MATH 4567, SPRING 2015 HOMEWORK PROBLEMS No. 2

Problem 1. On the interval $[-\pi, \pi]$ find the Fourier series
a) for the function f in Problem No. 1 on page 18;
b) for the function $f(x)=|x|$;
c) for the function $f(x)=\max \{x, 0\}$.

Problem 2. On the interval $[0, \pi]$ find
a) the Fourier sine series for the function f in Problem No. $2(b)$ on page 12;
b) the Fourier cosine series for the function f in Problem No. 4 on page 13;
c) the Fourier cosine series for the function f in Problem No. 3 (a) on page 12.

In addition, in c) write down Parseval's equality corresponding to this Fouirer series and use it to evaluate

$$
\sum_{n=1}^{\infty} \frac{1}{n^{4}}
$$

Problem 3. Find the best approximation g in the mean on the interval $0 \leq x \leq \pi$ for the function $f(x)=1$ using linear combinations of

$$
f_{1}(x)=\sin x, \quad f_{2}(x)=\sin 3 x
$$

Then evaluate the error of approximation, that is, $\|f-g\|$ in $L^{2}[0, \pi]$.
Reminder: The set $\left\{\sqrt{\frac{2}{\pi}} f_{1}, \sqrt{\frac{2}{\pi}} f_{2}\right\}$ forms an orthonormal system in $L^{2}[0, \pi]$.
Problem 4. Let $S_{n} f(x)$ denote the n-th partial sum of the Fourier series in $-\pi \leq x \leq \pi$ for the function defined to be $f(x)=x+1$ for $x>0, f(x)=2 x-3$ for $x<0$, and $f(0)=0$.
a) Evaluate for each $x \in[-\pi, \pi]$ the limit $S(x)=\lim _{n \rightarrow \infty} S_{n} f(x)$.
b) Sketch the graph of S on the whole real line.
c) Find the values $S(10), S(20)$.

Hint: The function S is 2π-periodic, so it is enough to know its values on $(-\pi, \pi]$.
Problem 5. Check that the function $f(x)=-\log x$ belongs to $L^{2}[0,1]$ and find its L^{2}-norm. Then consider its cosine Fourier series in the interval $0 \leq x \leq 1$, that is,

$$
-\log x=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (\pi n x)
$$

Evaluate the sum $\sum_{n=1}^{\infty} a_{n}^{2}$ without computing the coefficients a_{n}.
Hint: Apply Parseval's equality for the cosine Fourier series in $[0, c]$. You will also need to compute a_{0}.

