1. (20 points) (a) Use Euler's method with step size 0.2 to estimate \(y(0.4) \) where \(y(x) \) is the solution of the initial-value problem \(y' = x + y^2, \ y(0) = 0. \)

\[
y_n = y_{n-1} + 0.2 \left(x_{n-1} + y_{n-1}^2 \right); \quad x_0 = 0, \ y_0 = 0.
\]

<table>
<thead>
<tr>
<th>(n)</th>
<th>(x_n)</th>
<th>(y_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.2</td>
<td>0 + 0.2 (0 + 0^2) = 0</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
<td>0 + 0.2 (0.2 + 0^2) = 0.04</td>
</tr>
</tbody>
</table>

\[y(0.4) \approx 0.04 \]

(b) Find the solution of the differential equation that satisfies the given initial condition \(\frac{dp}{dt} = \sqrt{pt}, \ p(1) = 2. \)

\[
\frac{dp}{\sqrt{p}} = \int \sqrt{t} \ dt
\]

\[
\int p^{-\frac{1}{2}} dt = \int t^{\frac{1}{2}} dt
\]

\[
2 \ p^{\frac{1}{2}} = \frac{2}{3} t^{\frac{3}{2}} + C
\]

\[
p(1) = 2 \Rightarrow 2\sqrt{2} = \frac{2}{3} (1) + C \Rightarrow 2\sqrt{2} - \frac{2}{3} = C
\]

\[
2\sqrt{p} = \frac{2}{3} t^{\frac{3}{2}} + 2\sqrt{2} - \frac{2}{3}
\]

\[
\sqrt{p} = \frac{1}{3} t^{\frac{3}{2}} + \sqrt{2} - \frac{1}{3} = \Rightarrow p = \left(\frac{1}{3} t^{\frac{3}{2}} + \sqrt{2} - \frac{1}{3} \right)^2
\]
2. (10 points) A tank contains 1000 L of brine with 15kg of dissolved salt. Pure water enters the tank at a rate of 10 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate. Let \(y(t) \) be the amount of salt in the tank at time \(t \). Set up, **BUT DO NOT SOLVE**, a differential equation representing the amount of salt in the tank as a function of time. Include the appropriate initial condition.

Let \(y(t) \) be the amount of salt in the tank at time \(t \):

\[
\frac{dy}{dt} = (\text{rate-in}) - (\text{rate-out})
\]

\[
= (0)(10) - \left(\frac{y(t)}{1000} \right)(10).
\]

Hence

\[
\frac{dy}{dt} = -\frac{y(t)}{100} ; \quad y(0) = 15
\]
3. (30 points) (a) Find the area enclosed by the curve \(x = t^2 - 2t, \quad y = \sqrt{t} \) and the y-axis.

- The curve crosses the y-axis when \(x = 0 \).
- \(0 = x = t^2 - 2t = t(t-2) \) \(\Rightarrow \) \(t = 0 \) or \(2 \).
- \(x_L = t^2 - 2t \)
- \(y = \sqrt{t} \) \(\Rightarrow \) \(dy = \frac{1}{2\sqrt{t}} \) \(dt \)

Area = \(\int_{a}^{b} x \, dy = \int_{a}^{b} (x_L - x_L) \, dy \)

\[
= \int_{0}^{2} \left(0 - (t^2 - 2t) \right) \left(\frac{1}{2\sqrt{t}} \right) \, dt \\
= \int_{0}^{2} \left(\frac{2t - t^2}{2\sqrt{t}} \right) \, dt = \int_{0}^{2} \left(\frac{1}{2} - \frac{t}{2\sqrt{t}} \right) \, dt \\
= \left[\frac{2}{3} \left(\frac{3}{2} \right) - \frac{1}{2} \cdot \frac{5}{2} \cdot \frac{5}{2} \right]_0^2 \\
= \left[\frac{2}{3} \left(\frac{3}{2} \right) - \frac{1}{2} \cdot \frac{5}{2} \cdot \frac{5}{2} \right] - (0) \\
= \frac{2}{3} \cdot 4\sqrt{2} - \frac{1}{5} \cdot 4\sqrt{2} = \frac{8\sqrt{2}}{15}
\]
(b) Find the exact length of the curve \(x = e^t + e^{-t}, \ y = 5 - 2t, \ 0 \leq t \leq 3. \)

\[
\frac{dx}{dt} = e^t - e^{-t}, \quad \frac{dy}{dt} = -2.
\]

\[
\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} = \sqrt{(e^t - e^{-t})^2 + (-2)^2} = \sqrt{e^{2t} + e^{-2t} - 4 + 4} = \sqrt{(e^t + e^{-t})^2} = e^t + e^{-t}.
\]

Thus

\[
\text{Length, } L = \int_0^3 \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt
\]

\[
= \int_0^3 (e^t + e^{-t}) \, dt
\]

\[
= \left[e^t - e^{-t} \right]_0^3 = e^3 - e^{-3}
\]
4. (20 points) Suppose a population $p(t)$ satisfies $\frac{dp}{dt} = 0.4p - 0.001p^2$, \(p(0) = 50 \) where \(t \) is measured in years.

(a) What is the carrying capacity?

(b) When will the population reach 50% of the carrying capacity?

\[\frac{dp}{dt} = 0.4p \left(1 - \frac{0.01}{0.4} p\right) = 0.4p \left(1 - \frac{p}{400}\right). \]

Comparing the above differential equation with the logistic equation $\frac{dp}{dt} = kp \left(1 - \frac{p}{M}\right)$, we see that the carrying capacity $M = 400$.

(b) 50% of 400 = 200 and $A = M - P_0 = 400 - 50 = 350$.

We want to find t such that

\[p(t) = \frac{M}{1 + Ae^{-kt}} = \frac{400}{1 + 350e^{-0.4t}} = 200. \]

\[200 \left(1 + 350e^{-0.4t}\right) = 400. \]

\[1 + 350e^{-0.4t} = 2. \]

\[e^{-0.4t} = 2 - \frac{1}{7} = \frac{1}{7}. \]

\[t = \ln \left(\frac{1}{7}/0.4\right) \text{ years}. \]
5. (20 points) Sketch the curve $r = 2 \sin \theta$ and find the area it encloses in 2 ways:

(a) By using the formula for the area enclosed by a polar curve.

\[
\begin{array}{|c|c|}
\hline
\theta & r = 2 \sin \theta \\
\hline
0 & 0 \\
\frac{\pi}{2} & 2 \\
\pi & 0 \\
\frac{3\pi}{2} & -2 \\
2\pi & 0 \\
\hline
\end{array}
\]

\[
\text{Area} = \frac{1}{2} \int_0^\pi (2 \sin \theta)^2 \, d\theta = \frac{4}{2} \int_0^\pi \sin^2 \theta \, d\theta
\]

\[
= \frac{2}{2} \left[\int_0^\pi (1 - \cos 2\theta) \, d\theta \right] = \left[\theta - \frac{1}{2} \sin 2\theta \right]_0^\pi = 2\pi.
\]

(b) By finding a Cartesian equation for the curve then identifying the curve.

Hint: Convert from polar to Cartesian coordinates using $\sin \theta = \frac{y}{r}$ and $r^2 = x^2 + y^2$ then complete squares to identify the curve.

\[
\begin{align*}
r = 2 \sin \theta &= 2 \cdot \frac{y}{r} \\
\Rightarrow \quad r^2 &= 2y \\
x^2 + y^2 &= 2y \\
&\Rightarrow y^2 - 2y + x^2 = 0. \\
y^2 - 2y + (1)^2 - (1)^2 + x^2 = 0. \\
(y - 1)^2 + x^2 = 0 + 1 = 1.
\end{align*}
\]

Hence $r = 2 \sin \theta$ is a circle with radius 1 centered at $(0, 1)$.

Hence $\text{Area} = \pi r^2 = \pi \cdot 1^2 = \underline{\pi}$.