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Let M0,n denote the moduli space Riemann surfaces of genus 0 with
n ordered marked points. Its Deligne-Mumford compactification M0,n is
naturally partitioned into connected strata of the form

S ∼= M0,n1
× · · · ×M0,ns

,

indexed by the different topological types of stable curves with n marked
points. The stable curves in the stratum above have s irreducible compo-
nents and s− 1 nodes; thus

∑

ni = n+ 2s− 2.
This note provides a short proof of the following result, which shows

that the universal formula for inversion of power series is encoded in the
stratification of moduli space.

Theorem 1 The formal inverse of f(x) = x −
∑

∞

2 anx
n/n! is given by

g(x) = x+
∑

∞

2 bnx
n/n!, where

bn =
∑

an1
· · · ans

×

(

the number of strata S ⊂ M0,n+1

isomorphic to M0,n1+1 × · · · ×M0,ns+1

)

·

That is, g(f(x)) = x.

Here the coefficients of f(x) and g(x) are regarded as elements of the poly-
nomial ring Q[a2, a3, . . .], and the sum is over all s ≥ 1 and all multi-indices
(n1, . . . , ns) with ni ≥ 2.

Using basic properties of the Euler characteristic, we obtain:

Corollary 2 (Getzler) The generating functions

f(x) = x−
∞
∑

n=2

χ(M0,n+1)
xn

n!
and g(x) = x+

∞
∑

n=2

χ(M0,n+1)
xn

n!

are formal inverses of one another.
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It is easy to see that an = χ(M0,n+1) = (−1)n(n − 2)!, using the fibration
M0,n+1 → M0,n. Thus by formally inverting f(x), one can readily compute

〈χ(M0,n〉
∞

n=3 = 〈1, 2, 7, 34, 213, 1630, 14747, 153946, 1821473, . . .〉.

Corollary 2 is a consequence of [Ge1, Thm. 5.9], stated explicitly in [LZ,
Rmk. 4.5.3]. The development in [Ge1] uses operads and yields more infor-
mation, such as Betti numbers for M0,n. Theorem 1 shows that Corollary
2 holds for any generalized Euler characteristic on the Grothendieck ring of
varieties over Q (cf. [Bi]).

The proof of Theorem 1 will be based on simple properties of trees. Its
aim is to provide an elementary entry point to the enumerative combinatorics
of moduli spaces.

Trees. A tree τ is a finite, connected graph with no cycles; its vertices will
be denoted V (τ). The degree function d : V (τ) → N gives the number of
edges incident to each vertex. To each tree we associate the monomial

A(τ) =
∏

V (τ)

Ad(v)−1

in the polynomial ring Z[A1, A2, A3, . . .], with the convention A0 = 1.
A tree is stable if it has no vertices of degree 2. An endpoint of τ is a

vertex with d(v) = 1. We say τ is rooted if it has a distinguished endpoint
(the root). The number of endpoints of τ , other than its root, will be denoted
N(τ). We always assume τ has at least one edge, so N(τ) ≥ 1; and the tree
with just one edge is considered stable.

A ribbon tree is a rooted stable tree equipped with a cyclic ordering
of the edges incident to each vertex. A ribbon structure records the same
information as a planar embedding τ →֒ R2 up to isotopy.

A marked tree is a rooted stable tree equipped with a labeling of its
endpoints by the integers 1, 2, . . . , N(τ) + 1. We require that the root is
labeled 1.

Theorem 3 The formal inverse of F (x) = x−
∑

∞

2 Anx
n is given by

G(x) =
∑

ribbon τ

A(τ)xN(τ). (1)

Here the sum is taken over all ribbon trees, up to isomorphism.

Proof. Suppose we are given ribbon trees τ1, . . . , τd with d ≥ 2. We can
then construct a new ribbon tree τ by identifying the roots of these trees
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Figure 1. Three ribbon trees grafted together at their roots.

with a single vertex w, and adding a new edge leading from w to the root of
τ (see Figure 1). The ribbon structure at w is determined by the ordering
of the trees (τi), and by the condition that the root of τ lies between τd and
τ1.

Conversely, any ribbon tree with N(τ) ≥ 2 is obtained by applying this
construction to the subtrees (τ1, . . . , τd) leading away from the edge adjacent
to its root. Taking into account the vertex w of degree d + 1 where these
trees are attached, we find:

A(τ)xN(τ) = Ad

d
∏

i=1

A(τi)x
N(τi).

But the right hand side above is precisely one of the terms occurring in
the expression AdG(x)d. Summing over all possible values for d = d(w) we
obtain

G(x) = x+

∞
∑

d=2

AdG(x)d,

where the first term accounts for the unique tree with N(τ) = 1. Rearrang-
ing terms gives F (G(x)) = x.

Corollary 4 The formal inverse of f(x) = x−
∑

∞

2 anx
n/n! is given by

g(x) =
∑

marked τ

a(τ)
xN(τ)

N(τ)!
, (2)

where a(τ) =
∏

V (τ) ad(v)−1 and a0 = 1.
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Proof. The number of ribbon structures on a given stable rooted tree τ
is given by

∏

(d(v) − 1)!. The group Aut(τ) acts freely on the space of
ribbon structures, so τ contributes

∏

(d(v) − 1)!/|Aut(τ)| identical terms
to equation (1) for G(x). Similarly, τ contributes N(τ)!/|Aut(τ)| terms to
equation (2) for g(x). Setting An = an/n!, we find F (x) = f(x) and

G(x) =
∑

marked τ

∏

(d(v) − 1)!

N(τ)!
A(τ)xN(τ) = g(x),

so f(g(x)) = F (G(x)) = x.

Remark. The same reasoning shows (2) can be rewritten as

f−1(x) =
∑

stable τ

N(τ) + 1

|Aut(τ)|
a(τ)xN(τ).

For example, using the trees shown in Figure 2 we find

f−1(x) = x+
a2
2
x2 +

(a3 + 3a22)

6
x3 +

(a4 + 10a2a3 + 15a32)

24
x4 +O(x5).

For a quite different approach to Corollary 4, see [Ge2, Thm 1.3].

Figure 2. The stable trees with N(τ) ≤ 4.

Proof of Theorem 1. A stable curveX ∈ M0,n+1 of genus zero determines
a marked tree t(X) whose interior vertices correspond to the irreducible
components of X, and whose edges correspond to its nodes and labeled
points. Conversely, any marked tree with N(τ) ≥ 2 can be realized by a
stable curve, so the map

τ 7→ S(τ) = {X ∈ M0,N(τ)+1 : t(X) ∼= τ}

gives a bijection between marked trees with N(τ) ≥ 2 and the strata of
moduli spaces. The desired inversion formula now follows from the preceding
corollary.
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Proof of Corollary 2. Let an = χ(M0,n+1). It is known that χ(X −Y )+
χ(Y ) = χ(X) whenever Y is a closed subvariety of a complex variety X
[Ful, p.141, note 13], and that χ(A×B) = χ(A)×χ(B). The first property
implies that χ(M0,n+1) is the sum of the Euler characteristics of its strata
S, and the second implies that

χ(S) = an1
· · · ans

whenever S ∼= M0,n1+1×· · ·×M0,ns+1. Thus the stated relationship between
generating functions follows from Theorem 1.

Moduli space over R. The real points of moduli space M0,n(R) form a
submanifold with (n− 1)!/2 connected components, each homeomorphic to
Rn−3. Let Mn be the component of M0,n(R) where the marked points can
be chosen to lie in R, with x1 < x2 < · · · < xn. Let Mn be the closure of
Mn in M0,n. The strata of Mn are encoded by ribbon trees, since the cyclic
ordering of the points (xi) is preserved under stable limits (cf. [De]). Thus
in this setting, Theorem 3 yields:

Corollary 5 The formal inverse of F (x) = x −
∑

∞

2 Anx
n is given by

G(x) = x+
∑

∞

2 Bnx
n, where

Bn =
∑

An1
· · ·Ans

×

(

the number of strata S ⊂ M0,n+1

isomorphic to Mn1+1 × · · · ×Mns+1

)

·

Notes and references. A compendium of results on trees, generating
functions and inversion can be found in [St, Ch. 5]; see also [Ca]. For
background on the many connections between graphs and moduli space, see
e.g. [ACG, Ch. XVIII], [LZ] and the references therein.

I would like to thank S. Koch for useful conversations related to this
note.
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