15i5n
|@if|5 � a.e.

Similar inequalities hold for products of the one-sided exponential distribution.
The �rst aim of this work is to present an elementary proof of inequality

(1.4) (and thus (1.3)) based on logarithmic Sobolev inequalities. An alter-
nate proof, however close to Talagrand’s ideas, has already been given by
B. Maurey using inf-convolution [Ma] (see also [Ta3]). M. Talagrand himself
obtained recently another proof as a consequence of a stronger transportation
cost inequality [Ta4]. Our approach is simpler even than the transportation
method, and connects to a well known theory. To illustrate it, let us �rst recall
that the deviation inequality (1.2) may be shown to follow from the logarith-
mic Sobolev inequality for the Gaussian measure n ([Gr]) that expresses that,
for every smooth function g on Rn,∫

g2 log g2 dn −
∫
g2 dn log

∫
g2 dn 5 2

∫ |∇g|2 dn ; (1.5)

where |∇g| denotes the Euclidean length of the gradient ∇g of g. The argu-
ment goes back to I. Herbst and to E.B. Davies and B. Simon [D-S] and has
been revived recently in [A-M-S], [A-S], [Le1], [Le3]. It consists in apply-
ing (1.5) to g2 = e�f where � ∈ R and ‖f‖Lip 5 1 to deduce the di�erential
inequality

�F ′(�)− F(�) logF(�)5 �2

2
F(�)



Poincar�e’s inequalities and Talagrand’s concentration phenomenon 385

on the Laplace transform F(�) =
∫
e�f dn of f. Integration of this inequality

then easily yields
F(�)5 e�

∫
fdn+�2=2; � ∈ R ;

from which (1.2) follows together with Chebyshev’s inequality.
Following this procedure in case of the exponential distribution would

require to determine the appropriate logarithmic Sobolev inequality satis�ed
by �n. We cannot hope for an inequality such as (1.5) simply because the
preceding argument would imply that linear functionals have a Gaussian tail
for �n. To investigate analogues of (1.5) for �n, it is enough, by the funda-
mental product property of logarithmic Sobolev inequalities, to consider the
dimension 1. We work here with the one-sided exponential distribution. One
�rst inequality may be deduced from the Gaussian logarithmic Sobolev in-
equality. Given a smooth function f on R+, apply (1.5) in dimension 2 to
g(x; y) = f((x2 + y2)=2). Let �̃1 denote the one-sided exponential distribution
with density e−x with respect to Lebesgue measure on R+, and let �̃n denote
the product measure on R+n. Then∫

f2 logf2 d�̃1 −
∫
f2 d�̃1 log

∫
f2 d�̃1 5 4

∫
xf′(x)2 d�̃1(x) :

By the product property of entropy, for every smooth f on R+n,

∫
f2 logf2 d�̃n −

∫
f2 d�̃n log

∫
f2 d�̃n 5 4

∫ n∑
i=1
xi@if(x)2d�̃n(x) : (1.6)

It does not seem however that this logarithmic Sobolev inequality (1.6) can
yield the concentration property (1.4) (for �̃n) via the preceding Laplace trans-
form approach. In a sense, this negative observation is compatible with the fact
that (1.4) improves upon some aspects of the Gaussian concentration which is
a consequence of (1.5) as (1.6) is one! We thus have to look for some other
version of the logarithmic Sobolev inequality for the exponential distribution.
To this aim, let us observe that, at the level of Poincar�e inequalities, there are
two distinct inequalities. For simplicity, let us deal again only with n = 1: The
�rst one, in the spirit of (1.6), indicates that∫

f2 d�̃1 −
( ∫
f d�̃1

)2
5
∫
xf′(x)2 d�̃1(x) :

This may be shown, either from the Gaussian Poincar�e inequality as before,
with however a worse constant, or by noting that the �rst eigenvalue of the
Laguerre generator with invariant measure �̃1 is 1 (cf. [K-S]. By the way, that
4 is the best constant in (1.6) is an easy consequence of the Laplace trans-
form method described above. Namely, if (1.6) holds with a constant C¡4;
a function f; on R+ for simplicity, such that xf′(x)2 5 1 almost everywhere
would be such that

∫
ef

2=4 d�̃1¡∞. But the example of f(x) = 2√x contra-
dicts this consequence and we thus recover in this simple way the main result
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of [K-S].). The second inequality appeared in the work by M. Talagrand [Ta1],
actually going back to [Kl], and states that∫

f2 d�̃1 −
( ∫
f d�̃1

)2
5 4

∫
f′2 d�̃1 : (1.7)

These two inequalities are not comparable and, in a sense, we are looking for
an analogue of (1.7) for entropy. Our �rst main result in this direction will be
that for any Lipschitz function f on R+ with |f′|5 c¡1 a.e.,

∫
fef d�̃1 −

∫
ef d�̃1 log

∫
ef d�̃1 5

2
1− c

∫
f′2ef d�̃1 : (1.8)

This inequality is the right inequality to perform, after tensorisation in
n-dimension, the approach based on a di�erential inequality on Laplace trans-
forms and to reach, in this way, Talagrand’s concentration (1.4). This result
is moreover a further step in the program of [Le3] that intends to investigate
Talagrand’s inequalities for product measures [Ta3] from a functional point of
view based on logarithmic Sobolev inequalities.
It actually turns out that there is a general principle behind the example

of the exponential distribution and that the Poincar�e inequality (1.7) plays
a crucial role in this question. As a main result, we will namely prove that
any measure satisfying such a Poincar�e inequality will satisfy an inequality
on entropy such as (1.8), and therefore a concentration result similar to the
one for the exponential measure. The conclusion will be sharp in the sense
that, starting from the Poincar�e inequality for the Gaussian measure, we will
even recover Gross’s logarithmic Sobolev with its best constant. The general
result strengthens and clari�es some aspects of a prior result of [Ta3] (in
the context of penalties) that deals with a stronger condition than Poincar�e’s
inequality.
We prove (1.8) in Sect. 2, as well as the application to Talagrand’s

inequality, while in Sect. 3 we discuss the general case and establish our main
result about “modi�ed” logarithmic Sobolev and concentration inequalities un-
der Poincar�e inequalities. In the last part of this work, we collect several results
on exponential integrability. In particular, we improve with this tool some re-
cent upper bounds on spectral gaps (of Laplace operators for example) of
F.R.K. Chung, A. Grigor’yan and S.-T. Yau [C-G-Y] in terms of distances
between disjoint sets.
For simplicity, we denote throughout this work, for a function f on

a probability space (E;E; �);

Var�(f) =
∫
f2 d� − ( ∫ f d�)2

and, when f = 0;

Ent�(f) =
∫
f logf d� − ∫ f d� log ∫ f d�

(under appropriate integrability conditions).
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2 Logarithmic Sobolev inequality and Talagrand’s concentration
phenomenon for the exponential measure

We will work with the double exponential distribution �1. It is plain that all
the results hold, with the obvious modi�cations, for the one-sided exponential
distribution �̃1. For the sake of completeness and comparison, we �rst recall the
proof of (1.7). Denote by Ln the space of all continuous almost everywhere
di�erentiable functions f :Rn → R such that

∫ |f|d�n¡∞; ∫ |∇f|d�n¡∞
and limxi→±∞ e

−|xi|f(x1; : : : ; xi; : : : ; xn)=0 for every i=1; : : : ; n and x1; : : : ; xi−1;
xi+1; : : : ; xn∈R. The main argument of the proof is the following simple ob-
servation. If ’∈L1, by the integration by parts formula,∫

’d�1 = ’(0) +
∫
sgn(x)’′(x)d�1 : (2.1)

Lemma 2.1. For every f∈L1;
Var�1 (f)5 4

∫
f′2 d�1 :

Proof. Set g(x) = f(x)− f(0). Then, by (2.1) and the Cauchy–Schwarz
inequality,∫

g2 d�1 = 2
∫
sgn(x)g′(x)g(x)d�1(x)5 2

(∫
g′2 d�1

)1=2 (∫
g2 d�1

)1=2
:

Since Var�1 (f) = Var�1 (g)5
∫
g2 d�1, and g′ = f′, the lemma follows.

We turn to the corresponding inequality for entropy (1.8) and the main
result of this section.

Proposition 2.2. For every Lipschitz function f on R such that |f′|5 c¡1
a.e.;

Ent�1 (e
f)5

2
1− c

∫
f′2ef d�1 :

Note that Proposition 2.2, when applied to functions �f as �→ 0, implies
Lemma 2.1.

Proof. Changing f into f+const we may assume that f(0) = 0. Since

u log u= u− 1; u= 0 ;

we have
Ent�1 (e

f)5
∫
[fef − ef + 1]d�1 :

Since |f′|5 c¡1 a.e., the functions ef; fef and f2ef all belong to L1.
Therefore, by repeated use of (2.1),∫

[fef − ef + 1]d�1 =
∫
sgn(x)f′(x)f(x)ef(x) d�1(x)

and ∫
f2ef d�1 = 2

∫
sgn(x)f′(x)f(x)ef(x) d�1(x)

+
∫
sgn(x)f′(x)f(x)2ef(x) d�1(x) :
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By the Cauchy–Schwarz inequality and the assumption on f′,∫
f2ef d�1 5 2

(∫
f′2ef d�1

)1=2 (∫
f2ef d�1

)1=2
+ c

∫
f2ef d�1

so that ∫
f2ef d�1 5

(
2

1− c
)2 ∫

f′2ef d�1 :

Now, by the Cauchy–Schwarz inequality again,

Ent�1 (e
f)5

∫
sgn(x)f′(x)f(x)ef(x) d�1(x)

5
(∫
f′2ef d�1

)1=2 (∫
f2ef d�1

)1=2
5

2
1− c

∫
f′2ef d�1

which is the result. Proposition 1 is established.

We are now ready to describe the application to Talagrand’s concentra-
tion inequality (1.4). The basic product property of entropy (cf. e.g. [Le3],
Proposition 4.1) indicates that

Ent�n(e
f)5

∫ n∑
i=1
Ent�1 (e

fi)d�n (2.2)

where we write fi to emphasise the fact that we consider f as a function
of the i-variable, while all other coordinates are �xed. Thus, as a conse-
quence of Proposition 2.2, for every smooth function f on Rn such that
max15i5n |@if|5 1 a.e. and every �; |�|5 c¡1,

Ent�n(e
�f)5

2�2

1− c
∫ n∑
i=1
(@if)2e�f d�n : (2.3)

Let us take for simplicity c = 1
2 (although c¡1 might improve some numerical

constants below). Assume moreover that
∑n

i=1(@if)
2 5 �2 a.e. and denote by

F(�) =
∫
e�fd�n; �∈R, the Laplace transform of f. Then, by (2.3),

Ent�n(e
�f) = �F ′(�)− F(�) logF(�)5 4�2�2F(�)

for every |�|5 1
2 . Setting H (�) = (1=�) logF(�); H (0) =

∫
fd�n, shows that

H ′(�)5 4�2 for |�|5 1
2 . Therefore, always for |�|5 1

2 ,

F(�) =
∫
e�f d�n 5 e�

∫
fd�n+4�2�2 :

By Chebyshev’s inequality, we �nally get that

�n(f =
∫
fd�n + t)5 exp

(
−1
4
min

(
t;
t2

4�2

))
for every t = 0, where f is thus a Lipschitz map on Rn with

∑n
i=1 |@if|2 5 �2

and max15i5n |@if|5 1 a.e. By homogeneity, this inequality amounts to (1.4)
(with K = 16) and our claim is proved. As already mentioned, we have a
similar result for the one-sided exponential measure.
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To complete this section, let us sketch the equivalence between (1.3) and
(1.4). (Although we present the argument for �n only, it of course extends to
more general situations, as will be used in the next section.) To see that (1.3)
implies (1.4), simply apply (1.3) to A = {f 5 M} where M is a median of f
for �n and note that

A+
√
rB2 + rB1 ⊂ {f 5 M + �

√
r + �r} :

Using a routine argument (cf. [M-S], pp. 142–143), the deviation inequality
(1.4) from either the median or the mean are equivalent up to numerical con-
stants (with possibly a further constant in front of the exponential function).
Now starting from (1.4) with M the mean for example, consider, for A ⊂ Rn

and x = (x1; : : : ; xn)∈Rn,

FA(x) = inf
a∈A

n∑
i=1
min(|xi − ai|; |xi − ai|2) :

For r¿0, set then f = min(FA; r). We have
∑n

i=1 |@if|2 5 4r and
max15i5n |@if|5 2 a.e. Indeed, it is enough to prove this result for g =
min(ga; r) for every �xed a where

ga(x) =
n∑
i=1
min(|xi − ai|; |xi − ai|2) :

Now, a.e., and for every i = 1; : : : ; n; |@iga(x)|5 2|xi − ai| if |xi − ai|5 1
whereas |@iga(x)|5 1 if |xi − ai|¿1. Therefore, max15i5n |@iga(x)|5 2 and

n∑
i=1
|@iga(x)|2 5 4

n∑
i=1
min(|xi − ai|; |xi − ai|2) = 4ga(x)

which yields the result. Now, if �n(A)= 1
2 ;
∫
fd�n 5 r(1− �n(A))5r=2. It

then follows from (1.4) that

�n(FA = r) = �n(f = r)5 �n
(
f = M +

r
2

)
5 e−r=16K :

Since {FA 5 r} ⊂ A+√rB2 + rB1, the claim follows.

3 The abstract case

In this section, we will investigate the preceding modi�ed logarithmic Sobolev
type inequalities (Proposition 2.2) in an abstract setting and will observe, some-
what surprisingly, that they always hold under a Poincar�e inequality only. We
may then prove concentration results similar to the one for the exponential
distribution in a rather general framework.
Let us consider a probability measure � say, for simplicity, on a metric

space (E; d) equipped with its Borel sets. For a real-valued function f on E,
we de�ne the “length” of its gradient at x∈E (possibly in�nite) as

|∇f|(x) = lim sup
y→x

|f(x)− f(y)|
d(x; y)

:
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We say that � satis�es a Poincar�e inequality with constant �1 if, for every f
such that

∫
f2 d�¡∞ and

∫ |∇f|2 d�¡∞,
�1Var�(f)5

∫ |∇f|2 d� : (3.1)

In what follows, we always assume that �1¿0. We refer to [B-H] for more
details on this (very) abstract setting (in which we do not want to enter here).
Let us simply mention that such a framework should include Riemanian mani-
folds with �nite (normalized Riemanian measure) for which �1 (with the usual
notation) corresponds to the �rst eigenvalue of the Laplace operator. One may
also consider Markov di�usion generators with the “carr�e du champ” operator
[Ba]. We will be interested in this section in a modi�ed logarithmic Sobolev
inequality for measures � for which �1¿0 and its application to concentra-
tion properties for the product measures �n. The exponential integrability for �
itself will be studied in Sect. 4.
As announced, our main result indicates that we always have a logarith-

mic Sobolev inequality such as the one in Proposition 2.2 under a Poincar�e
inequality (3.1). More precisely, the following holds. For simplicity, we work
with bounded functions. It is plain that the various results may appropriately
be extended to larger classes of functions according to the setting with which
we will be dealing. We write below Var = Var� and Ent = Ent�.

Theorem 3.1. For any bounded function f on E such that |∇f|5c¡2√�1
�-a.e.;

Ent(ef)5 K(c)
∫ |∇f|2efd� ;

where

K(c) =
1
2�1

(
2
√
�1 + c

2
√
�1 − c

)2
ec
√
5=�1 :

As a corollary, we obtain, as in Sect. 2, a concentration inequality of Ta-
lagrand’s type for the product measure �n of � on En. As in (2.2) and (2.3),
the logarithmic Sobolev inequality of the theorem tensorises to yield that, if f
bounded on En satis�es max15i5n|∇if|5 1 a.e. with respect to the product
measure �n (where |∇if| denotes the length of the gradient with respect to the
ith coordinate), then, for every |�|5 c¡2

√
�1,

Ent�n(e�f) = �
∫
fe�fd�n − ∫ e�fd�n log ∫ e�fd�n

5 K(c)�2
∫ n∑
i=1
|∇if|2e�fd�n : (3.2)

Integrating this di�erential inequality on the Laplace transform
∫
e�f d�n of f

yields, as in Sect. 2, the following consequence.

Corollary 3.2. Assume that � satis�es (3.1) with �1¿0 and denote by �n the
product of � on the product space En. Then; for every bounded function f
on En such that

n∑
i=1
|∇if|2 5 �2 and max

15i5n
|∇if|5 �
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�-a.e.; and every t = 0

�n(f =
∫
f d�n + t)5 exp

(
− 1
K1
min
(
t
�
;
t2

�2

))
;

where K1¿0 only depends on �1¿0.

One may obtain a similar statement for products of possibly di�erent mea-
sures � with a uniform lower bound on the constants �1 in the Poincar�e
inequalities (3.1).
Following the argument at the end of Sect. 2, Corollary 3.2 may be turned

into an inequality on sets such as (1.3). More precisely, if �n(A)= 1
2 , for

every r = 0 and some numerical constant K¿0,

�n(FhA = r)5 e−r=K ; (3.3)

where h(x; y) = min(d(x; y); d(x; y)2); x; y ∈ E; and, for x = (x1; : : : ; xn) ∈ En
and A ⊂ En;

FhA (x) = infa∈A

n∑
i=1
h(xi; ai):

Inequalities such as (3.3) were considered by M. Talagrand in his study
of general penalty functions h under conditions related to the measure � [Ta3,
Theorem 2.7.1]. In this special case however, his conditions on � appear to
be more stringent than a Poincar�e inequality. Namely, if E = R and h(x; y) =
min(|x − y|; |x − y|2), conditions (2.7.1) and (2.7.2) of Theorem 2.7.1 in [Ta3]
are equivalent to saying that, for every r = 0,

�(Ar)= G(G−1(�(A))) + r ;

where G is the distribution function of �1 and G−1 is its inverse. This inequality
is equivalent to its in�nitesimal version as r tends to 0, that is

�+(A)= min(�(A); 1− �(A))
(where �+(A) = lim supr→0(1=r)[�(Ar)− �(A)]): This may also be translated
equivalently on functions as∫ |f −M |d�5 ∫ |∇f|d�
with M a median of f for � (cf. [B-H]). In an abstract setting, and when h
is de�ned as h(x; y) = min(d(x; y); d(x; y)2), conditions (2.7.1) and (2.7.2) of
[Ta3] thus similarly amounts to say that, for some c¿0 and every f,

c
∫ |f −M |d�5 ∫ |∇f|d�

with M a median of f for � (or the mean actually). It is known that �1 =
c2=4. This is the so-called Cheeger inequality in Riemanian geometry (if M
is the mean, �1 = c2=8) ([Ch], [Bu], [Ya]). But the existence of c¿0 is in
general a stronger condition than �1¿0. For example, and following [Bu] (and
the references therein), it is possible to perturb the Riemanian structure of a
(compact) manifold near any given subdividing hypersurface as to make c
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arbitrarily small with hardly a�ecting �1. One may also compare the two
inequalities on the real line, with the usual gradient. On some interval con-
taining the origin, say [−1;+1], let � be the probability measure with den-
sity p(x) = �|x|�, 0¡�¡1, where � = (�+ 1)=2 is the normalizing constant.
Since p(0) = 0; �+([0; 1]) = 0 while �([0; 1]) = 1

2 so that the Cheeger con-
stant c of � is zero (cf. also [B-H]). On the other hand, this measure will
satisfy a Poincar�e inequality. Actually, if � is any probability measure with
density p(x)¿0 for almost every x in some interval I; then for every smooth
function f on I , (∫

I
|f′(x)|dx

)2
5
∫
I
|f′|2 d� ∫

I

1
p(x)

dx (3.4)

by the Cauchy–Schwarz inequality. Now, for any function f with values in
[a; b], and any measure �, Var�(f)5 1

4 (b− a)2 so that, if f is smooth on I ,
and takes arbitrary values,

Var�(f)5
1
4
‖f‖2TV =

1
4

(∫
I
|f′(x)|dx

)2
;

where ‖ · ‖TV is the total variation norm. Together with (3.4), we thus get
that if � has density p¿0 on I ,

Var�(f)5 C
∫
I
|f′2|d�

with C = 1
4

∫
I p(x)

−1 dx. When p(x) = �|x|�; 0¡�¡1; C = 1=(1− �)2¡∞
so that �1¿0 for this measure while, as we have seen, c = 0. For this penalty
function h, Theorem 3.1 thus improves, with a simple direct proof, Theorem
2.7.1 of [Ta3]. (When we informed M. Talagrand about this result, he men-
tioned to us that, while writing [Ta3], he convinced himself of the optimality of
his conditions (2.7.1) and (2.7.2). As he now realizes it, the argument turned
out to be erroneous and he can also modify the proof of his Theorem 2.7.1 in
order to reach a similar conclusion.)
Before turning to the proof of Theorem 3.1, let us observe that for the case

of the exponential measure �, �1 = 1
4 by Lemma 2.1 so that, for c¡1,

K(c) = 2
(
1 + c
1− c

)2
e2
√
5c

which is somewhat worse than the constant in Proposition 2.2. An important
feature of this constant is however that K(c)→ 1=(2�1) as c→ 0. In particular
(and as in Proposition 2.2), the logarithmic Sobolev inequality of the theo-
rem implies the Poincar�e inequality (3.1) by applying it to functions �f with
�→ 0. On the other hand, let us consider the case of the canonical Gaussian
measure 1 on the real line for which it is known that �1 = 1. Let g be a
Lipschitz function on R and apply the multidimensional analogue (cf. (3.2))
of Theorem 3.1 to the functions

f(x) = g
(
x1 + · · ·+ xn√

n

)
; x = (x1; : : : ; xn) ∈ Rn ;



Poincar�e’s inequalities and Talagrand’s concentration phenomenon 393

for which max15i5n|@if|5 ‖g‖Lip=
√
n = cn¡2 for n large enough. By the

rotational invariance of Gaussian measures, and since cn → 0, we get in the
limit

Ent1 (e
g)5

1
2

∫
g′2eg d1 ;

that is, Gross’s logarithmic Sobolev inequality (1.5) with optimal constant.
Therefore, for the Gaussian measure, Poincar�e and logarithmic Sobolev in-
equalities are in a sense equivalent.

Proof of Theorem 3.1. We split the proof in two propositions of indepen-
dent interest. We thus assume throughout the argument that (3.1) holds with
�1¿0.

Proposition 3.3. For any bounded function f on E with |∇f|5 c¡2
√
�1

and
∫
f d� = 0; ∫

f2ef d�5
1
�1

(
2
√
�1 + c

2
√
�1 − c

)2 ∫ |∇f|2ef d� :
Proof. Set a2 =

∫
f2ef d� and b2 =

∫ |∇f|2ef d�. By (3.1), for any two
(bounded) functions g and h on E with

∫
g d� = 0,

�21(
∫
gh d�)2 5

∫ |∇g|2 d� ∫ |∇h|2 d� :
Therefore,

4�21(
∫
fef=2 d�)2 5

∫ |∇f|2 d� ∫ |∇f|2ef d�5 c2b2 : (3.5)

In addition,

�1 Var(fef=2)5
∫ |∇f|2(1 + f

2

)2
ef d�5 b2 +

∫ |∇f|2fef d� + c2a2
4

:

By Cauchy–Schwarz,∫ |∇f|2fef d� = ∫ (|∇f|fef=2)(|∇f|ef=2)d�5 cab ;

so that

�1 Var(fef=2)5
(
b+

ca
2

)2
: (3.6)

Combining (3.5) and (3.6), we get that

a2 = (
∫
fef=2 d�)2 + Var(fef=2)5

c2b2

4�21
+
1
�1

(
b+

ca
2

)2
:

Hence, (2�1a)2 5 (cb)2 + �1(2b+ ca)2 so that 2�1a5 cb+ 2
√
�1b+ c

√
�1a

and
a(2�1 − c

√
�1)5 2

√
�1 + c

and the conclusion follows. Proposition 3.3 is established.

We turn to the second step of the proof.
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Proposition 3.4. For any bounded function f on E with |∇f|5 c and∫
f d� = 0; we have ∫

f2 d�5 ec
√
5=�1
∫
f2e−|f| d� :

Proof. For all u ¿ 0 and v ∈ R; we have 2|v|5 u+ (1=u)v2; hence 2|v|3 5
uv2 + (1=u)v4. Therefore,

2
∫ |f|3 d�5 u

∫
f2 d� +

1
u

∫
f4 d� : (3.7)

Write
∫
f4 d� = (

∫
f2 d�)2 + Var(f2). By (3.1) and the hypothesis on |∇f|;

�1
∫
f2 d�5

∫ |∇f|2 d�5 c2 ;

so that �1(
∫
f2 d�)2 5 c2

∫
f2 d�. Again by (3.1), but now applied to f2;

�1 Var(f2)5 4
∫
f2|∇f|2 d�5 4c2

∫
f2 d� :

It follows that �1
∫
f4 d�5 5c2

∫
f2 d�. According to (3.7), for every u¿0;

2
∫ |f|3 d�5 (

u+
5c2

u�1

)∫
f2 d� :

Minimizing over u¿0 (u =
√
5c2=�1); we get

∫ |f|3 d�5 c

√
5
�1

∫
f2 d� : (3.8)

Consider now the probability measure d� = f2 d�=
∫
f2 d�. Then, by

Jensen’s inequality,∫
f2e−|f| d� =

∫
e−|f| d�

∫
f2 d�= e−

∫
|f| d�∫ f2 d� :

But, by (3.8), ∫ |f|d� = ∫ |f|3 d�∫
f2 d�

5 c

√
5
�1

from which the result follows. The proof of Proposition 3.4 is thus com-
plete.

We can now complete the proof of Theorem 3.1. Since both sides of
the inequality we have to establish are invariant under the translations f →
f + const; we may and do assume that

∫
f d� = 0. As in the proof of

Proposition 2.2,
Ent(ef)5

∫
[fef − ef + 1]d� :

Since
∫
f d� = 0; by Taylor’s formula,

∫
[fef − ef + 1]d� = ∫ 1∫

0
tf2e tf dt d� :
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Let ’(t) =
∫
f2e tf d� on [0,1]. By convexity, ’ attains its maximum at either

t = 0; or t = 1. By Proposition 3.4, and since e−|f| 5 ef; ’(0)5 ec
√
5=�1’(1);

so that, for every t ∈ [0; 1]; ’(t)5 ec
√
5=�1’(1). It follows that

Ent(ef)5
1∫
0
t’(t) dt 5

1∫
0
tec
√
5=�1’(1) dt =

1
2
ec
√
5=�1
∫
f2ef d� :

Together with Proposition 3.3, Theorem 3.1 is established.

4 Poincar�e inequalities and exponential integrability

In the last part of this note, we present some results on exponential integrability
under Poincar�e type inequalities and on sharp upper bounds on spectral gaps
using diameters. We take again the abstract (and informal) setting of Sect. 3
and assume that we have a Poincar�e type inequality

�1 Var(f)5
∫ |∇f|2 d� (4.1)

for every f; with �1¿0.
It is known since the work [G-M] by M. Gromov and V.D. Milman that

under (4.1), Lipschitz functions are exponentially integrable. (See also the work
[B-U], the methods of which easily extend to an abstract setting as above.)
More precisely, it is shown in [G-M], that, for every set A in E with �(A)= 1

2 ;
and every r=0;

�(Ar)= 1− Ke−r
√
�1=K (4.2)

where Ar = {x ∈ E; d(x; A)¡r} and K¿0 is some numerical constant. Let
now f be a Lipschitz function on E in the sense that |∇f|(x)51 for �-a.e.
x in E. Let furthermore M be a median of f for �; that is � (f=M);
�(f5M)= 1

2 . Applying (4.2) to A = {f5M}; and since Ar ⊂ {f5M + r};
we deduce that, for every t=0;

�(f = M + t)5 Ke−t
√
�1=K :

Together with the corresponding inequality for −f; for every t = 0;

�(|f −M |= t)5 2Ke−t
√
�1=K :

In particular, ∫
e�|f−M | d�5 1 +

2K2�√
�1 − K�

(4.3)

for every � ¡
√
�1=K .

With di�erent proofs, and somewhat improved bounds, this result was
re-obtained in [A-M-S] and [A-S]. (It also follows from Corollary 3.2 or
(3.3) with n = 1.) Moreover, sharp constants were recently deduced by
M. Schmuckenschl�ager [Sc]. He showed that, under (4.1), for every function f
such that |∇f|5 1 and

∫
f d�=0 and every 05�¡2

√
�1;∫

e�f d�5
16�21

(2
√
�1 − �)4

: (4.4)
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The example of the exponential distribution �1; for which �1 = 1
4 ; and the

function f(x) = x; for which,∫
e�f d�1 =

1
1− �2

show that the condition � ¡ 2
√
�1 is sharp in (4.4). On the other hand, the

bound on the integral in (4.4) is not sharp as �→ 2
√
�1. This bound may be

improved according to the next result. The proof is similar to the one in [A-S].

Proposition 4.1. Assume that (4.1) holds and let f be such that |∇f|5 1
and

∫
f d� = 0. Then; for every 05 �¡2

√
�1;∫

e�f d�5
2
√
�1 + �

2
√
�1 − �

:

Proof. Set u(�) =
∫
e�f d�; �=0; assuming for simplicity that f is bounded.

Applying (4.1) to e�f=2 yields that u(�)− u(�=2)2 5 (�2=4�1)u(�); that is, for
every � ¡ 2

√
�1;

u(�)5
4�1

4�1 − �2 u
(
�
2

)2
:

Applying the same inequality for �=2 and iterating, yields, after n steps,

u(�)5
n−1∏
k=0

(
4�1

4�1 − �2=4k
)2k
u
(
�
2n

)
:

Since u(�) = 1 + o(�); we have that u(��)� → 1 as �→∞. Therefore,

u(�)5 U (�) =
∞∏
k=0

(
4�1

4�1 − �2=4k
)2k
;

where the product converges whenever �¡2
√
�1. The proof of the proposition

is easily completed. Introduce

V (�) =
∞∏
k=1

(
4�1

4�1 − �2=4k
)2k

so that

U (�) =
4�1

4�1 − �2V (�) :
It will be enough to show that√

V (�)5
(2
√
�1 + �)
2
√
�1

: (4.5)

By Taylor’s formula,

logV (�) =
∞∑
k=1
2k log

(
1

1− �2
4�1

· 1
4k

)

=
∞∑
k=1
2k

∞∑
n=1

�2n

n(4�1)n
· 1
4nk

=
∞∑
n=1

(
�2

4�1

)n
1

n(22n−1 − 1) : (4.6)
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In particular, V is log-convex. Then
√
V (�) is convex and V (0) = 1 so that

(4.5) amounts to say that V (2
√
�1)5 4; that is

logV (2
√
�1) =

∞∑
n=1

1
n(22n−1 − 1)

5 1 +
∞∑
n=2

1
n4n−1

= 1 + 4
(
−log

(
1− 1

4

)
− 1
4

)
= 4 log

4
3
:

It remains to note that ( 43 )
4 5 4. The proof of Proposition 4.1 is com-

plete.

If we apply (4.1) to sh(�f=2); when f is symmetrically distributed, we
immediately get a somewhat sharper bound than the one in Proposition 4.1,
namely ∫

e�f d�5
4�1 + �2

4�1 − �2 ; � ¡ 2
√
�1 :

We will use the sh function in a similar argument below.
We now apply the preceding exponential integrability to bounds on the

spectral gap �1 in terms of distances between disjoints sets. Let A; B be two
disjoint sets in E with D = d(A; B). Apply Proposition 4.1 (or (4.3)) to f(x) =
d(x; B) in the following way:

∫
A

∫
B
e�(f(x)−f(y)) d�(x)d�(y)5

∫
e�(f−M) d�

∫
e�(M−f) d�5

(
2
√
�1 + �

2
√
�1 − �

)2
where M =

∫
f d�. Since, by the choice of f;∫
A

∫
B
e�(f(x)−f(y)) d�(x)d�(y)= e�D�(A)�(B) ;

we obtain, taking for example �=
√
�1;

�15
1
D2
log2

(
C

�(A)�(B)

)
(4.7)

with C =9 (starting with (4.3) would simply yield a worse constant C):
Inequalities such as (4.7) have been considered recently by F.R.K. Chung,

A. Grigory’an and S.-T. Yau who showed (4.7) with C =4 using heat kernel
expansions [C-G-Y1], and then with C = e [C-G-Y2] using the wave equation.
(They actually establish similar inequalities for all the sequence of eigenvalues,
something we do not consider here. They also establish similar results on
graphs.) To conclude this work, we would like to briey indicate how one may
improve in a simple way, and in the spirit of the proof of Proposition 4.1 (and
the methods developed in this work), the value of the numerical constant C
in (4.7).
Start again with the Poincar�e inequality (4.1), but on the product space

E × E with product measure � ⊗ �; that is
�1
∫
f2 d� ⊗ d�5 ∫ |∇xf|2 + |∇yf|2 d� ⊗ d�



398 S. Bobkov, M. Ledoux

for every f on E × E with ∫ f d� ⊗ d�=0: Apply this inequality to the func-
tion f(x; y)= sh(�g(x; y)=2); �= 0; where g(x; y)= h(x)− h(y) with |∇h|51:
Since

∫
sh(�g=2)d� ⊗ d�=0; we get

�1
∫
sh2
(
�g
2

)
d� ⊗ d�5 �2

4

∫ |∇g|2ch2(�g
2

)
d� ⊗ d� ;

that is ∫
[4�1 − �2|∇g|2]ch2

(
�g
2

)
d� ⊗ d�5 4�1 : (4.8)

Now |∇g|25 2 (on the product space), so that, for every �¡
√
2�1; we already

have ∫
ch2
(
�g
2

)
d� ⊗ d�5 2�1

2�1 − �2 :

By symmetry of g(x; y)= h(x)− h(y) on E × E;∫
ch2
(
�g
2

)
d� ⊗ d� = 1

2

(∫
e�gd� ⊗ d� + 1) :

Hence, for �¡
√
2�1;∫
e�gd� ⊗ d�5 4�1

2�1 − �2 − 1 =
2�1 + �2

2�1 − �2 : (4.9)

Now, if A; B ⊂ E; d(A; B)=D¿ 0; and h(x)=d(x; B); as before,∫
e�g d� ⊗ d�= ∫

A

∫
B
e�[d(x; B)−d(y;B)] d�(x)d�(y)= �(A)�(B)e� D:

Choose then �=
√
�1 in (4.9) to get

�15
1
D2

log2
(

3
�(A)�(B)

)
:

It is not too di�cult to improve the preceding argument. Start again with
(4.8) and g(x; y)= h(x)− h(y) and set h(x)=min(d(x; B); D): Then, as is eas-
ily seen,

• if x; y ∈ A; or x; y∈B; then |∇g|=0; g=0;
• if x∈A; y∈B or x∈B; y∈A; then |∇g|=0; g= ± D;
• in any case, |∇g|25 2 and ch(�g=2)= 1:

Then, if 0¡�¡
√
2�1;∫

[4�1 − �2|∇g|2]ch2
(
�g
2

)
d� ⊗ d� = 4�1[�(A)2 + �(B)2]

+ 8�1ch
2
(
�D
2

)
�(A)�(B)

+ (4�1 − 2�2)[1− (�(A) + �(B))2] :



Poincar�e’s inequalities and Talagrand’s concentration phenomenon 399

Choosing �=
√
�1 (but other choices are probably also interesting), we get

together with (4.8),

8�(A)�(B)ch2
(√

�1D
2

)
5 1− (�(A)− �(B))25 1 ;

that is,

e
√
�1D + e−

√
�1D5

1
�(A)�(B)

− 25 1
�(A)�(B)

:

We may therefore state the following simple improvement upon [C-G-Y].

Proposition 4.2. For any two sets A and B with D=d(A; B);

�15
1
D2
log2

(
1

�(A)�(B)

)
:
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