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ISOPERIMETRIC CONSTANTS FOR PRODUCT
PROBABILITY MEASURES

By S. G. Bobkov1 and C. Houdré2

Syktyvkar University and Georgia Institute of Technology

A dimension free lower bound is found for isoperimetric constants of
product probability measures. From this, some analytic inequalities are
derived.

1. Introduction. Let �X�d� be a metric space equipped with a separable
Borel probability measure µ, and assume that µ is not a unit mass at a point.
In the present paper we study the quantity

Is�µ� = inf
µ+�A�

min�µ�A�� 1 − µ�A��(1.1)

which was introduced by Cheeger [6] in a Riemannian geometry context. The
infimum in (1.1) is taken over all Borel sets A ⊂ X of measure 0 < µ�A� < 1
(such sets exist by the assumptions on µ), and µ+ denotes the surface measure
of A, that is,

µ+�A� = lim inf
h→0+

µ�Ah� − µ�A�
h

�

where Ah = �x ∈ X
 d�x� a� < h for some a ∈ A� is the open h–neighborhood
of A (for the metric d).

For any function f
 X → R, we also define the modulus of its gradient

�∇f�x�� = lim sup
d�x�y�→0+

�f�x� − f�y��
d�x�y� �

to which we assign the value 0 whenever x is an isolated point in X; clearly,
�∇f� is always Borel measurable for f continuous. The space Xn = X×· · ·×X
is endowed with the metric dn given by dn�x�y� = �∑n

k=1 d2�xk� yk��1/2 and
with the probability measure µn which is the n-fold tensor product of µ with
itself. Also, we assume that for any Lipschitz function f on �Xn�dn�, �∇f�2 =
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∑n
k=1 �∇xk

f�2 almost everywhere (with respect to µn). On the Euclidean space
X = Rn and via the Rademacher theorem, this standing assumption holds for
any absolutely continuous probability measure.

With these notations, our main result can be stated as follows.

Theorem 1.1. For any triple �X�d�µ� as above,

Is�µn� ≥ 1

2
√

6
Is�µ��(1.2)

for all n = 1� 2� � � � � Equivalently, and up to a universal constant, for any
function f
 Xn → �0� 1� which has finite Lipschitz constant on every ball in
�Xn�dn�,

K Var�f� ≤ E min
(

1
Is�µ� �∇f�� 1

Is2�µ� �∇f�2
)
�(1.3)

Above, the expectation and the variance are taken with respect to µn, and one
can take K = 1/144.

From (1.3), KIs�µ�Var�f� ≤ E �∇f�, and approximating the indicator
function 1A by Lipschitz functions fk in such a way that lim inf k E�∇fk� ≤
�µn�+�A� (see Lemma 3.5), gives

�µn�+�A� ≥ KIs�µ�Var�1A� ≥ 1
2KIs�µ�min�µn�A�� 1 − µn�A���

Therefore, (1.3) implies (1.2) with a worse but still universal constant.
One of the most interesting partial cases of Theorem 1.1 is when the mea-

sure µ is the double exponential distribution on the real line X = R, ν�dx� =
2−1 exp�−�x��dx. It is known (Talagrand [15]) that ν satisfies the isoperimetric
inequality

ν+�A� ≥ min�ν�A�� 1 − ν�A���(1.4)

with equality for the intervals A = �−∞� x�, and thus, Is�ν� = 1. It is then
natural to ask whether (1.4) continue to hold for the product measure νn with
a (multiplicative) constant independent of the dimension, that is, whether
infn Is�νn� > 0. Equivalently, one can ask whether or not νn satisfies an L1-
Poincaré type inequality with a dimension free constant, that is, whether or
not for all smooth functions f on Rn with Ef = 0,

KE�f� ≤ E �∇f��(1.5)

Theorem 1.1 gives a positive answer to this question and in fact the following
characterization holds.

Theorem 1.2. Let µ be a probability measure on the real line R which is
not a unit mass at a point. The following properties are equivalent.

(i) The measure µn satisfies �1�5� for some positive constant independent
of the dimension.
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(ii) The measure µ satisfies �1�5� for some positive constant �n = 1�.
(iii) There exists a function U
 R → R with finite Lipschitz constant which

transforms the double exponential measure ν into µ.
(iv) Is�µ� > 0.

In addition, �1�5� holds with K = Is�µ�/�2√6�, and Is�µn� ≥ Is�µ�/�2√6�,
for all n = 1� 2� � � � �

In the proof of the multidimensional inequality (1.5), Theorem 1.1 is applied
to ν (at which point the assumption on the gradient is trivially verified); next,
(1.5) is extended to all the Lipschitz images of ν. Hence, on the real line, our
standing assumption on the gradient can be omitted in Theorem 1.1. However,
this assumption is essential to perform the induction step in the metric space
X where it is unlikely that it is possible to find a probability distribution with
properties as specific as the ones of the double exponential measure ν on R.

Note that by (iii), µ necessarily has a finite exponential moment, and as
easily seen from (iv), µ also has a nontrivial absolutely continuous component.
Moreover, in terms of the distribution function, the property (iv) can be verified
with the help of the following theorem.

Theorem 1.3. Let F�x� = µ��−∞� x�� be the distribution function of a
probability measure µ on the real line (µ is not the unit mass at a point)
and let p be the density of its absolutely continuous part. Then,

Is�µ� = ess inf
a<x<b

p�x�
min�F�x�� 1 −F�x�� �(1.6)

where a = inf�x
 F�x� > 0�, b = sup�x
 F�x� < 1�. Also, Is�µ� = 1/�U�Lip
where U is the nondecreasing left-continuous function which transforms ν
into µ.

Clearly, such a nondecreasing function always exists, is unique and is also
Lipschitz in order to satisfy Is�µ� > 0. As for (1.6), it just tells us that in the
case of the real line, it suffices to take, in the definition (1.1), the intervals
A = �−∞� x�, for all or even for almost all (with respect to the Lebesgue
measure) x. For example, for the measures of the form

µα = αλ+ �1 − α�µ� α ∈ �0� 1��
where λ is the uniform distribution on [0,1], and µ is an arbitrary probability
measure on [0,1], we find from (1.6) that Is�µα� ≥ 2α, and also Is�µα� = 2α
when µ is singular and nonatomic. On the other hand, the measure µ with
density p�x� = �x� exp�−x2� has Gaussian tails; however, Is�µ� = 0 since the
map U�x� = sign�x�√�x�, which transforms ν into µ is not Lipschitz, or since
p�0� = 0.

It is interesting here to compare (1.5) with the similar L2-Poincaré type
inequality

KE�f�2 ≤ E �∇f�2�(1.7)
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where again Ef = 0 and K > 0. In contrast to (1.5), this inequality (as well as
the related log-Sobolev inequality; see Gross [8]) is additive; that is, it can be
extended to higher dimensions with the same constant K, and in this sense,
(1.7) is better behaved than (1.5). The fact that (1.7) follows from the property
Is�µ� > 0 has been known since the paper of Cheeger, but apparently was first
noted in the probability literature by Borovkov and Utev ([5], Theorem B) only
in 1983. In addition, taking for µ the measure of density �x�� �x� ≤ 1, shows that
the class of probability distributions satisfying (1.7) is strictly larger than the
class of those satisfying (1.5). On the real line, assuming for simplicity that 0 is
a median of µ, the condition Ef = 0 in (1.7) can be replaced by the condition
f�0� = 0 (this only potentially changes the optimal constant K), and then
(1.7) becomes a partial case of the broadly studied Hardy-type inequalities.
An important result obtained (in a more general setting) by Artola, Talonti
and Tomaselli (see [13]) asserts that a probability measure µ (with median 0)
satisfies (1.7) if and only if

sup
x>0

�1 −F�x��
∫ x

0

1
p�t� dt < +∞� sup

x<0
F�x�

∫ 0

x

1
p�t� dt < +∞�

where F and p are as in Theorem 1.3. When µ has a continuous positive
density whose support is an interval, these conditions can be combined and
rewritten in terms of the map U as follows:

sup
x>0

e−x
∫ x

0

[
U′�t�2 +U′�−t�2]et dt < +∞�

In addition to Sobolev-type inequalities, (1.2) can also be linked to some
concentration inequalities. Letting for simplicity µ = ν, (1.2) is equivalent
(see [4], Theorem 2.1) to

νn�Ah� ≥ ν

((
−∞� a+ h

2
√

6

])
� h > 0�(1.8)

where a is chosen such that νn�A� = ν��−∞� a�� and where A ⊂ Rn is an ar-
bitrary Borel set. In this setting, Talagrand [15] (see also Maurey [12]) proved
that

νn�A+
√

hB2 + hB1� ≥ ν

((
−∞� a+ h

K

])
� h > 0�(1.9)

where B2 and B1 are, respectively, the l2 and l1 unit balls in Rn and where K
is a universal constant. Since Ah = A+hB2, (1.9) is stronger than (1.8) for h
large. However, for h small (which is important in obtaining sharp constants
in Sobolev-type inequalities), (1.9) does not imply (1.8). It should nevertheless
be noted here that (1.3) also involves a certain type of mixture of the L1 and
L2 norms of the gradient.

A natural way to prove (1.2) is to establish its equivalent functional form
(1.5) [with a dimension free constant K�µ�]. In turn, a natural way of proving
(1.5) is to use an induction procedure on the dimension. However, the space
L1 does not seem adequate to perform this induction. Instead, it is necessary
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to find a more suitable functional space and functional inequality which will
allow an inductive proof. This functional inequality should enjoy the follow-
ing two properties: (1) it should possess the additivity property; (2) it should
become isoperimetric on indicator functions. For example, the inequality (1.7)
as well as the log-Sobolev type inequality is additive, and one can derive from
them appropriate concentration inequalities (see [7], [1], [10]). However, it
is unlikely that it is possible to derive isoperimetric inequalities from these
since they do not contain information when one approximates the indicator
functions by Lipschitz functions. For our purposes, a more suitable inequality
could be one of the form

I�Ef� ≤ E
√

I�f�2 + �∇f�2�(1.10)

which was introduced in [3] (see also [2]), where it was studied for the uniform
distribution on the discrete cube. The inequality (1.10) clearly satisfies (1), and
for dimension n it gives on indicator functions the isoperimetric inequality

�µn�+�A� ≥ I�µn�A���(1.11)

One can therefore wonder whether (1.10) is stronger than (1.11). In the Gaus-
sian case on X = R with the Euclidean metric, and with the Gaussian isoperi-
metric function I, it turns out that the inequality (1.10) with n = 1 becomes
(1.11) with n = 2. We extend this observation to the case I�p� = Kp�1 − p�
and claim that the functional inequality (1.10) for dimension n = 1 (therefore,
for all dimensions) is equivalent, up to a universal constant, to the isoperimet-
ric inequality (1.11) for dimension n = 2; that is, the geometric information in
(1.11) when n ≥ 2 is contained “in the plane.” On the other hand, for n = 1,
(1.10) with I as above reduces in essence to the Poincaré-type inequality

EN�f− Ef� ≤ EN�K�∇f���(1.12)

with N�x� = √
1 + x2 − 1, x ∈ R, which behaves like x2 for �x� small and

like �x� for �x� large. In particular, the inequality (1.3) corresponds, up to a
constant, to this choice of N. We will study (1.12) separately in the context of
Cheeger-type inequalities. Then, the induction step will be performed for the
inequality

Var f ≤ EN�K�∇f���
which is related to (1.10). We are now ready for some preliminaries.

2. A generalization of Hölder’s inequality. Let �"�µ� be a measure
space and let N
 R → R be a differentiable convex function.

Lemma 2.1. Let f and g be measurable functions on " such that∫
"
N�g�dµ ≤

∫
"
N�f�dµ�(2.1)
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then (provided all the written integrals exist)∫
"
N′�f�gdµ ≤

∫
"
N′�f�fdµ�(2.2)

Proof. It suffices to prove the result for f and g bounded and µ finite.
First, by convexity,∫

"
N��1 − t�f+ tg�dµ ≤ �1 − t�

∫
"
N�f�dµ+ t

∫
"
N�g�dµ� 0 ≤ t ≤ 1�(2.3)

Now, (2.3) becomes equality at t = 0 (and t = 1) and the left-hand side of (2.3)
is a convex function of t while the right-hand side is linear. Thus, at t = 0, the
slope of the left-hand side of (2.3) is dominated by the slope of the right-hand
side. Differentiating at t = 0 gives∫

"
N′�f��g − f�dµ ≤

∫
"
N�g�dµ−

∫
"
N�f�dµ�

The lemma follows.

The proof above is due to A. V. Zhubr, and very elegantly replaces the orig-
inal one. Let now � · �p� p > 1, denote the Lp-norm with respect to µ, and let
q = p/�p− 1�. Applying Lemma 2.1, with N�x� = �x�p, to f = u1/�p−1�, g = v,
where u� v ≥ 0 are such that �u�q = 1, �v�p = 1, gives equality in (2.1), and
(2.2) becomes ∫

"
uvdµ ≤ 1 = �u�q�v�p�

3. An extension of Cheeger’s inequality. We return to the setting of
the introductory section. Let also N be a Young function; that is, N
 R → R
is even and nonnegative, with N�0� = 0 and N�x� > 0 for all x �= 0. Moreover,
assume that

CN = sup
x>0

xN′�x�
N�x� < +∞�(3.1)

where N′ is a Radon–Nikodym derivative of N (clearly, CN does not depend
on the choice of N′). We also denote by LN�X�µ� the Orlicz space of functions
f such that

�f�N = inf�λ > 0
 EN�f/λ� ≤ 1� < +∞�

Finally, and for simplicity, we write �∇f�N = � �∇f� �N, while m�f� denotes
a median of f. It is worthwhile to note that, for f Lipschitz on every ball in
X, the function �∇f� is Borel measurable and finite. Indeed, the set X0 of all
isolated points in X is open, and �∇f� = 0 on X0, while on its complement
X1 = X \X0,

�∇f�x�� = lim
n→∞ sup

d�x�y�<1/n

�f�x� − f�y��
d�x�y�
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is the monotone limit of a sequence of lower semicontinuous functions on X1.
The finiteness follows from the Lipschitz property.

Theorem 3.1. Let Is�µ� > 0. Then, for all functions f which are Lipschitz
on every ball in X and such that m�f� = 0,

�f�N ≤ CN

Is�µ� �∇f�N�(3.2)

EN�f� ≤ EN

(
CN

Is�µ� �∇f�
)
�(3.3)

Lemma 3.2 (Co-area inequality). Let f be a function on X with a finite
Lipschitz constant, then∫

X
�∇f�x��dµ�x� ≥

∫ +∞

−∞
µ+�x ∈ X
 f�x� > t�dt�(3.4)

Remark 3.3. The integrand on the right-hand side of (3.4) is a measurable
function on the real line. Indeed, let A ⊂ X be Borel measurable, and let r
take only rational values. Whenever h > 0, ∪0<r<hA

r = Ah, hence for any
ε > 0,

inf
0<h<ε

µ�Ah� − µ�A�
h

= inf
0<r<ε

µ�Ar� − µ�A�
r

�

Therefore,

lim inf
r→0+

µ�Ar� − µ�A�
r

= µ+�A��

Hence, for any nonincreasing family of Borel sets At� t ∈ R� the function
t −→ µ+�At� is Borel measurable.

Remark 3.4. Equality in (3.4) requires some additional properties of µ,
such as nonsingularity. In fact, let X = R with its usual metric, let µ be
an arbitrary Borel probability measure on R and let µac denote the absolutely
continuous (with respect to the Lebesgue measure) part of µ. If f�x� = x, then
p�t� = µ+�x ∈ X
 f�x� > t� is a Radon–Nikodym derivative (with respect
to the Lebesgue measure) of µac, and (3.4) becomes 1 ≥ µac�R�� Therefore,
and for X = R, equality in (3.4) requires that µ = µac, that is, that µ is
absolutely continuous. As well known, the usual co-area formula tells us that
this property is also sufficient.

Proof of Lemma 3.2 ([4]). First, let us assume that f is bounded. Then,
without loss of generality, one may assume that f ≥ 0, since the left- and the
right-hand side of (3.4) remain unchanged if a constant is added to f. Since f
is Lipschitz on X,

�f�x� − f�y�� ≤ cd�x�y��(3.5)
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for some c > 0 and all x�y ∈ X. Then, let

fh�x� = sup
d�x�y�<h

f�y��

where h > 0, and let At = �x ∈ X
 f�x� > t�� Then, for all t ∈ R and h > 0�
the set �x ∈ X
 fh�x� > t� = �x ∈ X
 f�x� > t�h = Ah

t is open as the open
h-neighborhood of At. Therefore fh is lower semicontinuous and in addition,∫

X
fh dµ =

∫ +∞

0
µ�x ∈ X
 fh�x� > t�dt =

∫ +∞

0
µ�Ah

t �dt�

Since
∫
X fdµ = ∫ +∞

0 µ�At�dt� we have

∫
X

fh − f

h
dµ =

∫ +∞

0

µ�Ah
t � − µ�At�

h
dt�(3.6)

From (3.5), fh�x� − f�x� ≤ ch, for all x ∈ X and h > 0, hence the integrand
on the left-hand side of (3.4) is bounded. Therefore, using (3.6), the Lebesgue
dominated convergence theorem and Fatou’s lemma and noting that

lim sup
h→0+

fh�x� − f�x�
h

= lim sup
y→x

f�y� − f�x�
d�x�y� ≤ �∇f�x���

we get ∫
X
�∇f�dµ ≥

∫
X

lim sup
h→0+

fh − f

h
dµ

≥ lim sup
h→0+

∫
X

fh − f

h
dµ

≥ lim inf
h→0+

∫
X

fh − f

h
dµ

= lim inf
h→0+

∫ +∞

0

µ�Ah
t � − µ�At�

h
dt

≥
∫ +∞

0
lim inf
h→0+

µ�Ah
t � − µ�At�

h
dt

=
∫ +∞

0
µ+�At�dt�

Thus, (3.4) is established for f Lipschitz and bounded. Let now f be an arbi-
trary Lipschitz function. Let an be an increasing sequence of positive numbers
such that limn→+∞ an = +∞, and such that the sets �x ∈ X
 �f�x�� = an� have
µ-measure 0, for all n. Let An = �x ∈ X
 �f�x�� < an�, and let

fn�x� =



f�x�� if �f�x�� < an�
an� if f�x� ≥ an�
−an� if f�x� ≤ −an�
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That is, fn�x� = max�−an� min�an� f�x���, so fn is also a Lipschitz function
(of Lipschitz constant at most c) and thus one can apply (3.4) to fn which then
reads as ∫

An

�∇f�x��dµ�x� ≥
∫ an

−an

µ+�x ∈ X
 f�x� > t�dt�

Finally, apply Tonelli’s monotone convergence theorem.

Lemma 3.5. For any Borel set A ⊂ X with 0 < µ�A� < 1, there exists a
sequence of Lipschitz functions fn on X with values in �0� 1� such that fn →
1clos�A� pointwise, as n → ∞, and

lim sup
n→∞

E �∇fn� ≤ µ+�A��

Proof. Let clos�A� denote the closure of a set A. If µ(clos�A�� > µ�A�,
then by the very definition of µ+, µ+�A� = +∞, so there is nothing to prove.
Next, let µ(clos�A�� = µ�A�. Since for all h < h′, clos�Ah� ⊂ Ah′

, one has
µ+�A� = lim infh→0+�µ�clos�Ah�� − µ�A��/h, hence there exists a sequence
hn → 0+ such that �µ�clos�Ahn�� − µ�A��/hn → µ+�A�. Now take a sequence
cn ∈ �0� 1� such that cn → 0, and let

fn�x� = min
{

1�
d�Acnhn� x�
�1 − cn�hn

}
�

where d�A�x� = inf�d�a� x�
 a ∈ A�. This function has Lipschitz seminorm
at most 1, hence �fn�Lip ≤ 1/�1 − cn�hn, and therefore,

�∇fn�x�� ≤ 1/�1 − cn�hn�

for all x ∈ X. Note also that for x /∈ Ahn , d�A�x� ≥ hn, hence by the triangle
inequality, d�Acnhn� x� ≥ �1 − cn�hn, and thus fn�x� = 1. Therefore, �∇fn� = 0
on the open set X \ clos�Ahn�. In a similar way, �∇fn� = 0 on the open set
Acnhn . Thus,

E �∇fn� ≤
µ�clos�Ahn�� − µ�A�

�1 − cn�hn

→ µ+�A��

Proof of Theorem 3.1. The isoperimetric constant C = Is�µ� is the opti-
mal constant satisfying (3.2) and (3.3) when N�x� = �x�, that is, such that

CE�f� ≤ E �∇f��(3.7)

for all integrable, Lipschitz functions f on X with m�f� = 0. Indeed, following
an argument of Ledoux [11], and via the co-area inequality, we have from (3.7)
that

E �∇f� ≥
∫ +∞

−∞
µ+�f > t�dt

≥ Is�µ�
∫ 0

−∞
�1 − µ�f > t��dt+ Is�µ�

∫ +∞

0
µ�f > t�dt

= Is�µ�E�f��
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Therefore, C ≥ Is�µ�. In fact, a simple truncation argument (see [4], Section
4, for example) allows us to extend (3.7) to the (slightly) larger class of all
integrable functions f, which are Lipschitz on every ball in X and such that
m�f� = 0. To derive from (3.7) the converse inequality C ≤ Is�µ�, that is, the
inequality C min�µ�A�� 1 − µ�A�� ≤ µ+�A�, one can assume (as noted above)
that µ�clos�A�� = µ�A�, take fn → 1clos�A� as in Lemma 3.5 and apply (3.7) to
gn = fn −m�fn�.

Now, let f be a function bounded, which is Lipschitz on every ball in X, with
m�f� = 0 and such that �f�N = 1, that is, such that EN�f� = 1. Also, and
without loss of generality, assume that N is differentiable on the whole real
line, with, in particular, N′�0� = 0. Let f1 = max�f� 0� and f2 = max�−f� 0�.
Then, m�f1� = m�f2� = 0, and thus m�N�f1�� = m�N�f2�� = 0. Applying
(3.7) to N�f1� and N�f2�, respectively, gives

CEN�f1� ≤ EN′�f1��∇f1� = EN′��f���∇f�1�f>0��

CEN�f2� ≤ EN′�f2��∇f2� = EN′��f���∇f�1�f<0��

Therefore,

CEN�f� = CEN�f1� +CEN�f2� ≤ EN′��f���∇f��
Next, applying Lemma 2.1 to �f� and g = �∇f�/�∇f�N gives

CEN�f� ≤ �∇f�NEN′��f��g
≤ �∇f�NEN′��f���f�
≤ CN�∇f�NEN�f��

Hence, C ≤ CN�∇f�N, and since �f�N = 1, (3.2) follows. To get (3.3), it is
enough to apply (3.2) to the functions Nα�x� = N�x�/α� α > 0. Indeed, if
�f�Nα

≥ 1, then ��∇f�/λ�Nα
≥ 1, λ = CN/Is�µ�. Equivalently, if EN�f� ≥ α,

then EN��∇f�/λ� ≥ α. Theorem 3.1 follows.

Remark 3.6. The inequalities (3.2) and (3.3) are Poincaré-type inequali-
ties. When, N�x� = �x�2, and since �f− Ef�2 ≤ �f−m�f��2, (3.2) gives

C�f− Ef�2 ≤ �∇f�2�(3.8)

where C ≥ Is�µ�/2. Cheeger was the first to express the optimal constant
C in (3.8) in terms of the isoperimetric constant (1.1) and so the inequality
C ≥ Is�µ�/2 bears his name. Cheeger’s inequality has thus been extended in
the following way: the optimal constant in C�f − m�f��N ≤ �∇f�N is such
that

C ≥ Is�µ�
CN

�(3.9)

For N�x� = �x�p, the inequality (3.9) cannot be improved in terms of the
isoperimetric constant. Indeed, taking µ = ν, (3.9) becomes equality as easily
tested with the functions exp�αx�, α → 1/p.
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4. Induction.

Lemma 4.1. Let C > 0 be such that∫
X

√
1 + f2 dµ ≤

∫
X

√
1 +C2�∇f�2 dµ�(4.1)

for all Lipschitz functions f on X with m�f� = 0. Then,

�µn�+�A� ≥ 2√
6C

µn�A��1 − µn�A���(4.2)

for all Borel sets A ⊂ Xn.

Proof. If for all x ∈ X, 0 ≤ f�x� ≤ a, then �f�x� −m�f�� ≤ a and√
1 + �f−m�f��2 ≥ 1 +K�a��f−m�f��2�

where K�a� = �√1 + a2−1�/a2 is the optimal constant K satisfying
√

1 + t2 ≥
1 +Kt2, for all �t� ≤ a. Therefore,∫

X

√
1 + �f−m�f��2 dµ ≥ 1 +K�a�

∫
X
�f−m�f��2 dµ

≥ 1 +K�a�Var�f��
Thus, from (4.1),

1 +K�a�Var�f� ≤
∫
X

√
1 +C2�∇f�2 dµ�(4.3)

for all Lipschitz functions f on X with 0 ≤ f ≤ a. Now, we fix a > 0 and prove
by induction that, for all Lipschitz functions f
 Xn → �0� a�,

1 +L Var�f� ≤
∫
Xn

√
1 +C2�∇f�2 dµn�(4.4)

where L is an arbitrary positive number such that

L

(
1 +La2

4

)
≤ K

(
a

1 +La2/4

)
� L ≤ K�a��(4.5)

To prove this induction step, take a Lipschitz function f
 Xn+1 → �0� a� and
introduce the function

α�y� =
∫
Xn

f�x�y�dµn�x�� y ∈ X�

Clearly, α
 X → �0� a� is Lipschitz and

�∇α�y�� ≤
∫
Xn

�∇yf�x�y��dµn�x�� y ∈ X�(4.6)
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where �∇yf� is the modulus of gradient with respect to the coordinate y. Now,
by our standing assumption, �∇f�2 = �∇xf�2+�∇yf�2, for µn+1-almost all �x�y�,
and thus by Fubini’s theorem,∫

Xn

√
1 +C2�∇f�2 dµn�x� =

∫
Xn

√
�1 +C2�∇xf�2� +C2�∇yf�2 dµn�x��(4.7)

for µ-almost all y. The elementary inequality

∫ √
u2 + v2 ≥

√(∫
u

)2

+
(∫

v

)2

(4.8)

applied in (4.7) to u =
√

1 +C2�∇xf�2, v = C�∇yf� (keeping the coordinate y
fixed for a while) gives∫

Xn

√
1 +C2�∇f�2 dµn�x�

≥
√(∫

Xn

√
1 +C2�∇xf�2 dµn�x�

)2

+C2

(∫
Xn

�∇yf�dµn�x�
)2

≥
√
�1 +L Varx�f��2 +C2�∇α�y��2�

where the last inequality follows from the induction hypothesis (4.4) as well as
(4.6), and where Varx�f� is the variance of f with respect to x ∈ Xn. Next we
need to estimate this variance in terms of a. Trivially Varx�f� ≤ a2. However,
to improve the final constant, we use following elementary lemma.

Lemma 4.2. Let ξ be a random variable such that 0 ≤ ξ ≤ a, then Var�ξ� ≤
a2/4.

Proof. Fix c = Eξ and let F be the distribution of ξ. Then A�F� =
Var�ξ� = ∫ a

0 x2 dF�x�−c2 represents a continuous affine functional of F on the
convex compact (for the topology of weak convergence) set M�c� of all proba-
bility distributions on �0� a� with mean c. Therefore, A attains its maximum
on M�c� at an extremal point of M�c�. But these extremal points have at most
two atoms, that is, they are of the form F = pδx+�1−p�δy, where 0 ≤ p ≤ 1,
0 ≤ x, y ≤ a. For such F, A�F� = p�1 − p��x− y�2 ≤ a2/4.

Thus, Varx�f� ≤ a2/4, and since
√

1 + t2 − t is decreasing in t > 0, we get∫
Xn

√
1 +C2�∇f�2 dµn�x� − �1 +L Varx f�

≥
√
�1 +L Varx�f��2 +C2�∇α�y��2 − �1 +L Varx f�

≥
√
�1 +La2/4�2 +C2�∇α�y��2 − �1 +La2/4�

= �1 +La2/4�
√

1 +C2�∇α1�y��2 − �1 +La2/4��

(4.9)
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where α1 = α/�1 + La2/4�. Integrating (4.9) over y ∈ X and applying (4.3) to
α1 and a1 = a/�1 +La2/4� gives

∫
Xn+1

√
1 +C2�∇f�2 dµn+1�x�y� −

∫
X
�1 +L Varx�f��dµ�y�

≥ �1 +La2/4��1 +K�a1�Var�α1�� − �1 +La2/4�
= �1 +La2/4�K�a1�Var�α1�

= 1
1 +La2/4

K�a1�Var�α��

In other words,

∫
Xn+1

√
1 +C2�∇f�2 dµn+1 ≥ 1 +L

∫
X

Varx�f�dµ�y� + K�a1�Var�α�
1 +La2/4

�(4.10)

Therefore, to finish the induction process via (4.10), it remains to show that

L
∫
X

Varx�f�dµ�y� + 1
1 +La2/4

K�a1�Var�α� ≥ L Var�f��(4.11)

Putting β�y� = ∫
Xn f2�x�y�dµn�x�, we have

Varx�f� = β�y� − α2�y��

Var�f� =
∫
X

β�y�dµ�y� −
(∫

X
α�y�dµ�y�

)2

�

and (4.11) becomes

L

(∫
X

β−
∫
X

α2
)
+ 1

1 +La2/4
K�a1�Var�α� ≥ L

(∫
X

β−
(∫

X
α

)2)
�

In turn, this is equivalent to

K�a1�Var�α�
1 +La2/4

≥ L Var�α��

that is, to

L

(
1 +La2

4

)
≤ K

(
a

1 +La2/4

)
�

but, by (4.5) this last inequality is true and under this condition (4.4) is proved.
Now, from (4.4) using the inequality

√
1 + t2 ≤ 1 + t, we obtain

L Var�f� ≤ C
∫
Xn

�∇f�dµn�
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for any Lipschitz function f
 Xn → �0� a�. That is, for every f
 Xn → �0� 1�,
and for all a > 0 and L > 0 satisfying (4.5),

La Var�f� ≤ C
∫
Xn

�∇f�dµn�(4.12)

Applying (4.12) to a sequence of Lipschitz functions fk converging pointwise
to the indicator function 1A so that to have �µn�+�A� ≥ lim inf

∫
Xn �∇fk�dµn,

we get

�µn�+�A� ≥ La

C
µn�A��1 − µn�A���

It just remains to show that

sup
L in �4�5�

sup
a>0

La ≥ 2√
6
�

Put L = w/a, so that L�1+La2/4� → w2/4, that is, a/�1+La2/4� → 4/w, as
a → +∞. Therefore, (4.5) is fulfilled for all a large enough if

w2

4
< K

(
4
w

)
� w < 1�(4.13)

since K�a� ∼ 1/a as a → +∞. However, the first inequality in (4.13) is equiv-
alent to

√
1 + �4t�2 − 1 > 4 �t = 1/w�. In turn, this is equivalent to t2 > 3/2,

that is, w <
√

2/3 = 2/
√

6, and so the second inequality of (4.13) holds true.
Finally we get

sup
a>0

La ≥ sup
w<2/

√
6
w = 2√

6
�

Lemma 4.1 is proved.

5. Proof of Theorem 1.1. For the Young function N�x� = √
1 + x2 − 1,

we have CN = 2. Now, combine Theorem 3.1 and Lemma 4.1. By (3.3), the
inequality (4.1) holds with C = 2/Is�µ�, hence from (4.2),

�µn�+�A� ≥ Is�µ�√
6

µn�A��1 − µn�A��(5.1)

≥ Is�µ�
2
√

6
min�µn�A�� 1 − µn�A���(5.2)

Therefore, (1.2) follows. Next, applying once more (3.3) to �Xn�dn�µ
n� we have

EN�f−m�f�� ≤ EN

(
4
√

6
Is�µ� �∇f�

)
�(5.3)

for any Lipschitz on every ball function f on Xn. If 0 ≤ f ≤ 1, then �f−m�f�� ≤
1 and so N�f−m�f�� ≥ �f−m�f��2/3, therefore (5.3) gives

1
3

Var�f� ≤ E

√
1 +

(
4
√

6
Is�µ�

)2

�∇f�2 − 1�(5.4)
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Now, note that for all x ∈ R,
√

1 + 4x2 − 1 ≤ 2 min��x�� x2�. Hence, the right-
hand side of (5.4) is estimated by

2E min
(

2
√

6
Is�µ� �∇f��

(
2
√

6
Is�µ�

)2

�∇f�2
)

≤ 48 E min
(

1
Is�µ� �∇f�� 1

Is2�µ� �∇f�2
)
�

Remark 5.1. Of course, (5.1) is a bit better than (5.2). In its functional
form, (5.1) reads as (1.5) and this is why we claimed in Theorem 1.2 that (1.5)
holds with K = Is�µ�/�2√6� which is the same as the estimate for Is�µn�
in (1.2). Most likely, the multiplicative constant C = 1/�2√6� is not optimal.
Anyhow, in order to satisfy (1.2) for all measures µ, it has to be less than
1. For individual measures, the optimal constant Cµ in (1.2) depends on µ
and satisfies Cµ ≤ 1. When µ is Gaussian, we have Cµ = 1, as seen from
the isoperimetric inequality in Gaussian space. We do not know if there exist
other probability distributions with this property.

Remark 5.2. It is clear from the proof of Theorem 1.1 that for triples
�Xi�di� µi�, i = 1� � � � �m, satisfying the hypotheses of Theorem 1.1, (1.2) takes
the form

Is�µ1 ⊗ · · · ⊗ µm� ≥
1

2
√

6
min

1≤i≤m
Is�µi��

The converse inequality,

Is�µ1 ⊗ · · · ⊗ µm� ≤ min
1≤i≤m

Is�µi��

is trivial. So, for product measures µn, our results give Cheeger and Buser-type
inequalities (see [11]) independent of the dimension.

Remark 5.3. It is clear that the above upper bound holds more generally
for a probability measure µ on Xn and its marginals µi, i = 1� 2� � � � � n. Such
is not the case of the lower bound. In Rn, let C be a closed curve of length
2 and let µ be the uniform distribution on C. Then it is easily seen that
Is�µ� = 4/2. Now note that the marginals could be arcsin distributions on
�−1� 1� while 2 could be arbitrarily large. Indeed, given integers a1� � � � � an, let
x�t� = �sin a1t� � � � � sin ant�, −π/2 ≤ t ≤ π/2, and let µ be the distribution
of the function x�t� with respect to the uniform distribution on �−π/2� π/2�.
Then, 2 is of order

√
a2

1 + · · · + a2
n which can arbitrarily large even for n ≥ 2

fixed.

6. Proof of Theorems 1.2 and 1.3.

Proof of Theorem 1.3. Let

K�µ� = ess inf
a<x<b

p�x�
min�F�x�� 1 −F�x�� �
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where, as in Section 1, a = inf�x
 F�x� > 0�, b = sup�x
 F�x� < 1�, and p is
a density of the absolutely continuous (with respect to the Lebesgue measure)
part of µ. Clearly, K�µ� does not depend on the choice of p, and K�µ� ≥ Is�µ�.
Indeed, taking A�x� = �−∞� x� with x ∈ �a� b�, we obtain

µ+�A�x�� = lim inf
ε→0+

F�x+ ε� −F�x�
ε

≡ p+�x��

therefore,

Is�µ� ≤ µ+�A�x��
min�µ�A�x��� 1 − µ�A�x��� = p+�x�

min�F�x�� 1 −F�x�� �

It remains to take the ess inf over all x ∈ �a� b�, noting that p+ is a version
of the density of the absolutely continuous part of µ. In particular, we obtain
K�µ� = Is�µ�, if K�µ� = 0. To establish (1.6), we thus need to prove the
converse inequality K�µ� ≤ Is�µ� assuming that K�µ� > 0.

So, let us assume that K�µ� > 0. Since for almost all x ∈ �a� b�,
K�µ�min�F�x�� 1 −F�x�� ≤ p�x��

we have in particular that p�x� > 0 almost everywhere on �a� b� and therefore
F is strictly increasing on �a� b�. Hence, the minimal quantile function

F−1�p� = min�x
 F�x� ≥ p�
is nondecreasing, continuous on �0� 1� and takes values in �a� b�. We extend
this function to �0� 1� by putting F−1�0� = a.

Let Fν be the distribution function of the measure ν with density pν�x� =
2−1 exp�−�x��, and let F−1

ν 
 �0� 1� → �−∞�+∞� be the inverse of Fν. As noted
just after Theorem 1.3, and without any assumption on µ, there exists only
one nondecreasing left-continuous function U
 R → R which transforms ν into
µ. Indeed, such a function should satisfy the equality ν��t
 U�t� ≤ x�� = F�x�;
that is for all x, the set �t
 U�t� ≤ x� is the interval �−∞� F−1

ν �F�x���. Hence
for all t and x real, the two inequalities U�t� ≤ x and t ≤ V�x�, where

V�x� = F−1
ν �F�x���

are equivalent. Therefore, at the point t = V�x�, the only way to define U is
to put U�t� = x. For the other points, then necessarily U = x on the intervals
�V�x−��V�x��, U = a on �−∞�V�a�� and U = b on �V�b��+∞�. Thus, U is
unique and can be expressed as

U�x� = F−1�Fν�x���
In the next step, we show that

1
�U�Lip

≥ K�µ��(6.1)
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By Lebesgue theorem, F is almost everywhere differentiable, with F′�x� =
p�x� almost everywhere on �a� b�. Therefore, differentiating the function V
and noting that pν�F−1

ν �p�� = min�p� 1 − p�, we get

V′�x� ≥ p�x�
min�F�x�� 1 −F�x�� ≥ K�µ��

for almost all x ∈ �a� b�. Therefore, for all a ≤ x < y ≤ b,

V�y� −V�x� ≥
∫ y

x
V′�t�dt ≥ K�µ��y− x��

Let Im�F� = �F�x� > 0
 x ∈ R�. For all p ∈ Im�F�, one always has
F�F−1�p�� = p, hence V�U�x�� = x, whenever Fν�x� ∈ Im�F�. Noting that U
takes values in �a� b�, we thus see that for all x < y,

y− x = V�U�y�� −V�U�x�� ≥ K�µ��U�y� −U�x���(6.2)

provided that Fν�x� and Fν�y� ∈ Im�F�. However, (6.2) remains true for all
x < y, since the function F−1 is continuous and constant on the intervals of
the form �F�z−��F�z��. We have thus proved (6.1).

We now apply (3.7) to the measure ν: since C = Is�ν� = 1, we have

E�f�ξ�� ≤ E�f′�ξ���(6.3)

where the random variable ξ has distribution ν, and where f is an arbi-
trary locally Lipschitz function on the real line such that E�f�ξ�� < +∞, and
m�f�ξ�� = 0. Put η = U�ξ� and apply (6.3) to f = g�U�: since �f′�ξ�� ≤
�U�Lip�g′�U��, we obtain for the random variable η = U�ξ� that

1
�U�Lip

E�g�η�� ≤ E�g′�η���(6.4)

Hence by (6.1),

K�µ�E�g�η�� ≤ E�g′�η���(6.5)

which holds for any locally Lipschitz function g such that E�g�η�� < +∞� and
m�g�η�� = 0. Since η has distribution µ, again by (3.7), the optimal constant
in (6.5) in front of E�g�η�� is Is�µ�, and thus we conclude that Is�µ� ≥ K�µ�.
As a result

K�µ� = Is�µ��(6.6)

With a similar reasoning, since, again by (3.7), the optimal constant in (6.4)
in front of E�g�η�� is Is�µ�, we get

1
�U�Lip

≤ Is�µ��(6.7)

Comparing (6.7) with (6.1) via (6.6), one obtains

1
�U�Lip

= Is�µ��(6.8)
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To complete the proof, it remains to establish (6.8) when K�µ� = Is�µ� = 0,
that is, we need to show that in this case �U�Lip = +∞. Otherwise, �U�Lip <
+∞, and one can mimic the reasoning from (6.3) to (6.4), and obtain according
to (6.7) that Is�µ� > 0. Theorem 1.3 is proved.

Remark 6.1. Repeating the step from (6.3) to (6.4), it is easy to see that
(6.7) holds for any function U with �U�Lip < +∞, which transforms ν into µ,
without the nondecreasing assumption on U. As a result, we conclude that
the property (iii) in Theorem 1.2 implies Is�µ� > 0.

Proof of Theorem 1.2. As one can note, we have just proved the equiv-
alence of (ii), (iii) and (iv). In addition, (i) implies (ii) is trivial. To obtain (i),
assume that Is�µ� > 0. Let U
 R → R be the nondecreasing function which
transforms ν into µ, so �U�Lip < +∞. Let ξ = �ξ1� � � � � ξn� be a random vector
with distribution νn, so that η = �U�ξ1�� � � � �U�ξn�� has law µn. By Theorem
1.1 (remembering that Is�ν� = 1), we have Is�νn� ≥ 1/�2√6�; therefore, as
shown in Section 3, the measure νn satisfies the inequality

1

2
√

6
E �f�ξ�� ≤ E�∇f�ξ���(6.9)

where f is an arbitrary locally Lipschitz function on Rn such that E�f�ξ�� <
+∞ and m�f�ξ�� = 0. Hence, applying (6.9) to f = g�U� with g locally Lip-
schitz and noting [recall (6.8)] that

�∇g ◦U� ≤ �U�Lip ��∇g��U�� = 1
Is�µ� ��∇g��U���

we obtain

Is�µ�
2
√

6
E �g�η�� ≤ E �∇g�η���(6.10)

for any locally Lipschitz function g such that E�g�η�� < +∞ and m�g�η�� = 0.
Approximating the indicator function 1A of a Borel set A ⊂ Rn by a sequence
of Lipschitz functions gk as in Lemma 3.5, it follows from (6.10) that

�µn�+�A� ≥ Is�µ�
2
√

6
min�µn�A�� 1 − µn�A���

hence 2
√

6Is�µn� ≥ Is�µ�. Now use (5.1) for the measure ν and repeat the
above argument: for any locally Lipschitz function f on Rn such that E�f�ξ�� <
+∞ we have

1

2
√

6
E �f�ξ� − Ef�ξ�� ≤ E�∇f�ξ���(6.11)

Indeed, (6.11) is fulfilled for all the locally Lipschitz functions if and only if
it is fulfilled for indicator functions (in an asymptotic sense; see [4]). But for
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indicator functions, (6.11) becomes

�νn�+�A� ≥ 1√
6

νn�A��1 − νn�A���

which is a particular case of (5.1) since Is�ν� = 1. Applying (6.11) to the
functions f = g�U�, we get as above that

Is�µ�
2
√

6
E �g�η� − Eg�η�� ≤ E �∇g�η���(6.12)

Now recall that �6�12� is just �1�5� with K = Is�µ�/�2√6�. Theorem 1.2 is
thus proved.

7. Poincaré type inequalities. Here, Theorem 1.1 is used to obtain the
statements of Theorem 3.1 in the n-dimensional space �Xn�dn�µ

n� under the
more natural assumption Ef = 0. Again, let N satisfy the same hypothesis
as before, let � · �N denote the norm in the Orlicz space LN�Xn�µn� and let E
be the expectation with respect to µn.

Theorem 7.1. For any Lipschitz on every ball function f on Xn with Ef=0,

�f�N ≤ 4
√

6CN

Is�µ� �∇f�N�(7.1)

In particular,

EN�f� ≤ EN

(
4
√

6CN

Is�µ� �∇f�
)
�(7.2)

Proof. On Xn ×Xn, let g�x�y� = f�x� − f�y�, x�y ∈ X. Since m�g� = 0
with respect to µ2n, applying Theorem 3.1 and (1.2) gives

�g�N ≤ 2
√

6CN

Is�µ� �∇g�N�

where now, � · �N denotes the norm in LN�X2n� d2n� µ
2n�. Since �∇g�x�y�� =√�∇f�x��2 + �∇f�y��2 ≤ �∇f�x�� + �∇f�y��, we get �g�N ≤ 2�f�N. Thus,

�g�N ≤
∥∥∥∥4

√
6CN

Is�µ� �∇f�
∥∥∥∥
N

�(7.3)

Applying (7.3) to the functions Nα�t� = N�t�/α� t ∈ R� α > 0, one easily obtains

∫
Xn

∫
Xn

N�g�x�y��dµn�x�dµn�y� ≤
∫
Xn

N

(
4
√

6CN

Is�µ� �∇f�
)

dµn�(7.4)

However, by the convexity of N,
∫
Xn

∫
Xn N�f�x�−f�y�� ≥ ∫

Xn N�f�x�−∫
Xn f�.

This gives (7.1). In turn, applying (7.1) to the functions Nα gives (7.2) and the
theorem is proved.
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Remark 7.2. If N�x� = �x�p, p ≥ 1, then CN = p, and (7.1) becomes

�f− Ef�p ≤ 4
√

6
Is�µ�p�∇f�p�(7.5)

where the constant is of sharp order in p. This can be tested for the measure
ν on the function f�x� = exp�αx�, x ∈ R, letting α → 1/p. When µ is Gaussian
on X = R, (7.3) with a better constant (of order

√
p) can be found in Pisier

[14].

8. Khintchine–Kahane type inequalities. Let ξ1� � � � � ξn, be i.i.d. ran-
dom variables on the real line R with Eξ1 = 0, ξ1 �= 0, a.s. and with a law
µ such that Is�µ� > 0. As already noted (Theorem 1.2), this last condition
implies that µ has a finite exponential moment.

Let N be a Young function such that

KN = �7�N < +∞�

where 7 is a random variable which has a double exponential distribution.

Theorem 8.1. There exists a finite positive constant C = C�N�µ� such that
for any Banach space �B� � · �B� and vectors v1� � � � � vn ∈ B,

�S�N ≤ C�S�1�(8.1)

where S = �ξ1v1 + · · · + ξnvn�B.

In (8.1), one can take

C = 2 + 8
√

3KN

Is�µ�E�ξ1�
�

When N�x� = �x�p and µ is Gaussian, (8.1) is well known (see e.g., [14],
page 179). Under the above general conditions, (8.1) might also be known for
the Lebesgue norms and with possibly a different constant. Indeed, it can eas-
ily be obtained from Talagrand’s inequality (1.9), since in the crucial inequality
(8.3) below, only the large values of h are important.

Proof. The inequality (1.2),

�µn�+�A� ≥ Is�µ�
2
√

6
min�µn�A�� 1 − µn�A���

A ⊂ Rn, can easily be integrated (see [4]) to give

µn�Ah� ≥ RKh�µn�A��� h > 0� K = Is�µ�
2
√

6
�(8.2)

where the function Rh is defined by Rh�p� = ν��−∞� a + h��, p = ν�−∞� a�,
a ∈ R. In particular, when µn�A� ≥ 1/2, (8.2) gives

1 − µn�Ah/K� ≤ 1
2e

−h = P�7 > h��(8.3)
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Therefore, for functions f
 Rn → R with �f�Lip < +∞, applying (8.3) to the
sets A = �f < t�, we have

µn��f−m�f�� > K−1�f�Liph� ≤ P��7� > h��
By the very definition of the Orlicz norm, this gives

�f−m�f��N ≤ K−1�f�Lip�7�N = K−1KN�f�Lip�(8.4)

Now, let f�x� = sup
∑n

k=1

〈
w�vk

〉
xk, where the sup is taken over the unit ball

of B∗ the dual of B. The function f is such that

�f�2
Lip ≤ σ2 = sup

�w�B∗

n∑
k=1

!w�vk"2�

and moreover it has (with respect to µn) the same distribution as S. Hence,
(8.4) can be rewritten as

�S−m�S��N ≤ K−1KNσ�(8.5)

To estimate σ via ES, we replace our original argument by a folklore one
provided to us by the referee. Let ηi be i.i.d. symmetric Bernoulli random
variables independent of the ξi’s. By the triangle inequality and symmetry,

2ES ≥ E
∥∥∥∥∑

i

ηi�ξi − ξ′
i�vi

∥∥∥∥
B

≥ E
∥∥∥∥∑

i

ηiξivi

∥∥∥∥
B

= E
∥∥∥∥∑

i

ηi�ξi�vi

∥∥∥∥
B

�

where �ξ′
i� is an independent copy of the sequence �ξi� and is also independent

of the sequence �ηi�. By Jensen’s inequality along the ξi’s,

E
∥∥∥∥∑

i

ηi�ξi�vi

∥∥∥∥
B

≥ E�ξ1�E
∥∥∥∥∑

i

ηivi

∥∥∥∥
B

�

Then, using the usual Khintchine–Kahane inequality with the optimal con-
stant (see [9]), we get

σ ≤ 2
√

2�S�1

E�ξ1�
�(8.6)

Finally, the elementary inequality m�S� ≤ 2ES, as well as (8.5) and (8.6) give

�S�N ≤ m�S� +K−1KNσ ≤
(

2 + 2
√

2K−1KN

E�ξ1�
)
�S�1�
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