1. (3 points) Identify the curve by finding a Cartesian equation for the curve.
\[\theta = \frac{\pi}{3}. \]

\[\tan \theta = \frac{y}{x} \]

\[\tan \frac{\pi}{3} = \frac{\sin \frac{\pi}{3}}{\cos \frac{\pi}{3}} = \frac{\sqrt{3}}{2} \cdot \frac{1}{2} = \sqrt{3}. \]

\[\Rightarrow \tan \frac{\pi}{3} = \frac{y}{x} \iff \sqrt{3} = \frac{y}{x} = 0 \quad y = \sqrt{3}x. \]

thus \(\theta = \frac{\pi}{3} \) is a straight line through the origin.

2. (7 points) Sketch the curve with the given polar equation by first sketching the graph of \(r \) as a function of \(\theta \) in Cartesian coordinates.
\[r = -2\sin \theta. \]