MATH 4567, SPRING 2019 HOMEWORK PROBLEMS No.2 Due on March 6

Problem 1. Find the best approximation g in the mean on the interval $0 \le x \le \pi$ for the function f(x) = 1 using linear combinations of

$$f_1(x) = \sin x$$
, $f_2(x) = \sin 2x$, $f_3(x) = \sin 3x$.

Then evaluate the error of approximation, that is, ||f - g|| in $L^2[0, \pi]$.

Problem 2. On the interval $[0, \pi]$ find

- a) the Fourier sine series for the function f in Problem No. 2(b) on page 12;
- b) the Fourier cosine series for the function f in Problem No. 4 on page 13;
- c) the Fourier cosine series for the function f in Problem No. 3(a) on page 12.

In addition, in c) write down Parseval's equality corresponding to this Fourier series and use it to evaluate

$$\sum_{n=1}^{\infty} \frac{1}{n^4}.$$

Problem 3. Let $S_n f(x)$ denote the *n*-th partial sum of the Fourier series in $-\pi \le x \le \pi$ for the function defined to be f(x) = x + 1 for x > 0, f(x) = 2x - 3 for x < 0, and f(0) = 0.

- a) Evaluate for each $x \in [-\pi, \pi]$ the limit $S(x) = \lim_{n \to \infty} S_n f(x)$.
- b) Sketch the graph of S on the whole real line.
- c) Find the values S(10), S(20).

Hint: The function S is 2π -periodic, so it is enough to know its values on $(-\pi, \pi]$.

Problem 4. Check that the function $f(x) = -\log x$ belongs to $L^2[0, 1]$ and find its L^2 -norm. Then consider its cosine Fourier series in the interval $0 \le x \le 1$, that is,

$$-\log x = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(\pi nx).$$

Evaluate the sum $\sum_{n=1}^{\infty} a_n^2$ without computing the coefficients a_n .

Hint: Apply Parseval's equality for the cosine Fourier series in [0, c]. You will also need to compute a_0 .