This assignment is a continuation of the problem from the previous homework assignment: Given parameters $c>0$ and $\beta>0$, show that the Sturm-Liouville boundary value problem

$$
\begin{aligned}
& y^{\prime \prime}+\lambda y=0, \quad y=y(x), 0 \leq x \leq c, \\
& y^{\prime}(0)=\beta y(0), \\
& y^{\prime}(c)=\beta y(c),
\end{aligned}
$$

has exactly one negative eigenvalue λ_{0} and that this eigenvalue is independent on c. Find λ_{0} and an associated eigenfunction y_{0}. Determine whether $\lambda=0$ is an eigenvalue. If yes, find an associated eigenfunction.

Problem 1. Solve the temperature problem:

$$
\begin{aligned}
& u_{t}=k u_{x x}, \quad u=u(x, t), 0 \leq x \leq \pi, t>0 \quad(k>0) \\
& u_{x}(0, t)=\beta u(0, t), \\
& u_{x}(\pi, t)=\beta u(\pi, t), \\
& u(x, 0)=f(x),
\end{aligned}
$$

where $f(x)$ is a given continuous function on $[0, \pi]$ and β is a positive parameter. Write your answer in the form of an infinite series

$$
\begin{equation*}
u(x, t)=\sum_{n=0}^{\infty} c_{n} y_{n}(x) T_{n}(t) . \tag{1}
\end{equation*}
$$

Describe the functions $y_{n}(x)$ and $T_{n}(t)$ that are involved and indicate how to compute the coefficients c_{n} in terms of f.

Problem 2. Assume the initial temperatures are constant: let $f(x)=1$, for definiteness. Determine the first three terms in the representation (1), that is, eventually, evaluate c_{0}, c_{1}, and c_{2}.

Problem 3. Given parameters A, B, C (real) and $\beta>0$, consider the temperature problem with non-homogeneous boundary conditions:

$$
\begin{aligned}
& u_{t}=k u_{x x}, \quad u=u(x, t), 0 \leq x \leq \pi, t>0 \quad(k>0) \\
& u_{x}(0, t)=\beta u(0, t)+A, \\
& u_{x}(\pi, t)=\beta u(\pi, t)+B, \\
& u(x, 0)=C x .
\end{aligned}
$$

Reduce it to Problem 1 by virtue of a suitable substitution $u(x, t)=U(x, t)+\Phi(x)$. Indicate new initial temperatures $F(x)$ in the homogeneous problem about $U(x, t)$.
Problem 4. a) Describe the solution $u(x, t)$ to the above non-homogeneous problem in the form similar to (1). Do not evaluate inner products and L^{2}-norms (but write formulas for them using definite integrals).
b) Determine the relationship between the parameters A, B, C, under which the solution $u(x, t)$ is constant in time (that is, depends on x, only).

