AN ISOPERIMETRIC INEQUALITY ON THE DISCRETE CUBE, AND AN ELEMENTARY PROOF OF THE ISOPERIMETRIC INEQUALITY IN GAUSS SPACE ${ }^{1}$

By S. G. Bobkov
Syktyvkar University

Abstract

We prove an isoperimetric inequality on the discrete cube which is the precise analog of a logarithmic inequality due to Talagrand. As a consequence, the Gaussian isoperimetric inequality is derived.

Let us consider the following inequality: for all $0 \leq a, b \leq 1$,

$$
\begin{equation*}
I\left(\frac{a+b}{2}\right) \leq \frac{1}{2} \sqrt{I(a)^{2}+\left|\frac{a-b}{2}\right|^{2}}+\frac{1}{2} \sqrt{I(b)^{2}+\left|\frac{a-b}{2}\right|^{2}}, \tag{1}
\end{equation*}
$$

where I is a nonnegative function defined on $[0,1]$ such that

$$
\begin{equation*}
I(0)=I(1)=0 . \tag{2}
\end{equation*}
$$

Clearly, if several functions satisfy (1) and (2), then their supremum also satisfies (1) and (2). One may wonder therefore if there exists a maximal function among those for which (1) and (2) hold, and if so, what the maximal function is. This question turns out to be a key to an isoperimetric problem on the discrete cube. As we will see, an appropriate functional isoperimetric inequality contains in a limit case the well-known isoperimetric inequality in Gauss space. For $x \in[-\infty,+\infty]$, set

$$
\varphi(\mathrm{x})=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\mathrm{x}^{2} / 2\right\}, \quad \Phi(\mathrm{x})=\int_{-\infty}^{\mathrm{x}} \varphi(\mathrm{t}) \mathrm{dt} .
$$

Φ is an increasing bijection from $[-\infty,+\infty]$ to $[0,1]$. Let $\Phi^{-1}:[0,1] \rightarrow$ $[-\infty,+\infty]$ be the inverse function.

Proposition 1. The function $\mathrm{I}(\mathrm{p})=\varphi\left(\Phi^{-1}(\mathrm{p})\right), 0 \leq \mathrm{p} \leq 1$, is maximal among all nonnegative continuous functions satisfying (1) and (2).

This statement is proved at the end of the present note [in fact, that $\mathrm{I}=\varphi\left(\Phi^{-1}\right)$ satisfies (1) and (2) implies the maximal property]. Now let us rewrite (1) "on functions" as a "two point" analytic inequality. Given an

[^0]arbitrary function $f:\{-1,1\} \rightarrow[0,1]$, we have, putting in (1) $a=f(-1)$, $b=f(1)$:
\[

$$
\begin{equation*}
I(E f) \leq E \sqrt{I(f)^{2}+|\nabla f|^{2}} \tag{3}
\end{equation*}
$$

\]

where mathematical expectations (integrals) are understood with respect to uniform measure $\mu=\frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1}$ on $\{-1,1\}$, and where $\nabla \mathrm{f}$ denotes discrete gradient, that is, $|\nabla f|=|(f(1)-f(-1)) / 2|$. More generally, for functions f : $\{-1,1\}^{n} \rightarrow \mathbf{R}$, the modulus of discrete gradient will be defined by

$$
|\nabla f(x)|^{2}=\frac{1}{4} \sum_{i=1}^{n}\left|f(x)-f\left(s_{i}(x)\right)\right|^{2},
$$

where $s_{i}(x)_{j}=x_{j}$, if $j \neq i$, and $s_{i}(x)_{j}=-x_{i}$, if $j=i\left[i . e ., s_{i}(x)\right.$ is the neighbor of x in the ith coordinate]. We first observe a main additivity property of (3).

Lemma 1. Given a nonnegative function I on $\{-1,1\}$, if (3) holds for all f : $\{-1,1\} \rightarrow[0,1]$ with respect to a probability measure μ on $\{-1,1\}$, then (3) holds for all f: $\{-1,1\}^{n} \rightarrow[0,1]$ with respect to the product measure μ_{n}, the nth power of μ.

The same statement could be made about arbitrary probability measure μ on \mathbf{R} and its power μ^{n} for the usual gradient $\nabla \mathrm{f}$ of locally Lipschitz functions f on the Euclidean space (see, for extensions, [1]).

Proof. Lemma 1 is easily proved by induction over n. Given $f:\{-1,1\}^{\mathrm{n}+1}$ $\rightarrow[0,1]$, put $f_{0}(x)=f(x,-1), f_{1}(x)=f(x, 1)$, where $x \in\{-1,1\}^{n}$. We use the notation $\mathbf{E}_{\mathrm{n}} \psi=\int \psi \mathrm{d} \mu_{\mathrm{n}}$. Put

$$
\mathrm{p}_{0}=\mu(\{-1\}), \quad \mathrm{p}_{1}=\mu(\{1\}), \quad \mathrm{a}_{0}=\mathbf{E}_{\mathrm{n}} \mathrm{f}_{0}, \quad \mathrm{a}_{1}=\mathbf{E}_{\mathrm{n}} \mathrm{f}_{1} .
$$

Hence, $E_{n+1} f=p_{0} a_{0}+p_{1} a_{1}$. Since $\left.|\nabla f(x,-1)|^{2}=\left|\nabla f_{0}(x)\right|^{2}+\frac{1}{4} \right\rvert\, f_{0}(x)-$ $\left.f_{1}(x)\right|^{2}$ and $|\nabla f(x, 1)|^{2}=\left|\nabla f_{1}(x)\right|^{2}+\frac{1}{4}\left|f_{0}(x)-f_{1}(x)\right|^{2}$, one can write

$$
\begin{align*}
\mathbf{E}_{n+1} \equiv & \mathbf{E}_{n+1} \sqrt{I(f)^{2}+|\nabla f|^{2}} \\
= & p_{0} \mathbf{E}_{n} \sqrt{\left(f_{0}\right)^{2}+\left|\nabla f_{0}\right|^{2}+\frac{1}{4}\left|f_{0}-f_{1}\right|^{2}} \tag{4}\\
& +p_{1} \mathbf{E}_{n} \sqrt{I\left(f_{1}\right)^{2}+\left|\nabla f_{1}\right|^{2}+\frac{1}{4}\left|f_{0}-f_{1}\right|^{2}} .
\end{align*}
$$

Next, in order to estimate the right integrals in (4), we apply twice the triangle inequality

$$
\int \sqrt{u^{2}+v^{2}} \geq \sqrt{\left(\int u\right)^{2}+\left(\int v\right)^{2}}
$$

to $\mathrm{u}_{0}=\sqrt{\mathrm{I}\left(\mathrm{f}_{0}\right)^{2}+\left|\nabla \mathrm{f}_{0}\right|^{2}}, \mathrm{v}=\left(\mathrm{f}_{0}-\mathrm{f}_{1}\right) / 2$ and to $\mathrm{u}_{1}=\sqrt{I\left(\mathrm{f}_{1}\right)^{2}+\left|\nabla \mathrm{f}_{1}\right|^{2}}, \mathrm{v}=$ $\left(f_{0}-f_{1}\right) / 2$. Then, we come to

$$
\mathbf{E}_{\mathrm{n}+\mathrm{l}} \geq \mathrm{p}_{0} \sqrt{\left(\mathbf{E}_{\mathrm{n}} \mathrm{u}_{0}\right)^{2}+\left(\mathbf{E}_{\mathrm{n}} \mathrm{v}\right)^{2}}+\mathrm{p}_{1} \sqrt{\left(\mathbf{E}_{\mathrm{n}} \mathrm{u}_{1}\right)^{2}+\left(\mathbf{E}_{\mathrm{n}} \mathrm{v}\right)^{2}} .
$$

By the induction assumption, $\mathbf{E}_{\mathrm{n}} \mathrm{u}_{0} \geq \mathrm{I}\left(\mathrm{a}_{0}\right), \mathbf{E}_{\mathrm{n}} \mathrm{u}_{1} \geq \mathrm{I}\left(\mathrm{a}_{1}\right)$. In addition, $\mathbf{E}_{\mathrm{n}} \mathrm{v}=$ $\left(a_{0}-a_{1}\right) / 2$. Therefore,

$$
\begin{equation*}
\mathbf{E}_{\mathrm{n}+1} \geq \mathrm{p}_{0} \sqrt{I\left(\mathrm{a}_{0}\right)^{2}+\frac{1}{4}\left|a_{0}-a_{1}\right|^{2}}+p_{1} \sqrt{I\left(\mathrm{a}_{1}\right)^{2}+\frac{1}{4}\left|a_{0}-a_{1}\right|^{2}} \tag{5}
\end{equation*}
$$

The right-hand side of (5) is estimated, according to (3) in the case $n=1$, by $I\left(p_{0} a_{0}+p_{1} a_{1}\right)=I\left(E_{n+1} f\right)$. Lemma 1 is proved.

In case $\mu=\frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1}, \mu_{\mathrm{n}}$ represents the uniform measure on $\{-1,1\}^{\mathrm{n}}$. For any set $A \subset\{-1,1\}^{\text {n }}$, we define its discrete perimeter by

$$
\mu_{n}^{+}(\mathrm{A})=\int\left|\nabla \chi_{\mathrm{A}}\right| \mathrm{d} \mu_{\mathrm{n}},
$$

where χ_{A} denotes indicator function of the set A . Note that, for all $\mathrm{x} \in$ $\{-1,1\}^{n}$,

$$
\left|\nabla \chi_{A}(x)\right|^{2}=\frac{1}{4} \operatorname{card}\left\{i \leq n:\left(x \in A, s_{i}(x) \notin A\right) \text { or }\left(x \notin A, s_{i}(x) \in A\right)\right\}
$$

Combining Proposition 1 and Lemma 1, we obtain the following statement (note that we do not use the fact that I is maximal in Proposition 1).

Proposition 2. Let $I=\varphi\left(\Phi^{-1}\right)$. Then, for all $f:\{-1,1\}^{n} \rightarrow[0,1]$,

$$
\begin{equation*}
l(E f) \leq E \sqrt{I(f)^{2}+|\nabla f|^{2}} \tag{6}
\end{equation*}
$$

where mathematical expectations are with respect to the uniform measure μ_{n}. In particular, for any $A \subset\{-1,1\}^{n}$, applying (6) to $f=\chi_{A}$, we have

$$
\begin{equation*}
\mu_{n}^{+}(\mathrm{A}) \geq I\left(\mu_{n}(\mathrm{~A})\right) \tag{7}
\end{equation*}
$$

The function I in (6) is optimal as a continuous function not depending on the dimension (since it implies the appropriate Gaussian inequality-see Corollary 1) but we do not know how optimal the inequality (7) is. For example, for the sets

$$
A_{n}(p)=\left\{x \in\{-1,1\}^{n}: \frac{x_{1}+\cdots+x_{n}}{\sqrt{n}} \leq \Phi^{-1}(p)\right\}
$$

we have $\mu_{n}\left(A_{n}(p)\right) \rightarrow p$ by the central limit theorem, while $\mu_{n}^{+}\left(A_{n}(p)\right)$ $\rightarrow \sqrt{2} \mathrm{I}(\mathrm{p})$, as $\mathrm{n} \rightarrow \infty$, by de Moivre's local limit theorem. Hence, $A_{n}(p)$ are not extremal in (7) even in an asymptotic sense.

Remark 1. Talagrand studied in [8] the functional

$$
\operatorname{Mf}(x)=\left[\sum_{i=1}^{n}\left(\left(f(x)-f\left(s_{i}(x)\right)\right)^{+2}\right)\right]^{1 / 2}
$$

and proved the inequality

$$
\begin{equation*}
E M f \geq C\left(E f^{2}-(E f)^{2}\right) \tag{8}
\end{equation*}
$$

where $\mathrm{f}:\{-1,1\}^{\mathrm{n}} \rightarrow[0,1]$ is arbitrary, c is a universal constant and $\mathrm{J}(\mathrm{p})=$ $\mathrm{p} \sqrt{\log (1 / \mathrm{p})}$. The value $\mathbf{E} M \chi_{\mathrm{A}}$ can be viewed as "interior" perimeter. Since $I(p) \sim p \sqrt{2 \log (1 / p)}$, as $p \rightarrow 0^{+}$, and since $M f \leq \frac{1}{2}|\nabla f|$, (8) implies (7) up to some universal constant in front of $I\left(\mu_{\mathrm{n}}(\mathrm{A})\right.$). In fact, the unequality

$$
\begin{equation*}
\mathbf{E M} \chi_{\mathrm{A}} \geq \mathrm{c}\left(\mu_{\mathrm{n}}(\mathrm{~A})\left(1-\mu_{\mathrm{n}}(\mathrm{~A})\right)\right), \tag{9}
\end{equation*}
$$

which is a partial case of (8) for indicator functions $f=\chi_{A}$, can be essentially better than (7) for sets A of small measure. As noted in [8], when A consists of one point, $\mathbf{E M} \chi_{A}=\sqrt{n} 2^{-n}$ while $\mu_{n}^{+}(A)=n 2^{-n}$. For such a set, the right-hand sides of (7) and (9) are of order $\sqrt{\mathrm{n}} 2^{-n}$.

Now, consider a twice differentiable function $\mathrm{f}: \mathbf{R}^{\mathrm{n}} \rightarrow[0,1]$ with bounded first and second partial derivatives and apply (6) to the functions

$$
f_{k}\left(x_{1}, \ldots, x_{k}\right)=f\left(\frac{x_{1}+\cdots+x_{k}}{\sqrt{k}}\right), \quad x_{1}, \ldots, x_{k} \in\{-1,1\}^{n},
$$

defined on $\{-1,1\}^{\text {nk }}$. (This argument, when some inequalities for Gaussian measure are derived from appropriate inequalities for Bernoulli independent random variables, is well known; see, e.g., Gross [5]). By the central limit theorem in \mathbf{R}^{n},

$$
\int_{\{-1,1\}^{n k}} f_{k} d \mu_{n k} \rightarrow \int_{\mathbf{R}^{n}} f d \gamma_{n}, \quad k \rightarrow \infty,
$$

where γ_{n} is the canonical Gaussian measure on \mathbf{R}^{n}, with density $\varphi_{\mathrm{n}}(\mathrm{y})=$ $\varphi\left(\mathrm{y}_{1}\right) \cdots \varphi\left(\mathrm{y}_{\mathrm{n}}\right), \mathrm{y}=\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right) \in \mathbf{R}^{\mathrm{n}}$. Note also that

$$
\left|\nabla \mathrm{f}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)\right|^{2}=\left|\operatorname{Df}\left(\frac{\mathrm{x}_{1}+\cdots+\mathrm{x}_{\mathrm{k}}}{\sqrt{\mathrm{k}}}\right)\right|^{2}+\mathrm{O}\left(\frac{1}{\sqrt{\mathrm{k}}}\right) \quad \text { as } \mathrm{k} \rightarrow \infty,
$$

uniformly over all $x_{1}, \ldots, x_{k} \in\{-1,1\}^{n}$, where $D f=\left(\partial f / \partial x_{i}\right)_{i=1}^{n}$ denotes the usual gradient of f. Since $|\mathrm{Df}|^{2}=\sum_{i=1}^{n}\left|\partial f / \partial x_{i}\right|^{2}$ is continuous and bounded, again by the central limit theorem, we have

$$
\int_{\{-1,1\}^{n k}} \sqrt{l\left(f_{k}\right)^{2}+\left|\nabla f_{k}\right|^{2}} \mathrm{~d} \mu_{\mathrm{nk}} \rightarrow \int_{\mathbf{R}^{\mathrm{n}}} \sqrt{I(\mathrm{f})^{2}+|\mathrm{Df}|^{2}} \mathrm{~d} \gamma_{\mathrm{n}} \quad \text { as } \mathrm{k} \rightarrow \infty .
$$

We have thus proved (6) for Gaussian measure under the above assumptions on f. By a simple approximation argument, this inequality extends to all locally Lipschitz functions (which are differentiable almost everywhere by Rademacher's theorem).

Corollary 1. Let $\mathrm{I}=\varphi\left(\Phi^{-1}\right)$. Then, for any locally Lipschitz function f : $\mathbf{R}^{\mathrm{n}} \rightarrow[0,1]$,

$$
\begin{equation*}
I(E f) \leq E \sqrt{I(f)^{2}+|D f|^{2}} \tag{10}
\end{equation*}
$$

where mathematical expectations are with respect to the Gaussian measure γ_{n}. In particular, for any Bord measurable set $A \subset \mathbf{R}^{\mathrm{n}}$,

$$
\begin{equation*}
\gamma_{n}^{+}(\mathrm{A}) \geq \mathrm{I}\left(\gamma_{\mathrm{n}}(\mathrm{~A})\right) \tag{11}
\end{equation*}
$$

Here

$$
\gamma_{n}^{+}(A)=\liminf _{h \rightarrow 0} \frac{\gamma_{n}\left(A^{h}\right)-\gamma_{n}(A)}{h}
$$

denotes Gaussian perimeter, that is, Minkowski's surface measure with respect to $\gamma_{n} ; A^{h}=\left\{x \in \mathbf{R}^{n}:|x-a|<h\right.$ for some $\left.a \in A\right\}$ is an open h-neighborhood of the set A. Since $\sqrt{a^{2}+b^{2}} \leq|a|+|b|$, we have, from (10), the following corollary.

Corollary 2. For any locally Lipschitz function $f: \mathbf{R}^{n} \rightarrow[0,1]$,

$$
\begin{equation*}
I(E f)-E I(f) \leq E|D f| . \tag{12}
\end{equation*}
$$

The inequality (11) easily follows from (12), as well as from (10), via approximation of the indicator functions $\mathrm{f}=\chi_{\mathrm{A}}$ by Lipschitz functions [in the case $\gamma_{n}(\partial \mathrm{~A})=0$, one may take in (12) $\mathrm{f}_{\mathrm{h}}(\mathrm{x})=\max \left\{1-(1 / \mathrm{h}) \operatorname{dist}\left(\mathrm{A}^{\mathrm{h}}, \mathrm{x}\right), 0\right\}$, $\mathrm{h}>0$, and then let $\mathrm{h} \rightarrow 0$]. The last step shows that the function I is optimal in (6), or equivalently, in (1), among all continuous nonnegative functions on [0,1] satisfying (1) and (2). Indeed, if another continuous nonnegative function J on $[0,1]$ satisfies (1) and (2), then we obtain as above the inequalities (10) and (11) for J instead of 1 . But for half-spaces A of γ_{n}-measure p , $\gamma_{n}^{+}(A)=I(p)$; hence, $I(p) \geq J(p)$, for all p.

Remark 2. In the same way, noting that the function J of (8) is up to a multiplicative constant equivalent to I, one can deduce the inequality

$$
\gamma_{n}^{+}(\mathrm{A}) \geq \mathrm{cl}\left(\gamma_{\mathrm{n}}(\mathrm{~A})\right)
$$

with some universal constant $\mathrm{c} \in(0,1)$ from Talagrand's logarithmic inequality (8). Another approach to the above inequality, based on hypercontractivity, was suggested by Ledoux ([6], Chapter 8). It is of course an interesting question how to prove this inequality with $\mathrm{c}=1$ [or its functional forms (10) and (12)] analytically. By semigroup arguments, this was recently performed by Bakry and Ledoux [1].

Remark 3. In the original form, the isoperimetric inequality for Gaussian measure stated that, for any Borel measurable set $A \subset \mathbf{R}^{n}$, and $h>0$,

$$
\begin{equation*}
\gamma_{\mathrm{n}}\left(\mathrm{~A}^{\mathrm{h}}\right) \geq \Phi\left(\Phi^{-1}\left(\gamma_{\mathrm{n}}(\mathrm{~A})\right)+\mathrm{h}\right) \tag{13}
\end{equation*}
$$

(with equality at any half-space). The first proof, due to Sudakov and Tsirel'son [7] and Borell [3], was based on the isoperimetric property of balls on the sphere (a theorem by Lévy and Schmidt). Ehrhard [4] devel oped a rearrangement of sets argument in Gauss space ($\mathbf{R}^{n}, \gamma_{n}$) and, as result, obtained (13). Of course, the inequality (11) represents a differential analog of (13). By considering small $\mathrm{h}>0$, (11) immediately follows from (13). Converse implication is also simple: the family of functions,

$$
R_{h}(p)=\Phi\left(\Phi^{-1}(p)+h\right), \quad p \in[0,1], h \in \mathbf{R},
$$

possesses the property $R_{h_{2}+h_{2}}(p)=R_{h_{1}}\left(R_{h_{2}}(p)\right)$, and operation $h \rightarrow A^{h}$ possesses the property $A^{h_{1}+h_{2}}=\left(A^{h_{1}}\right)^{h_{2}}, h_{1}, h_{2} \geq 0$. Therefore, if $h_{1}, h_{2} \geq 0$ satisfy (13), then $h_{1}+h_{2}$ also satisfies (13). Hence, (13) holds for all $h>0$, if it holds for $\mathrm{h}>0$ small enough that is true by (11).

Remark 4. With the help of (13), the inequality (12) was proved in [2]. More generally, for any Borel measurable function $f: \mathbf{R}^{n} \rightarrow[0,1]$ and $h>0$, the following holds:

$$
\begin{equation*}
E M_{h} f \geq R_{h}\left(E R_{-h}(f)\right), \tag{14}
\end{equation*}
$$

where $M_{h} f(x)=\sup \{f(y):|x-y|<h\}$. For smooth f, letting $h \rightarrow 0$, we have

$$
\begin{aligned}
M_{h} f(x) & =f(x)+|D f(x)| h+O\left(h^{2}\right), \\
R_{h}\left(E R_{-h}(f)\right) & =\mathbf{E} f+(I(E f)-E I(f)) h+O\left(h^{2}\right),
\end{aligned}
$$

and thus (14) turns into (12). For indicator functions $f=\chi_{A}$, (14) becomes (13). Consequently, the inequalities (11), (12), (13) and (14) are equivalent to each other. As noted, (11) is a partial case of (10). On the other hand, if for a "good" function f on \mathbf{R}^{n} with values in (0,1), one takes $A=\left\{(x, y): x \in \mathbf{R}^{n}\right.$, $\mathrm{y} \in \mathbf{R}, \Phi(\mathrm{y})<\mathrm{f}(\mathrm{x})\}$, then (10) also becomes a partial case of (11) but in $\left(\mathbf{R}^{\mathrm{n}+1}, \gamma_{\mathrm{n}+1}\right)$. Indeed, in terms of the function $\mathrm{g}=\Phi^{-1}(\mathrm{f})$, the inequality (10) reads as

$$
\begin{equation*}
I\left(\gamma_{n+1}(A)\right) \leq \int_{\mathbf{R}^{n}} \varphi_{n}(x) \varphi(g(x)) \sqrt{1+|D g(x)|^{2}} d x \tag{15}
\end{equation*}
$$

Also note that

$$
\begin{equation*}
\gamma_{n+1}^{+}(\mathrm{A})=\int_{\partial A} \varphi_{\mathrm{n}+1}(\mathrm{z}) \mathrm{dH}_{\mathrm{n}}(\mathrm{z})=\int_{\partial \mathrm{A}} \varphi_{\mathrm{n}}(\mathrm{x}) \varphi(\mathrm{y}) \mathrm{dH}_{\mathrm{n}}(\mathrm{x}, \mathrm{y}) \tag{16}
\end{equation*}
$$

where $z=(x, y)$ and where H_{n} stands for the n-dimensional Hausdorff measure in $\mathbf{R}^{\mathrm{n+1}}$ [that is, the right integral in (16) is taken over Lebesgue surface measure on $\partial \mathrm{A}]$. This surface is defined by equation $\mathrm{y}=\mathrm{g}(\mathrm{x})$, and $\sqrt{1+|D g(x)|^{2}} d x$ represents the element $d H_{n}(x, y)$ of measure H_{n} at the point (x, y) $\in \partial A$; hence, the right-hand sides of (15) and (16) coincide. Therefore, the functional inequality (10) for the measure γ_{n} can be written as the $(n+1)$-dimensional isoperimetric inequality

$$
\mathrm{I}\left(\gamma_{\mathrm{n}+1}(\mathrm{~A})\right) \leq \gamma_{\mathrm{n}+1}^{+}(\mathrm{A}) .
$$

We are not sure that this argument is quite rigorous enough to derive (10) for dimension n from (11) with $n+1$ on the class of all smooth functions f , but it shows that the Gaussian isoperimetric inequality (11) is, in essence, two-dimensional: if it holds for $\mathrm{n}=2$, then (10) holds as above for $\mathrm{n}=1$; therefore, it holds for all n by additivity property of (10). And, as noted, on indicator functions, (10) gives (11) for all dimensions.

Proof of Proposition 1. As already noted, it suffices to show that $\mathrm{I}=$ $\varphi\left(\Phi^{-1}\right)$ satisfies (1). Fix $\mathrm{c} \in(0,1)$, and introduce the function $\mathrm{g}(\mathrm{x})=\mathrm{I}(\mathrm{c}+$ $x)^{2}+x^{2}, x \in \Delta(c)=(-\min (c, 1-c), \min (c, 1-c))$. If we put $c=(a+b) / 2$, $x=(a-b) / 2$, then (1) can be rewritten as

$$
\begin{equation*}
\sqrt{g(0)} \leq \frac{1}{2} \sqrt{g(x)}+\frac{1}{2} \sqrt{g(-x)}, \tag{17}
\end{equation*}
$$

and the condition $\mathrm{a}, \mathrm{b} \in(0,1)$ is equivalent to $\mathrm{x} \in \Delta(\mathrm{c})$. Multiplying by 2 and squaring (17), we get

$$
\begin{equation*}
4 g(0)-(g(x)+g(-x)) \leq 2 \sqrt{g(x) g(-x)} . \tag{18}
\end{equation*}
$$

Again squaring (18) [there is no need to show that the left-hand side of (18) is nonnegative], we come to

$$
\begin{aligned}
& 16 g(0)^{2}-8 g(0)(g(x)+g(-x))+\left(g(x)^{2}+2 g(x) g(-x)+g(-x)^{2}\right) \\
& \quad \leq 4 g(x) g(-x),
\end{aligned}
$$

that is,

$$
\begin{equation*}
16 g(0)^{2}+(g(x)-g(-x))^{2} \leq 8 g(0)(g(x)+g(-x)) \tag{19}
\end{equation*}
$$

Now rewrite (19) in terms of the function $h(x)=g(x)-g(0)=I(c+x)^{2}+$ $x^{2}-I(c)^{2}$:

$$
\begin{equation*}
(h(x)-h(-x))^{2} \leq 8 I(c)^{2}(h(x)+h(-x)) . \tag{20}
\end{equation*}
$$

Lemma 2. (a) $|\cdot|^{\prime \prime}=-1$. (b) the function $\left(I^{\prime}\right)^{2}$ is convex on $(0,1)$.
Proof. (a) follows from $\varphi^{\prime}(x)=-x \varphi(x), x \in \mathbf{R}$. (b) $\left(I^{\prime 2}\right)^{\prime}=2 I^{\prime \prime} I^{\prime \prime}=$ $-2\left(I^{\prime} / I\right)$, hence, $\left(I^{\prime 2}\right)^{\prime \prime}=-2\left(I^{\prime \prime} I-I^{\prime 2}\right) / I^{2}=2\left(1+I^{\prime 2}\right) / I^{2} \geq 0$.

Lemma 3. The function $R(x)=h(x)+h(-x)-2 I^{\prime}(c)^{2} x^{2}$ is convex on Δ (c).

Proof. $R^{\prime}(x)=2 I(c+x) I^{\prime}(c+x)-2 I(c-x) I^{\prime}(c-x)+4 x-$ $4 I^{\prime}(c)^{2} x$. Hence,

$$
R^{\prime \prime}(x)=4\left[\frac{I^{\prime}(c+x)^{2}+I^{\prime}(c-x)^{2}}{2}-I^{\prime}(c)^{2}\right]
$$

is nonnegative since $\left(I^{\prime}\right)^{2}$ is convex [Lemma 2(b)].
Since R is even, we have from Lemma 3 that $R(x) \geq R(0)=0$ for all $x \in \Delta(c)$, therefore,

$$
h(x)+h(-x) \geq 2 I(c)^{2} I^{\prime}(c)^{2} x^{2}
$$

Hence, (20) will follow from the stronger inequality $(h(x)-h(-x))^{2} \leq$ $16 \mathrm{I}(\mathrm{c}) \mathrm{I}^{\prime}(\mathrm{c})^{2} \mathrm{x}^{2}$, that is, from

$$
\left|\frac{h(x)-h(-x)}{x}\right| \leq 4 I(c)\left|I^{\prime}(c)\right|
$$

Since $h(x)-h(-x)=I(c+x)^{2}-I(c-x)^{2}$, it remains to show that

$$
\begin{equation*}
\left|\frac{I(c+x)^{2}-I(c-x)^{2}}{x}\right| \leq 4 I(c)\left|I^{\prime}(c)\right| . \tag{21}
\end{equation*}
$$

Since I is symmetric around $1 / 2$, we have $I(1-c)=I(c),\left|I^{\prime}(1-c)\right|=\left|I^{\prime}(c)\right|$, and

$$
\left|I((1-c)+x)^{2}-I((1-c)-x)^{2}\right|=\left|I(c-x)^{2}-I(c+x)^{2}\right| .
$$

Therefore, one may assume $0<c \leq \frac{1}{2}$. Note that $\Delta(1-c)=\Delta(c)$. In addition, one may assume $x>0$, since the left-hand side of (21) is an even function of x. Under these assumptions, $\mathrm{I}(\mathrm{c}+\mathrm{x}) \geq \mathrm{I}(\mathrm{c}-\mathrm{s})$, because I increases on [$0, \frac{1}{2}$], decreases on $\left[\frac{1}{2}, 1\right]$ and is symmetric around $\frac{1}{2}$. Indeed, by these properties, $\mathrm{I}(\mathrm{c}+\mathrm{x}) \geq \mathrm{I}(\mathrm{c}-\mathrm{x}) \Leftrightarrow 1-(\mathrm{c}+\mathrm{x}) \geq \mathrm{c}-\mathrm{x} \Leftrightarrow 1 \geq 2 \mathrm{c}$. Conse quently, one may rewrite (21) as

$$
\begin{equation*}
\frac{I(c+x)^{2}-I(c-x)^{2}}{x} \leq 4 I(c) I^{\prime}(c) \tag{22}
\end{equation*}
$$

assuming $0<\mathrm{x}<\mathrm{c} \leq 1 / 2$. Consider the function $\mathrm{u}(\mathrm{x})=\mathrm{I}(\mathrm{c}+\mathrm{x})^{2}-\mathrm{I}(\mathrm{c}-$ $x)^{2}$. By Lemma $2(a), u^{\prime \prime}(x)=2\left(I^{\prime}(c+x)^{2}-I^{\prime}(c-x)^{2}\right)$. As a convex, symmetric around $1 / 2$ function, $\mathrm{I}^{\prime 2}$ decreases on $\left(0, \frac{1}{2}\right]$ and increases on $\left[\frac{1}{2}, 1\right)$, hence, $\mathrm{I}^{\prime}(\mathrm{c}+\mathrm{x})^{2} \leq \mathrm{I}^{\prime}(\mathrm{c}-\mathrm{x})^{2}$ and thus $\mathrm{u}^{\prime \prime}(\mathrm{x}) \leq 0$, whenever $0<\mathrm{x}<\mathrm{c} \leq \frac{1}{2}$. There fore, u is a concave nonnegative function on $[0, c]$. But then

$$
\frac{u(x)}{x}=\int_{0}^{1} u^{\prime}(x t) d t
$$

is nonincreasing on ($0, c]$, and it remains to prove (22) at $x=0$. Since

$$
I(c+x)^{2}=I(c)^{2}+2 I(c) I^{\prime}(c) x+O\left(x^{2}\right)
$$

as $x \rightarrow 0$, we have $u(x) / x \rightarrow 4 I(c) I^{\prime}(c)$. Proposition 1 follows.
Acknowledgments. The author would like to thank Professor M. Ledoux and Professor F. Götze for useful and stimulating discussions.

REFERENCES

[1] Bakry, D. and Ledoux, M. (1995). Lévy-Gromov isoperimetric inequality for an infinite dimensional diffusion generator. Invent. Math. 123 259-281.
[2] Bobкоv, S. (1996). A functional form of the isoperimetric inequality for the Gaussian measure. J. Funct. Anal. 135 39-49.
[3] Borell, C. (1975). The Brunn-Minkowski inequality in Gauss space. Invent. Math. 30 207-216.
[4] Ehrhard, A. (1983). Symétrisation dans l'espace de Gauss. Math. Scand. 53 281-301.
[5] Gross, L. (1993). Logarithmic Sobolev inequalities and contractivity properties of semigroups. Varenna (1992). Lecture Notes in Math. 1563 54-88. Springer, Berlin.
[6] Ledoux, M. (1994). Isoperimetry and Gaussian analysis. Ecoled'EtédeProbabilités de Saint Flour. Lecture Notes in Math. Springer, Berlin. To appear.
[7] Sudakov, V. N. and TsireL'son, B. S. (1978). Extremal properties of half-spaces for spherically invariant measures. J. Soviet Math. 9 9-18. [Translated from Zap. Nauchn. Sem. Leningrad. Otde. Math. Inst. Steklova. 41 (1974) 14-24.]
[8] Talagrand, M. (1993). Isoperimetry, logarithmic Sobolev inequalities on the discrete cube, and Margulis' graph connectivity theorem. Geom. and Funct. Anal. 3 295-314.

Department of Mathematics
Syktyvkar University
167001 SyKTYVKAR
Russia

[^0]: Received February 1996; revised May 1996.
 ${ }^{1}$ Partially supported by Grant NXZ000 from the International Science Foundation and by the Alexander von Humboldt-F oundation.

 AMS 1991 subject classifications. 60B, 60G15.
 Key words and phrases. Isoperimetry, discrete cube, Gaussian measure.

