MATH 4567, FALL 2014 HOMEWORK PROBLEMS No.1 Due on February 10 (Monday)

Problem 1. Problem 1 on page 194 of your textbook.

Problem 2. In the space $L^2[0, c]$, where c > 0, find the angle θ between the functions $f_1(x) = x$ and $f_2(x) = x^2$. (Use arccos function). Does θ depend on the parameter c?

Problem 3. Find the constants $a, b, c \in \mathbf{R}$, a, b > 0, such that the functions

$$f_1(x) = ax, \quad f_2(x) = bx + c$$

form an orthonormal system in $L^2[0, 1]$.

Problem 4. Find the best approximation in the mean of the function f(x) = 1 in $L^2[0, 1]$ by a linear combination of the functions f_1 , f_2 from problem 3.

Problem 5. Find the best approximation g of the function $f(x) = \cos^3 x$ in $L^2[0, 2\pi]$ by a linear combination of the functions

$$f_1(x) = \frac{1}{\sqrt{\pi}} \cos x, \quad f_2(x) = \frac{1}{\sqrt{\pi}} \sin x$$

Then find the L^2 -distance from f to $L_2[f_1, f_2]$ (i.e., compute ||f - g||).

Problem 6. Prove Cauchy (called also Schwarz) inequality by using the hint given in problem 5, page 194, in your textbook.