MAXIMUM LIKELIHOOD ESTIMATION FOR DENSITY AS AN INFINITE-DIMENSIONAL GAUSSIAN SHIFT

S. G. Bobkov

A new approach is suggested for the nonparametric estimation of the unknown distribution density under the assumption of the bounded variation of the true density. As an estimator there occurs a statistic based on the application of the maximum likelihood method to the estimation of an infinite-dimensional shift of a Gaussian process with a known correlation function. The quality of the obtained estimate is investigated.

Let $x_1, ..., x_n$ be a sample, extracted from a distribution F, continuous on the real axis **R**. It is known that for the sample distribution F_n the "normalized" random functions $\xi_n(t) = n^{1/2}(F_n(t) - F(t))$ converge in distribution to the Brownian bridge W⁰, more exactly, to the distribution $\mathcal{L}(\xi)$ of the Gaussian random process $\xi(t) = W^0(F(t))$. Therefore, for large n, the function ξ_n can be considered as a one-element sample from $\mathcal{L}(\xi)$ or, equivalently, the sample function F_n can be considered as a one-element sample from $\mathcal{L}(\xi)$ or, equivalently, the sample function F_n can be considered as a one-element sample from $\mathcal{L}(\xi) = W^0(F(t))$. Therefore, for large n, the function ξ_n can be considered as a one-element sample from $\mathcal{L}(\xi)$ or, equivalently, the sample function F_n can be considered as a one-element sample from $\mathcal{L}(\xi) = W^0(F(t))$. Therefore, for large n, the function ξ_n can be considered as a one-element sample from $\mathcal{L}(\xi)$ or, equivalently, the sample function F_n can be considered as a one-element sample from the distribution of the process $n^{-1/2}\xi + F$, and, consequently, with respect to one "observation" F_n the unknown $F = E\{n^{-1/2}\xi + F\}$ can be estimated as a shift of a centralized Gaussian process. A somewhat informal (since the correlation function depends on F) application of the maximum likelihood method to the estimation of an infinite-dimensional shift of a Gaussian process with a known correlation function (see [1]) leads to the following definition.

Let V be an arbitrary family of densities on **R**. From a sample $x_1, ..., x_n \in \mathbf{R}$ we define $\hat{p}_n \in V$ by the equality

$$\hat{p}_{n} = \arg \max_{p \in V} \left\{ \frac{p(x_{1}) + \dots + p(x_{n})}{n} - \frac{1}{2} \int_{-\infty}^{+\infty} p(t)^{2} dt \right\}.$$
(1)

Definition (1) has to be understood in the following sense: if a maximum point in the right-hand side of (1) exists, then the density $\hat{p}_n \in V$ is one (any) of these points. In the next statement V is such that \hat{p}_n is defined for almost all values of the sample $x_1, ..., x_n$ from the distribution F, whose density is $p \in V$.

THEOREM. We assume that each density from V is a function of bounded variation and, moreover,

$$C = \sup_{q \in V} \operatorname{var} q < \infty.$$
⁽²⁾

Then a. s.

$$\int_{\infty} |\hat{p}_{n}(t) - p(t)|^{2} dt \leq 4C \max_{|t|} |F_{n}(t) - F(t)|.$$
(3)

Remarks. 1. The distribution of the random variable in the right-hand side of (3) does not depend on F and, therefore, for the true p with a prescribed significance level one can construct a "confidence" ball in $L^2(\mathbf{R}, d\mathbf{x})$ with center at \hat{p}_n and radius of order const $\cdot n^{-1/4}$. 2. By virtue of (2) we have $\int \rho^2(t) dt < \infty$ for all $p \in V$ and, in addition, the right-hand side in (1) is bounded.

The proof of the theorem is based on the lemma given below. Let $V \subset H \subset E$, E being a normed linear space with norm $\|\cdot\|_E$, H is a linear subspace of E, and there is defined a bilinear form $\langle \eta, x \rangle$ on $H \times E$ with the following properties: 1) $\forall \eta_1, \eta_2 \in H$ we have $\langle \eta_1, \eta_2 \rangle = \langle \eta_2, \eta_1 \rangle$, 2) $\forall \eta \in H$ we have $\langle \eta, \eta \rangle \ge 0$, 3) $\forall \eta \in V$ we have $|\langle \eta, x \rangle| \le C \cdot \|x\|_E$ for any $x \in E$.

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova Akademii Nauk SSSR, Vol. 177, pp. 6-7, 1989. Properties 1) - 2) define on H × H an inner product (possibly without the separation property), which generates in H a Euclidean distance $\|\eta - \theta\|_{H}$. As in (1), we define

$$\hat{\theta}(x) = \arg \max_{z \in V} \langle z, x \rangle - \frac{1}{2} \| z \|_{H}^{2}, \qquad (4)$$

under the condition that the maximum in (4) exists and $\hat{\theta}(x)$ is any of its maximum points.

LEMMA. For all $\theta \in V$ and all $x \in E$, for which $\hat{\theta}(x)$ is defined, we have $\|\hat{\theta}(x) - \theta\|_{H}^{2} \leq 4C \|x - \theta\|_{E}$.

In order to apply the lemma to the theorem we have to take E to be the space of finite measures on the line (functions of bounded variation) with the uniform norm $||x||_{E} = \sup_{t} |x(t)|$, ||, consists of those $\eta \in E$ for which there exists a density η' of bounded variation, and

$$\langle \varrho, x \rangle - \int_{-\infty}^{+\infty} \varrho'(t) dx(t) = -\int_{-\infty}^{+\infty} x(t) d\varrho'(t)$$

 $\begin{array}{l} Proof \ of \ the \ Lemma. \ \left\| \hat{\theta}(\mathbf{x}) - \theta \right\|_{\mathbf{H}} \geq \varepsilon \Rightarrow \exists \eta \in \mathbf{V}, \ \left\| \eta - \theta \right\|_{\mathbf{H}} \geq \varepsilon \ \text{such that} \ \left\langle \eta, \mathbf{x} \right\rangle - \frac{1}{2} \left\| \eta \right\|_{\mathbf{H}}^{2} = \sup_{\eta \in \mathbf{V}} \left\{ \left\langle \eta, \mathbf{x} \right\rangle - \frac{1}{2} \left\| \eta \right\|_{\mathbf{H}}^{2} = \sup_{\eta \in \mathbf{V}} \left\{ \left\langle \eta, \mathbf{x} \right\rangle - \frac{1}{2} \left\| \eta \right\|_{\mathbf{H}}^{2} \right\} \\ \left\| \gamma \langle \theta, \mathbf{x} \rangle - \frac{1}{2} \left\| \theta \right\|_{\mathbf{H}}^{2} \Rightarrow \exists \eta \in \mathbf{V}, \ \left\| \eta - \theta \right\|_{\mathbf{H}} \geqslant \varepsilon \ \text{such that} \ \left\langle \eta - \theta, \mathbf{x} \right\rangle \gg \frac{1}{2} \left(\left\| \eta \right\|_{\mathbf{H}}^{2} - \left\| \theta \right\|_{\mathbf{H}}^{2} \right) \Rightarrow \exists \eta \in \mathbf{V}, \ \left\| \eta - \theta \right\|_{\mathbf{H}} \geqslant \varepsilon \ \text{such that} \ \left\langle \eta - \theta, \mathbf{x} \right\rangle = \frac{1}{2} \left\| \eta \right\|_{\mathbf{H}}^{2} \Rightarrow \frac{\varepsilon}{2} \left\{ \left\| \eta \right\|_{\mathbf{H}}^{2} - \left\| \theta \right\|_{\mathbf{H}}^{2} \right\} \Rightarrow \exists \eta \in \mathbf{V}, \ \left\| \eta - \theta \right\|_{\mathbf{H}} \geqslant \varepsilon \ \text{such that} \ \left\langle \eta - \theta, \mathbf{x} \right\rangle = \frac{1}{2} \left\| \eta \right\|_{\mathbf{H}}^{2} \Rightarrow \frac{\varepsilon}{2} \left\{ \left\| \eta \right\|_{\mathbf{H}}^{2} - \left\| \theta \right\|_{\mathbf{H}}^{2} \right\} = \frac{\varepsilon}{2} \left\| \eta \right\|_{\mathbf{H}}^{2} \Rightarrow \frac{\varepsilon}{2} \left\{ \left\| \eta \right\|_{\mathbf{H}}^{2} \Rightarrow \frac{\varepsilon}{2} \left\{ \left\| \eta \right\|_{\mathbf{H}}^{2} + \left\| \theta \right\|_{\mathbf{H}}^{2} \right\} = \frac{\varepsilon}{2} \left\{ \left\| \eta \right\|_{\mathbf{H}}^{2} + \left\| \theta \right\|_{\mathbf{H}}^{2} \right\} = \frac{\varepsilon}{2} \left\{ \left\| \eta \right\|_{\mathbf{H}}^{2} \Rightarrow \frac{\varepsilon}{2} \left\{ \left\| \eta \right\|_{\mathbf{H}}^{2} + \left\| \theta \right\|_{\mathbf{H}}^{2} \right\} = \frac{\varepsilon}{2} \left\{ \left\| \eta \right\|_{\mathbf{H}}^{2} + \left\| \theta \right\|_{\mathbf{H}}^{2} \right\} = \frac{\varepsilon}{2} \left\{ \left\| \eta \right\|_{\mathbf{H}}^{2} + \left\| \theta \right\|_{\mathbf{H}}^{2} \right\} = \frac{\varepsilon}{2} \left\{ \left\| \eta \right\|_{\mathbf{H}}^{2} + \left\| \theta \right\|_{\mathbf{H}}^{2} \right\} = \frac{\varepsilon}{2} \left\{ \left\| \eta \right\|_{\mathbf{H}}^{2} + \left\| \theta \right\|_{\mathbf{H}}^{2} \right\} = \frac{\varepsilon}{2} \left\{ \left\| \eta \right\|_{\mathbf{H}}^{2} + \left\| \theta \right\|_{\mathbf{H}}^{2} \right\} = \frac{\varepsilon}{2} \left\{ \left\| \eta \right\|_{\mathbf{H}}^{2} + \left\| \theta \right\|_{\mathbf{H}}^{2} \right\} = \frac{\varepsilon}{2} \left\{ \left\| \eta \right\|_{\mathbf{H}}^{2} + \left\| \theta \right\|_{\mathbf{H}}^{2} \right\} = \frac{\varepsilon}{2} \left\{ \left\| \eta \right\|_{\mathbf{H}}^{2} + \left\| \theta \right\|_{\mathbf{H}}^{2} + \left\| \theta \right\|_{\mathbf{H}}^{2} \right\} = \frac{\varepsilon}{2} \left\{ \left\| \eta \right\|_{\mathbf{H}}^{2} + \left\| \theta \right\|_{\mathbf{H$

We give an example of a nonparametric family. Assume that V_C consists of densities, equal to zero on $(-\infty, 0]$, nonincreasing and left-continuous on $(0, +\infty)$, and the left limit at zero is $\leq C$. In this case the density \hat{p}_n has the form: $\hat{p}_n = \alpha_1$ on $(0, x_1]$, $\hat{p}_n = \alpha_2$ on $(x_1', x_2], \ldots, \hat{p}_n = \alpha_n$ on (x'_{n-1}, x'_n) , $\hat{p}_n = 0$ on $(x_n', +\infty)$, where $x_1' < \ldots < x_n'$ is the variational series, constructed from the sample, while the constants α_k realize the maximum $(\Delta_k = x'_k - x'_{k-1}, \Delta_4 = x'_4)$

$$\max_{\substack{\substack{l \geq d_1 \neq \dots \neq d_n \geq 0 \\ d_1 \leq \dots \neq d_n \neq 0}} \left\{ \frac{d_1 + \dots + d_n}{n} - \frac{1}{2} \left(d_1^2 \Delta_1 + \dots + d_n^2 \Delta_n \right) \right\}.$$

LITERATURE CITED

1. B. S. Tsirel'son, "A geometric approach to maximum likelihood estimation for an infinite-dimensional Gaussian location. I," Teor. Veroyatnost. Primenen., 27, No. 2, 388-395 (1982).