MATH 4567, SPRING 2015
 HOMEWORK PROBLEMS No. 1

Due on February 9 (Monday)

Problem 1. Problem 1 on page 194 of your textbook.
Problem 2. In the space $L^{2}[0, c]$, where $c>0$, find the angle θ between the functions $f_{1}(x)=x$ and $f_{2}(x)=x^{2}$. (Use arccos function). Does θ depend on the parameter c ?

Problem 3. Find the constants $a, b, c \in \mathbf{R}, a, b>0$, such that the functions

$$
f_{1}(x)=a x, \quad f_{2}(x)=b x+c
$$

form an orthonormal system in $L^{2}[0,1]$.
Problem 4. Find the best approximation in the mean of the function $f(x)=1$ in $L^{2}[0,1]$ by a linear combination of the functions f_{1}, f_{2} from problem 3.

Problem 5. Find the best approximation g of the function $f(x)=$ $\cos ^{3} x$ in $L^{2}[0,2 \pi]$ by a linear combination of the functions

$$
f_{1}(x)=\frac{1}{\sqrt{\pi}} \cos x, \quad f_{2}(x)=\frac{1}{\sqrt{\pi}} \sin x .
$$

Then find the L^{2}-distance from f to $L_{2}\left[f_{1}, f_{2}\right]$ (i.e., compute $\|f-g\|$).
Problem 6. Prove Cauchy (called also Schwarz) inequality by using the hint given in problem 5, page 194, in your textbook.

