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EXTREMAL PROPERTIES OF HALF-SPACES FOR
LOG-CONCAVE DISTRIBUTIONS

BY S. BOBKOV

Syktyvkar University

The isoperimetric problem for log-concave product measures in R
n

equipped with the uniform distance is considered. Necessary and sufficient

conditions under which standard half-spaces are extremal are presented.

1. Introduction. Let m be a probability measure on the real line R.

Consider the value

1.1 r Žn. p s inf mn A q hD ,Ž . Ž . Ž .h n

n n w x nwhere m s m = ??? = m is the product measure in R , D s y1, 1 is then

n-dimensional cube in R
n and the infimum is then over all Borel-measurable

n nŽ .sets A ; R of measure m A G p; 0 - p - 1, h ) 0.

We are searching for necessary and sufficent conditions under which the
Ž . � n 4infimum in 1.1 is attained at the half-spaces A s x g R : x F c of1

Žmeasure p, for all p and h the half-spaces of this form will be called
.standard . In these notes, we give such conditions in the case where m is

log-concave.

There exists the following probabilistic consequence of the above property.

If z , . . . , z are independent random variables on some probability space1 n

Ž .V, I, P , with common distribution m, consider a family of random variables
Ž .S t , indexed by a set T and formed by linear combinations,

n

S t s a t z ,Ž . Ž .Ý i i

is1

where the coefficients a are arbitrary functions on T such thati

n

< <s s sup a t F 1.Ž .Ý1 i
t is1

Ž .Set M s sup S t . Then the extremal property of the standard half-spaces int

Ž . Ž .the isoperimetric problem 1.1 implies that, for all p g 0, 1 and h ) 0,

1.2 P M y m M ) h F P z y m z ) h ,Ž . Ž . Ž .� 4 � 4p 1 p 1

Ž .where m ? denotes quantile of order p of a random variable. For h - 0, thep

Ž .converse inequality should be written in 1.2 . In other words, the deviations
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S. BOBKOV36

of M from its quantiles are not larger than those of the original random

variable z ; this is also equivalent to existence of a Lipschitz function w from1

Ž .R to R such that M and w z are identically distributed.1

Ž .In terms of the isoperimetric problem, property 1.2 can be equivalently
Ž .expressed as follows: 1.1 attains a minimum at the standard half-spaces

within the class of all convex subsets of R
n. We will prove, however, that the

last implies the extremal property of these half-spaces within the class of all

Borel-measurable subsets of R
n. Moreover, in order to obtain such an ex-

tremal property with respect to the supremum distance, we will prove that it
Ž . Žonly suffices to assume that 1.2 is fulfilled for two random variables in the

. � 4case n G 2 : M s yz and M s max z , z .1 1 2

In the case where m is a Gaussian measure on the real line, the half-spaces
w x Ž .possess a much more intrinsic property 6, 4 ; they are extremal in 1.1 even

n Ž .if D is replaced by the unit Euclidean ball in R . Likewise, 1.2 holds undern
2 n < Ž . < 2the weaker assumption s s sup Ý a t F 1. It can be shown that such2 t is1 i

Ž .a strong property when n G 2 characterizes Gaussian measures in the class
w xof all probability distributions m. Talagrand 7 considered an enlargement of

sets A which is, in a certain sense, even smaller than the Euclidean

h-neighborhood of A. An inequality he proved for the two-sided exponential

distribution does not express any extremal property but states a rather

strong variant of the so-called concentration-of-measure phenomenon. In-
Ž w x w x.equalities e.g., as in 1 and 2 for the uniform enlargement defined by the

supremum distance state the weakest variant of this phenomenon.

Ž . ŽŽ x.Denote by F the distribution function of the measure m: F x s m y`, x ,

x g R. By definition, m is log-concave if it has a density f such that the
Ž . Ž .function log f is concave on the interval a , b , whereF F

a s inf x g R: F x ) 0 , b s sup x g R: F x - 1 .� 4 � 4Ž . Ž .F F

In general, y` F a - b F q`. Necessarily, f is continuous and positive onF F

Ž . Ž . y1 Ž . Ž .a , b , F increases on a , b , and so an inverse F : 0, 1 ª a , bF F F F F F

exists.

In this paper, we present the following statement on log-concave measures.

THEOREM 1.1. Let n G 2. The standard half-spaces are extremal for all
Ž . Ž .h ) 0 and p g 0, 1 in the isoperimetric problem 1.1 if and only if the

following hold:

Ž . Ž .a m is symmetric around a point which is the median of F ;
Ž . Ž .b the support of m is the real line R i.e., a s y`, b s q` ;F F

Ž . Ž .c for any p, q g 0, 1 ,

f Fy1 pq f Fy1 p f Fy1 qŽ . Ž . Ž .Ž . Ž . Ž .
1.3 F q .Ž .

pq p q

This statement does not depend on the dimension. Note that the equality
Ž . Ž y1Ž ..I p s f F p defines 1]1 correspondence between the family of allF
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distribution functions F which have an even positive continuous density f on
Ž . Ž .a , b a s yb and the family of all positive continuous functions I onF F F F

1Ž .0, 1 symmetric around . In addition,2

1
1.4 b s dprI p .Ž . Ž .HF F

1r2

Ž .The log-concavity of f is equivalent to concavity of I see Proposition 6.1 ,F

Ž . Ž . Ž .so, under assumptions a and b , 1.3 determines a certain subset of the set
1 Ž .of all concave, positive, symmetric around functions on 0, 1 for which the2

Ž .integral 1.4 is infinite.

Ž .Often, it is not easy to check 1.3 . We will give the following weaker
Ž .condition: the function log frF is concave. For the standard Gaussian
w Ž .measure, the last property i.e., the second derivative of log frF is never

x Ž . Ž . Ž 2 .positive follows from the inequality 1 y F x G xf x r 1 q x , x G 0.

Ž . Ž Ž .. n ŽConsider another example. Let F x s 1r 1 q exp yx , x g R so-called
. Ž Ž . Ž .. Žlogistic distribution function . Then, the function log f x rF x s ylog 1 q

x . Ž y1Ž .. Ž . Ž .e is also concave. In this case, f F p s p 1 y p , and 1.3 is easy to

verify.

Ž . Ž < <.The two-sided exponential distribution F, of density f x s exp y x r2,
Ž .x g R, is very close to the above mentioned distribution, but 1.3 is

Ž . Ž y1Ž ..not fulfilled for F one can take p s q s 0.7 . In this case, f F p s
� 4min p, 1 y p . Thus, one can say that the extremal property of half-spaces is

not determined by the tail behavior of F; it means a quality of some different

and delicate nature.

2. Description of the proof. For the reader’s convenience, we first note

several steps which will be performed to prove Theorem 1.1. The first step is

to solve the one-dimensional isoperimetric problem. A special case where m
Ž . Ž < <. w xhas density f x s exp y x r2, x g R, has been studied in 7 . In Section 3

we will prove by similar methods the following statements.

PROPOSITION 2.1. Let m be a log-concave measure on the real line R. Then
Ž . Ž w x.for all p g 0, 1 , h ) 0, the value m A q yh, h is minimal on the class of

Ž .all Borel-measurable sets A ; R of measure m A G p, if A is the interval
Ž x w . Ž .y`, a or the interval b, q` of m-measure p in both cases .

PROPOSITION 2.2. For a log-concave measure m on the real line R, the
Ž x Ž .intervals y`, a are extremal for all p g 0, 1 , h ) 0, if and only if m is

symmetric around its median.

y1Ž . y1Ž .Since in Proposition 2.1, a s F p , b s F 1 y p , the minimal value of
Ž w x. Ž .m A q yh, h under the assumption m A G p is equal to

2.1 R p s min F Fy1 p q h , 1 y F Fy1 1 y p y h .Ž . Ž . Ž . Ž .� 4Ž . Ž .h

Ž .When the measure m is symmetric around its median, the expression 2.1 is

simplified:

2.2 R p s F Fy1 p q h .Ž . Ž . Ž .Ž .h
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Ž .By Proposition 2.2, property a in Theorem 1.1 is necessary for extremality of
Ž .the standard half-spaces this holds even in the case n s 1 . Now we explain
Ž . Ž .how to prove necessity of b and c .

� n y1Ž .4Note that the standard half-spaces A s x g R : x F F p are ex-p 1

Ž .tremal in the isoperimetric problem 1.1 if and only if

r Žn. p s F Fy1 p q h ;Ž . Ž .Ž .h

Žn.Ž . Ž . wthat is, r p s R p , for any 0 - p - 1, h ) 0 in the following, R ish h h

Ž .x Ž .defined by 2.2 . Suppose that the last identity holds. Given p, q g 0, 1 ,
� n y1Ž .4consider two half-spaces A and B s x g R : x F F q of m-measure pp q 2

and q, respectively. Then the cube A l B has measure pq and, therefore,p q

Ž .since 1.1 is attained at the half-space A , we getp q

2.3 mn A q hD F mn A l B q hD ;Ž . Ž . Ž .Ž .p q n p q n

that is

2.4 R pq F R p R q for all p , q g 0, 1 , h ) 0.Ž . Ž . Ž . Ž . Ž .h h h

Ž . Ž .Therefore, in order to prove the necessity of b and c in Theorem 1.1, it
Ž .suffices to establish the following lemma see Section 4 .

Ž . Ž . Ž . Ž .LEMMA 2.3. Property 2.4 and a imply b and c .

To prove the sufficiency part in Theorem 1.1, we will show the following in

Section 5.

Ž . Ž . Ž .LEMMA 2.4. Properties a and c imply 2.4 .

Ž . Ž .We will also show Lemma 5.2 why c may be replaced in this lemma by

the assumption of log-concavity of frF.

To complete the proof of Theorem 1.1, the problem now is how to derive the
Žn. Ž . Ž .identity r s R from 2.4 and property a . For this purpose, we use ah h

w x Žstatement from 1 Theorems 1.1 and 1.2, which are formulated here to-
.gether for the space X s R with the canonical enlargement .

Let m be a probability Borel measure on R. For any n G 1, h ) 0, define
Ž .the function of p g 0, 1 ,

nŽn. n
R s inf m A q h y1, 1 ,Ž .Ž .h

n nŽ .where the infimum is over all Borel-measurable A ; R of measure m A G
Ž .n np, and where y1, 1 is the open cube in R . Clearly, for absolutely continu-

ous probability distributions, R
Žn. s r Žn..
h h

w x Ž1.THEOREM 2.5 1 . Suppose that the function R is concave and increasing
h

Ž . ` Žn.on 0, 1 . Then R s inf R is the maximal function among all increasingh n h
Ž1. Ž . Ž .bijections R F R in 0, 1 such that, for any p, q g 0, 1 ,
h

2.5 R pq F R p R q ,Ž . Ž . Ž . Ž .

2.6 S pq G S p S q ,Ž . Ž . Ž . Ž .
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Ž . Ž . ` Ž1.where S p s 1 y R 1 y p . In particular, R s R if and only if the func-h h
Ž1. Ž . Ž .tion R s R satisfies 2.5 and 2.6 .
h

In this statement, the parameter h is fixed.

First let us check that Theorem 2.5 may be applied to log-concave mea-
Ž . Ž . Ž1.sures m satisfying a and b . By Proposition 2.2, R s R , and thus weh h

Ž .need to show that R is concave and increasing on 0, 1 . Since F has ah

Ž .continuous positive density f on the whole real line, R increases strictly .h

Ž .Since log f is concave, we have that, whenever h ) 0, the increment
Ž Ž .. Ž Ž .. Ž Ž . Ž ..log f x q h y log f x s log f x q h rf x represents a nonincreasing

X Ž . Ž y1Ž . .function on R. Consequently, the derivative R p s f F p q h rh

Ž y1Ž .. Žf F p does not increase, either. This implies concavity of R see alsoh

Proposition 6.1 about a converse statement which shows that Theorem 2.5
.cannot be applied to a more general class of probability distributions m .

Ž . Ž .Thus, assuming a and b in Theorem 1.1, one can apply Theorem 2.5 to
Ž . Ž .m. By Lemma 2.4, where c is also assumed, property 2.4 is fulfilled; that is,

Ž . Ž1. Ž .2.5 holds for R s R ' R . It is obvious that the function S p s 1 yhh
Ž . Ž .R 1 y p is the inverse of R . Then 2.6 may be written ash h

Ry1 pq G Ry1 p Ry1 q for all p , q g 0, 1 ,Ž . Ž . Ž . Ž .

Ž .which is equivalent to 2.4 . Consequently, Theorem 2.5 allows us to conclude

that R
` s R

Ž1.; that is, for all n G 1, R
Žn. s R

Ž1., that is, r Žn. s R . Thus, theh hh h h h

sufficiency part in Theorem 1.1 will be proved.

Ž . � 4Now we show that if 1.2 is fulfilled for M s yz and M s max z , z ,1 1 2 1 2

then the standard half-spaces are extremal for m. Recall that z and z are1 2

independent random variables with common log-concave law m. Inequality
Ž . Ž .1.2 with M s M says that, for all h ) 0, p g 0, 1 ,1

h h
x xm y`, a F m b , q` ,Ž ŽŽ . Ž .

y1Ž . y1Ž .where a s F p , b s F 1 y p . Hence, by Proposition 2.1, the intervals
Ž xy`, a are extremal in the one-dimensional isoperimetric problem. By

Ž .Proposition 2.2, m is symmetric around a point, and thus property a in
Ž . Ž .Theorem 1.1 is fulfilled. If 1.2 is true for M , we obtain 2.3 for dimension2

Ž . Ž . Ž .n s 2. Hence, 2.4 is valid, too, and by Lemma 2.3 properties b and c in

Theorem 1.1 are also fulfilled. Applying this theorem to the product of m

concludes the argument.

3. One-dimensional isoperimetric problem for log-concave mea-

sures. First, we explain why it suffices to prove Proposition 2.1 under the

following additional assumption:

Ž . Ž .f x ) 0 for all x g R i.e., a s y`, b s q` , the deriva-F F

Ž .tive of log f exists everywhere and represents a continu-3.1Ž .
ous decreasing function.
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Ž . Ž .Indeed, the function u s ylog f is convex on a , b ; therefore, thereF F

exists a sequence u of convex functions on R such that the following hold:n

1. The derivative of u is a continuous increasing function;n

Ž . w x2. u converges pointwise to u on a , b and to q` on R R a , b ;n F F F F

Ž .3. f s exp yu is the density of some probability measure m .n n n

Ž . Ž .Then f are log-concave and, moreover, satisfy 3.1 . In addition, m A ªn n

Ž . Ž . Ž .m A , for all measurable A. In particular, F x ª F x for all x g R,n
y1Ž . y1Ž . Ž .F p ª F p for all p g 0, 1 , where F is the distribution function ofn n

m and Fy1 is the inverse of F . Now, if one may apply Proposition 2.1 to m ,n n n n

Ž . Ž .then, according to 2.1 , for all measurable A ; R, p g 0, 1 , h ) 0, we have

3.2 m A q hD G min F Fy1 p q h , 1 y F Fy1 1 y p y h .Ž . Ž . Ž . Ž .� 4Ž . Ž .n n n n n n

Ž .Taking the limit in 3.2 , we obtain

3.3 m A q hD G min F Fy1 p q h , 1 y F Fy1 1 y p y h .Ž . Ž . Ž . Ž .� 4Ž . Ž .n

Ž . Ž y1Ž .xSince 3.3 provides an equality at the interval A s y`, F p or at
w y1Ž . . Ž .A s F 1 y p , q` , Proposition 2.1 follows from 3.3 .

Ž .Now we may assume 3.1 . For convenience, it is better to consider the
w x w xextended line y`, q` and subsets of it. For any nonempty set A ; y`, q`

h w x Ž .and h ) 0, we use the notation A s A q yh, h . Let A a denote thep

w x w xinterval a, b ; y`, q` of m-measure p, y` F a - b F q`. The variable
w y1Ž .x Ž .a may vary in the interval y`, F 1 y p , and b s b a is the function of

a defined by the equality

3.4 F b y F a s p.Ž . Ž . Ž .

Ž . Ž x w . Ž .Note that B a s y`, a j b, q` , where b s b a , has measure 1 y p.p

Ž . Ž . Ž Ž .h.LEMMA 3.1. For any p g 0, 1 , there exists a s a p such that m A a0 0 p

w x w y1Ž .xincreases in y`, a and decreases in a , F 1 y p . The same holds for0 0

Ž Ž .h. X Ž .m B a and some point a p .p 0

Ž . y1Ž . Ž y1Ž ..PROOF. Clearly, the function b increases, b y` s F p , b F 1 yp s
Ž . Ž . X Ž .q`. Differentiation of 3.4 gives f b b y f a s 0. Differentiating the func-

Ž . Ž Ž .h. Ž . Ž .tion w a s m A a ' F b q h y F a y h , we obtainp

f aŽ .
X X

w a s f b q h b y f a y h s f b q h y f a y hŽ . Ž . Ž . Ž . Ž .
f bŽ .

f b q h f a y hŽ . Ž .
s f a y .Ž .

f b f aŽ . Ž .

Ž . Ž . Ž . Ž .By assumption 3.1 , the increment u x q h y u x of the function u x s
Ž Ž ..ylog f x represents an increasing function of x g R. Therefore, for each



EXTREMAL PROPERTIES 41

Ž . Ž . Ž . Ž . Ž . Ž .h ) 0, the function U a s f a y h rf a decreases and V a s f b q h rf b
Ž .increases as a composition of two increasing functions . Thus, the function

w
X

aŽ .
s V a y U aŽ . Ž .

f aŽ .

Ž y1Ž ..is continuous and increasing on y`, F 1 y p . Consequently, one of the

following occurs:

Ž . Ž y1Ž .. X Ž .a there exists a point a g y`, F 1 y p such that w - 0 on y`, a0 0
X Ž y1Ž ..and w ) 0 on a , F 1 y p ;0

Ž . X Ž y1Ž ..b w ) 0 on y`, F 1 y p ;
Ž . X Ž y1Ž ..c w - 0 on y`, F 1 y p .

Ž . Ž .In case a , the first statement of Lemma 3.1 holds with a p s a ; in cases0 0

Ž . Ž . Ž . y1Ž .b and c , one should set a p s F 1 y p and a s y`, respectively.0 0

The proof of the second part of Lemma 3.1 does not differ from the above

argument.

So, we have proved Proposition 2.1 within the class of all closed intervals
w x w xa, b ; y`, q` of m-measure greater than or equal to p, and the next task

is to extend this proposition to disjoint unions A formed by closed intervals.

Let II denote the family of such sets A of m-measure greater than or equalp

Ž .to p; for each A g II , let rank A denote the number of intervals which formp

A. In fact, because of approximation argument and absolute continuity of m,

it is sufficient to establish Proposition 2.1 for the class II only.p

LEMMA 3.2. For any 0 - p - 1, Proposition 2.1 holds within the fami-

ly II .p

PROOF. Certainly, the parameter h ) 0 is supposed to be arbitrary, too.

Ž .Let II h denote the family of all sets A from II that are formed byp p

w xintervals D s a , b , y` - a - b - ??? - a - b F q`, whose closedi i i 1 1 n n
h w xh-neighborhoods D s a y h, b q h do not intersect. Now it suffices toi i i

Ž . h hprove the lemma within II h . Indeed, if D l D / B for some i - j, thenp i j
h h w x hD j D s a , b and, therefore, two intervals D and D can be replaced byi j i j i j

w xone interval a , b which has a larger measure. Thus, for any set A from II ,i j p
X Ž .there exists a set A from II h with the same h-neighborhood.p

Ž .Let A g II h be formed by the intervals D , 1 F i F n, as above. We willp i

Ž .move these intervals, keeping their measures p s m D constant. In addi-i i

tion, the interiors of moving intervals should not intersect so that the
w Ž .xmeasure of their union remains constant, too s m A . The right ends

Ž .b s b a should depend on the appropriate left ends a as in Lemma 3.1.i i i

Ž .According to this lemma, in the case a F a p , we may move a to the lefti 0 i i

until a s b if i ) 1, or a s y` if i s 1. Respectively, in the case a )i iy1 i i

Ž .a p , we move a to the right until b s a if i - n, or b s q` if i s n.0 i i i iq1 i

Applying such a procedure to any of the middle intervals D , 1 - i - n,i

n G 3, we obtain a new interval D
X

of measure p and a new set A s DD
X
,i i 1 j
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X X Žwhere 1 F j F n, D s D for j / i and D s D for j s i only one interval Dj j j i i

. Ž . Ž .in A has been changed . Then m A s m A . By Lemma 3.1,1

hXh h h3.5 m A F m D F m D s m A ,Ž . Ž .Ž .Ž . Ž .Ý Ýž /1 j j

h Ž X .h hsince A s D D and since D are disjoint. By the definition of A , rank1 j j 1

Ž .A s n y 1; that is, A consists of n y 1 intervals. One can continue this1 1

process and construct A , . . . , A . The last set will consist of two intervals.2 ny2

Again, applying the above procedure to these two intervals, we obtain a set of
w x w x w xB of the following three types: B s y`, a ; B s b, q` ; B s y`, a j

w x Ž . Ž . Ž h. Ž h. Ž .b, q` . In all the cases, m B s m A and m B F m A , since 3.5 was

used at each step. To exclude the sets of the third type, it remains to apply

the second part of Lemma 3.1. I

REMARK 3.3. In order to prove Proposition 2.1, log-concavity was used in

Lemma 3.1. Nevertheless, the statement holds for some other distributions,

too. In particular, the reasoning in the proof of this lemma can be applied to

an arbitrary distribution F which is concentrated on an interval where F has

a monotonic density.

PROOF OF PROPOSITION 2.2. Due to Proposition 2.1, there is nothing to

prove for symmetric measures. Conversely, assume the intervals A of the
Ž x Ž h.form A s y`, a represent the sets for which the value m A is minimal
Ž . Ž x w .provided m A G p. Consequently, for sets A s y`, a and B s b, q` of

Ž . Ž h. Ž h.m-measure p g 0, 1 , one has m A F m B , for all h ) 0; that is,

3.6 F Fy1 p q h F 1 y F Fy1 1 y p y h .Ž . Ž . Ž .Ž . Ž .
Ž .For h s 0, 3.6 turns into an equality, and we obtain the inequality for

Ž . Ž y1Ž .. Ž y1Ž ..derivatives of both parts of 3.6 at h s 0: f F p F f F 1 y p . Replac-
Ž .ing p with 1 y p, we get a converse inequality. Thus, for all p g 0, 1 ,

3.7 f Fy1 p s f Fy1 1 y p .Ž . Ž . Ž .Ž . Ž .
y1 Ž . Ž . Ž y1Ž ..X Ž y1Ž ..The function F : 0, 1 ª a , b is smooth, and F p s 1rf F p .F F

Ž . Ž y1Ž ..X Ž y1Ž ..X Ž .So, by 3.7 , F p s yF 1 y p , for all p g 0, 1 . Therefore, for some
y1Ž . y1Ž . Ž .constant m, F p q F 1 y p s 2m, for all p g 0, 1 . However, this

means that m is the median of F, and F is symmetric around m. The proof is

complete. I

4. Necessity.

Ž .PROOF OF LEMMA 2.3. Suppose that, for all p g 0, 1 , h ) 0,

4.1 R pq F R p R q ,Ž . Ž . Ž . Ž .h h h

Ž . Ž y1Ž . . Ž .where R p s F F p q h . For h s 0, 4.1 turns into an equality, andh

Ž .we obtain the inequality for derivatives of both parts of 4.1 at h s 0:

f Fy1 pq F f Fy1 p q q f Fy1 q p.Ž . Ž . Ž .Ž . Ž . Ž .
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Ž . Ž .This inequality coincides with 1.3 , and necessity of c in Theorem 1.1 has
Ž . Ž . Ž xbeen proved. To prove b , note that, for any function R: 0, 1 ª 0, 1

Ž . Ž n. Ž .n Ž . Ž .satisfying 4.1 , R p F R p , for all p g 0, 1 ; therefore, R p ª 0, as
Ž . Ž .p ª 0, if R k 1. In the case R s R , we have R p ª F a q h , as p ª 0h F

w y1Ž .x Ž .recall that a s F 0 q . If a ) y`, then, for h - b y a , R 0 q ) 0;F F h h

Ž .consequently R does not satisfy 4.1 . Thus, a s y` is necessary. Since Fh F
y1Ž .is symmetric around its median, we obtain b s F 1 y s q`, and theF

lemma has been established. I

5. Sufficiency. We prove Lemma 2.4 without assumption about log-con-

cavity of measure m. Let a distribution function F have the continuous
Ž . Ž y1Ž . . y1positive density f. As usual, R p s F F p q h , where F is theh

inverse of F.

Ž .LEMMA 5.1. If, for any p, q g 0, 1 ,

f Fy1 pq f Fy1 p f Fy1 qŽ . Ž . Ž .Ž . Ž . Ž .
5.1 F q ,Ž .

pq p q

Ž .then, for all p, q g 0, 1 , h G 0,

5.2 R pq F R p R q .Ž . Ž . Ž . Ž .h h h

Ž .PROOF. Step 1. Assume that inequality 5.1 is strict for all p, q.

The family R , h g R, forms a one-parameter group of increasing bijec-h

Ž . X
X Xtions in 0, 1 : for any h, h g R, R is the composition of R and R , andhqh h h

Ž . X
R is the inverse of R . So, if 5.2 holds for h and h , then it holds also foryh h

X Ž .h q h . Fix p, q g 0, 1 and set

J p , q s h G 0: 5.2 with p and q is valid for all 0 F h
X
F h .� 4Ž . Ž .

Ž . w . Ž . Ž .We need to show that J p, q s 0, q` , for all p, q g 0, 1 . The set J p, q
w .is closed in 0, q` , since R is a continuous function of h. Hence, it ish

Ž . Ž .sufficient to show that if h g J p, q , then h q « g J p, q , for all « small
X Ž . X Ž . Ž . Ž y1Ž ..enough. Set p s R p and q s R q , and define I t s f F t , 0 - t - 1.h h

Ž . Ž . Ž . Ž .Then, for all t g 0, 1 , R t s t q I t « q o « , as « ª 0, by Taylor expan-«

sion. In particular,

R p s R R p s p
X
q I p

X
« q o « ,Ž . Ž . Ž . Ž .Ž .hq« « h

R q s R R q s q
X
q I q

X
« q o « ,Ž . Ž . Ž . Ž .Ž .hq« « h5.3Ž .

R pq s R R pq q I R pq « q o « .Ž . Ž . Ž . Ž .Ž . Ž .hq« « h h

The first two expansions give

5.4 R p R q s p
X
q

X
q p

X
I q

X
q q

X
I p

X
« q o « .Ž . Ž . Ž . Ž . Ž . Ž .Ž .hq« hq«

Ž . Ž . Ž . Ž . X X Ž . X X
Since h g J p, q , we have R pq F R p R q s p q . If R pq - p q ,h h h h

Ž . Ž . Ž . Ž . Ž .then, from 5.3 and 5.4 , we obviously get R pq - R p R q , forhq« hq« hq«

Ž . X X
all « small enough. If R pq s p q , then the last inequality holds becauseh
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Ž X X. X Ž X. X Ž X. Ž .I p q - p I q q q I p , which follows from the strict variant of 5.1 . In
Ž .both cases, we obtain h q « g J p, q .

Ž . Ž . Ž Ž ..Step 2 General case . Let F x s F T x , where T is a smooth convexT

function from R to R such that the derivative T
X

is increasing and positive on
Ž . Ž . y1 y1

R, T y` s y`, T q` s q`. Let T and F be the inverse of T and theT

inverse of F , respectively. We first show that F satisfies the assumption ofT T

Step 1. Indeed,

f x ' F
X

x s f T x T
X

x , Fy1 p s Ty1 Fy1 p ;Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .T T T

therefore,

I p ' f Fy1 p s f Fy1 p T
X

Ty1 Fy1 p ' I p a p ,Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž . Ž .T T T

Ž . XŽ y1Ž y1Ž ... Ž .where a p s T T F p . The function a increases in 0, 1 as it is a
Ž . Ž .composition of increasing functions; hence, for all p, q g 0, 1 , a pq -

� Ž . Ž .4 Ž . Ž .min a p , a q . Using 5.1 via the function I, we have, for all p, q g 0, 1 ,

I pq I pq I p I qŽ . Ž . Ž . Ž .T
s a pq F a pq q a pqŽ . Ž . Ž .

pq pq p q

I p I q I p I qŽ . Ž . Ž . Ž .T T
- a p q a q s q .Ž . Ž .

p q p q

Thus, F satisfies the assumption of Step 1, and one may conclude that, forT

Ž .all p, q g 0, 1 , h ) 0,

5.5 F Fy1 pq q h F F Fy1 p q h F Fy1 q q h .Ž . Ž . Ž . Ž .Ž . Ž . Ž .T T T T T T

Ž . Ž . Ž . Ž .Now, if T x s T x ª x, as n ª `, pointwise, then F x ª F x andn Tn
y1Ž . y1Ž . Ž .F p ª F p , for all x g R, p g 0, 1 . For example, one may setTn

< < < <T x s x q x y log 1 q x rn.Ž . Ž .Ž .n

Ž . Ž .Consequently, 5.2 follows from 5.5 by taking the limit as n ª `, and

Lemma 5.1 is proved. I

Ž . Ž . Ž .As we have already seen Lemma 2.3 , 5.1 is also necessary for 5.2 . Now
Ž .we present one sufficient but not necessary condition which allows us to

Ž .conclude 5.2 .

LEMMA 5.2. If f is a continuous and positive density of F on the real line
Ž . Ž .such that the function log frF is concave, then 5.2 is fulfilled for all h ) 0

Ž .and p, q g 0, 1 .

PROOF. The function

w x s ylog R exp yx s ylog F Fy1 exp yx q hŽ . Ž . Ž .Ž . Ž .Ž . Ž .Ž .h h

Ž . Ž . Ž .is positive, continuous and increasing on 0, q` , w 0q s 0 and 5.2 meansh

that, for all x, y G 0,

5.6 w x q y G w x q w y .Ž . Ž . Ž . Ž .h h h
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It is well known that every increasing, positive and convex function w on
Ž . Ž . Ž . Ž .0, q` such that w 0q s 0 satisfies 5.6 . Hence, to conclude 5.2 , it

suffices to show that w is convex. Note that w is differentiable, and itsh h

derivative

R
X

exp yxŽ .Ž .hX
w x s exp yxŽ . Ž .h

R exp yxŽ .Ž .h

f Fy1 exp yx q h exp yxŽ . Ž .Ž .Ž .
s

y1 y1f F exp yx F F exp yx q hŽ . Ž .Ž . Ž .Ž . Ž .
Ž .does not decrease on 0, q` if and only if the function

f Fy1 p q h pŽ .Ž .
y1 y1f F p F F p q hŽ . Ž .Ž . Ž .

Ž . w Ž .xdoes not increase on 0, 1 , or using the change of variable p s F x the

function

f x q h rF x q hŽ . Ž .
5.7Ž .

f x rF xŽ . Ž .

Ž .does not increase on R. This is true, since, for any h ) 0, 5.7 is the
Ž . w xincrement of log frF on the interval x, x q h . The proof is complete. I

APPENDIX

A probability Borel measure m on the locally convex space E is called
Ž .log-concave if, for all nonempty Borel sets A, B ; E and l g 0, 1 ,

l 1yl
m# l A q 1 y l B G m A m B ,Ž . Ž . Ž .Ž .

Ž . � Ž . 4where l A q 1 y l B s la q 1 y l b: a g A, b g B , and where m# de-

notes the inner measure. A full description of log-concave measures was given
w xby Borell 3 . In the case E s R, and if m is not a unit mass d at some pointx

x g R, the above definition is reduced to that mentioned in Section 1: m has a
Ž . Ždensity f such that the function log f is concave on R as a function with

w ..values in y`, q` .

In this section, we give other equivalent definitions of log-concavity for

measures on the real line. Let m be a nonatomic probability measure with
Ž . Ž . ŽŽ x.continuous distribution function F x s m y`, x , x g R. Set

a s inf x g R: F x ) 0 , b s sup x g R: F x - 1 .� 4 � 4Ž . Ž .

Ž . y1 Ž . Ž .Assume that F strictly increases on a, b , and let F : a, b ª 0, 1 denote
Ž .the inverse of F restricted to a, b .

PROPOSITION A.1. Under the above assumptions, the following properties

are equivalent:

Ž .a m is log-concave;
Ž . Ž . Ž y1Ž . . Ž .b for all h ) 0, the function R p s F F p q h is concave on 0, 1 ;h
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Ž . Ž .c m has a continuous, positive density f on a, b , and, moreover, the
Ž . Ž y1Ž .. Ž .function I p s f F p is concave on 0, 1 .

wŽ . Ž .xPROOF. a « b This was shown in Section 2.

wŽ . Ž .x Ž .a « c By assumption, m has a positive, continuous density f on a, b
Ž .such that log f is concave. Hence, f is absolutely continuous, and, moreover,

X Ž .there exists a Radon]Nikodym derivative f for f on a, b such that the
X Ž .function f rf is a nonincreasing Radon]Nikodym derivative of log f on

Ž .a, b . Then since F is continuously differentiable, the function

f
X

Fy1 pŽ .Ž .
X

I p sŽ .
y1f F pŽ .Ž .

Ž . X
represents a Radon]Nikodym derivative of I on 0, 1 . Clearly, I does not

increase; hence, I is concave.

wŽ . Ž .x Ž .c « a By assumption, I is positive and concave on 0, 1 ; hence, there

exists a nonincreasing Radon]Nikodym derivative I
X
. Since F is continuously

Ž . XŽ Ž .. Ž .differentiable on a, b , the function I F x f x represents a Radon]
Ž Ž .. Ž Ž .. Ž . Ž .Nikodym derivative of I F x . However, I F x s f x , for all x g a, b ;

X XŽ Ž .. Ž .hence, f is absolutely continuous and, moreover, f ' I F x f x is a
Ž . XŽ . X

Radon]Nikodym derivative of f x . Therefore, I F s f rf represents a
Ž . XŽ . Ž .Radon]Nikodym derivative of log f . Since I F does not increase, log f is

Ž .concave on a, b .

wŽ . Ž .x Žb « a For simplicity, we assume a s y`, b s q` minor changes
.should be made in cases a ) y` andror b s q` . For any h ) 0, R ish

concave; hence, there exists a nonincreasing Radon]Nikodym derivative Lh

of R which can also be chosen to be continuous from the right. We also haveh

Ž . Ž . wL p ) 0, for all p g 0, 1 since, in addition to concavity, R increases andh h

Ž . x Ž Ž .. Ž .R p ª 1, as p ª 1 y . Using R F x s F x q h one can writeh h

Ž .F y
F y q h y F x q h s L t dt ,Ž . Ž . Ž .H h

Ž .F x

which holds for all x, y g R and h ) 0. Letting y ª x, we get the following:

F y q h y F x q h s L F x F y y F x q o F y y F x ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .h

y ª x q ;

F y q h y F x q h s L F x y F y y F x q o F y y F x ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .h

y ª x y .

In particular, if F is differentiable at x, then there exist limits

F y q h y F x q hŽ . Ž .
X

f x q h ' lim s L F x F x ,Ž . Ž . Ž .Ž .r h
y y xyªxq

F y q h y F x q hŽ . Ž .
X

f x q h ' lim s L F x y F x .Ž . Ž . Ž .Ž .l h
y y xyªxy

Since h ) 0 is arbitrary and since, by the Lebesgue theorem, F is differen-

tiable at almost all x g R, the value of x q h can be arbitrary; so we conclude
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Ž . Ž .that the values f x and f x are well defined for all x g R and that f andr l r

f represent the right and left derivatives of F on the whole real line. Inl

addition, these functions satisfy

A.1 f x q h s L F x f x ,Ž . Ž . Ž . Ž .Ž .r h r

A.2 f x q h s L F x y f x ,Ž . Ž . Ž . Ž .Ž .l h l

Ž . Ž .for every x g R and h ) 0. Using A.2 , note that if f x s 0 at some pointl 0

w . X
x then f s 0 everywhere on x , q` . However, f s f s F almost every-0 l 0 r l

Ž . Ž .where; hence, we would have f x s 0 at some point x ) x and, by A.1 ,l 1 1 0

w . X
f s 0 everywhere on x , q` . As a result, F s 0; that is, F is constant onr 1

w . Ž .x , q` . The last is impossible; consequently, f x ) 0, for all x. By the1 l

Ž .same argument, for all x, f x ) 0.r

Ž . Ž .Now, one may introduce the functions g s log f and g s log f andr r l l

Ž . Ž .may rewrite A.1 and A.2 as

g x q h y g x s L F x , g x q h y g x s L F x y .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .r r h l l h

We observe that increments of g and g represent nonincreasing functions.r l

Therefore, g and g are concave, if they are continuous. For every x, y g R,r l

x F y, and every h ) 0, we have

A.3 g y q h y g x q h F g y y g x .Ž . Ž . Ž . Ž . Ž .r r r r

Ž .Fixing x and letting y ª xq in A.3 , we get

A.4 g x q h q F g xq ,Ž . Ž . Ž .Ž .r r

Ž .and fixing y and letting x ª y y in A.3 , we get

A.5 g y q h y G g yy .Ž . Ž . Ž .Ž .r r

Ž . Ž . Ž .By A.4 , if g x q - 0 at some point x , then g xq - 0, for all x ) x ;r 0 0 r 0

Ž . Ž . Ž .and, by A.5 if g y q ) 0 at some point y , then g yq ) 0, for allr 0 0 r

y ) y . Hence, if g is discontinuous at a point x, then g is discontinuous at0 r r

Ž .each point in x, q` . However, g is continuous at every point from a set ofr

the second category. Indeed, the function f is a pointwise limitr

1
f x s lim n F x q y F xŽ . Ž .r ž /ž /nnª`

of the sequence of continuous functions, and the same concerns the function
Žg . Hence, g belongs to the first class of Baire, and, by Baire’s theorem see,r r

w x .e.g., 5 , Section 31 , all the points where g is discontinuous form a set of ther

Ž . Ž . Žfirst category. Thus, for all x , g x q s g x y s 0; that is, g and by0 r 0 r 0 r

.the same argument g are continuous on the whole real line. Consequently,l

these functions are concave.

We also obtain that the functions f and f are continuous, and sincer l

Ž . Ž . XŽ .f s f almost everywhere, we conclude that f x s f x s F x , for all x.r l r l

Therefore, the derivative f s F
X

represents a positive density of m such that
Ž .the function log f is concave.

The proof is complete. I
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