HOMEWORK ASSIGNMENT N4, MATH 4567, SPRING 2018 Due on April 16 (Monday) – problems and solutions

Problem 1. a) Given parameters c > 0 and $\beta > 0$, show that the Sturm-Liouville boundary value problem

$$\begin{aligned} y'' + \lambda y &= 0, & y = y(x), \ 0 \leq x \leq c, \\ y'(0) &= \beta \, y(0), \\ y'(c) &= \beta \, y(c), \end{aligned}$$

has exactly one negative eigenvalue λ_0 and that this eigenvalue is independent on c > 0. Find λ_0 and an associated eigenfunction $y_0(x)$.

b) Determine whether or not $\lambda = 0$ is an eigenvalue. If yes, find an associated eigenfunction.

Solution. We know that any Sturm-Liouville problem

$$y''(x) + \lambda y(x) = 0, \qquad 0 \le x \le c, \alpha_1 y(0) + \alpha_2 y'(0) = 0, \beta_1 y(c) + \beta_2 y'(c) = 0$$

has only non-negative eigenvalues λ , when $\alpha_1 \alpha_2 \leq 0$ and $\beta_1 \beta_2 \geq 0$. In our case, $\alpha_1 = 1$, $\alpha_2 = -\beta$, $\beta_1 = 1$, $\beta_2 = -\beta$, so this condition is not fulfilled, and one should consider separately the three cases to find all eigenvalues. Actually, in this problem, we are asked about non-positive λ .

a) Case 1: $\lambda = -\alpha^2$ ($\alpha > 0$). The general solution to the Sturm-Liouville equation $y''(x) + \lambda y(x) = 0$ may be described in this case by the formula

$$y = C_1 \cosh(\alpha x) + C_2 \sinh(\alpha x)$$

with arbitrary coefficients C_1 and C_2 , where we use the hyperbolic functions $\cosh(t) = \frac{e^t + e^{-t}}{2}$ and $\sinh(t) = \frac{e^t - e^{-t}}{2}$. Hence

$$y(0) = C_1, \qquad y' = \alpha C_1 \sinh(\alpha x) + \alpha C_2 \cosh(\alpha x), \quad y'(0) = \alpha C_2,$$

and the first boundary condition becomes

$$\alpha C_2 = \beta C_1.$$

This gives a necessary relationship between the coefficients. Since we are looking for a non-trivial (not identically zero) solution y = y(x) up to a multiplicative factor, one may take any fixed value of $C_1 \neq 0$, and then the unique choice for the other coefficient will be $C_2 = \beta C_1/\alpha$. To work with simpler expressions, let us choose $C_1 = \alpha$, so that $C_2 = \beta$. The solution y(x) and its derivative y'(x) are thus simplified to

$$y = \alpha \cosh(\alpha x) + \beta \sinh(\alpha x), \qquad y' = \alpha^2 \sinh(\alpha x) + \beta \alpha \cosh(\alpha x).$$

In particular,

$$y(c) = \alpha \cosh(\alpha c) + \beta \sinh(\alpha c), \qquad y'(c) = \alpha^2 \sinh(\alpha c) + \beta \alpha \cosh(\alpha c),$$

and the second boundary condition becomes

$$\alpha^2 \sinh(\alpha c) + \beta \alpha \cosh(\alpha c) = \beta \alpha \cosh(\alpha c) + \beta^2 \sinh(\alpha c).$$

Since $\sinh(\alpha c) > 0$, this is equivalent to $\alpha^2 = \beta^2$, which is uniquely solved as $\alpha = \beta$ (in positive numbers). Therefore,

$$\lambda = -\alpha^2 = -\beta^2, \qquad y = \beta \cosh(\beta x) + \beta \sinh(\beta x) = \beta e^{\beta x}$$

Since we are looking for a non-trivial solution y = y(x) up to a multiplicative factor, the constant β may be removed.

b) Case 2: $\lambda = 0$. Then the general solution is $y = C_1 + C_2 x$, and the boundary conditions become

$$C_2 = \beta C_1,$$

$$C_2 = \beta \left(C_1 + C_2 c \right)$$

This linear system is solved as $C_1 = C_2 = 0$, which means that this case is impossible.

Answer.

a) $\lambda_0 = -\beta^2$ is the unique negative eigenvalue with eigenfunction $y_0 = e^{\beta x}$.

b) $\lambda = 0$ is not an eigenvalue of the given Sturm-Liouville problem.

Problem 2. Solve the temperature problem:

$$u_t = k u_{xx}, u = u(x,t), \ 0 \le x \le \pi, \ t > 0 \ (k > 0)$$

$$u_x(0,t) = \beta u(0,t), u_x(\pi,t) = \beta u(\pi,t),$$

$$u(x,0) = f(x),$$

where f(x) is a given continuous function on $[0, \pi]$ and β is a positive parameter. Write your answer in the form of an infinite series

$$u(x,t) = \sum_{n=0}^{\infty} c_n y_n(x) T_n(t).$$
 (1)

Describe the functions $y_n(x)$ and $T_n(t)$ that are involved and indicate how to compute the coefficients c_n in terms of f.

Solution. As we know, the solution to the given temperature problem is described by the functional series (1) in which y_n represent the eigenfunctions of the associated Sturm-Liouville boundary value problem, namely

$$\begin{array}{ll} y'' + \lambda y = 0, & y = y(x), \ 0 \leq x \leq \pi, \\ y'(0) = \beta \, y(0), & \\ y'(\pi) = \beta \, y(\pi), \end{array}$$

and $T_n(t) = e^{-\lambda_n kt}$, where λ_n is the eigenvalue to which the eigenfunction y_n belongs. Moreover, the coefficients c_n in (1) are determined by the last non-homogeneous boundary condition via the orthogonal series expansion

$$f(x) = \sum_{n=0}^{\infty} c_n y_n(x).$$

Here, necessarily

$$c_n = \frac{\langle f, y_n \rangle}{\|y_n\|^2}, \qquad \langle f, y_n \rangle = \int_0^\pi f(x) y_n(x) \, dx, \quad \|y_n\|^2 = \int_0^\pi y_n(x)^2 \, dx.$$

As one can notice, the associated Sturm-Liouville boundary value problem is exactly the same as the one in Problem 1 with $c = \pi$. So, we already know that this problem has a unique negative eigenvalue $\lambda_0 = -\beta^2$ with its eigenfunction $y_0(x) = e^{\beta x}$. Hence, $T_0(t) = e^{\beta^2 kt}$. We also know that all remaining eigenvalues are positive. To find these eigenvalues and the eigenfunctions, we need to consider:

Case 3: $\lambda = \alpha^2 \ (\alpha > 0)$. In this case, the general solution to the Sturm-Liouville equation $y''(x) + \lambda y(x) = 0$ is given by

$$y = C_1 \cos(\alpha x) + C_2 \sin(\alpha x), \qquad y(0) = C_1,$$

for which we have

$$y' = \alpha C_2 \cos(\alpha x) - \alpha C_1 \sin(\alpha x), \qquad y'(0) = \alpha C_2$$

Hence $\alpha C_2 = \beta C_1$, by the first boundary condition. Without loss of generality, put $C_1 = \alpha$, $C_2 = \beta$, so that

$$y = \alpha \cos(\alpha x) + \beta \sin(\alpha x), \qquad y' = \beta \alpha \cos(\alpha x) - \alpha^2 \sin(\alpha x)$$

Involving the second boundary condition, we obtain that α should solve the equation

$$\beta \alpha \cos(\alpha \pi) - \alpha^2 \sin(\alpha \pi) = \beta \alpha \cos(\alpha \pi) + \beta^2 \sin(\alpha \pi)$$

which is equivalent to $\sin(\alpha \pi) = 0$. It is solved as $\alpha = \alpha_n = n, n \ge 1$, in which case

$$y = y_n(x) = n \cos(nx) + \beta \sin(nx).$$

Let us also specify the L^2 -norms of the eigenfunctions: For n = 0 we have

$$||y_0||^2 = \int_0^{\pi} y_0(x)^2 \, dx = \int_0^{\pi} e^{2\beta x} \, dx = \frac{e^{2\beta \pi} - 1}{2\beta},$$

and for integers $n \ge 1$,

$$\begin{aligned} \|y_n\|^2 &= \int_0^{\pi} (n\,\cos(nx) + \beta\sin(nx))^2 \, dx \\ &= n^2 \int_0^{\pi} \cos^2(nx) \, dx + 2\beta n \int_0^{\pi} \cos(nx)\sin(nx) \, dx + \beta^2 \int_0^{\pi} \sin^2(nx) \, dx \\ &= n^2 \int_0^{\pi} \frac{1 + \cos(2nx)}{2} \, dx + \beta n \int_0^{\pi} \sin(2nx) \, dx + \beta^2 \int_0^{\pi} \frac{1 - \cos(2nx)}{2} \, dx \\ &= \frac{\pi}{2} \, (n^2 + \beta^2). \end{aligned}$$

Here we used the obvious identities

$$\int_0^\pi \cos(2nx) \, dx = \int_0^\pi \sin(2nx) \, dx = 0.$$

Answer. The solution to the temperature problem is given by the functional series (1), where

$$y_0(x) = e^{\beta x},$$
 $y_n(x) = n \cos(nx) + \beta \sin(nx)$ $(n \ge 1),$
 $T_0(t) = e^{\beta^2 k t},$ $T_n(t) = e^{-nkt}$ $(n \ge 1),$

with coefficients

$$c_{0} = \frac{2\beta}{e^{2\beta\pi} - 1} \int_{0}^{\pi} f(x) e^{\beta x} dx,$$

$$c_{n} = \frac{2}{\pi (n^{2} + \beta^{2})} \int_{0}^{\pi} f(x) (n \cos(nx) + \beta \sin(nx)) dx \quad (n \ge 1).$$

Problem 3. Assume that the initial temperatures are constant: Let f(x) = 1. Determine the first three terms in the representation (1), that is, eventually, evaluate c_0 , c_1 , and c_2 .

Solution. Using the answer to Problem 2, we find that

$$c_{0} = \frac{2\beta}{e^{2\beta\pi} - 1} \int_{0}^{\pi} e^{\beta x} dx = 2 \frac{e^{\beta\pi} - 1}{e^{2\beta\pi} - 1},$$

$$c_{1} = \frac{2}{\pi (1 + \beta^{2})} \int_{0}^{\pi} (\cos x + \beta \sin x) dx = \frac{4\beta}{\pi (1 + \beta^{2})},$$

$$c_{2} = \frac{2}{\pi (4 + \beta^{2})} \int_{0}^{\pi} (2\cos(2x) + \beta\sin(2x)) dx = 0.$$

Answer. The solution to the temperature problem with the first three terms is given by

$$u(x,t) = 2 \frac{e^{\beta \pi} - 1}{e^{2\beta \pi} - 1} e^{\beta x} e^{\beta^2 kt} + \frac{4\beta}{\pi (1 + \beta^2)} (\cos x + \beta \sin x) e^{-kt} + 0 + \dots$$

Problem 4. Given parameters A, B, C and $\beta > 0$, consider the temperature problem with non-homogeneous boundary conditions:

 $\begin{array}{ll} u_t = k u_{xx}, & u = u(x,t), \ 0 \leq x \leq \pi, \ t > 0 \ (k > 0) \\ u_x(0,t) = \beta \, u(0,t) + A, & \\ u_x(\pi,t) = \beta \, u(\pi,t) + B, & \\ u(x,0) = C x. & \end{array}$

Reduce it to Problem 2 by virtue of a suitable substitution $u(x,t) = U(x,t) + \Phi(x)$. Indicate new initial temperatures F(x) in the homogeneous problem about U(x,t).

Solution. One may look for a suitable substitution $u(x,t) = U(x,t) + \Phi(x)$ with a linear function $\Phi(x) = C_1 + C_2 x$, in which case the problem becomes

$$\begin{array}{ll} U_t = k U_{xx}, & U = U(x,t), \ \ 0 \leq x \leq \pi, \ t > 0 \ \ (k > 0) \\ U_x(0,t) + C_2 = \beta \left(U(0,t) + C_1 \right) + A, \\ U_x(\pi,t) + C_2 = \beta \left(U(\pi,t) + C_1 + C_2 \pi \right) + B, \\ U(x,0) + \left(C_1 + C_2 x \right) = C x. \end{array}$$

In order to reach homogeneous vertical boundary conditions, the unknown parameters should satisfy

$$C_2 = \beta C_1 + A,$$

$$C_2 = \beta (C_1 + C_2 \pi) + B.$$

This is a linear system in two unknowns which is easily solved. Equalizing the two equalities, we get $A = C_2 \beta \pi + B$, so

$$C_2 = \frac{A - B}{\beta \pi}.$$

Inserting this into the second equality, we also find

$$C_1 = \frac{1 - \beta \pi}{\beta^2 \pi} A - \frac{1}{\beta^2 \pi} B.$$

Answer. The new problem with homogeneous vertical boundary conditions is

$$U_{t} = kU_{xx}, \qquad U = U(x,t), \ 0 \le x \le \pi, \ t > 0 \ (k > 0)$$

$$U_{x}(0,t) = \beta U(0,t), \qquad U_{x}(\pi,t) = \beta U(\pi,t), \qquad U(x,0) = F(x)$$

with new initial temperatures

$$F(x) = Cx - \left(\frac{1 - \beta \pi}{\beta^2 \pi} A - \frac{1}{\beta^2 \pi} B\right) - \frac{A - B}{\beta \pi} x$$