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Let My, denote the moduli space Riemann surfaces of genus 0 with
n ordered marked points. Its Deligne-Mumford compactification My, is
naturally partitioned into connected strata of the form

S = Moml X« X M07ns,

indexed by the different topological types of stable curves with n marked
points. The stable curves in the stratum above have s irreducible compo-
nents and s — 1 nodes; thus Y n; =n + 2s — 2.

This note provides a short proof of the following result, which shows
that the universal formula for inversion of power series is encoded in the
stratification of moduli space.

Theorem 1 The formal inverse of f(x) = = — Y o apa™/n! is given by
g(x) =z + > 5" bpa™/n!, where

the number of strata S C Mo n+1
bn:Zam---ansx _ ) :
isomorphic to Mo p,41 X -+ X Mo p 41

That is, g(f(x)) = x.

Here the coefficients of f(z) and g(z) are regarded as elements of the poly-
nomial ring Q[az, as, . ..], and the sum is over all s > 1 and all multi-indices
(n1,...,ny) with n; > 2.

Using basic properties of the Euler characteristic, we obtain:

Corollary 2 (Getzler) The generating functions

flx)=2— Z X(Mo,nt1) py and g(x) =z + Z X(mo,nﬂ)%

n=2 n=2

wn

are formal inverses of one another.
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It is easy to see that a, = x(Mon+1) = (=1)"(n — 2)!, using the fibration
Mo nt1 — Mo . Thus by formally inverting f(x), one can readily compute

(X(Mo.n)25 = (1,2,7,34,213,1630, 14747, 153946, 1821473, .. .).

Corollary 2 is a consequence of [Gel, Thm. 5.9], stated explicitly in [LZ,
Rmk. 4.5.3]. The development in [Gel] uses operads and yields more infor-
mation, such as Betti numbers for Mom- Theorem 1 shows that Corollary
2 holds for any generalized Euler characteristic on the Grothendieck ring of
varieties over Q (cf. [Bi]).

The proof of Theorem 1 will be based on simple properties of trees. Its
aim is to provide an elementary entry point to the enumerative combinatorics
of moduli spaces.

Trees. A tree 7 is a finite, connected graph with no cycles; its vertices will
be denoted V(7). The degree function d : V(7) — N gives the number of
edges incident to each vertex. To each tree we associate the monomial

A(T) = H Adw)—1

V(r)

in the polynomial ring Z[A;, As, A3, ...], with the convention Ay = 1.

A tree is stable if it has no vertices of degree 2. An endpoint of 7 is a
vertex with d(v) = 1. We say 7 is rooted if it has a distinguished endpoint
(the root). The number of endpoints of 7, other than its root, will be denoted
N(7). We always assume 7 has at least one edge, so N(7) > 1; and the tree
with just one edge is considered stable.

A ribbon tree is a rooted stable tree equipped with a cyclic ordering
of the edges incident to each vertex. A ribbon structure records the same
information as a planar embedding 7 < R? up to isotopy.

A marked tree is a rooted stable tree equipped with a labeling of its
endpoints by the integers 1,2,..., N(7) + 1. We require that the root is
labeled 1.

Theorem 3 The formal inverse of F(x) =z — Y o An,z™ is given by

Gz)= > AN, (1)
ribbon 7

Here the sum is taken over all ribbon trees, up to isomorphism.

Proof. Suppose we are given ribbon trees 7,...,74 with d > 2. We can
then construct a new ribbon tree 7 by identifying the roots of these trees



Figure 1. Three ribbon trees grafted together at their roots.

with a single vertex w, and adding a new edge leading from w to the root of
7 (see Figure 1). The ribbon structure at w is determined by the ordering
of the trees (7;), and by the condition that the root of 7 lies between 7; and
T1.

Conversely, any ribbon tree with N(7) > 2 is obtained by applying this
construction to the subtrees (11, ..., 74) leading away from the edge adjacent
to its root. Taking into account the vertex w of degree d + 1 where these
trees are attached, we find:

d
A2V = Ag [T A(m)2V .
i=1

But the right hand side above is precisely one of the terms occurring in
the expression A4G(x)?. Summing over all possible values for d = d(w) we
obtain

[e.e]
G(z)=z+) AG(x)",
d=2
where the first term accounts for the unique tree with N(7) = 1. Rearrang-
ing terms gives F(G(x)) = =. |

Corollary 4 The formal inverse of f(x) =x — Y 5 apx™/n! is given by

o)=Y ey )

marked T

where a(1) = [Iy(r) @Ga@)-1 and ag = 1.



Proof. The number of ribbon structures on a given stable rooted tree 7
is given by [[(d(v) — 1)!. The group Aut(r) acts freely on the space of
ribbon structures, so 7 contributes [[(d(v) — 1)!/| Aut(7)| identical terms
to equation (1) for G(x). Similarly, 7 contributes N(7)!/| Aut(7)| terms to
equation (2) for g(z). Setting A,, = a,/n!, we find F(z) = f(x) and

- ¥ I a0 - ),

marked 7
so f(g(x)) = F(G(x)) = . "

Remark. The same reasoning shows (2) can be rewritten as

_ N(t)+1 -
e = ¥ Taaeao.

For example, using the trees shown in Figure 2 we find

stable 7

2 3
f_l(a:) — + Qa (CL3 + 3@2):1:3 + (a4 + 10@2@3 + 15@2)x4

@2 5
2x 5 54 + O(z?).

For a quite different approach to Corollary 4, see [Ge2, Thm 1.3].

AT T T

Figure 2. The stable trees with N (7

Proof of Theorem 1. A stable curve X € M07n+1 of genus zero determines
a marked tree ¢(X) whose interior vertices correspond to the irreducible
components of X, and whose edges correspond to its nodes and labeled
points. Conversely, any marked tree with N(7) > 2 can be realized by a
stable curve, so the map

T S(1) = {X € Moy : H(X) =7}

gives a bijection between marked trees with N(7) > 2 and the strata of
moduli spaces. The desired inversion formula now follows from the preceding
corollary. [ |



Proof of Corollary 2. Let a, = x(Mon+1). It is known that x(X —Y)+
X(Y) = x(X) whenever Y is a closed subvariety of a complex variety X
[Ful, p.141, note 13|, and that x(A x B) = x(A) x x(B). The first property
implies that (Mo ,+1) is the sum of the Euler characteristics of its strata
S, and the second implies that

X(S) = an, -+ an,

whenever S = Mg, 41X XM p,4+1. Thus the stated relationship between
generating functions follows from Theorem 1. |

Moduli space over R. The real points of moduli space Mg ,(R) form a
submanifold with (n — 1)!/2 connected components, each homeomorphic to
R"=3. Let M, be the component of My, (R) where the marked points can
be chosen to lie in R, with z; < 23 < --- < x,. Let M,, be the closure of
M,, in My ,. The strata of M,, are encoded by ribbon trees, since the cyclic
ordering of the points (z;) is preserved under stable limits (cf. [De]). Thus
in this setting, Theorem 3 yields:

Corollary 5 The formal inverse of F(x) = x — Y o Apa™ is given by
G(z) =z + > 5" Bya", where

the number of strata S C M
Bn — ZAnl . Ans X ' . f 0,7’l+1 .
tsomorphic to My, 41 X -+ X My, 11

Notes and references. A compendium of results on trees, generating
functions and inversion can be found in [St, Ch. 5|; see also [Ca]. For
background on the many connections between graphs and moduli space, see
e.g. [ACG, Ch. XVIII}, [LZ] and the references therein.

I would like to thank S. Koch for useful conversations related to this
note.
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