
Free Probability Theory and Random Matrices

R. Speicher�

Department of Mathematics and Statistics
Queen’s University, Kingston
ON K7L 3N6, Canada
speicher@mast.queensu.ca

Summary. Free probability theory originated in the context of operator algebras,
however, one of the main features of that theory is its connection with random
matrices. Indeed, free probability can be considered as the theory providing concepts
and notations, without relying on random matrices, for dealing with the limit N →
∞ of N × N -random matrices.

One of the basic approaches to free probability, on which I will concentrate in this
lecture, is of a combinatorial nature and centers around so-called free cumulants.
In the spirit of the above these arise as the combinatorics (in leading order) of
N × N -random matrices in the limit N = ∞. These free cumulants are multi-linear
functionals which are defined in combinatorial terms by a formula involving non-
crossing partitions.

I will present the basic definitions and properties of non-crossing partitions and
free cumulants and outline its relations with freeness and random matrices. As ex-
amples, I will consider the problems of calculating the eigenvalue distribution of the
sum of randomly rotated matrices and of the compression (upper left corner) of a
randomly rotated matrix.

1 Random matrices and freeness

Free probability theory, due to Voiculescu, originated in the context of opera-
tor algebras, however, one of the main features of that theory is its connection
with random matrices. Indeed, free probability can be considered as the the-
ory providing concepts and notations, without relying on random matrices,
for dealing with the limit N → ∞ of N × N -random matrices.

Let us consider a sequence (AN )N∈N of selfadjoint N×N -random matrices
AN . In which sense can we talk about the limit of these matrices? Of course,
such a limit does not exist as a ∞×∞-matrix and there is no convergence in
the usual topologies connected to operators. What converges and survives in
the limit are the moments of the random matrices.
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To talk about moments we need in addition to the random matrices also a
state. This is given in a canonical way by the averaged trace: Let trN be the
normalized trace on N × N -matrices, i.e. for A = (aij)Ni,j=1 we have

trN (A) :=
1
N

N∑
i=1

aii.

In the same way, we get the averaged trace trN⊗E for N×N -random matrices,
i.e. for A = (aij(ω))Ni,j=1 (where the entries aij are random variables on some
probability space Ω equipped with a probability measure P ) we have

trN ⊗ E(A) :=
1
N

N∑
i=1

∫
Ω

aii(ω)dP (ω).

Given these states trN ⊗ E, we can now talk about the k-th moment
trN ⊗ E(AkN ) of our random matrix AN , and it is well known that for nice
random matrix ensembles these moments converge for N → ∞. So let us
denote by αk the limit of the k-th moment,

lim
N→∞

trN ⊗ E(AkN ) =: αk.

Thus we can say that the limit N = ∞ consists exactly of the collection of all
these moments αk. But instead of talking about a collection of numbers αk we
prefer to identify these numbers as moments of some variable A. Abstractly it
is no problem to find such an A, we just take a free algebra A with generator
A and define a state ϕ on A by setting

ϕ(Ak) := αk.

Of course, nothing deep has happened, this is just a shift in language, but
it provides us with a more conceptual way of looking at the limit of our
random matrices. Now we can say that our random matrices AN converge
to the variable A in distribution (which just means that the moments of AN
converge to the moments of A). We will denote this by AN → A. Note that
the nature of the limit N = ∞ is quite different from the case of finite N . In
the latter case the AN live in classical probability spaces of N × N -random
matrices, whereas the N = ∞ limit object A is not of a classical nature any
more, but lives in a ‘non-classical probability space’ given by some algebra A
and a state ϕ.

1.1 Remark

One should note that for a selfadjoint operator A = A∗, the collection of
moments (or, equivalently, the state ϕ corresponding to these moments) cor-
responds also to a probability measure µA on the real line, determined by
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ϕ(Ak) =
∫

R

tkdµA(t).

(We can ignore the problem of non-uniqueness of this moment problem, be-
cause usually our operators A are bounded, which ensures uniqueness.) In
particular, for a selfadjoint N × N -matrix A = A∗ this measure is given by
the eigenvalue distribution of A, i.e. it puts mass 1/N on each of the eigen-
values of A (counted with multiplicity):

µA =
1
N

N∑
i=1

δλi
,

where λ1, . . . , λN are the eigenvalues of A. In the same way, for a random
matrix A, µA is given by the averaged eigenvalue distribution of A. Thus,
moments of random matrices with respect to the averaged trace trN ⊗ E

contain exactly that type of information in which one is usually interested
when dealing with random matrices.

1.2 Example

Let us consider the basic example of random matrix theory, expressed in
our new language. Let GN be the usual selfadjoint Gaussian N × N -random
matrices (i.e., entries above the diagonal are independently and normally dis-
tributed). Then the famous theorem of Wigner can be stated in our language
in the form that

GN → s, where s is a semi-circular variable,

where semi-circular just means that the measure µs is given by the semi-
circular distribution (or, equivalently, the even moments of the even variable
s are given by the Catalan numbers).

Up to now, nothing crucial has happened, we have just shifted a bit the usual
way of looking on things. A new and crucial concept, however, appears if we
go over from the case of one variable to the case of more variables. Of course,
again joint moments are the surviving quantities in multi-matrix models (even
if it is now not so clear any more how to prove this convergence in concrete
models) and we can adapt our way of looking on things to this situation by
making the following definition.

1.3 Definition

Consider N × N -random matrices A
(1)
N , . . . , A

(m)
N and variables A1, . . . , Am

(living in some abstract algebra A equipped with a state ϕ). We say that
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(A(1)
N , . . . , A

(m)
N ) → (A1, . . . , Am) in distribution,

if
lim
N→∞

trN ⊗ E[A(i1)
N · · ·A(ik)

N ] = ϕ(Ai1 · · ·Aik)

for all choices of k, 1 ≤ i1, . . . , ik ≤ m.

1.4 Remark

The A1, . . . , Am arising in the limit of random matrices are a priori abstract
elements in some algebra A, but it is good to know that in many cases they
can also be concretely realized by some kind of creation and annihilation op-
erators on a full Fock space. Indeed, free probability theory was introduced by
Voiculescu for investigating the structure of special operator algebras gener-
ated by these type of operators. In the beginning, free probability had nothing
to do with random matrices.

1.5 Example

Let us now consider the example of two independent Gaussian random matri-
ces G

(1)
N , G

(2)
N (i.e., each of them is a selfadjoint Gaussian random matrix and

all entries of G
(1)
N are independent from all entries of G

(2)
N ). Then one knows

that all joint moments converge, and we can say that (G(1)
N , G

(2)
N ) → (s1, s2),

where Wigner tells us that both s1 and s2 are semi-circular. The question
is: What is the relation between s1 and s2? Does the independence between
G

(1)
N and G

(2)
N survive in some form also in the limit? The answer is yes and is

provided by a basic theorem of Voiculescu which says that s1 and s2 are free
in the following sense.

1.6 Definition

Let A be a unital algebra and ϕ : A → C a linear functional on A, which is
unital, i.e., ϕ(1) = 1. Then a1, . . . , am ∈ A are called free (with respect to ϕ)
if

ϕ[p1(ai(1)) · · · pk(ai(k))] = 0

whenever

• p1, . . . , pk are polynomials in one variable;
• i(1) 
= i(2) 
= i(3) 
= · · · 
= i(k) (only neigbouring elements are required to

be distinct);
• ϕ[pj(ai(j)] = 0 for all j = 1, . . . , k.
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1.7 Remark

Note that the definition of freeness can be considered as a way of organizing
the information about all joint moments of free variables in a systematic
and conceptual way. Indeed, the above definition allows to calculate mixed
moments of free variables in terms of moments of the single variables. For
example, if a, b are free, then the definiton of freeness requires that

ϕ[(a − ϕ(a) · 1)(b − ϕ(b) · 1)] = 0,

which implies that

ϕ(ab) = ϕ(a) · ϕ(b) if a, b are free.

In the same way,

ϕ[(a − ϕ(a) · 1)(b − ϕ(b) · 1)(a − ϕ(a) · 1)(b − ϕ(b) · 1)] = 0

leads finally to

ϕ(abab) = ϕ(aa) · ϕ(b) · ϕ(b) + ϕ(a) · ϕ(a) · ϕ(bb) − ϕ(a) · ϕ(b) · ϕ(a) · ϕ(b).

Analogously, all mixed moments can (at least in principle) be calculated by
reducing them to alternating products of centered variables as in the definition
of freeness.

Thus the statement ‘s1, s2 are free and each of them is semicircular’ de-
termines all joint moments in s1 and s2.

Formulating our knowledge about the joint moments of s1 and s2 in this
peculiar way might look not very illuminating on first sight, but it will turn
out that recognizing this notion of freeness as the organizing principle for the
collection of moments adds a new perspective on the limit of random matrices.

In particular, we are now in the context of non-commutative probability
theory which consists mainly of the doctrine that one should use notations
and ideas from classical probability theory in order to understand problems
about non-commutative algebras.

Free probability theory can be described as that part of non-commutat-
ive probability theory where the notion of ‘freeness’ plays an essential role.
Furthermore, according to the basic philosophy of Voiculescu this notion of
freeness should be considered (and investigated) in analogy with the classical
notion of ‘independence’—both freeness and independence prescribe special
relations between joint moments of some variables. (Of course, both cases
correspond to very special, but also very fundamental situations.)

One of the most interesting features of freeness is that this concept appears
in at least two totally different mathematical situations. Originally it was
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introduced by Voiculescu in the context of operator algebras, later it turned
out that there is also some relation, as described above, with random matrices.
This gives a non-trivial connection between these two different fields. For
example, modelling operator algebras by random matrices has led to some of
the most impressive results about operator algebras in the last years.

Furthermore, apart from the concrete manifestations of freeness via ran-
dom matrices or operator algebras, there exist also an abstract probabilistic
theory of freeness, which shows the depth of this concept and which I want
to address in the following.

2 Combinatorial approach to free probability:
non-crossing partitions and free cumulants

‘Freeness’ of random variables is defined in terms of mixed moments; namely
the defining property is that very special moments (alternating and centered
ones) have to vanish. This requirement is not easy to handle in concrete calcu-
lations. Thus we will present here another approach to freeness, more combi-
natorial in nature, which puts the main emphasis on so called ‘free cumulants’.
These are some polynomials in the moments which behave much better with
respect to freeness than the moments. The nomenclature comes from classical
probability theory where corresponding objects are also well known and are
usually called ‘cumulants’ or ‘semi-invariants’. There exists a combinatorial
description of these classical cumulants, which depends on partitions of sets.
In the same way, free cumulants can also be described combinatorially, the
only difference to the classical case is that one has to replace all partitions by
so called ‘non-crossing partitions’.

This combinatorial description of freeness is due to me [8, 9] (see also [3]);
in a series of joint papers with A. Nica [4, 5, 6] it was pursued very far and
yielded a lot of new results in free probability theory. For more information
on other aspects of freeness, in particular the original analytical approach of
Voiculescu, one should consult the papers [10, 11, 13], the collection of various
articles [13], or the monographs [14, 1]

2.1 Definitions

A partition of the set S := {1, . . . , n} is a decomposition

π = {V1, . . . , Vr}

of S into disjoint and non-empty sets Vi, i.e.

Vi ∩ Vj = ∅ (i, j = 1, . . . , r; i 
= j) and S =
r⋃
i=1

Vi.
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We call the Vi the blocks of π.
For 1 ≤ p, q ≤ n we write

p ∼π q if p and q belong to the same block of π.

A partition π is called non-crossing if the following does not occur: There
exist 1 ≤ p1 < q1 < p2 < q2 ≤ n with

p1 ∼π p2 
∼π q1 ∼π q2.

The set of all non-crossing partitions of {1, . . . , n} is denoted by NC(n).
Non-crossing partitions were introduced by Kreweras [2] in a purely com-

binatorial context without any reference to probability theory.

2.2 Examples

We will also use a graphical notation for our partitions; the term ‘non-crossing’
will become evident in such a notation. Let

S = {1, 2, 3, 4, 5}.
Then the partition

π = {(1, 3, 5), (2), (4)} =̂

1 2 3 4 5

is non-crossing, whereas

π = {(1, 3, 5), (2, 4)} =̂

1 2 3 4 5

is crossing.

2.3 Remarks

1) In an analogous way, non-crossing partitions NC(S) can be defined for any
linearly ordered set S; of course, we have

NC(S1) ∼= NC(S2) if #S1 = #S2.

2) In most cases the following recursive description of non-crossing partitions
is of great use: a partition π ist non-crossing if and only if at least one block
V ∈ π is an interval and π\V is non-crossing; i.e. V ∈ π has the form

V = (k, k + 1, . . . , k + p) for some 1 ≤ k ≤ n and p ≥ 0, k + p ≤ n

and we have

π\V ∈ NC(1, . . . , k − 1, k + p + 1, . . . , n) ∼= NC(n − (p + 1)).
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Example: The partition

{(1, 10), (2, 5, 9), (3, 4), (6), (7, 8)} =̂

1 2 3 4 5 6 7 8 9 10

can, by successive removal of intervals, be reduced to

{(1, 10), (2, 5, 9)}=̂{(1, 5), (2, 3, 4)}

and finally to
{(1, 5)}=̂{(1, 2)}.

3) By writing a partition π in the form π = {V1, . . . , Vr} we will always assume
that the elements within each block Vi are ordered in increasing order.

2.4 Definition

Let (A, ϕ) be a probability space, i.e. A is a unital algebra and ϕ : A → C is
a unital linear functional. We define the (free or non-crossing) cumulants

kn : An → C (n ∈ N)

(indirectly) by the following system of equations:

ϕ(a1 . . . an) =
∑

π∈NC(n)

kπ[a1, . . . , an] (a1, . . . , an ∈ A),

where kπ denotes a product of cumulants according to the block structure of
π:

kπ[a1, . . . , an] := kV1 [a1, . . . , an] . . . kVr
[a1, . . . , an]

for π = {V1, . . . , Vr} ∈ NC(n)

and

kV [a1, . . . , an] := k#V (av1 , . . . , avl
) for V = (v1, . . . , vl).

2.5 Remarks and Examples

1) Note: the above equations have the form

ϕ(a1 . . . an) = kn(a1, . . . , an) + smaller order terms

and thus they can be resolved for the kn(a1, . . . , an) in a unique way.
2) Examples:
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• n = 1
ϕ(a1) = k [a1] = k1(a1),

thus
k1(a1) = ϕ(a1).

• n = 2

ϕ(a1a2) = k [a1, a2] + k [a1, a2]
= k2(a1, a2) + k1(a1)k1(a2),

thus
k2(a1, a2) = ϕ(a1a2) − ϕ(a1)ϕ(a2).

• n = 3

ϕ(a1a2a3) = k [a1, a2, a3] + k [a1, a2, a3] + k [a1, a2, a3]
+ k [a1, a2, a3] + k [a1, a2, a3]

= k3(a1, a2, a3) + k1(a1)k2(a2, a3) + k2(a1, a2)k1(a3)
+ k2(a1, a3)k1(a2) + k1(a1)k1(a2)k1(a3),

and thus

k3(a1, a2, a3) = ϕ(a1a2a3) − ϕ(a1)ϕ(a2a3) − ϕ(a1a3)ϕ(a2)
− ϕ(a1a2)ϕ(a3) + 2ϕ(a1)ϕ(a2)ϕ(a3).

3) For n = 4 we consider the special case where all ϕ(ai) = 0. Then we have

k4(a1, a2, a3, a4) = ϕ(a1a2a3a4) − ϕ(a1a2)ϕ(a3a4) − ϕ(a1a4)ϕ(a2a3).

4) The kn are multi-linear functionals in their n arguments.
The meaning of the concept ‘cumulants’ for freeness is shown by the fol-

lowing theorem.

2.6 Theorem

Consider a1, . . . , am ∈ A. Then the following two statements are equivalent:

i) a1, . . . , am are free.
ii) mixed cumulants vanish, i.e.: We have for all n ≥ 2 and for all 1 ≤ i(1), . . . ,

i(n) ≤ m:
kn(ai(1), . . . , ai(n)) = 0,

whenever there exist 1 ≤ p, q ≤ n with i(p) 
= i(q).
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2.7 Remarks

1) An example of the vanishing of mixed cumulants is that for a, b free we
have k3(a, a, b) = 0, which, by the definition of k3 just means that

ϕ(aab) − ϕ(a)ϕ(ab) − ϕ(aa)ϕ(b) − ϕ(ab)ϕ(a) + 2ϕ(a)ϕ(a)ϕ(b) = 0.

This vanishing of mixed cumulants in free variables is of course just a reorga-
nization of the information about joint moments of free variables – but in a
form which is much more useful for many applications.
2) The above characterization of freeness in terms of cumulants is the trans-
lation of the definition of freeness in terms of moments – by using the relation
between moments and cumulants from Definition 2.4. One should note that in
contrast to the characterization in terms of moments we do not require that
i(1) 
= i(2) 
= · · · 
= i(n) or ϕ(ai) = 0. (That’s exactly the main part of the
proof of that theorem: to show that on the level of cumulants the assumption
‘centered’ is not needed and that ‘alternating’ can be weakened to ‘mixed’.)
Hence the characterization of freeness in terms of cumulants is much easier to
use in concrete calculations.

3 Addition of free variables

3.1 Notation

For a random variable a ∈ A we put

kan := kn(a, . . . , a)

and call (kan)n≥1 the (free) cumulants of a.

Our main theorem on the vanishing of mixed cumulants in free variables
specialises in this one-dimensional case to the linearity of the cumulants.

3.2 Proposition

Let a and b be free. Then we have

ka+bn = kan + kbn for all n ≥ 1.

Proof. We have

ka+bn = kn(a + b, . . . , a + b)
= kn(a, . . . , a) + kn(b, . . . , b)

= kan + kbn,
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because cumulants which have both a and b as arguments vanish by Theo-
rem 2.6.

Thus, the addition of free random variables is easy to describe on the level
of cumulants; the cumulants are additive under this operation. It remains to
make the connection between moments and cumulants as explicit as possible.
On a combinatorial level, our definition specializes in the one-dimensional case
to the following relation.

3.3 Proposition

Let (mn)n≥1 and (kn)n≥1 be the moments and free cumulants, respectively,
of some random variable. The connection between these two sequences of
numbers is given by

mn =
∑

π∈NC(n)

kπ,

where
kπ := k#V1 · · · k#Vr for π = {V1, . . . , Vr}.

Example. For n = 3 we have

m3 = k + k + k + k + k

= k3 + 3k1k2 + k3
1.

For concrete calculations, however, one would prefer to have a more ana-
lytical description of the relation between moments and cumulants. This can
be achieved by translating the above relation to corresponding formal power
series.

3.4 Theorem

Let (mn)n≥1 and (kn)n≥1 be two sequences of complex numbers and consider
the corresponding formal power series

M(z) := 1 +
∞∑
n=1

mnz
n,

C(z) := 1 +
∞∑
n=1

knz
n.

Then the following three statements are equivalent:

(i) We have for all n ∈ N

mn =
∑

π∈NC(n)

kπ =
∑

π={V1,...,Vr}∈NC(n)

k#V1 . . . k#Vr
.
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(ii) We have for all n ∈ N (where we put m0 := 1)

mn =
n∑
s=1

∑
i1,...,is∈{0,1,...,n−s}
i1+···+is=n−s

ksmi1 . . .mis .

(iii) We have
C[zM(z)] = M(z).

Proof. We rewrite the sum

mn =
∑

π∈NC(n)

kπ

in the way that we fix the first block V1 of π (i.e. that block which contains
the element 1) and sum over all possibilities for the other blocks; in the end
we sum over V1:

mn =
n∑
s=1

∑
V1 with #V1 = s

∑
π∈NC(n)

where π = {V1, . . . }

kπ.

If
V1 = (v1 = 1, v2, . . . , vs),

then π = {V1, . . . } ∈ NC(n) can only connect elements lying between some
vk and vk+1, i.e. π = {V1, V2, . . . , Vr} such that we have for all j = 2, . . . , r:
there exists a k with vk < Vj < vk+1. There we put

vs+1 := n + 1.

Hence such a π decomposes as

π = V1 ∪ π̃1 ∪ · · · ∪ π̃s,

where

π̃j is a non-crossing partition of {vj + 1, vj + 2, . . . , vj+1 − 1}.

For such π we have

kπ = k#V1kπ̃1 . . . kπ̃s = kskπ̃1 . . . kπ̃s ,

and thus we obtain
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mn =
n∑
s=1

∑
1=v1<v2<···<vs≤n

∑
π=V1∪π̃1∪···∪π̃s

π̃j∈NC(vj+1,...,vj+1−1)

kskπ̃1 . . . kπ̃s

=
n∑
s=1

ks
∑

1=v1<v2<···<vs≤n

( ∑
π̃1∈NC(v1+1,...,v2−1)

kπ̃1

)
. . .

( ∑
π̃s∈NC(vs+1,...,n)

kπ̃s

)
=

n∑
s=1

ks
∑

1=v1<v2<···<vs≤n
mv2−v1−1 . . .mn−vs

=
n∑
s=1

∑
i1,...,is∈{0,1,...,n−s}
i1+···+is+s=n

ksmi1 . . .mis (ik := vk+1 − vk − 1).

This yields the implication (i) =⇒ (ii).
We can now rewrite (ii) in terms of the corresponding formal power series in
the following way (where we put m0 := k0 := 1):

M(z) = 1 +
∞∑
n=1

znmn

= 1 +
∞∑
n=1

n∑
s=1

∑
i1,...,is∈{0,1,...,n−s}
i1+···+is=n−s

ksz
smi1z

i1 . . .misz
is

= 1 +
∞∑
s=1

ksz
s
( ∞∑
i=0

miz
i
)s

= C[zM(z)].

This yields (iii).
Since (iii) describes uniquely a fixed relation between the numbers (kn)n≥1
and the numbers (mn)n≥1, this has to be the relation (i).

If we rewrite the above relation between the formal power series in terms of
the Cauchy transform

G(z) :=
∞∑
n=0

mn

zn+1

and the R-transform

R(z) :=
∞∑
n=0

kn+1z
n,

then we obtain Voiculescu’s formula.
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3.5 Corollary

The relation between the Cauchy transform G(z) and the R-transform R(z)
of a random variable is given by

G[R(z) +
1
z
] = z.

Proof. We just have to note that the formal power series M(z) and C(z) from
Theorem 3.4 and G(z), R(z), and K(z) = R(z) + 1

z are related by:

G(z) =
1
z
M(

1
z
)

and

C(z) = 1 + zR(z) = zK(z), thus K(z) =
C(z)

z
.

This gives

K[G(z)] =
1

G(z)
C[G(z)] =

1
G(z)

C[
1
z
M(

1
z
)] =

1
G(z)

M(
1
z
) = z,

thus K[G(z)] = z and hence also

G[R(z) +
1
z
] = G[K(z)] = z.

3.6 Free convolution

The above results give us a quite effective tool for calculating the distribution
of the sum a+b of free variables from the distribution of a and the distribution
of b. In analogy with the usual convolution (which corresponds to the sum of
independent random variables) we introduce the notion � of free convolution
as operation on probability measures by

µa+b = µa � µb if a, b are free.

Then we know that free cumulants and the R-transform linearize this free
convolution.

In particular, we also have the free convolution powers

µ�r := µ � · · · � µ (r-times)

of µ, which are in terms of cumulants characterized by

kn(µ�r) = r · kn(µ).

If we are given free variables a and b and we want to calculate the distri-
bution of a + b, then we calculate the R-transforms Ra and Rb and get thus
by the linearization property the R-transform of a + b,
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Ra+b = Ra + Rb.

It remains to extract the distribution out of this. From the R-transform we
can get the Cauchy transform Ga+b by Corollary 3.5, and then we use the
classical Stietljes inversion formula for extracting the distribution from this.
In general, the relation between R-transform and Cauchy transform might lead
to equations which have no analytic solutions, however, in many concrete case
these equations can be solved. For example, if we put µ = 1

2 (δ0 + δ1), then
the above machinery shows that the distribution µ�µ is given by the arcsine
law.

3.7 Application: random sum of matrices [7]

Fix two (compactly supported) probability measures µ and ν on the real line
and consider deterministic (e.g., diagonal) N×N -matrices AN and CN , whose
eigenvalue distribution converges, for N → ∞, towards the given measures.
To put it in the language introduced in Section 1, we assume that

AN → a with µa = µ

and
CN → c with µc = ν.

Now we rotate CN against AN randomly by replacing CN by

BN := UNCNU∗N ,

where UN is a random Haar unitary matrix from the ensemble of unitary
N × N -matrices equipped with the Haar measure. Of course, the eigenvalue
distribution of BN is the same as the one of CN , however, any definite relation
between the eigenspaces of AN and the eigenspaces of CN has now been
destroyed. AN and BN are in the limit N → ∞ generic realizations of the given
eigenvalue distributions µ and ν. The question which we want to address is:
What is the eigenvalue distribution of the sum AN +BN in the limit N → ∞,
i.e. what can we say about

AN + BN →?

A version of the theorem of Voiculescu about the connection between random
matrices and freeness tells us that AN and BN become free in the limit N →
∞, i.e. it yields that

(AN , BN ) → (a, b) with µa = µ, µb = ν, and a, b free.

Thus we know that the eigenvalue distribution of AN +BN converges towards
the distribution of a + b where a and b are free. But the distribution of a + b
can be calculated with our tools from free probability in a very effective and
systematic way by using the R-transform machinery. For example, if we take
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the generic sum of two projections of trace 1/2, (i.e., µ = ν = 1
2 (δ0 + δ1), then

our example from above shows us that the distribution of

1
0

1
0

1
. . .


+ UN



1
0

1
0

1
. . .


U∗N ,

is, in the limit N → ∞, given by the arcsine law.

4 Multiplication of free variables

Finally, to show that our description of freeness in terms of cumulants has
also a significance apart from dealing with additive free convolution, we will
apply it to the problem of the product of free random variables: Consider
a1, . . . , an, b1, . . . , bn such that {a1, . . . , an} and {b1, . . . , bn} are free. We want
to express the distribution of the random variables a1b1, . . . , anbn in terms of
the distribution of the a’s and of the b’s.

4.1 Notation

1) Analogously to kπ we define for

π = {V1, . . . , Vr} ∈ NC(n)

the expression

ϕπ[a1 . . . , an] := ϕV1 [a1, . . . , an] . . . ϕVr
[a1, . . . , an],

where

ϕV [a1, . . . , an] := ϕ(av1 . . . avl
) for V = (v1, . . . , vl).

Examples:

ϕ [a1, a2, a3] = ϕ(a1a2a3)
ϕ [a1, a2, a3] = ϕ(a1)ϕ(a2a3)
ϕ [a1, a2, a3] = ϕ(a1a2)ϕ(a3)
ϕ [a1, a2, a3] = ϕ(a1a3)ϕ(a2)
ϕ [a1, a2, a3] = ϕ(a1)ϕ(a2)ϕ(a3)

2) Let σ, π ∈ NC(n). Then we write
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σ ≤ π

if each block of σ is contained as a whole in some block of π, i.e. σ can be
obtained out of π by refinement of the block structure.
Example:

{(1), (2, 4), (3), (5, 6)} ≤ {(1, 5, 6), (2, 3, 4)}

With these notations we can generalize the relation

ϕ(a1 . . . an) =
∑

π∈NC(n)

kπ[a1, . . . , an]

in the following way.

ϕσ[a1, . . . , an] =
∑

π∈NC(n)
π≤σ

kπ[a1, . . . , an].

Consider now
{a1, . . . , an}, {b1, . . . , bn} free.

We want to express alternating moments in a and b in terms of moments of a
and moments of b. We have

ϕ(a1b1a2b2 . . . anbn) =
∑

π∈NC(2n)

kπ[a1, b1, a2, b2, . . . , an, bn].

Since the a’s are free from the b’s, Theorem 2.6 tells us that only such π
contribute to the sum whose blocks do not connect a’s with b’s. But this
means that such a π has to decompose as

π = π1 ∪ π2 where π1 ∈ NC(1, 3, 5, . . . , 2n − 1)
π2 ∈ NC(2, 4, 6, . . . , 2n).

Thus we have

ϕ(a1b1a2b2 . . . anbn)

=
∑

π1∈NC(odd),π2∈NC(even)
π1∪π2∈NC(2n)

kπ1 [a1, a2, . . . , an] · kπ2 [b1, b2, . . . , bn]

=
∑

π1∈NC(odd)

(
kπ1 [a1, a2, . . . , an] ·

∑
π2∈NC(even)
π1∪π2∈NC(2n)

kπ2 [b1, b2, . . . , bn]
)
.

Note now that for a fixed π1 there exists a maximal element σ with the
property π1∪σ ∈ NC(2n) and that the second sum is running over all π2 ≤ σ.
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4.2 Definition

Let π ∈ NC(n) be a non-crossing partition of the numbers 1, . . . , n. Introduce
additional numbers 1̄, . . . , n̄, with alternating order between the old and the
new ones, i.e. we order them in the way

11̄22̄ . . . nn̄.

We define the complement K(π) of π as the maximal σ ∈ NC(1̄, . . . , n̄) with
the property

π ∪ σ ∈ NC(1, 1̄, . . . , n, n̄).

If we present the partition π graphically by connecting the blocks in 1, . . . , n,
then σ is given by connecting as much as possible the numbers 1̄, . . . , n̄ without
getting crossings among themselves and with π.

(This natural notation of the complement of a non-crossing partition is
also due to Kreweras [2]. Note that there is no analogue of this for the case
of all partitions.)

With this definition we can continue our above calculation as follows:

ϕ(a1b1a2b2 . . . anbn)

=
∑

π1∈NC(n)

(
kπ1 [a1, a2, . . . , an] ·

∑
π2∈NC(n)
π2≤K(π1)

kπ2 [b1, b2, . . . , bn]
)

=
∑

π1∈NC(n)

kπ1 [a1, a2, . . . , an] · ϕK(π1)[b1, b2, . . . , bn].

Thus we have proved the following result.

4.3 Theorem

Consider
{a1, . . . , an}, {b1, . . . , bn} free.

Then we have

ϕ(a1b1a2b2 . . . anbn) =
∑

π∈NC(n)

kπ[a1, a2, . . . , an] · ϕK(π)[b1, b2, . . . , bn].
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Similar to the additive case one can translate this combinatorial description
of the product of free variables in an analytic way in terms of the so-called S-
transfrom. However, this is more complicated as in the case of the R-transform
and we will not address this problem here. Instead, we want to show that the
above combinatorial description of the product of free variables can lead to
quite explicit (and unexpected) results without running through an analytic
reformulation. Such a result is given in our final application to the problem
of the compression of a random matrix.

4.4 Application: Compression of random matrix

Consider, as in Section 3.7, a sequence of deterministic N × N -matrices CN
with prescribed eigenvalue distribution µ in the limit N → ∞ and consider the
randomly rotated version AN := UNCNU∗N of this matrix. The question we
want to address is the following: Can we calculate the eigenvalue distribution
of upper left corners of the matrices AN . Formally, we get these corners by
compressing AN with projections of the form

PN :=



1
. . .

1
0

. . .
0


,

where trN (PN ) → α for some fixed α with 0 < α ≤ 1. Thus we ask for the
eigenvalue distribution of PNANPN in the limit N → ∞. (However, we have
to calculate this in the compressed space, throwing away the bunch of trivial
zero eigenvalues outside of the non-trivial corner of PNANPN , i.e., we consider
PNANPN not as N × N -matrix, but as αN × αN -matrix.)

Now, again by Voiculescu’s theorem about asymptotic freeness of random
matrices, we know that

(AN , PN ) → (a, p),

where a has the prescribed distribution µ, p is a projection of trace α and a
and p are free. Thus, the answer for our question on the distribution of corners
in randomly rotated matrices is provided by calculating the distribution of pap
in the compressed space, i.e. by calculating the renormalized moments

1
α
ϕ[(pap)n],

which is, by the trace property of ϕ and the projection property p2 = p, the
same as
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1
α
ϕ[(ap)n].

This fits now exactly in the above frame of calculating the moments of prod-
ucts of free variables, in the special case where the second variable is a pro-
jection of trace α. Using pk = p for all k ≥ 1 and ϕ(p) = α gives

ϕK(π)[p, p, . . . , p] = ϕ(p . . . p)ϕ(p . . . p) · · · = α|K(π)|,

where |K(π)| denotes the number of blocks of K(π). We can express this
number of blocks also in terms of π, since we always have the relation

|π| + |K(π)| = n + 1.

Thus we can continue our calculation of Theorem 4.3 in this case as

1
α
ϕ[(ap)n] =

1
α

∑
π∈NC(n)

kπ[a, . . . , a]αn+1−|π|

=
∑

π∈NC(n)

1
α|π|

kπ[αa, . . . , αa],

which shows that

kn(pap, . . . , pap) =
1
α
kn(αa, . . . , αa)

for all n. By our remarks on the additive free convolution, this gives the
surprising result that the renormalized distribution of pap is given by

µpap = µ�1/α
αa .

In particular, for α = 1/2, we have

µpap = µ�2
1/2a = µ1/2a � µ1/2a.

This means that the distribution of the upper left corner of size 1/2 of a
randomly rotated matrix is, apart from rescaling with the factor 1/2, the same
as the distribution of the sum of the considered matrix and another randomly
rotated copy of itself. E.g., if we take the example µ = 1

2 (δ0 + δ1), then the
corner of size 1/2 of such a randomly rotated projection has as eigenvalue
distribution the arcsine law.
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