MATH 4567, SPRING 2018
Due on February 5 (Monday)

Problem 1. Problem 1 on page 194 of your textbook.
Problem 2. In the space $L^{2}[0, c]$, where $c>0$, find the angle θ between the functions $f_{1}(x)=x$ and $f_{2}(x)=x^{2}$. (Use arccos function). Does θ depend on the parameter c ?

Problem 3. Find the constants $a, b, c \in \mathbf{R}, a, b>0$, such that the functions

$$
f_{1}(x)=a x, \quad f_{2}(x)=b x+c
$$

form an orthonormal system in $L^{2}[0,1]$.
Problem 4. Find the best approximation in the mean of the function $f(x)=1$ in $L^{2}[0,1]$ by a linear combination of the functions f_{1}, f_{2} from problem 3 .

Problem 5. Find the best approximation g in the mean on the interval $0 \leq x \leq \pi$ for the function $f(x)=1$ using linear combinations of

$$
f_{1}(x)=\sin x, \quad f_{2}(x)=\sin 3 x .
$$

Then evaluate the error of approximation, that is, $\|f-g\|$ in $L^{2}[0, \pi]$.
Problem 6. Find the best approximation g of the function $f(x)=\cos ^{3} x$ in $L^{2}[0,2 \pi]$ by a linear combination of the functions

$$
f_{1}(x)=\frac{1}{\sqrt{\pi}} \cos x, \quad f_{2}(x)=\frac{1}{\sqrt{\pi}} \sin x .
$$

Then find the L^{2}-distance from f to $L_{2}\left[f_{1}, f_{2}\right]$ (i.e., compute $\|f-g\|$).
Problem 7. On the interval $[-\pi, \pi]$ find the Fourier series
a) for the function f in Problem No. 1 on page 18;
b) for the function $f(x)=|x|$;
c) for the function $f(x)=\max \{x, 0\}$.

