Math 4567 Applied Fourier Analysis, Spring 2018

SYLLABUS

Time and Place:	1:25 pm - 2:15 pm MWF - Vincent Hall 20	
Text:	J.W. Brown, R.V. Churchill. Fourier Series and Boundary	
	Value Problems. 8th Edition.	
Instructor:	Sergey G. Bobkov	
Office:	228 VinH (tel: 625-1840, email: bobkov@math.umn.edu)	
Office hours:	$12:20 \mathrm{pm}$ - $1:10 \mathrm{pm}$ F and by appointment	

4567. Applied Fourier Analysis.

Orthonormal functions, best approximation in the mean. Fourier series, convergence pointwise and in the mean. Applications to boundary value problems. Sturm-Liouville equations, eigenfunctions. Fourier transform and its applications.

WEEK	DATES	MATERIAL (preliminary distribution)
$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\end{array} $	01-17 to 01-19 01-22 to 01-26 01-29 to 02-02 02-05 to 02-09 02-12 to 02-16 02-19 to 02-23 02-26 to 03-02 03-05 to 03-09 03-12 to 03-16 03-19 to 03-23 03-26 to 03-30 04-02 to 04-06 04-09 to 04-13 04-16 to 04-20 04-23 to 04-27 04-30 to 05-04	Review of Lebesgue integration Chapter 7 Chapter 1 Chapter 2; Test 1 Chapter 2 Chapter 3 Chapter 3 Chapter 4 (Spring break) Chapter 5; Test 2 Chapter 8 Chapter 8 Chapter 8 Chapter 8 Chapter 6 Chapter 6 Chapter 6; Test 3

Homeworks:	You will have 5 homeworks due on Mondays: February 5, 26, March 26, April 9, 30
Tests:	Wednesday, February 7, 2018 Friday, March 30, 2018 Friday, May 4, 2018
Composition of grade:	Every test: 25% of total grade Homeworks: 25% of total grade