
HOMEWORK ASSIGNMENT N4, MATH 4567, SPRING 2018
Due on April 16 (Monday) – problems and solutions

Problem 1. a) Given parameters c > 0 and β > 0, show that the Sturm-Liouville
boundary value problem

y′′ + λy = 0, y = y(x), 0 ≤ x ≤ c,
y′(0) = β y(0),
y′(c) = β y(c),

has exactly one negative eigenvalue λ0 and that this eigenvalue is independent on c > 0.
Find λ0 and an associated eigenfunction y0(x).

b) Determine whether or not λ = 0 is an eigenvalue. If yes, find an associated eigenfunction.

Solution. We know that any Sturm-Liouville problem

y′′(x) + λy(x) = 0, 0 ≤ x ≤ c,
α1y(0) + α2y

′(0) = 0,
β1y(c) + β2y

′(c) = 0

has only non-negative eigenvalues λ, when α1α2 ≤ 0 and β1β2 ≥ 0. In our case, α1 = 1,
α2 = −β, β1 = 1, β2 = −β, so this condition is not fulfilled, and one should consider
separately the three cases to find all eigenvalues. Actually, in this problem, we are asked
about non-positive λ.

a) Case 1: λ = −α2 (α > 0). The general solution to the Sturm-Liouville equation
y′′(x) + λy(x) = 0 may be described in this case by the formula

y = C1 cosh(αx) + C2 sinh(αx)

with arbitrary coefficients C1 and C2, where we use the hyperbolic functions cosh(t) =
et+e−t

2 and sinh(t) = et−e−t

2 . Hence

y(0) = C1, y′ = αC1 sinh(αx) + αC2 cosh(αx), y′(0) = αC2,

and the first boundary condition becomes

αC2 = βC1.

This gives a necessary relationship between the coefficients. Since we are looking for a
non-trivial (not identically zero) solution y = y(x) up to a multiplicative factor, one may
take any fixed value of C1 6= 0, and then the unique choice for the other coefficient will
be C2 = βC1/α. To work with simpler expressions, let us choose C1 = α, so that C2 = β.
The solution y(x) and its derivative y′(x) are thus simplified to

y = α cosh(αx) + β sinh(αx), y′ = α2 sinh(αx) + βα cosh(αx).



In particular,

y(c) = α cosh(αc) + β sinh(αc), y′(c) = α2 sinh(αc) + βα cosh(αc),

and the second boundary condition becomes

α2 sinh(αc) + βα cosh(αc) = βα cosh(αc) + β2 sinh(αc).

Since sinh(αc) > 0, this is equivalent to α2 = β2, which is uniquely solved as α = β (in
positive numbers). Therefore,

λ = −α2 = −β2, y = β cosh(βx) + β sinh(βx) = β eβx.

Since we are looking for a non-trivial solution y = y(x) up to a multiplicative factor, the
constant β may be removed.

b) Case 2: λ = 0. Then the general solution is y = C1 + C2x, and the boundary
conditions become

C2 = βC1,
C2 = β (C1 + C2c).

This linear system is solved as C1 = C2 = 0, which means that this case is impossible.

Answer.

a) λ0 = −β2 is the unique negative eigenvalue with eigenfunction y0 = eβx.
b) λ = 0 is not an eigenvalue of the given Sturm-Liouville problem.

Problem 2. Solve the temperature problem:

ut = kuxx, u = u(x, t), 0 ≤ x ≤ π, t > 0 (k > 0)
ux(0, t) = β u(0, t),
ux(π, t) = β u(π, t),
u(x, 0) = f(x),

where f(x) is a given continuous function on [0, π] and β is a positive parameter. Write
your answer in the form of an infinite series

u(x, t) =
∞∑
n=0

cnyn(x)Tn(t). (1)

Describe the functions yn(x) and Tn(t) that are involved and indicate how to compute the
coefficients cn in terms of f .

Solution. As we know, the solution to the given temperature problem is described by
the functional series (1) in which yn represent the eigenfunctions of the associated Sturm-
Liouville boundary value problem, namely
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y′′ + λy = 0, y = y(x), 0 ≤ x ≤ π,
y′(0) = β y(0),
y′(π) = β y(π),

and Tn(t) = e−λnkt, where λn is the eigenvalue to which the eigenfunction yn belongs.
Moreover, the coefficients cn in (1) are determined by the last non-homogeneous boundary
condition via the orthogonal series expansion

f(x) =
∞∑
n=0

cnyn(x).

Here, necessarily

cn =
〈f, yn〉
‖yn‖2

, 〈f, yn〉 =

∫ π

0
f(x)yn(x) dx, ‖yn‖2 =

∫ π

0
yn(x)2 dx.

As one can notice, the associated Sturm-Liouville boundary value problem is exactly
the same as the one in Problem 1 with c = π. So, we already know that this problem
has a unique negative eigenvalue λ0 = −β2 with its eigenfunction y0(x) = eβx. Hence,
T0(t) = eβ

2kt. We also know that all remaining eigenvalues are positive. To find these
eigenvalues and the eigenfunctions, we need to consider:

Case 3: λ = α2 (α > 0). In this case, the general solution to the Sturm-Liouville
equation y′′(x) + λy(x) = 0 is given by

y = C1 cos(αx) + C2 sin(αx), y(0) = C1,

for which we have

y′ = αC2 cos(αx)− αC1 sin(αx), y′(0) = αC2.

Hence αC2 = βC1, by the first boundary condition. Without loss of generality, put C1 = α,
C2 = β, so that

y = α cos(αx) + β sin(αx), y′ = βα cos(αx)− α2 sin(αx).

Involving the second boundary condition, we obtain that α should solve the equation

βα cos(απ)− α2 sin(απ) = βα cos(απ) + β2 sin(απ)

which is equivalent to sin(απ) = 0. It is solved as α = αn = n, n ≥ 1, in which case

y = yn(x) = n cos(nx) + β sin(nx).

Let us also specify the L2-norms of the eigenfunctions: For n = 0 we have

‖y0‖2 =

∫ π

0
y0(x)2 dx =

∫ π

0
e2βx dx =

e2βπ − 1

2β
,
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and for integers n ≥ 1,

‖yn‖2 =

∫ π

0
(n cos(nx) + β sin(nx))2 dx

= n2
∫ π

0
cos2(nx) dx+ 2βn

∫ π

0
cos(nx) sin(nx) dx+ β2

∫ π

0
sin2(nx) dx

= n2
∫ π

0

1 + cos(2nx)

2
dx+ βn

∫ π

0
sin(2nx) dx+ β2

∫ π

0

1− cos(2nx)

2
dx

=
π

2
(n2 + β2).

Here we used the obvious identities∫ π

0
cos(2nx) dx =

∫ π

0
sin(2nx) dx = 0.

Answer. The solution to the temperature problem is given by the functional series (1),
where

y0(x) = eβx, yn(x) = n cos(nx) + β sin(nx) (n ≥ 1),

T0(t) = eβ
2kt, Tn(t) = e−nkt (n ≥ 1),

with coefficients

c0 =
2β

e2βπ − 1

∫ π

0
f(x) eβx dx,

cn =
2

π (n2 + β2)

∫ π

0
f(x) (n cos(nx) + β sin(nx)) dx (n ≥ 1).

Problem 3. Assume that the initial temperatures are constant: Let f(x) = 1. Determine
the first three terms in the representation (1), that is, eventually, evaluate c0, c1, and c2.

Solution. Using the answer to Problem 2, we find that

c0 =
2β

e2βπ − 1

∫ π

0
eβx dx = 2

eβπ − 1

e2βπ − 1
,

c1 =
2

π (1 + β2)

∫ π

0
(cosx+ β sinx) dx =

4β

π (1 + β2)
,

c2 =
2

π (4 + β2)

∫ π

0
(2 cos(2x) + β sin(2x)) dx = 0.

Answer. The solution to the temperature problem with the first three terms is given by

u(x, t) = 2
eβπ − 1

e2βπ − 1
eβx eβ

2kt +
4β

π (1 + β2)
(cosx+ β sinx) e−kt + 0 + . . .

4



Problem 4. Given parameters A,B,C and β > 0, consider the temperature problem
with non-homogeneous boundary conditions:

ut = kuxx, u = u(x, t), 0 ≤ x ≤ π, t > 0 (k > 0)
ux(0, t) = β u(0, t) +A,
ux(π, t) = β u(π, t) +B,
u(x, 0) = Cx.

Reduce it to Problem 2 by virtue of a suitable substitution u(x, t) = U(x, t) + Φ(x).
Indicate new initial temperatures F (x) in the homogeneous problem about U(x, t).

Solution. One may look for a suitable substitution u(x, t) = U(x, t) + Φ(x) with a linear
function Φ(x) = C1 + C2 x, in which case the problem becomes

Ut = kUxx, U = U(x, t), 0 ≤ x ≤ π, t > 0 (k > 0)
Ux(0, t) + C2 = β (U(0, t) + C1) +A,
Ux(π, t) + C2 = β (U(π, t) + C1 + C2π) +B,
U(x, 0) + (C1 + C2 x) = Cx.

In order to reach homogeneous vertical boundary conditions, the unknown parameters
should satisfy

C2 = β C1 +A,
C2 = β (C1 + C2π) +B.

This is a linear system in two unknowns which is easily solved. Equalizing the two equal-
ities, we get A = C2 βπ +B, so

C2 =
A−B
βπ

.

Inserting this into the second equality, we also find

C1 =
1− βπ
β2π

A− 1

β2π
B.

Answer. The new problem with homogeneous vertical boundary conditions is

Ut = kUxx, U = U(x, t), 0 ≤ x ≤ π, t > 0 (k > 0)
Ux(0, t) = β U(0, t),
Ux(π, t) = β U(π, t),
U(x, 0) = F (x)

with new initial temperatures

F (x) = Cx−
(1− βπ
β2π

A− 1

β2π
B
)
− A−B

βπ
x.
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