Problem 1. a) Given parameters $c>0$ and $\beta>0$, show that the Sturm-Liouville boundary value problem

$$
\begin{aligned}
& y^{\prime \prime}+\lambda y=0, \quad y=y(x), \quad 0 \leq x \leq c, \\
& y^{\prime}(0)=\beta y(0), \\
& y^{\prime}(c)=\beta y(c),
\end{aligned}
$$

has exactly one negative eigenvalue λ_{0} and that this eigenvalue is independent on $c>0$. Find λ_{0} and an associated eigenfunction $y_{0}(x)$.
b) Determine whether or not $\lambda=0$ is an eigenvalue. If yes, find an associated eigenfunction.

Solution. We know that any Sturm-Liouville problem

$$
\begin{aligned}
& y^{\prime \prime}(x)+\lambda y(x)=0, \quad 0 \leq x \leq c, \\
& \alpha_{1} y(0)+\alpha_{2} y^{\prime}(0)=0, \\
& \beta_{1} y(c)+\beta_{2} y^{\prime}(c)=0
\end{aligned}
$$

has only non-negative eigenvalues λ, when $\alpha_{1} \alpha_{2} \leq 0$ and $\beta_{1} \beta_{2} \geq 0$. In our case, $\alpha_{1}=1$, $\alpha_{2}=-\beta, \beta_{1}=1, \beta_{2}=-\beta$, so this condition is not fulfilled, and one should consider separately the three cases to find all eigenvalues. Actually, in this problem, we are asked about non-positive λ.
a) Case 1: $\lambda=-\alpha^{2}(\alpha>0)$. The general solution to the Sturm-Liouville equation $y^{\prime \prime}(x)+\lambda y(x)=0$ may be described in this case by the formula

$$
y=C_{1} \cosh (\alpha x)+C_{2} \sinh (\alpha x)
$$

with arbitrary coefficients C_{1} and C_{2}, where we use the hyperbolic functions $\cosh (t)=$ $\frac{e^{t}+e^{-t}}{2}$ and $\sinh (t)=\frac{e^{t}-e^{-t}}{2}$. Hence

$$
y(0)=C_{1}, \quad y^{\prime}=\alpha C_{1} \sinh (\alpha x)+\alpha C_{2} \cosh (\alpha x), \quad y^{\prime}(0)=\alpha C_{2},
$$

and the first boundary condition becomes

$$
\alpha C_{2}=\beta C_{1} .
$$

This gives a necessary relationship between the coefficients. Since we are looking for a non-trivial (not identically zero) solution $y=y(x)$ up to a multiplicative factor, one may take any fixed value of $C_{1} \neq 0$, and then the unique choice for the other coefficient will be $C_{2}=\beta C_{1} / \alpha$. To work with simpler expressions, let us choose $C_{1}=\alpha$, so that $C_{2}=\beta$. The solution $y(x)$ and its derivative $y^{\prime}(x)$ are thus simplified to

$$
y=\alpha \cosh (\alpha x)+\beta \sinh (\alpha x), \quad y^{\prime}=\alpha^{2} \sinh (\alpha x)+\beta \alpha \cosh (\alpha x) .
$$

In particular,

$$
y(c)=\alpha \cosh (\alpha c)+\beta \sinh (\alpha c), \quad y^{\prime}(c)=\alpha^{2} \sinh (\alpha c)+\beta \alpha \cosh (\alpha c),
$$

and the second boundary condition becomes

$$
\alpha^{2} \sinh (\alpha c)+\beta \alpha \cosh (\alpha c)=\beta \alpha \cosh (\alpha c)+\beta^{2} \sinh (\alpha c) .
$$

Since $\sinh (\alpha c)>0$, this is equivalent to $\alpha^{2}=\beta^{2}$, which is uniquely solved as $\alpha=\beta$ (in positive numbers). Therefore,

$$
\lambda=-\alpha^{2}=-\beta^{2}, \quad y=\beta \cosh (\beta x)+\beta \sinh (\beta x)=\beta e^{\beta x} .
$$

Since we are looking for a non-trivial solution $y=y(x)$ up to a multiplicative factor, the constant β may be removed.
b) Case 2: $\lambda=0$. Then the general solution is $y=C_{1}+C_{2} x$, and the boundary conditions become

$$
\begin{aligned}
& C_{2}=\beta C_{1}, \\
& C_{2}=\beta\left(C_{1}+C_{2} c\right) .
\end{aligned}
$$

This linear system is solved as $C_{1}=C_{2}=0$, which means that this case is impossible.

Answer.

a) $\lambda_{0}=-\beta^{2}$ is the unique negative eigenvalue with eigenfunction $y_{0}=e^{\beta x}$.
b) $\lambda=0$ is not an eigenvalue of the given Sturm-Liouville problem.

Problem 2. Solve the temperature problem:

$$
\begin{aligned}
& u_{t}=k u_{x x}, \quad u=u(x, t), 0 \leq x \leq \pi, t>0 \quad(k>0) \\
& u_{x}(0, t)=\beta u(0, t), \\
& u_{x}(\pi, t)=\beta u(\pi, t), \\
& u(x, 0)=f(x),
\end{aligned}
$$

where $f(x)$ is a given continuous function on $[0, \pi]$ and β is a positive parameter. Write your answer in the form of an infinite series

$$
\begin{equation*}
u(x, t)=\sum_{n=0}^{\infty} c_{n} y_{n}(x) T_{n}(t) . \tag{1}
\end{equation*}
$$

Describe the functions $y_{n}(x)$ and $T_{n}(t)$ that are involved and indicate how to compute the coefficients c_{n} in terms of f.

Solution. As we know, the solution to the given temperature problem is described by the functional series (1) in which y_{n} represent the eigenfunctions of the associated SturmLiouville boundary value problem, namely

$$
\begin{aligned}
& y^{\prime \prime}+\lambda y=0, \quad y=y(x), \quad 0 \leq x \leq \pi \\
& y^{\prime}(0)=\beta y(0) \\
& y^{\prime}(\pi)=\beta y(\pi)
\end{aligned}
$$

and $T_{n}(t)=e^{-\lambda_{n} k t}$, where λ_{n} is the eigenvalue to which the eigenfunction y_{n} belongs. Moreover, the coefficients c_{n} in (1) are determined by the last non-homogeneous boundary condition via the orthogonal series expansion

$$
f(x)=\sum_{n=0}^{\infty} c_{n} y_{n}(x)
$$

Here, necessarily

$$
c_{n}=\frac{\left\langle f, y_{n}\right\rangle}{\left\|y_{n}\right\|^{2}}, \quad\left\langle f, y_{n}\right\rangle=\int_{0}^{\pi} f(x) y_{n}(x) d x, \quad\left\|y_{n}\right\|^{2}=\int_{0}^{\pi} y_{n}(x)^{2} d x
$$

As one can notice, the associated Sturm-Liouville boundary value problem is exactly the same as the one in Problem 1 with $c=\pi$. So, we already know that this problem has a unique negative eigenvalue $\lambda_{0}=-\beta^{2}$ with its eigenfunction $y_{0}(x)=e^{\beta x}$. Hence, $T_{0}(t)=e^{\beta^{2} k t}$. We also know that all remaining eigenvalues are positive. To find these eigenvalues and the eigenfunctions, we need to consider:

Case 3: $\lambda=\alpha^{2}(\alpha>0)$. In this case, the general solution to the Sturm-Liouville equation $y^{\prime \prime}(x)+\lambda y(x)=0$ is given by

$$
y=C_{1} \cos (\alpha x)+C_{2} \sin (\alpha x), \quad y(0)=C_{1}
$$

for which we have

$$
y^{\prime}=\alpha C_{2} \cos (\alpha x)-\alpha C_{1} \sin (\alpha x), \quad y^{\prime}(0)=\alpha C_{2}
$$

Hence $\alpha C_{2}=\beta C_{1}$, by the first boundary condition. Without loss of generality, put $C_{1}=\alpha$, $C_{2}=\beta$, so that

$$
y=\alpha \cos (\alpha x)+\beta \sin (\alpha x), \quad y^{\prime}=\beta \alpha \cos (\alpha x)-\alpha^{2} \sin (\alpha x)
$$

Involving the second boundary condition, we obtain that α should solve the equation

$$
\beta \alpha \cos (\alpha \pi)-\alpha^{2} \sin (\alpha \pi)=\beta \alpha \cos (\alpha \pi)+\beta^{2} \sin (\alpha \pi)
$$

which is equivalent to $\sin (\alpha \pi)=0$. It is solved as $\alpha=\alpha_{n}=n, n \geq 1$, in which case

$$
y=y_{n}(x)=n \cos (n x)+\beta \sin (n x)
$$

Let us also specify the L^{2}-norms of the eigenfunctions: For $n=0$ we have

$$
\left\|y_{0}\right\|^{2}=\int_{0}^{\pi} y_{0}(x)^{2} d x=\int_{0}^{\pi} e^{2 \beta x} d x=\frac{e^{2 \beta \pi}-1}{2 \beta}
$$

and for integers $n \geq 1$,

$$
\begin{aligned}
\left\|y_{n}\right\|^{2} & =\int_{0}^{\pi}(n \cos (n x)+\beta \sin (n x))^{2} d x \\
& =n^{2} \int_{0}^{\pi} \cos ^{2}(n x) d x+2 \beta n \int_{0}^{\pi} \cos (n x) \sin (n x) d x+\beta^{2} \int_{0}^{\pi} \sin ^{2}(n x) d x \\
& =n^{2} \int_{0}^{\pi} \frac{1+\cos (2 n x)}{2} d x+\beta n \int_{0}^{\pi} \sin (2 n x) d x+\beta^{2} \int_{0}^{\pi} \frac{1-\cos (2 n x)}{2} d x \\
& =\frac{\pi}{2}\left(n^{2}+\beta^{2}\right)
\end{aligned}
$$

Here we used the obvious identities

$$
\int_{0}^{\pi} \cos (2 n x) d x=\int_{0}^{\pi} \sin (2 n x) d x=0
$$

Answer. The solution to the temperature problem is given by the functional series (1), where

$$
\begin{aligned}
y_{0}(x)=e^{\beta x}, & y_{n}(x)=n \cos (n x)+\beta \sin (n x) \quad(n \geq 1) \\
T_{0}(t)=e^{\beta^{2} k t}, & T_{n}(t)=e^{-n k t} \quad(n \geq 1)
\end{aligned}
$$

with coefficients

$$
\begin{aligned}
c_{0} & =\frac{2 \beta}{e^{2 \beta \pi}-1} \int_{0}^{\pi} f(x) e^{\beta x} d x \\
c_{n} & =\frac{2}{\pi\left(n^{2}+\beta^{2}\right)} \int_{0}^{\pi} f(x)(n \cos (n x)+\beta \sin (n x)) d x \quad(n \geq 1)
\end{aligned}
$$

Problem 3. Assume that the initial temperatures are constant: Let $f(x)=1$. Determine the first three terms in the representation (1), that is, eventually, evaluate c_{0}, c_{1}, and c_{2}.

Solution. Using the answer to Problem 2, we find that

$$
\begin{aligned}
c_{0} & =\frac{2 \beta}{e^{2 \beta \pi}-1} \int_{0}^{\pi} e^{\beta x} d x=2 \frac{e^{\beta \pi}-1}{e^{2 \beta \pi}-1} \\
c_{1} & =\frac{2}{\pi\left(1+\beta^{2}\right)} \int_{0}^{\pi}(\cos x+\beta \sin x) d x=\frac{4 \beta}{\pi\left(1+\beta^{2}\right)} \\
c_{2} & =\frac{2}{\pi\left(4+\beta^{2}\right)} \int_{0}^{\pi}(2 \cos (2 x)+\beta \sin (2 x)) d x=0
\end{aligned}
$$

Answer. The solution to the temperature problem with the first three terms is given by

$$
u(x, t)=2 \frac{e^{\beta \pi}-1}{e^{2 \beta \pi}-1} e^{\beta x} e^{\beta^{2} k t}+\frac{4 \beta}{\pi\left(1+\beta^{2}\right)}(\cos x+\beta \sin x) e^{-k t}+0+\ldots
$$

Problem 4. Given parameters A, B, C and $\beta>0$, consider the temperature problem with non-homogeneous boundary conditions:

$$
\begin{array}{ll}
u_{t}=k u_{x x}, & u=u(x, t), 0 \leq x \leq \pi, \quad t>0 \quad(k>0) \\
u_{x}(0, t)=\beta u(0, t)+A, & \\
u_{x}(\pi, t)=\beta u(\pi, t)+B, \\
u(x, 0)=C x
\end{array}
$$

Reduce it to Problem 2 by virtue of a suitable substitution $u(x, t)=U(x, t)+\Phi(x)$. Indicate new initial temperatures $F(x)$ in the homogeneous problem about $U(x, t)$.

Solution. One may look for a suitable substitution $u(x, t)=U(x, t)+\Phi(x)$ with a linear function $\Phi(x)=C_{1}+C_{2} x$, in which case the problem becomes

$$
\begin{aligned}
& U_{t}=k U_{x x}, \\
& U_{x}(0, t)+C_{2}=\beta\left(U(0, t)+C_{1}\right)+A, \\
& U_{x}(\pi, t)+C_{2}=\beta\left(U(\pi, t)+C_{1}+C_{2} \pi\right)+B \\
& U(x, 0)+\left(C_{1}+C_{2} x\right)=C x
\end{aligned}
$$

In order to reach homogeneous vertical boundary conditions, the unknown parameters should satisfy

$$
\begin{aligned}
& C_{2}=\beta C_{1}+A, \\
& C_{2}=\beta\left(C_{1}+C_{2} \pi\right)+B
\end{aligned}
$$

This is a linear system in two unknowns which is easily solved. Equalizing the two equalities, we get $A=C_{2} \beta \pi+B$, so

$$
C_{2}=\frac{A-B}{\beta \pi}
$$

Inserting this into the second equality, we also find

$$
C_{1}=\frac{1-\beta \pi}{\beta^{2} \pi} A-\frac{1}{\beta^{2} \pi} B
$$

Answer. The new problem with homogeneous vertical boundary conditions is

$$
\begin{array}{ll}
U_{t}=k U_{x x}, & U=U(x, t), 0 \leq x \leq \pi, \quad t>0 \quad(k>0) \\
U_{x}(0, t)=\beta U(0, t), & \\
U_{x}(\pi, t)=\beta U(\pi, t), & \\
U(x, 0)=F(x) &
\end{array}
$$

with new initial temperatures

$$
F(x)=C x-\left(\frac{1-\beta \pi}{\beta^{2} \pi} A-\frac{1}{\beta^{2} \pi} B\right)-\frac{A-B}{\beta \pi} x
$$

