Problem 1. Using elementary arguments, solve the boundary value problem

$$
\begin{array}{ll}
u_{x x}=-y^{2} \cos x, & u=u(x, y), \quad 0 \leq x \leq \pi, \\
u(0, y)=y^{2}, & \\
u(\pi, y)=\pi \sin y-y^{2} . &
\end{array}
$$

Problem 2. a) Solve the temperature problem:

$$
\begin{aligned}
& u_{t}=k u_{x x}, \quad u=u(x, t), 0<x<1, t>0 \quad(k>0 \text { parameter }) \\
& u_{x}(0, t)=u_{x}(1, t)=0, \\
& u(x, 0)=\frac{1}{2} x^{2} .
\end{aligned}
$$

Your answer will have the form of an infinite functional series.
b) Write down separately the first 4 terms of that functional series.

Problem 3. a) Solve the boundary value problem:

$$
\begin{aligned}
& u_{t t}=\frac{1}{2} u_{x x}, \quad u=u(x, t), 0<x<1, t>0 \\
& u(0, t)=u(1, t)=0, \\
& u_{t}(x, 0)=0 \\
& u(x, 0)=x(1-x) .
\end{aligned}
$$

Your answer will have the form of an infinite functional series.
b) Write down separately the first 4 terms of that functional series and evaluate this partial sum at time $t=1$ for the point $x=\frac{1}{2}$.

Problem 4. Solve directly for the eigenvalues and normalized eigenfunctions:
a) No. 1 on page 225 ;
b) No. 2 on page 225;
c) No. 3 on page 225 .

Problem 5. a) Given parameters $c>0$ and $\beta>0$, show that the Sturm-Liouville boundary value problem
$y^{\prime \prime}+\lambda y=0, \quad y=y(x), \quad 0 \leq x \leq c$,
$y^{\prime}(0)=\beta y(0)$,
$y^{\prime}(c)=\beta y(c)$,
has exactly one negative eigenvalue λ_{0} and that this eigenvalue is independent on $c>0$. Find λ_{0} and an associated eigenfunction $y_{0}(x)$.
b) Determine whether or not $\lambda=0$ is an eigenvalue. If yes, find an associated eigenfunction.

