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I S O P E R I M E T R I C  P R O B L E M  O N  T H E  R E A L  LINE 

S. G. B o b k o v  UDC 519.2 

The isoperimetric problem on the real line for distributions with continuous positive densities is considered. 
Necessary and suJficient conditions under which the intewals (-0% a) are eztremal are suggested. Bibliography: 
5 titles. 

Denote by ~ the family of all probability distributions F on the real line R, concentrated on an open 
(finite or not) interval:?(aF, bF) C R, that  h~ve a continuous positive density f on this interval. In this 
paper, necessary and sufficient conditions are established for a distribution F from ~ to have the following 
property: for all Borel subsets A C R, F(A) = p > O, 

F(A  h) >_ F(F- I (p )  + h). (1) 

Here A h stands for the open h-neighborhood { x e R : 3 a C A, Ix - a] < h } = A -t- ( - h ,  h) of A and F -1 
denotes the inverse function (0, 1) ~ (aF, bE) for the distribution function F(x) = F ( ( - c ~ ,  x)) restricted 
to (aF, bE) (where F strictly increases). 

For intervals A = ( - cx~, F-l(p))  inequality (1) turns into an equality, hence (1) expresses the fact that 
intervals are extremal in the isoperimetric problem for the measure F,  i.e., they minimize the value of 
F(A h) under the condition F(A) = p. This property can be reformulated in the following equivalent way. 
If a random variable ~ has the distribution F,  then for every Lipshitz function g : R ~ R with Lipshitz 
constant < 1 the random variable r /=  g(~) deviates from its quantiles rnp(q) not more than ~ deviates from 
mp(~): for all p E (0, 1) and h > 0 

P { 7 -  >__ h } <__ P { r - >_ h }; 

P { 77 - rap(r/) < - h  } < P { ~ - mp(~) < - h  }. 

Inequality (1) is well known for Gaussian measure. It was established by V. N. Sudakov and B. TsireFson 
[1] and C. Borell [2] in a much more general situation, in particular, for s tandard multivariate (or even 
infinite-variate) Gaussian measures and for A n properly defined. The proof of this deep assertion is based 
on the Schmidt theorem on the isoperimetric property of balls on the surface of a sphere, and there was 
no need to investigate the one-dimensional case separately. M. Talagrand [3] obtained an inequality of 
isoperimetric type for the product-measure E n constructed by the two-sided exponential distribution E.  
In particular, analysis of the univariate case showed that E satisfies relation (1). It was shown in [4] how 
the infinite-dimensional problem for a product measure and the uniform distance can be solved, provided 
the one-dimensional problem has been solved. Afterward, in [5] it was established that  a logarithmically 
concave distribution F on the real line satisfies relation (1) if and only if it is symmetric (with respect 
to its median). The role of logarithmic concavity (which means the concavity of log f on (aF, bF)) can 
be explained by the following characterization. Consider a function IF of the variable p : 0 < p < 1 
IF(p) = f ( F - l ( p ) ) .  

T h e o r e m .  A distribution F 6 ~ has property (1) if and only if 
(i) F is symmetric with respect to its median, or, in terms of rE, for any 0 < p < 1 

I (1 - p) = • 

(ii) Fora/Ip, q, 0 < p , q < l s u c h t h a t p + q < l ,  

rF(p + q) < 4,(p) + 
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It can be seen that  F ~ IF specifies a one-to-one (up to a shift) correspondence between ~ and the family 
Of all continuous positive functions on (0, 1). On the other hand, the class of all symmetr ic  logarithmically 
concave distributions is not very much less than the class of distributions satisfying (i) and (ii), as the 
following assertion shows. 

Co ro l l a ry .  Let F E ~ satisfy (1), the density f being differentiable on (aF, bF). Then F has exponen- 
tim moments and, moreover, the increasing map T : N ~ (aF, bF) transferring a two-sided exponential 
distribution E into F (i.e., such that E T  -1 = F) is Lipshitzian. 

Proof of the theorem. Necessity. Rewrite relation (1) for the interval A = (b, +c~),  b = F-~(1  - p) with 
F-measure equal to p E (0, 1): 

1 -  F ( F - I ( 1 - p ) -  h) > F(F- I (p )  + h). (2) 

The Taylor expansion of both sides of (2) at h = 0 implies IF ( l -p )  >_ IF(p). Substituting 1 - p  for p, we come 
to the inverse inequality, hence (i) holds. The same Taylor expansion for t he  interval A = (a, b) C_ (aF, bF) 
of F-measure p gives f (a)  + f(b) >_ IF(p). Let F(a) = q; then F(b) = p + q, and the last inequality obtains 
the form 

IF(q) + IF(p + q) > IF(p). (3) 

Now if we substitute p' for 1 - (p+q), q' for q, and use (i), then (3) coincides with (ii) (i.e., (3) is equivalent 
to (ii) under condition (i)). Hence (ii) is also proved. 

Su~ciency. First we note that because of the nonatomicity of F it is sufficient to prove inequality (1) 
only for open A such that  they can be represented as the union of a finite number of open intervals (possibly, 
infinite) of positive F-measure.  Denote by s the class of all such sets. Evidently, if A E s then A h E s for 
all h > 0. On the class l~ we consider a "surface measure" F +, which is by definition specified as 

F+(A) = l i m  (F(Ah) - F(A))/h. 
h- .*O+ 

(4) 

This measure F + has the following two properties. 
(1) K the closures of intervals Ai, 1 < i < n, composing A E 12 are pairwise disjoint, then 

F + ( A )  = (5) 

(2) For i=tervals of the form ZX = (a, b) 

F+(A)  = f(a) + f(b), (6) 

and f = 0 on ( - c o ,  aF) U (bE, -4-oo). 
Properties (1)-(2) and hypothesis (i)-(ii) imply that  for all A E s such that  p = F(A) < 1 we have 

F+(A) > IF(p). (7) 

Indeed, for intervals A = (a, b) inequality (7) turns into (3) due to (6). As we saw, inequality (3) is 
equivalent to (ii) if (i) holds. 

Now consider the general case. Let A E s and let A' C R be constructed by addit ing to A the end points 
of intervals composing A such that they touch other intervals. Then we have F(A')  = F(A) = p, A' E s  
and the new intervals Ai, 1 < i < n composing A' are separated from each other. Since (5) is valid for A', 
we get F+(A ') < F+(A). Applying inequality (7) and inequality (ii) with a finite number  of summands to 
the new intervals Ai (we put pi = F(Ai)) ,  we have 

F+(A) >- F+(A') = E F+(A~) >-- E IF(pi) >_ IF(p). 
i i 



Hence, (7) is proved. It remains only to understand (1) as an integral version of (7). Let us fix a parameter  
a > 1 and consider the family of continuous nondecreasing functions Rh : (0, 1] --+ (0, 1] specified by the 
equalities 

R~,(p) = F ( F - * ( p )  + h/a), 0 < p < 1, (8) 

Rh(1) = 1. 

It is sufficient to prove that for all A E ~ with F(A) = p the inequality 

F(A h) > Rh(p) (9) 

holds. Then turning a -+ 1 and using the continuity of F ,  we get (1). Inequality (9) is evident if F(A) = 1, 
hence we may restrict ourselves to consideration of only the sets A E I~ of measure F(A) = p E (0, 1). Fixing 
such a set, we put  

J ( a ) = { h > O :  (9) is valid for all h ' E ( 0 ,  h]}. 

Evidently, if h ,  < h, h ,  --+ h, h ,  E J ,  then h E J ,  too. This is why the relation J = (0, oo) follows from 
the properties below: 

(a) ~ E J for all ~ > 0 sufficiently.small; 
(b) if h E J ,  then h + e E J for all c > 0 sufficiently small. 
For small ~ > 0 consider the Taylor expansion for Re(p) at the point ~ ---- 0 coming from (8), and the 

corresponding expansion for F(A e) coming from (4): 

Re(p) = p+ IF(p)r + o(~), 

F(A e) = p + F+(A) ~ + o(~). 

Comparing these two expansions and taking into account (7), we find that F(A ~) > Re(p) for all ~ > 0 
sufficiently small and, hence, (a) proves to be true. 

Now we prove (b). Let h E J(A), hence, F(A h) >_ Rh(p). If F(A h) ---- 1, then F(A h+e) = 1, i.e., there is 
nothing to prove. If F(A h) < 1, we consider two cases. If F(A h) > Rh(p), then this inequality is conserve 
by continuity for all h' = h + ~ close to h, and again there is nothing to prove. If, finally, F(A h) = Rh(p), 
then one should use the following property of the family Rh, which can be immediately verified: for all 
p e (0,1] and  h, ~ > 0, 

nh+e(p) = Rh (Re(p)). (10) 

Applying (a) to the set A h, we get for e > 0 sufficiently small: e E J(Ah), i.e., 

F((Ah) e) > Re(F(Ah)) = Re(Rh(p)). 

Taking into account (10) and the equality A h+e = (Ah) e, we come to the inequality F(A h+e) >_ Rh+e(p). 
This proves (b) and, hence, the theorem. 

Proof of the corollary. The relation IE(p) = rain(p, 1 -- p) shows that the Lipschitz property of the function 
T means the existence of a constant c > 0 such that IF(p) >_ cls(p) for all 0 < p < 1. By the theorem just 
proved IF is symmetric with respect to p = 1/2 and, since F E 5, IF is separated from 0 in any interval of 
the form (e, 1 - e), e > 0. It follows that the last inequality may be written in the  form of the condition 

d = l iminf IF(p)/p > O. 
p~O+ 

If IF(O+) > O, then there is nothing to prove. Let IF(O+) = O, and suppose the converse, i.e., that d = O. 
Since I ?  is differentiable on (0, 1), we have IF(p + e) = IF(p) + I'F(p)s + o(e) as ~ --+ O, 0 < p < 1. 
On the other hand, by the inequality (ii) (which also is a consequence of the statement of the theorem), 
IF(p+~) <_ I F ( p ) + I F ( e )  as e > O. Hence I~(p) _< IF(~)/e+o(1) as ~ --~ 0+. On the strength of the 



assumption d = 0 we get I'F(p) < 0, i.e., IF does not increase. But IF is symmetric, hence IF = const. 
This contradiction completes the proof. 

Translated by V. Sudakov. 
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