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CHARACTERIZATION OF GAUSSIAN MEASURES 
BY THE ISOPERIMETRIC PROPERTY OF HALF-SPACES 

S. G .  B o b k o v  a n d  C.  H o u d r ~  UDC 519.2 

If the half-spaces of the form { z E R n : xl <_ c } are eztremal in the isoperimetrie problem .for a product- 
measure p~, n >_ 2, then the marginal distribution of p is Gaussian. Bibliography: 8 titles. 

w INTRODUCTION 

Let p be a probability measure on the real line R.  We denote by p"  its n th  power on R "  and by A h the 
open h-neighborhood (in the sense of the Euclidean distance) of the subset A C R a, h > 0: 

A '  = { x e R ~ :  Ilz - all2 < h for some a e A }. 

The isoperimetric problem for (R n, #'~) consists of minimizing the value 

p " ( A ' ) ,  (i.i) 

over all Borel subsets A C R n with p~(A) ~ p ,  where p E  (0,1) and h > 0 are fixed. 
If p is Gaussian, then the minimum of (1.1) is a t ta ined at any subspace of measure p. This fact may be 

written as the isoperimetric inequality 
p " ( A ' )  >_ p"(Bl ' ) ,  (1.2) 

where B is the standard half-space of the form 

{= 6R":xl _<c} 

and c is completely determined by p. This deep property of Gaussian measures was discovered by V. N. Su- 
dakov and B. S. Tsirel 'son [7] and independently by C. Borell [3]. Their  proofs were based on the isoperi- 
metric property of balls on the sphere (the Levi-$chmidt  theorem). Isoperimetric methods  were used for 
the first t ime in the theory of Gaussian processes by H. J. Landau and L. A. Shepp [5] for establishing an 
extremal property of half-spaces in another problem; they also used the Levi-Sehmidt  theorem. Another  
proof of isoperimetric inequality (1.2) based on techniques of symmetrizat ion of subsets in the Gaussian 
probability space was later found by A. Ehrhard  [4]. In this paper, we prove tha t  only Gaussian measures 
satisfy (1.2) in the class of all product-measures. 

T h e o r e m  1.1a.  Let n ~ 2. / / f o r  a l /p  E (0,1) and all positive h the minimal value of(1.1) is a t t a h e d  at 
a s tandard  half-space, then p is Ganssian (possibly degenerate, i.e., concentrated at the origin). 

The case n = 1 differs substantially from the case n > 2. Indeed, many  interesting probability distribu- 
tions on the real line satisfy (1.2). 

In the case where the measure p has continuous positive density, necessary and sufficient conditions for 
(1.2) to be satisfied are known (see [2, Sec. 13]). In particular,  the measure p mus t  be symmetric with 
respect to its median and have a 8nite exponential moment .  Actually, these two conditions axe necessary 
without any additional regularity requirements (see Proposit ion 2.6 below). Moreover, the hypotheses of 
Theorem 1.1a can be weakened if we assume that  p is symmetric  and has a finite second moment.  
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T h e o r e m  i . l b .  Let n > 2 and p = 1/2. Assume thai a probab//ity measure p on the t ea / l ine  R is 
symmetric with respect to some point and has a t~nite second moment .  / f  for all positive h the minima/ 
va/ue of (1.1) is attained at a standard half-space, then the measure p is Gaussian (possibly degenerate). 

We stress the important  role of the Euclidean distance in this characterization. For example, if the 
distance fix - a[12 in the definition of the set A h is replaced by the maximum-distance IJx - altoo , then (1.2) 
is satisfied for a wide class of logarithmically concave distributions [1] (cf. [2, Sec. 15]). Inequalities similar 
to (1.2) with various definitions of extension of a set were studied by many authors (see, e.g., M. Talagrand 
[8] and M. Ledoux [6]) in connection with the phenomenon of concentration of measure. 

It is obvious that  inequality (I.2) gets stronger as the dimension n grows. This means that  in fact we 
may prove the assertions Of Theorems 1.1a and 1.1b for the case of the plane (d = 2). Moreover, under 
the hypotheses of Theorem 1.1b, the Ganssian property follows from inequality (1.2) if we apply it to the 
half-plane 

A ( t ) =  _<t  , t - - 0 .  

Proof of Theorem 1.15. Let ( and 77 be independent  identically distr ibuted random variables defined on a 
probability space (~, ~', P )  with a common distribution p symmetric with respect to zero. Then under the 
condition ~(B) _> 1/2, the minimal value of the right-hand side of (1.2) is at tained at B = { z E R ~- : zl _< 0 } 
and is equal  to P { (  < h}. Likewise, under the condition p(A(t)) >_ 1/2, the minimal value of the left-hand 
side of (1.2) is attained at t - -  0. Since (A(t))" = A(t + h), we get 

P{(~ q- r/)/v/2 < h} > P{~ < h} 

for all positive h. Thus,  

Since 

it follows that  

hdh < 4f0+~176 > h} hdh = D(~). 

D ((~ § r/)/v/2) = D(~ ) ,  

V {(~ + 7/) /v~ > h}  = P {{ > h} 

for almost all (with respect to the Lebesgue measure) positive h. Clearly, this relation holds for all positive h 
and so the random variables (~ + r/)/V~ and ~ are identically distributed. Hence, the characteristic function 
f of the random variable ~ satisfies f2(t /V~) = f(t)  for all real t. It is readily seen tha t  this equation holds 
only for Gaussian random variables. This completes the proof. 

In order to prove Theorem 1.1a, let us consider the one-dimensional case and, in particular, show that 
condition (1.2) implies the hypotheses of Theorem 1.lb. We do not know whether  or not the hypothesis of 
finiteness of the second moment  can be omitted.  

w NECESSARY CONDITIONS FOR THE CASE n ---- 1 

We introduce the following notation. Let p be a probability measure on the real line. Let 
FCz) = PCC-co, z]), z E ( - ~ , + c o ] ;  
Ira(F) = { F(z) > 0 :  z E ( - co ,  q-co] }; 
S (F)  = {z  E ( - c o , + c o l  : FCy) < f ( x )  for all y < z};  
F- ' (p)  = inf{z  6 ( - c o , + c o ]  : F(z) > p } ,  p 6 (0, 1]. 
Note that  F-l(p)  is the minimal quantile of order p. Since the distribution function F is continuous on 

the right, the infimum in the definition of F-l(p)  can be replaced by the min im-m.  In particular, F-l(p)  
is the least solution of the equation F(x) = p for p 6 Im(F) .  Hence, F(F-l (p))  >_ p for all p 6 C 0,1] and 
F(F-I(p))  = p for all p 6 I ra(f ) .  The  set S(F) (without the point z = +co)  is a subset of the (closed) 
support  o f p .  It follows that  p(S(F)) = 1. 
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L e m m a  2.1. The map  F is an increasing bijection orS (F)  to Im(F) ,  and the restriction of  the function 
F -1 to Ira(F) is the inverse map for it. Moreover, the function F-* is continuous on the left on (0,1). 

L e m m a  2.2. For a/1 p G (0, 1], we have the following equivalences: 
(a) F(F-*(p)) = p ,', :, p 6 Ira(F); 
(b) z >_ F - I ( p )  d ;_ F(z)  > p for a / / z  6 ( - c o ,  +co]; 
(c) x < F-l(p) ~ F(x) < p for a//z 6 S(F). 

Both lemmas are elementary, and their proofs are omitted. 
Now, let F and G be the distribution functions of the probability measures p and v. 

L e m m a  2.3. The map  U = G-*(F) takes p to v i f  and only i f  Ira(G) C Ira(F). 

Proof. Consider the restriction of U to S(F). Let p = F(z) ,  z 6 S(F), and q = G(t), t G ( - c o ,  +co], so 
that  p 6 I ra ( f )  and q 6 I ra(G)and,  hence, q e Ira(F).  By Lemma 2.2 (b), (c), we have 

U(z) = G-*(F(x)) = G-*(p) < t r G(t) > p r F(z) < q .'. '.. z < F-*(q). 

It follows that  p{U < t} = F(F-l (q))  = q since q 6 Ira(F).  The  converse assertion is obvious. 

L e m m a  2.4. Assume that for a / /p  6 (0,1) and all positive h we have 

F(F-'(p) + h) < G(G-*(p) + h). (2.1) 

Then the map U = G-*(F) takes p to r, and for all z 6 S(F)  and positive h we have 

u(x + h) < + h. (2.2) 

Proof. Let h --~ 0 in (2.1). Then for all p E (0,1) we have 

F(F-I(,p)) < G(G-I(p)).  (2.3) 

Since F C F - 1 ( 1 ) )  ----- a ( O - i ( 1 ) )  -~- 1, relation (2.3) also holds for p -- 1. Let p e Ira(G). By (2.3), we have 
FCF-'Cp)) < p .  As noted above, the inequatity F(F-'(p)) > p always hads, and hence F(F-*Cp)) = p .  

Once again using Lemma 2.2a, we see that  p 6 lm(F) .  Thus,  Ira(G) C hnCF), and in view of L~mma 2.3 
the map  U takes/~ to u. Now, take an arbitrary z 6 S(F).  Then  F-I (F( z ) )  = z by Lemma 2.1. Applying 
(2.1) to p = F(z), we obtain 

F(z + h) <_ G(U(z) + h). 

Further, 
U(z + h) < G-I(G(U(z) + h)) 

because F ( z + h )  > F(z)  > 0 and the function G-* is nondecreasing. It remains to show that  G-*(G(U(z)+ 
h)) < U(z) + h. To this end, note that  G-*(G(y)) <_ y for all y such that  G(y) > 0. Moreover, for 
y = U(z) + h, we have 

G(y) > G(U(z)) = G(G-*(F(z))) > F(z) > 0 

because G(G-*(p)) > p for all p e (0, I] and F is positive on S(F). This completes the proof of Lemma 2.4. 

Let rap(-) denote the minimal quantile of order p. 

P r o p o s i t i o n  2.5.  The inequa//ty 

P{A S m,(A) + h} > P{~ < mp(~) + h} (2.4) 

holds for random variables ~ and A for a / / p  G (0,1) and all positive h i f  and only i f  there exists a non- 
decreasing Lipschitz function U: R --~ R (a nonstrict  contraction) such that the random variables I and 
U( ~) are identically d/stributed. 

Proof. Let (2.4) hold, i.e., let (2.1) hold for the distr ibution functions F and G of the random variables 
and A. By Lemma 2.4, the map U = G-I(F)  restricted to S = S(F) \ {+co} takes the distribution of 
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to that of A. (Recall that  P{~ E S} = 1.) The function U is nondecreasing and, according to (2.3), it is 
finite and Lipschitz on S with Lipschitz (semi-)norm K < 1. By the Kirsbraun-McShein (Hahn-Banach) 
theorem, U can be extended to the whole of R without increasing the Lipschitz norm K of U. Moreover, 
such an extension can be chosen to be a nondecreasing function. Indeed, U can be uniquely extended to the 
closure dos(S) by continuity, and hence we can assume that  U is Lipschitz and nondecreasing on clos(S). 
The complement T = t t  \ dos(S) is open and hence can be represented as the union of not more than a 
countable family of pairwise disjoint open intervals. For every finite interval (a, b) of this family, we define 
the extension of U as the linear function such that  its limits at a and b coincide with the corresponding 
values of U. We also define the extension of U to the intervals (a, +co)  and ( - c o ,  b) as the linear functions 
U(a) + K ( z  - a) and U(b) + K ( z  - b), respectively. Obviously, this extension is a nondecreasing Lipschitz 
function on It.  

The proof of the converse assertion is trivial. 

Proposition 2.6. Let p be a probability measure on I t  such that (1.1) attains its minima/v~ue at intervals 
o[ the form A = ( -oo ,  x] For al] p E (0, 1) and all positive h. Then the m e a s u r e  ~ is symmetric with respec~ 
to its reed/an and has a finite exponential moment.  

Proof. Applying (1.2) to minimizing intervals A = [a, +co)  and B = ( -oo ,  z] of measure greater than 
or equal to p, we obtain (2.4) for random variables ~ and A = - ~  under the assumption that p is the 
distribution of ~. By Proposition 2.5, there exists a nondeereasing Lipschitz function U such that  the 
random variables A and U(~) are identically distributed. For V(z )  = U ( - z ) ,  the random variables A and 
V(A) are also identically distributed, where V is now a noninereasing Lipschitz function. Let A ~ be an 
independent copy of A. Since 

I V ( Z )  - v ( x ) l  _< - 

and both sides of this inequality are identically distributed random variables, it follows that IV(x) - V ( y ) I  = 
[z - Y[ for almost all (z, y) with respect to the product-measure ~, | v, where !/is the distribution of the 
random variable A. By Fubini's theorem, there exists a point y0 such that  

IV(x)  - vCuo)l = Ix 

for u-almost all z. Since V is nonincreasing, it follows that  V(z)  = - x  - 2a for some a for u-almost all z. 
In other words, the distribution of the random variable A "k a and, hence, that of the random variable ~ - a 
is symmetric with respect to zero. 

In order to prove the exponential integrability, assume that  the measure p is nondegenerate and sym- 
metric with respect to zero, and that the i n ' m u m  in the expression 

Rh(p) = inf p(Ah),  0 < p < l ,  h > 0 ,  (2.5) 
~,(A)>j 

is attained at the intervals A = ( - c%x] ,  where x -- F - l ( p )  and F is the distribution function of the 
measure p. Since in this case A h = ( - eo ,  z + h), we have 

Rh(p) = F ( F - I ( p )  + h - 0). 

Let us check the inequality 
Rh(p + q) ~ Rh(p) "F Rh(q) (2.6) 

for all positive h and for all p and q such that 0 < p,q < 1, a n d p + q  < 1. Indeed, let A = ( - co ,  x] be 
an extremal subset in (2.5) for p. Since p is symmetric, let an extremal subset for q be taken in the form 
B = [y, oo) with the maximal possible value of y. The assumption p + q < 1 implies that z < y. If x = y, 
then A U B = R and hence 

Rh(p) + Rh(q) = p (A  h) + p (B  h) > p(A) + p(B)  > 1. 
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Therefore, (2.6) holds. If z < y, the measure of A U B is equal to p + q, and hence, in view of the identity 
(A U B) h = A h U B h, we get 

Ra(p + q) <_ p((A U B) h) <_ p (A  a) + I.t(B h) = Rh(p) + ah(q).  

Now, using (2.6), let us show that 
l imin f  Rh(p) /p  > 1 
p -*O + 

for all sufficiently large positive h. Indeed, suppose that this lower limit is equal to one. In this case, the 
set E ,  of all p 6 (0,1) satisfying the inequality Rh(p) <_ (1 +e )p  is infinite for any positive ~, and, moreover, 
zero is a limit point of E,.  Hence, for every p 6 (0,1), there exists a sequence p ,  6 Ee (some of its elements 
may coincide) such that 

r ,  = pl + " " + p ,  -* p as n --~ oo. 

Applying (2.6) to r , ,  we obtain 

_< ah(p,) +''" + ah@.) _< (1 + e)@, +---+p.) _< (1 + 

Passing to the limit as n --* c~, taking into account the continuity of the function Ra on the left, and using 
the last assertion in Lemma 2.1, we obtain the inequality Rh(p) <_ (1 + e)p, which now holds for any p. 
Since e is an arbitrary positive number, we have Ra(p) _< p, and so Ra(p) = p for all p 6 (0,1). But this is 
impossible for sufficiently large h. Indeed, since the measure p is nondegenerate, the numbers z, y E P,. can 
be chosen so that  0 < F(z )  < F(y), and then Ra(p) > p for p = F(z )  and h > y - F - l (p ) .  

Thus, we can find h > 0, p0 6 (0,1), and c > 0 such that Rh(p) = F ( F - I ( p )  + h - O) >_ cp for all 
p E (0,p0] (cp0 _< 1). Hence, F(F-* (p )  + 2h) _> cp. Substituting both sides of the last inequality for the 
argument in F -1 and taking into account that F - i ( F ( z ) )  _< z if F(z)  > 0, we obtain 

F-*(cp) - F-*(p) < 2h. 

In particular, if c"-*p <_ Po, then 

F - l ( c ~ p ) -  F - l ( c k - i p )  <_ 2h for all k = 1 , . . . , n .  

S ,mming over all k, we get 
F - l ( c " p )  - F-*(p)  <_ 2nh. 

Substituting p0c-" for p in this inequality, we obtain the inequality 

F- l (p0c  - " )  >_ -2nh + F- l (p0) ,  

which holds for all n. This easily implies an estimate of the form 

FCz) >_ > o, z --, 
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