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DECOMPOSITION NUMBERS FOR FINITE COXETER GROUPS

AND GENERALISED NON-CROSSING PARTITIONS

C. KRATTENTHALER AND T. W. MÜLLER

Abstract. Given a finite irreducible Coxeter group W , a positive integer d,
and types T1, T2, . . . , Td (in the sense of the classification of finite Coxeter
groups), we compute the number of decompositions c = σ1σ2 · · ·σd of a Cox-
eter element c of W , such that σi is a Coxeter element in a subgroup of type Ti

in W , i = 1, 2, . . . , d, and such that the factorisation is “minimal” in the sense
that the sum of the ranks of the Ti’s, i = 1, 2, . . . , d, equals the rank of W .
For the exceptional types, these decomposition numbers have been computed
by the first author in [“Topics in Discrete Mathematics,” M. Klazar et al.
(eds.), Springer–Verlag, Berlin, New York, 2006, pp. 93–126] and [Séminaire
Lotharingien Combin. 54 (2006), Article B54l]. The type An decomposition
numbers have been computed by Goulden and Jackson in [Europ. J. Com-
bin. 13 (1992), 357–365], albeit using a somewhat different language. We
explain how to extract the type Bn decomposition numbers from results of
Bóna, Bousquet, Labelle and Leroux [Adv. Appl. Math. 24 (2000), 22–56] on
map enumeration. Our formula for the typeDn decomposition numbers is new.
These results are then used to determine, for a fixed positive integer l and fixed
integers r1 ≤ r2 ≤ · · · ≤ rl, the number of multi-chains π1 ≤ π2 ≤ · · · ≤ πl in
Armstrong’s generalised non-crossing partitions poset, where the poset rank of
πi equals ri and where the “block structure” of π1 is prescribed. We demon-
strate that this result implies all known enumerative results on ordinary and
generalised non-crossing partitions via appropriate summations. Surprisingly,
this result on multi-chain enumeration is new even for the original non-crossing

partitions of Kreweras. Moreover, the result allows one to solve the problem
of rank-selected chain enumeration in the type Dn generalised non-crossing
partitions poset, which, in turn, leads to a proof of Armstrong’s F = M Con-
jecture in type Dn, thus completing a computational proof of the F = M
Conjecture for all types. It also allows one to address another conjecture of
Armstrong on maximal intervals containing a random multi-chain in the gen-
eralised non-crossing partitions poset.

1. Introduction

The introduction of non-crossing partitions for finite reflection groups (finite
Coxeter groups) by Bessis [8] and Brady and Watt [15] marks the creation of a
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2724 C. KRATTENTHALER AND T. W. MÜLLER

new, exciting subject of combinatorial theory, namely the study of these new com-
binatorial objects which possess numerous beautiful properties and seem to relate
to several other objects of combinatorics and algebra, most notably to the cluster
complex of Fomin and Zelevinsky [21] (cf. [2, 3, 4, 5, 8, 9, 14, 15, 16, 17, 20]).
They reduce to the classical non-crossing partitions of Kreweras [30] for the irre-
ducible reflection groups of type An (i.e., the symmetric groups) and to Reiner’s
[32] type Bn non-crossing partitions for the irreducible reflections groups of type
Bn. (They differ, however, from the type Dn non-crossing partitions of [32].) The
subject has been enriched by Armstrong through the introduction of his gener-
alised non-crossing partitions for reflection groups in [1]. In the symmetric group
case, these reduce to the m-divisible non-crossing partitions of Edelman [18], while
they produce new combinatorial objects already for the reflection groups of type
Bn. Again, these generalised non-crossing partitions possess numerous beautiful
properties and seem to relate to several other objects of combinatorics and algebra,
most notably to the generalised cluster complex of Fomin and Reading [19] (cf.
[1, 6, 7, 20, 27, 28, 29, 36, 37, 38]).

From a technical point of view, the main subject matter of the present paper is
the computation of the number of certain factorisations of the Coxeter element of a
reflection group. These decomposition numbers, as we shall call them from now on
(see Section 2 for the precise definition), arose in [27, 28], where it was shown that
they play a crucial role in the computation of enumerative invariants of (generalised)
non-crossing partitions. Moreover, in these two papers the decomposition numbers
for the exceptional reflection groups have been computed, and it was pointed out
that the decomposition numbers in type An (i.e., the decomposition numbers for
the symmetric groups) had been earlier computed by Goulden and Jackson in [23].
Here we explain how the decomposition numbers in type Bn can be extracted from
results of Bóna, Bousquet, Labelle and Leroux [12] on the enumeration of certain
planar maps, and we find formulae for the decomposition numbers in type Dn,
thus completing the project of computing the decomposition numbers for all the
irreducible reflection groups.

The main goal of the present paper, however, is to access the enumerative the-
ory of the generalised non-crossing partitions of Armstrong via these decomposition
numbers. Indeed, one finds numerous enumerative results on ordinary and gener-
alised non-crossing partitions in the literature (cf. [1, 2, 5, 8, 9, 18, 30, 32, 37]):
results on the total number of (generalised) non-crossing partitions of a given size,
of those with a fixed number of blocks, of those with a given block structure, results
on the number of (multi-)chains of a given length in a given poset of (generalised)
non-crossing partitions, results on rank-selected chain enumeration (that is, results
on the number of chains in which the ranks of the elements of the chains have been
fixed), etc. We show that not only can all these results be rederived from our de-
composition numbers, we are also able to find several new enumerative results. In
this regard, the most general type of result that we find is formulae for the number
of (multi-)chains π1 ≤ π2 ≤ · · · ≤ πl−1 in the poset of non-crossing partitions of
type An, Bn, respectively Dn, in which the block structure of π1 is fixed as well as
the ranks of π2, . . . , πl−1. Even the corresponding result in type An, for the non-
crossing partitions of Kreweras, is new. Furthermore, from the result in type Dn,
by a suitable summation, we are able to find a formula for the rank-selected chain
enumeration in the poset of generalised non-crossing partitions of type Dn, thus
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generalising the earlier formula of Athanasiadis and Reiner [5] for the rank-selected
chain enumeration of “ordinary” non-crossing partitions of type Dn. In conjunction
with the results from [27, 28], this generalisation in turn allows us to complete a
computational case-by-case proof of Armstrong’s “F = M Conjecture” [1, Conjec-
ture 5.3.2] predicting a surprising relationship between a certain face count in the
generalised cluster complex of Fomin and Reading and the Möbius function in the
poset of generalised non-crossing partitions of Armstrong. (A case-free proof had
been found earlier by Tzanaki in [38].) Our results also allow us to address another
conjecture of Armstrong [1, Conj. 3.5.13] on maximal intervals containing a random
multichain in the poset of generalised non-crossing partitions. We show that the
conjecture is indeed true for types An and Bn, but that it fails for type Dn (and
we suspect that it will also fail for most of the exceptional types).

We remark that a totally different approach to the enumerative theory of (gen-
eralised) non-crossing partitions is proposed in [29]. This approach is, however,
completely combinatorial and avoids, in particular, reflection groups. It is, there-
fore, not capable of computing our decomposition numbers or anything else which
is intrinsic to the combinatorics of reflection groups. A similar remark applies to
[31, Theorem 4.1], where a remarkable uniform recurrence is found for rank-selected
chain enumeration in the generalised non-crossing partitions of any type. It could
be used, for example, for verifying our result in Corollary 19 on the rank-selected
chain enumeration in the generalised non-crossing partitions of type Dn, but it is
not capable of computing our decomposition numbers or of verifying results with
restrictions on block structure.

Our paper is organised as follows. In the next section we define the decompo-
sition numbers for finite reflection groups from [27, 28], the central objects in our
paper, together with a combinatorial variant, which depends on combinatorial real-
isations of non-crossing partitions, which we also explain in the same section. This
is followed by an intermediate section in which we collect together some auxiliary
results that will be needed later. In Section 4, we recall Goulden and Jackson’s
formula [23] for the full rank decomposition numbers of type An, together with the
formula from [28, Theorem 10] that it implies for the decomposition numbers of
type An of arbitrary rank. The purpose of Section 5 is to explain how formulae
for the decomposition numbers of type Bn can be extracted from results of Bóna,
Bousquet, Labelle and Leroux in [12]. The type Dn decomposition numbers are
computed in Section 6. The approach that we follow is, essentially, the approach of
Goulden and Jackson in [23]: we translate the counting problem into the problem of
enumerating certain maps. This problem is then solved by a combinatorial decom-
position of these maps, translating the decomposition into a system of equations
for corresponding generating functions, and finally solving this system with the
help of the multidimensional Lagrange inversion formula of Good. Sections 7–11
form the “applications” part of the paper. In the preparatory section, Section 7,
we recall the definition of the generalised non-crossing partitions of Armstrong and
explain the combinatorial realisations of the generalised non-crossing partitions for
the types An, Bn, and Dn from [1] and [29]. The bulk of the applications is con-
tained in Section 8, where we present three theorems, Theorems 11, 13, and 15, on
the number of factorisations of a Coxeter element of type An, Bn, respectively Dn,
with less stringent restrictions on the factors than for the decomposition numbers.
These theorems result from our formulae for the (combinatorial) decomposition
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numbers upon appropriate summations. Subsequently, it is shown that the corre-
sponding formulae imply all known enumeration results on non-crossing partitions
and generalised non-crossing partitions, plus several new ones; see Corollaries 12,
14, 16–19 and the accompanying remarks. Section 9 presents the announced com-
putational proof of the F = M (ex-)Conjecture for type Dn, based on our formula
in Corollary 19 for the rank-selected chain enumeration in the poset of generalised
non-crossing partitions of type Dn, while Section 10 addresses Conjecture 3.5.13
from [1], showing that it does not hold in general since it fails in type Dn. In
the final section, Section 11, we point out that the decomposition numbers do not
only allow one to derive enumerative results for the generalised non-crossing par-
titions of the classical types, they also provide all the means for doing this for the
exceptional types. For the convenience of the reader, we list the values of the de-
composition numbers for the exceptional types that have been computed in [27, 28]
in an appendix.

In concluding the Introduction, we want to attract the reader’s attention to the
fact that many of the formulae presented here are very combinatorial in nature (see
Sections 4, 5, 8). This raises the natural question as to whether it is possible to find
combinatorial proofs for them. Indeed, a combinatorial (and, in fact, almost bijec-
tive) proof of the formula of Goulden and Jackson, presented here in Theorem 5,
has been given by Bousquet, Chauve and Schaeffer in [13]. Moreover, most of the
proofs for the known enumeration results on (generalised) non-crossing partitions
presented in [1, 2, 5, 18, 32] are combinatorial. On the other hand, to our knowl-
edge so far no one has given a combinatorial proof for Theorem 7, the formula for
the decomposition numbers of type Bn, essentially due to Bóna, Bousquet, Labelle
and Leroux [12], although we believe that this should be possible by modifying the
ideas from [13]. There are also other formulae in our paper (see e.g. Corollaries 12
and 14, and Eqs. (6.1) and (8.33)) which seem amenable to combinatorial proofs.
However, to find combinatorial proofs for our type Dn results (cf. in particular
Theorem 9(ii) and Corollaries 16–19) seems rather hopeless to us.

2. Decomposition numbers for finite Coxeter groups

In this section, we introduce the decomposition numbers from [27, 28], which
are (Coxeter) group-theoretical in nature, plus combinatorial variants for Coxeter
groups of types Bn and Dn, which will be important in combinatorial applications.
These variants depend on the combinatorial realisation of these Coxeter groups,
which we also explain here.

Let Φ be a finite root system of rank n. (We refer the reader to [24] for all ter-
minology on root systems.) For an element α ∈ Φ, let tα denote the corresponding
reflection in the central hyperplane perpendicular to α. Let W = W (Φ) be the
group generated by these reflections. As is well known (cf. e.g. [24, Sec. 6.4]), any
such reflection group is at the same time a finite Coxeter group, and all finite Cox-
eter groups can be realised in this way. By definition, any element w of W can be
represented as a product w = t1t2 · · · t�, where the ti’s are reflections. We call the
minimal number of reflections which is needed for such a product representation
the absolute length of w, and we denote it by �T (w). We then define the absolute
order on W , denoted by ≤T , via

u ≤T w if and only if �T (w) = �T (u) + �T (u
−1w).
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As is well known and easy to see, this is equivalent to the statement that every
shortest representation of u by reflections occurs as an initial segment in some
shortest product representation of w by reflections.

Now, for a finite root system Φ of rank n, types T1, T2, . . . , Td (in the sense of
the classification of finite Coxeter groups), and a Coxeter element c, the decom-
position number NΦ(T1, T2, . . . , Td) is defined as the number of “minimal” prod-
ucts c1c2 · · · cd less than or equal to c in absolute order, “minimal” meaning that
�T (c1) + �T (c2) + · · · + �T (cd) = �T (c1c2 · · · cd), such that, for i = 1, 2, . . . , d, the
type of ci as a parabolic Coxeter element is Ti. (Here, the term “parabolic Coxeter
element” means a Coxeter element in some parabolic subgroup. The reader should
recall that it follows from [8, Lemma 1.4.3] that any element ci is indeed a Coxeter
element in a parabolic subgroup of W = W (Φ). By definition, the type of ci is the
type of this parabolic subgroup. The reader should also note that, because of the
rewriting

(2.1) c1c2 · · · cd = ci(c
−1
i c1ci)(c

−1
i c2ci) · · · (c−1

i ci−1ci)ci+1 · · · cd,

any ci in such a minimal product c1c2 · · · cd ≤T c is itself ≤T c.) It is easy to
see that the decomposition numbers are independent of the choice of the Coxeter
element c. (This follows from the well-known fact that any two Coxeter elements
are conjugate to each other; cf. [24, Sec. 3.16].)

The decomposition numbers satisfy several linear relations between themselves.
First of all, the number NΦ(T1, T2, . . . , Td) is independent of the order of the types
T1, T2, . . . , Td; that is, we have

(2.2) NΦ(Tσ(1), Tσ(2), . . . , Tσ(d)) = NΦ(T1, T2, . . . , Td)

for every permutation σ of {1, 2, . . . , d}. This is, in fact, a consequence of the
rewriting (2.1). Furthermore, by the definition of these numbers, those of “lower
rank” can be computed from those of “full rank.” To be precise, we have

(2.3) NΦ(T1, T2, . . . , Td) =
∑
T

NΦ(T1, T2, . . . , Td, T ),

where the sum is taken over all types T of rank n− rkT1− rkT2− · · ·− rkTd (with
rkT denoting the rank of the root system Ψ of type T , and n still denoting the
rank of the fixed root system Φ; for later use we record that

(2.4) �T (w0) = rkT0

for any parabolic Coxeter element w0 of type T0).
The decomposition numbers for the exceptional types have been computed in

[27, 28]. For the benefit of the reader, we reproduce these numbers in the appendix.
The decomposition numbers for type An are given in Section 4, the ones for type Bn

are computed in Section 5, while the ones for type Dn are computed in Section 6.
Next we introduce variants of the above decomposition numbers for the types

Bn and Dn, which depend on the combinatorial realisation of the Coxeter groups
of these types.

As is well-known, the reflection group W (An) can be realised as the symmetric
group Sn+1 on {1, 2, . . . , n+ 1}. The reflection groups W (Bn) and W (Dn), on the
other hand, can be realised as subgroups of the symmetric group on 2n elements.
(See e.g. [11, Sections 8.1 and 8.2].) Namely, the reflection group W (Bn) can be
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2728 C. KRATTENTHALER AND T. W. MÜLLER

realised as the subgroup of the group of all permutations π of

{1, 2, . . . , n, 1̄, 2̄, . . . , n̄}
satisfying the property

(2.5) π(̄i) = π(i).

(Here, and in what follows, ¯̄i is identified with i for all i.) In this realisation, there
is an analogue of the disjoint cycle decomposition of permutations. Namely, every
π ∈ W (Bn) can be decomposed as

(2.6) π = κ1κ2 · · ·κs,

where, for i = 1, 2, . . . , s, κi is of one of two possible types of “cycles”: a type A
cycle, by which we mean a permutation of the form

(2.7) ((a1, a2, . . . , ak)) := (a1, a2, . . . , ak) (a1, a2, . . . , ak),

or a type B cycle, by which we mean a permutation of the form

(2.8) [a1, a2, . . . , ak] := (a1, a2, . . . , ak, a1, a2, . . . , ak),

a1, a2, . . . , ak ∈ {1, 2, . . . , n, 1̄, 2̄, . . . , n̄}. (Here we adopt notation from [15].) In
both cases, we call k the length of the “cycle.” The decomposition (2.6) is unique
up to a reordering of the κi’s.

We call a type A cycle of length k of combinatorial type Ak−1, while we call
a type B cycle of length k of combinatorial type Bk, k = 1, 2, . . . . The reader
should observe that, when regarded as a parabolic Coxeter element, for k ≥ 2 a
type A cycle of length k has type Ak−1, while a type B cycle of length k has type
Bk. However, a type B cycle of length 1, that is, a permutation of the form (i, ī),
has type A1 when regarded as a parabolic Coxeter element, while we say that it
has combinatorial type B1. (The reader should recall that, in the classification
of finite Coxeter groups, the type B1 does not occur, respectively, that sometimes
B1 is identified with A1. Here, when we speak of “combinatorial type,” we do
distinguish between A1 and B1. For example, the “cycles” ((1, 2)) = (1, 2) (1̄, 2̄) or
((1̄, 2)) = (1̄, 2) (1, 2̄) have combinatorial type A1, whereas the cycles [1] = (1, 1̄) or
[2] = (2, 2̄) have combinatorial type B1.)

As a Coxeter element for W (Bn), we choose

c = (1, 2, . . . , n, 1̄, 2̄, . . . , n̄) = [1, 2, . . . , n].

Now, given combinatorial types T1, T2, . . . , Td, each of which is a product ofAk’s and
Bk’s, k = 1, 2, . . . , the combinatorial decomposition number Ncomb

Bn
(T1, T2, . . . , Td)

is defined as the number of minimal products c1c2 · · · cd less than or equal to c
in absolute order, where “minimal” has the same meaning as above, such that for
i = 1, 2, . . . , d the combinatorial type of ci is Ti. Because of (2.1), the combinatorial
decomposition numbers Ncomb

Bn
(T1, T2, . . . , Td) also satisfy (2.2) and (2.3).

The reflection group W (Dn) can be realised as the subgroup of the group of all
permutations π of {1, 2, . . . , n, 1̄, 2̄, . . . , n̄} satisfying (2.5) and the property that an
even number of elements from {1, 2, . . . , n} is mapped to an element of negative sign.
(Here, the elements 1, 2, . . . , n are considered to have sign +, while the elements
1̄, 2̄, . . . , n̄ are considered to have sign −.) Since W (Dn) is a subgroup of W (Bn),
and since the above realisation of W (Dn) is contained as a subset in the realisation
of W (Bn) that we just described, any π ∈ W (Dn) can be decomposed as in (2.6),
where, for i = 1, 2, . . . , d, κi is either a type A or a type B cycle. Requiring that
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π is in the subgroup W (Dn) of W (Bn) is equivalent to requiring that there is an
even number of type B cycles in the decomposition (2.6). Again, the decomposition
(2.6) for π ∈ W (Dn) is unique up to a reordering of the κi’s.

As a Coxeter element, we choose

c = (1, 2, . . . , n− 1, 1̄, 2̄, . . . , n− 1) (n, n̄) = [1, 2, . . . , n− 1] [n].

We shall be entirely concerned with elements π of W (Dn) which are less than or
equal to c. It is not difficult to see (and it is shown in [5, Sec. 3]) that the unique
factorisation of any such element π has either 0 or 2 type B cycles, and in the
latter case one of the type B cycles is [n] = (n, n̄). In this latter case, in abuse of
terminology, we call the product of these two type B cycles, [a1, a2, . . . , ak−1] [n] say,
a “cycle” of combinatorial type Dk. More generally, we shall say for any product of
two disjoint type B cycles of the form

(2.9) [a1, a2, . . . , ak−1] [ak]

that it is a “cycle” of combinatorial type Dk. The reader should observe that, when
regarded as a parabolic Coxeter element, for k ≥ 4 an element of the form (2.9)
has type Dk. However, if k = 3, it has type A3 when regarded as a parabolic
Coxeter element, while we say that it has combinatorial type D3, and, if k = 2, it
has type A2

1 when regarded as a parabolic Coxeter element, while we say that it has
combinatorial type D2. (The reader should recall that, in the classification of finite
Coxeter groups, the types D3 and D2 do not occur, respectively, that sometimes
D3 is identified with A3, D2 being identified with A2

1. Here, when we speak of
“combinatorial type,” we do distinguish between D3 and A3, and between D2 and
A2

1.)
Now, given combinatorial types T1, T2, . . . , Td, each of which is a product of Ak’s

and Dk’s, k = 1, 2, . . . , the combinatorial decomposition number Ncomb
Dn

(T1, T2, . . . ,
Td) is defined as the number of minimal products c1c2 · · · cd less than or equal to c
in absolute order, where “minimal” has the same meaning as above, such that for
i = 1, 2, . . . , d the combinatorial type of ci is Ti. Because of (2.1), the combinatorial
decomposition numbers Ncomb

Dn
(T1, T2, . . . , Td) also satisfy (2.2) and (2.3).

3. Auxiliary results

In our computations in the proof of Theorem 9, leading to the determination of
the decomposition numbers of type Dn, we need to apply the Lagrange–Good in-
version formula [22] (see also [26, Sec. 5] and the references cited therein). We recall
it here for the convenience of the reader. In doing so, we use standard multi-index
notation. Namely, given a positive integer d, and vectors z = (z1, z2, . . . , zd) and
n = (n1, n2, . . . , nd), we write zn for zn1

1 zn2
2 · · · znd

d . Furthermore, in abuse of nota-
tion, given a formal power series f in d variables, f(z) stands for f(z1, z2, . . . , zd).
Moreover, given d formal power series f1, f2, . . . , fd in d variables, fn(z) is short for

fn1
1 (z1, z2, . . . , zd)f

n2
2 (z1, z2, . . . , zd) · · · fnd

d (z1, z2, . . . , zd).

Finally, if m = (m1,m2, . . . ,md) is another vector, then m+ n is short for (m1 +
n1,m2+n2, . . . ,md+nd). Notation such as m−n has to be interpreted in a similar
way.

Theorem 1 (Lagrange–Good inversion). Let d be a positive integer, and let f1(z),
f2(z), . . . , fd(z) be a formal power series in z = (z1, z2, . . . , zd) with the property
that, for all i, fi(z) is of the form zi/ϕi(z) for some formal power series ϕi(z)

Licensed to Univ of Minnesota-Twin Cities. Prepared on Tue Aug 26 09:57:35 EDT 2014 for download from IP 128.101.152.245.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



2730 C. KRATTENTHALER AND T. W. MÜLLER

with ϕi(0, 0, . . . , 0) �= 0. Then, if we expand a formal power series g(z) in terms of
powers of the fi(z),

(3.1) g(z) =
∑
n

γnf
n(z),

the coefficients γn are given by

γn =
〈
z−e
〉
g(z)f−n−e(z) det

1≤i,j≤d

(
∂fi
∂zj

(z)

)
,

where e = (1, 1, . . . , 1), where the sum in (3.1) runs over all d-tuples n of non-
negative integers, and where 〈zm〉h(z) denotes the coefficient of zm in the formal
Laurent series h(z).

Next, we prove a determinant lemma and a corollary, both of which will also be
used in the proof of Theorem 9.

Lemma 2. Let d be a positive integer, and let X1, X2, . . . , Xd, Y2, Y3, . . . , Yd be
indeterminates. Then

(3.2) det
1≤i,j≤d

⎛⎜⎝
⎧⎪⎨⎪⎩
1− χ(1 �= j)

Yj

X1
, i = 1

1− χ(i �= j)
Yi

Xi
, i ≥ 2

⎫⎪⎬⎪⎭
⎞⎟⎠ =

(
d∑

i=1

Xi −
d∑

i=2

Yi

)
Y2Y3 · · ·Yd

X1X2 · · ·Xd
,

where χ(S) = 1 if S is true and χ(S) = 0 otherwise.

Proof. By using multilinearity in the rows, we rewrite the determinant on the left-
hand side of (3.2) as

1

X1X2 · · ·Xd
det

1≤i,j≤d

({
X1 − χ(1 �= j)Yj , i = 1
Xi − χ(i �= j)Yi, i ≥ 2

})
.

Next, we subtract the first column from all other columns. As a result, we obtain
the determinant

1

X1X2 · · ·Xd
det

1≤i,j≤d

⎛⎜⎜⎝
⎧⎪⎪⎨⎪⎪⎩

X1, i = j = 1
−Yj , i = 1 and j ≥ 2

Xi − Yi, i ≥ 2 and j = 1
χ(i = j)Yi, i, j ≥ 2

⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠ .

Now we add rows 2, 3, . . . , d to the first row. After that, our determinant becomes

lower triangular, with the entry in the first row and column equal to
∑d

i=1 Xi −∑d
i=2 Yi and with the diagonal entry in row i, i ≥ 2, equal to Yi. Hence, we obtain

the claimed result. �

Corollary 3. Let d and r be positive integers, 1 ≤ r ≤ d, and let X1, X2, . . . , Xd,
Y and Z be indeterminates. Then, with notation as in Lemma 2,

(3.3) det
1≤i,j≤d

({
1− χ(r �= j) Z

Xr
, i = r

1− χ(i �= j) Y
Xi

, i �= r

})
=

Y d−2
(
Z
∑d

i=1 Xi + (Y − Z)Xr − (d− 1)Y Z
)

X1X2 · · ·Xd
.
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Proof. We write the diagonal entry in the r-th row of the determinant in (3.3) as

1 =
Xr + Y − Z

Xr
− Y − Z

Xr
,

and then use linearity of the determinant in the r-th row to decompose the deter-
minant as

Xr + Y − Z

Xr
D1 −

Y − Z

Xr
D2,

where D1 is the determinant in (3.2) with Xr replaced by Xr + Y − Z, and with
Yi = Y for all i, and where D2 is the determinant in (3.2) with d replaced by d− 1,
with Yi = Y for all i, and with Xi replaced by Xi−1 for i = r + 1, r + 2, . . . , d.
Hence, using Lemma 2, we deduce that the determinant in (3.3) is equal to

Y d−1
(∑d

i=1 Xi + Y − Z − (d− 1)Y
)

X1X2 · · ·Xd
−
(Y − Z)Y d−2

(∑d
i=1 Xi −Xr − (d− 2)Y

)
X1X2 · · ·Xd

.

Little simplification then leads to (3.3). �
We end this section with a summation lemma, which we shall need in Sections 5

and 6 in order to compute the Bn, respectively Dn, decomposition numbers of
arbitrary rank from those of full rank. We shall also use it in Section 8 to derive
enumerative results for (generalised) non-crossing partitions from our formulae for
the decomposition numbers.

Lemma 4. Let M and r be non-negative integers. Then

(3.4)
∑

m1+2m2+···+rmr=r

(
M

m1,m2, . . . ,mr

)
=

(
M + r − 1

r

)
,

where the multinomial coefficient is defined by(
M

m1,m2, . . . ,mr

)
=

M !

m1!m2! · · ·mr! (M −m1 −m2 − · · · −mr)!
.

Proof. The identity results directly by comparing coefficients of zr on both sides of
the identity

(1 + z + z2 + z3 + · · · )M = (1− z)−M .

�

4. Decomposition numbers for type A

As was pointed out in [28, Sec. 10], the decomposition numbers for type An have
already been computed by Goulden and Jackson in [23, Theorem 3.2], albeit using a
somewhat different language. (The condition on the sum l(α1)+ l(α2)+ · · ·+ l(αm)
is misstated throughout the latter paper. It should be replaced by l(α1) + l(α2) +
· · ·+ l(αm) = (m− 1)n+ 1.) In our terminology, their result reads as follows.

Theorem 5. Let T1, T2, . . . , Td be types with rkT1 + rkT2 + · · ·+ rkTd = n, where

Ti = A
m

(i)
1

1 ∗Am
(i)
2

2 ∗ · · · ∗Am(i)
n

n , i = 1, 2, . . . , d.

Then

(4.1) NAn
(T1, T2, . . . , Td) = (n+ 1)d−1

d∏
i=1

1

n− rkTi + 1

(
n− rkTi + 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)
,

where the multinomial coefficient is defined as in Lemma 4.
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Here we have used Stembridge’s [35] notation for the decomposition of types into
a product of irreducibles; for example, the equation T = A3

2 ∗ A5 means that the
root system of type T decomposes into the orthogonal product of 3 copies of root
systems of type A2 and one copy of the root system of type A5.

It was shown in [28, Theorem 10] that, upon applying the summation formula in
Lemma 4 to the result in Theorem 5 in a suitable manner, one obtains a compact
formula for all type An decomposition numbers.

Theorem 6. Let the types T1, T2, . . . , Td be given, where

Ti = A
m

(i)
1

1 ∗Am
(i)
2

2 ∗ · · · ∗Am(i)
n

n , i = 1, 2, . . . , d.

Then

(4.2) NAn
(T1, T2, . . . , Td) = (n+ 1)d−1

(
n+ 1

rkT1 + rkT2 + · · ·+ rkTd + 1

)
×

d∏
i=1

1

n− rkTi + 1

(
n− rkTi + 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)
,

where the multinomial coefficient is defined as in Lemma 4. All other decomposition
numbers NAn

(T1, T2, . . . , Td) are zero.

5. Decomposition numbers for type B

In this section we compute the decomposition numbers in type Bn. We show
that one can extract the corresponding formulae from results of Bóna, Bousquet,
Labelle and Leroux [12] on the enumeration of certain planar maps, which they
call m-ary cacti. While reading the statement of the theorem, the reader should
recall from Section 2 the distinction between group-theoretic and combinatorial
decomposition numbers.

Theorem 7. (i) If T1, T2, . . . , Td are types with rkT1 + rkT2 + · · · + rkTd = n,
where

Ti = A
m

(i)
1

1 ∗Am
(i)
2

2 ∗ · · · ∗Am(i)
n

n , i = 1, 2, . . . , j − 1, j + 1, . . . , d,

and

Tj = Bα ∗Am
(j)
1

1 ∗Am
(j)
2

2 ∗ · · · ∗Am(j)
n

n ,

for some α ≥ 1, then

(5.1)

Ncomb
Bn

(T1, T2, . . . , Td) = nd−1

(
n− rkTj

m
(j)
1 ,m

(j)
2 , . . . ,m

(j)
n

)

×
d∏

i=1
i �=j

1

n− rkTi

(
n− rkTi

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)
,

where the multinomial coefficient is defined as in Lemma 4. For α ≥ 2, the number
NBn

(T1, T2, . . . , Td) is given by the same formula.
(ii) If T1, T2, . . . , Td are types with rkT1 + rkT2 + · · ·+ rkTd = n, where

Ti = A
m

(i)
1

1 ∗Am
(i)
2

2 ∗ · · · ∗Am(i)
n

n , i = 1, 2, . . . , d,
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then

(5.2)

NBn
(T1, T2, . . . , Td) = nd−1

(
d∏

i=1

1

n− rkTi

(
n− rkTi

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

))

×
d∑

j=1

m
(j)
1 (n− rkTj)

m
(j)
0 + 1

,

where m
(j)
0 = n− rkTj −

∑n
s=1 m

(j)
s .

(iii) All of the other decomposition numbers NBn
(T1, T2, . . . , Td) and

Ncomb
Bn

(T1, T2, . . . , Td) with rkT1 + rkT2 + · · ·+ rkTd = n are zero.

Proof. Determining the decomposition numbers

NBn
(T1, T2, . . . , Td) = NBn

(Td, . . . , T2, T1)

(recall (2.2)), respectively

Ncomb
Bn

(T1, T2, . . . , Td) = Ncomb
Bn

(Td, . . . , T2, T1),

amounts to counting all possible factorisations

(5.3) [1, 2, . . . , n] = σd · · ·σ2σ1,

where σi has type Ti as a parabolic Coxeter element, respectively has a combina-
torial type Ti. The reader should observe that the factorisation (5.3) is minimal in
the sense that

n = �T
(
[1, 2, . . . , n]

)
= �T (σ1) + �T (σ2) + · · ·+ �T (σd),

since �T (σi) = rkTi, and since, by our assumption, the sum of the ranks of the
Ti’s equals n. A further observation is that, in a factorisation (5.3), there must be
at least one factor σi which contains a type B cycle in its (type B) disjoint cycle
decomposition, because the sign of [1, 2, . . . , n] as an element of the group S2n of all
permutations of {1, 2, . . . , n, 1̄, 2̄, . . . , n̄} is −1, while the sign of any type A cycle is
+1.

We first prove claim (iii). Let us assume, by contradiction, that there is a minimal
decomposition (5.3) in which, altogether, we find at least two type B cycles in the
(type B) disjoint cycle decompositions of the σi’s. In that case, (5.3) has the form

(5.4) [1, 2, . . . , n] = u1κ1u2κ2u3,

where κ1 and κ2 are two type B cycles, and u1, u2, u3 are the factors in between.
Moreover, the factorisation (5.4) is minimal, meaning that

(5.5) n = �T (u1) + �T (κ1) + �T (u2) + �T (κ2) + �T (u3).

We may rewrite (5.4) as

[1, 2, . . . , n] = κ1κ2(κ
−1
2 κ−1

1 u1κ1κ2)(κ
−1
2 u2κ2)u3,

or, setting u′
1 = κ−1

2 κ−1
1 u1κ1κ2 and u′

2 = κ−1
2 u2κ2, as

(5.6) [1, 2, . . . , n] = κ1κ2u
′
1u

′
2u3.

This factorisation is still minimal since u′
1 is conjugate to u1 and u′

2 is conjugate
to u2. At this point, we observe that κ1 must be a cycle of the form (2.8) with
a1 < a2 < · · · < ak < a1 < a2 < · · · < ak in the order 1 < 2 < · · · < n < 1̄ <
2̄ < · · · < n̄, because otherwise κ1 �≤T [1, 2, . . . , n], which would contradict (5.6). A
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Figure 1. The 3-cactus corresponding to the factorisation (5.7)

similar argument applies to κ2. Now, if κ1 and κ2 are not disjoint, then it is easy
to see that �T (κ1κ2) < �T (κ1) + �T (κ2); hence

n = �T ([1, 2, . . . , n])

= �T (κ1κ2u
′
1u

′
2u3)

≤ �T (κ1κ2) + �T (u
′
1) + �T (u

′
2) + �T (u3)

≤ �T (κ1κ2) + �T (u1) + �T (u2) + �T (u3)

< �T (κ1) + �T (κ2) + �T (u1) + �T (u2) + �T (u3),

a contradiction to (5.5). If, on the other hand, κ1 and κ2 are disjoint, then we
can find i, j ∈ {1, 2, . . . , n, 1̄, 2̄, . . . , n̄}, such that i < j < κ1(i) < κ2(j) (in the
above order of {1, 2, . . . , n, 1̄, 2̄, . . . , n̄}). In other words, if we represent κ1 and κ2

in the obvious way in a cyclic diagram (cf. [32, Sec. 2]), then they cross each other.
However, in that case we have

κ1κ2 �≤T [1, 2, . . . , n],

contradicting the fact that (5.6) is a minimal factorisation. (This is one of the
consequences of Biane’s group-theoretic characterisation [10, Theorem 1] of non-
crossing partitions.)

We now turn to claims (i) and (ii). In what follows, we shall show that the
formulae (5.1) and (5.2) follow from results of Bóna, Bousquet, Labelle and Leroux
[12] on the enumeration of m-ary cacti with a rotational symmetry. In order to
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explain this, we must first define a bijection between minimal factorisations (5.3)
and certain planar maps. By a map, we mean a connected graph embedded in the
plane such that edges do not intersect except in vertices. The maps which are of
relevance here are maps in which faces different from the outer face intersect only in
vertices and are coloured with colours from {1, 2, . . . , d}. Such maps will be referred
to as d-cacti from now on.1 Examples of 3-cacti can be found in Figures 1 and 2.
In the figures, the faces different from the outer face are the shaded ones. Their
colours are indicated by the numbers 1, 2, respectively 3, placed in the centre of the
faces. Figure 1 shows a 3-cactus in which the vertices are labelled, while Figure 2
shows one in which the vertices are not labelled. (The fact that one of the vertices
in Figure 2 is marked by a bold dot should be ignored for the moment.)

In what follows, we need the concept of the rotator around a vertex v in a
d-cactus, which, by definition, is the cyclic list of colours of faces encountered
in a clockwise journey around v. If, while travelling around v, we encounter the
colours b1, b2, . . . , bk, in this order, then we will write (b1, b2, . . . , bk)

O for the rotator,
meaning that (b1, b2, . . . , bk)

O = (b2, . . . , bk, b1)
O, etc. For example, the rotator of

all the vertices in the map in Figure 1 is (1, 2, 3)O.
We illustrate the bijection between minimal factorisations (5.3) and d-cacti with

an example. Take n = 10 and d = 3, and consider the factorisation

(5.7) [1, 2, . . . , 10] = σ3σ2σ1,

where σ3 = ((7, 8)), σ2 = [2, 6, 8] ((1, 9̄, 10)) ((4, 5)), and σ1 = ((1, 8̄)) ((2, 3, 5)). For
each cycle (a1, a2, . . . , ak) (sic!) of σi, we create a k-gon coloured i, and label its
vertices a1, a2, . . . , ak in clockwise order. (The warning “sic!” is there to avoid
misunderstandings: for each type A “cycle” ((b1, b2, . . . , bk)) we create two k-gons,
the vertices of one being labelled b1, b2, . . . , bk, and the vertices of the other being
labelled b1, b2, . . . , bk, while for each type B “cycle” [b1, b2, . . . , bk] we create one 2k-
gon with vertices labelled b1, b2, . . . , bk, b1, b2, . . . , bk.) We glue these polygons into
a d-cactus, the faces of which are these polygons plus the outer face, by identifying
equally labelled vertices such that the rotator of each vertex is (1, 2, . . . , d). Figure 1
shows the outcome of this procedure for the factorisation (5.7).

The fact that the result of the procedure can be realised as a d-cactus follows
from Euler’s formula. Namely, the number of faces corresponding to the polygons

is 1 + 2
∑d

i=1

∑n
k=0m

(i)
k (the 1 coming from the polygon corresponding to the type

B cycle), the number of edges is 2α + 2
∑d

i=1

∑n
k=0 m

(i)
k (k + 1), and the number

of vertices is 2n. Hence, if we include the outer face, the number of vertices minus

1 We warn the reader that our terminology deviates from the one in [12, 23]. We follow
loosely the conventions in [25]. To be precise, our d-cacti in which the rotator around every vertex
is (1, 2, . . . , d)O are dual to the coloured d-cacti in [23], respectively d-ary cacti in [12], in the
following sense: one is obtained from the other by “interchanging” the roles of vertices and faces;
that is, given a d-cactus in our sense, one obtains a d-cactus in the sense of Goulden and Jackson
by shrinking faces to vertices and blowing up vertices of degree δ to faces with δ vertices, keeping
the incidence relations between faces and vertices. Another minor difference is that colours are
arranged in counter-clockwise order in [12, 23], while we arrange colours in clockwise order.
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Figure 2. A rotation-symmetric 3-cactus with a marked vertex

the number of edges plus the number of faces is

2n− 2α− 2

d∑
i=1

n∑
k=0

m
(i)
k (k + 1) + 2

d∑
i=1

n∑
k=0

m
(i)
k + 2

= 2n+ 2− 2α− 2

d∑
i=1

n∑
k=0

k ·m(i)
k

= 2n+ 2− 2 rkT1 − 2 rkT2 − · · · − 2 rkTd

= 2,(5.8)

according to our assumption concerning the sum of the ranks of the types Ti.
We may further simplify this geometric representation of a minimal factorisation

(5.3) by deleting all vertex labels and marking the vertex which had label 1. If
this simplification is applied to the 3-cactus in Figure 1, we obtain the 3-cactus
in Figure 2. Indeed, the knowledge of which vertex carries label 1 allows us to
reconstruct all other vertex labels as follows: starting from the vertex labelled 1,
we travel clockwise along the boundary of the face coloured 1 until we reach the
next vertex (that is, we traverse only a single edge); from there, we travel clockwise
along the boundary of the face coloured 2 until we reach the next vertex; etc.,
until we have travelled along an edge bounding a face of colour d. The vertex that
we have reached must carry label 2; etc. Clearly, if drawn appropriately into the
plane, a d-cactus resulting from an application of the above procedure to a minimal
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factorisation (5.3) is symmetric with respect to a rotation by 180◦, with the centre
of the rotation being the centre of the regular 2α-gon corresponding to the unique
type B cycle of σj ; cf. Figure 2. In what follows, we shall abbreviate this property
as rotation-symmetric.

In summary, under the assumptions of claim (i), the decomposition number
N comb

Bn
(T1, T2, . . . , Td), respectively, if α ≥ 2, the decomposition numberNBn

(T1, T2,
. . . , Td) also, equals the number of all rotation-symmetric d-cacti on 2n vertices in
which one vertex is marked and all vertices have rotator (1, 2, . . . , d)O, with exactly

m
(i)
k pairs of faces of colour i having k+1 vertices, arranged symmetrically around

a central face of colour j with 2α vertices.
Aside from the marking of one vertex, equivalent objects are counted in [12,

Theorem 25]. In our language, modulo the “dualisation” described in Footnote 1,
and upon replacing m by d, the objects which are counted in the cited theorem
are d-cacti in which all vertices have rotator (1, 2, . . . , d)O, and which are invariant
under a rotation (not necessarily by 180◦). To be precise, from the proof of [12,
(81)] (not given in full detail in [12]) it can be extracted that the number of d-cacti
on 2n vertices, in which all vertices have rotator (1, 2, . . . , d)O, which are invariant
under a rotation by (360/s)◦, s being maximal with this property, and which have

exactly 2m
(i)
k faces of colour i having k+ 1 vertices arranged around a central face

of colour j with 2α vertices, equals

(5.9) (2n)d−2s
∑
t

′µ(t/s)
(

2(n− rkTj)/t

2m
(j)
1 /t, 2m

(j)
2 /t, . . . , 2m

(j)
n /t

)

·
d∏

i=1
i �=j

1

2(n− rkTi)

(
2(n− rkTi)/t

2m
(i)
1 /t, 2m

(i)
2 /t, . . . , 2m

(i)
n /t

)
,

where the sum extends over all t with s | t, t | 2α, and t | 2m(i)
k for all i = 1, 2, . . . , d

and k = 1, 2, . . . , n. Here, µ(·) is the Möbius function from number theory.2 In
presenting the formula in the above form, we have also used the observation that,
for all i (including i = j !), the number of type A cycles of σi is n− rkTi.

As we said above, the d-cacti that we want to enumerate have one marked vertex,
whereas the d-cacti counted by (5.9) have no marked vertex. However, given a d-
cactus counted by (5.9), we have exactly 2n/s inequivalent ways of marking a
vertex. Hence, recalling that the d-cacti that we want to count are invariant under
a rotation by 180◦, we must multiply the expression (5.9) by 2n/s, and then sum
the result over all even s. Since, by definition of the Möbius function, we have∑

2|s|t
µ(t/s) =

∑
s′| t2

µ(t/2s′) =

{
1 if t

2 = 1,

0 otherwise,

the result of this summation is exactly the right-hand side of (5.1).
Finally, we prove claim (ii). From what we already know, in a minimal factori-

sation (5.3) exactly one of the factors on the right-hand side must contain a type B
cycle of length 1 in its (type B) disjoint cycle decomposition, σj say. As a parabolic

2Formula (81) in [12] does not distinguish the colour or the size of the central face (that is, in
the language of [12]: the colour or the degree of the central vertex). Therefore it is in fact a sum
over all possible colours and sizes, represented there by the summations over i and h, respectively.
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Coxeter element, a type B cycle of length 1 has type A1. Since all considerations in
the proof of claim (i) are also valid for α = 1, we may use formula (5.1) with α = 1,

and with m
(j)
1 replaced by m

(j)
1 − 1, to count the number of these factorisations, to

obtain

nd−1

(
n− rkTj

m
(j)
1 − 1,m

(j)
2 , . . . ,m

(j)
n

) d∏
i=1
i �=j

1

n− rkTi

(
n− rkTi

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)
.

This has to be summed over j = 1, 2, . . . , d. The result is exactly (5.2).
The proof of the theorem is now complete. �

Combining the previous theorem with the summation formula of Lemma 4, we
can now derive compact formulae for all type Bn decomposition numbers.

Theorem 8. (i) Let the types T1, T2, . . . , Td be given, where

Ti = A
m

(i)
1

1 ∗Am
(i)
2

2 ∗ · · · ∗Am(i)
n

n , i = 1, 2, . . . , j − 1, j + 1, . . . , d,

and

Tj = Bα ∗Am
(j)
1

1 ∗Am
(j)
2

2 ∗ · · · ∗Am(j)
n

n ,

for some α ≥ 1. Then

(5.10) Ncomb
Bn

(T1, T2, . . . , Td) = nd−1

(
n

rkT1 + rkT2 + · · ·+ rkTd

)
×
(

n− rkTj

m
(j)
1 ,m

(j)
2 , . . . ,m

(j)
n

) d∏
i=1
i �=j

1

n− rkTi

(
n− rkTi

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)
,

where the multinomial coefficient is defined as in Lemma 4. For α ≥ 2, the number
NBn

(T1, T2, . . . , Td) is given by the same formula.
(ii) Let the types T1, T2, . . . , Td be given, where

Ti = A
m

(i)
1

1 ∗Am
(i)
2

2 ∗ · · · ∗Am(i)
n

n , i = 1, 2, . . . , d.

Then

(5.11) Ncomb
Bn

(T1, T2, . . . , Td)

= nd

(
n− 1

rkT1 + rkT2 + · · ·+ rkTd

)( d∏
i=1

1

n− rkTi

(
n− rkTi

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

))
,

whereas

(5.12) NBn
(T1, T2, . . . , Td)

= nd−1

(
n

rkT1 + rkT2 + · · ·+ rkTd

)( d∏
i=1

1

n− rkTi

(
n− rkTi

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

))

×

⎛⎝n− rkT1 − rkT2 − · · · − rkTd +

d∑
j=1

m
(j)
1 (n− rkTj)

m
(j)
0 + 1

⎞⎠ ,

with m
(j)
0 = n− rkTj −

∑n
s=1 m

(j)
s .
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(iii) All of the other decomposition numbers NBn
(T1, T2, . . . , Td) and

Ncomb
Bn

(T1, T2, . . . , Td) are zero.

Proof. If we write r for n− rkT1 − rkT2 − · · ·− rkTd, then for Φ = Bn the relation
(2.3) becomes

(5.13) NBn
(T1, T2, . . . , Td) =

∑
T :rkT=r

NBn
(T1, T2, . . . , Td, T ),

with the same relation holding for Ncomb
Bn

in place of NBn
.

In order to prove (5.10), we let T = Am1
1 ∗Am2

2 ∗ · · · ∗Amn
n and use (5.1) in (5.13)

to obtain

Ncomb
Bn

(T1, T2, . . . , Td) =
∑

m1+2m2+···+nmn=r

nd 1

n− r

(
n− r

m1,m2, . . . ,mn

)

·
(

n− rkTj

m
(j)
1 ,m

(j)
2 , . . . ,m

(j)
n

) d∏
i=1
i �=j

1

n− rkTi

(
n− rkTi

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)
.

If we use (3.4) with M = n− r, we arrive at our claim after little simplification.
In order to prove (5.11), we let T = Bα ∗ Am1

1 ∗ Am2
2 ∗ · · · ∗ Amn

n in (5.13). The
important point to be observed here is that, in contrast to the previous argument,
in the present case T must have a factor Bα. Subsequently, use of (5.1) in (5.13)
yields

(5.14) Ncomb
Bn

(T1, T2, . . . , Td) =

n∑
α=1

∑
m1+2m2+···+nmn=r−α

nd

(
n− r

m1,m2, . . . ,mn

)

·
d∏

i=1

1

n− rkTi

(
n− rkTi

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)
.

Now we use (3.4) with r replaced by r − α and M = n − r, and subsequently the
elementary summation formula

(5.15)
n∑

α=1

(
n− α− 1

r − α

)
=

n∑
α=1

(
n− α− 1

n− r − 1

)
=

(
n− 1

n− r

)
=

(
n− 1

r − 1

)
.

Then, after little rewriting, we arrive at our claim.
To establish (5.12), we must recall that the group-theoretic type A1 does not

distinguish between a type A cycle ((i, j)) = (i, j) (̄i, j̄) and a type B cycle [i] =
(i, ī). Hence, to obtain NBn

(T1, T2, . . . , Td) in the case that no Ti contains a Bα

for α ≥ 2, we must add the expression (5.11) and the expressions (5.10) with m
(j)
1

replaced by m
(j)
1 −1 over j = 1, 2, . . . , d. As is not difficult to see, this sum is indeed

equal to (5.12). �

6. Decomposition numbers for type D

In this section we compute the decomposition numbers for type Dn. Theorem 9
gives the formulae for the full rank decomposition numbers, while Theorem 10
presents the implied formulae for the decomposition numbers of arbitrary rank. To
our knowledge, these are new results, which did not appear earlier in the literature
on map enumeration or on the connection coefficients in the symmetric group or
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other Coxeter groups. Nevertheless, the proof of Theorem 9 is entirely in the spirit
of the fundamental paper [23], in that the problem of counting factorisations is
translated into a problem of map enumeration, which is then solved by a gener-
ating function approach that requires the use of the Lagrange–Good formula for
coefficient extraction.

We begin with the result concerning the full rank decomposition numbers in type
Dn. While reading the statement of the theorem below, the reader should again
recall from Section 2 the distinction between group-theoretic and combinatorial
decomposition numbers.

Theorem 9. (i) If T1, T2, . . . , Td are types with rkT1 + rkT2 + · · · + rkTd = n,
where

Ti = A
m

(i)
1

1 ∗Am
(i)
2

2 ∗ · · · ∗Am(i)
n

n , i = 1, 2, . . . , j − 1, j + 1, . . . , d,

and

Tj = Dα ∗Am
(j)
1

1 ∗Am
(j)
2

2 ∗ · · · ∗Am(j)
n

n ,

for some α ≥ 2, then

(6.1) Ncomb
Dn

(T1, T2, . . . , Td) = (n− 1)d−1

(
n− rkTj

m
(j)
1 ,m

(j)
2 , . . . ,m

(j)
n

)

×
d∏

i=1
i �=j

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)
,

where the multinomial coefficient is defined as in Lemma 4. For α ≥ 4, the number
NDn

(T1, T2, . . . , Td) is given by the same formula.
(ii) If T1, T2, . . . , Td are types with rkT1 + rkT2 + · · ·+ rkTd = n, where

Ti = A
m

(i)
1

1 ∗Am
(i)
2

2 ∗ · · · ∗Am(i)
n

n , i = 1, 2, . . . , d,

then

(6.2) Ncomb
Dn

(T1, T2, . . . , Td)

= (n− 1)d−1

⎛⎜⎜⎝2
d∑

j=1

(
n− rkTj

m
(j)
1 ,m

(j)
2 , . . . ,m

(j)
n

) d∏
i=1
i �=j

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)

−2(d− 1)(n− 1)

d∏
i=1

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)⎞⎟⎟⎠ ,
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while

(6.3) NDn (T1, T2, . . . , Td)

= (n− 1)d−1

⎛⎜⎜⎝ d∑
j=1

(
d∏

i=1
i�=j

1

n− rkTi − 1

( n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

))(
2
( n− rkTj

m
(j)
1 ,m

(j)
2 , . . . ,m

(j)
n

)

+
( n− rkTj

m
(j)
1 ,m

(j)
2 ,m

(j)
3 − 1,m

(j)
4 , . . . ,m

(j)
n

)
+
( n− rkTj

m
(j)
1 − 2,m

(j)
2 , . . . ,m

(j)
n

))

−2(d− 1)(n− 1)
d∏

i=1

1

n− rkTi − 1

( n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)⎞⎟⎟⎠ .

(iii) All of the other decomposition numbers NDn
(T1, T2, . . . , Td) and

Ncomb
Dn

(T1, T2, . . . , Td) with rkT1 + rkT2 + · · ·+ rkTd = n are zero.

Remark. These formulae must be correctly interpreted when Ti contains no Dα and

rkTi = n− 1. In that case, because of n− 1 = rkTi = m
(i)
1 + 2m

(i)
2 + · · ·+ nm

(i)
n ,

there must be an �, 1 ≤ � ≤ n− 1, with m
(i)
� ≥ 1. We then interpret the term

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)
as

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)
=

1

m
(i)
�

(
n− rkTi − 2

m
(i)
1 , . . . ,m

(i)
� − 1, . . . ,m

(i)
n

)
,

where the multinomial coefficient is zero whenever

−1 = n− rkTi − 2 < m
(i)
1 + · · ·+ (m

(i)
� − 1) + · · ·+m(i)

n ,

except when all of m
(i)
1 , . . . ,m

(i)
� − 1, . . . ,m

(i)
n are zero. Explicitly, one must read

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)
= 0

if rkTi = n− 1 but Ti �= An−1, and

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)
= 1

if Ti = An−1.

Proof of Theorem 9. Determining the decomposition number

NDn
(T1, T2, . . . , Td) = NDn

(Td, . . . , T2, T1)

(recall (2.2)), respectively

Ncomb
Dn

(T1, T2, . . . , Td) = Ncomb
Dn

(Td, . . . , T2, T1),

amounts to counting all possible factorisations

(6.4) (1, 2, . . . , n− 1, 1̄, 2̄, . . . , n− 1) (n, n̄) = σd · · ·σ2σ1,

where σi has type Ti as a parabolic Coxeter element, respectively has combinatorial
type Ti. Here also, the factorisation (6.4) is minimal in the sense that

n = �T
(
(1, 2, . . . , n− 1, 1̄, 2̄, . . . , n− 1) (n, n̄)

)
= �T (σ1) + �T (σ2) + · · ·+ �T (σd),
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since �T (σi) = rkTi, and since, by our assumption, the sum of the ranks of the Ti’s
equals n.

We first prove claim (iii). Let us assume, for contradiction, that there is a
minimal factorisation (6.4), in which, altogether, we find at least two type B cycles
of length ≥ 2 in the (type B) disjoint cycle decompositions of the σi’s. It can then
be shown by arguments similar to those in the proof of claim (iii) in Theorem 7
that this leads to a contradiction. Hence, “at worst,” we may find a type B cycle
of length 1, (a, ā) say, and another type B cycle, κ say. Both of them must be
contained in the disjoint cycle decomposition of one of the σi’s since all the σi’s are
elements of W (Dn). Given that κ has length α− 1, the product of both, (a, ā)κ, is
of combinatorial type Dα, α ≥ 2, whereas, as a parabolic Coxeter element, it is of
type Dα only if α ≥ 4. If α = 3, then it is a parabolic Coxeter element of type A3,
and if α = 2 it is of type A2

1. Thus, we are actually in the cases to which claims (i)
and (ii) apply.

To prove claim (i), we continue this line of argument. By a variation of the
conjugation argument (5.4)–(5.6), we may assume that these two type B cycles are
contained in σd, σd = (a, ā)κσ′

d say, where, as above, (a, ā) is the type B cycle of
length 1 and κ is the other type B cycle, and where σ′

d is free of type B cycles. In
that case, (6.4) takes the form

(6.5) c = (1, 2, . . . , n− 1, 1̄, 2̄, . . . , n− 1) (n, n̄) = (a, ā)κσ′
d · · ·σ1.

If a �= n, κ �= (n, n̄), and if κ does not fix n, then (a, ā)κ �≤T c, a contradiction.
Likewise, if a �= n, κ = [b1, b2, . . . , bk] with n /∈ {b1, b2, . . . , bk}, then (a, ā)κ �≤T

[1, 2, . . . , n− 1], again a contradiction. Hence, we may assume that a = n, whence
(a, ā)κ = κ (n, n̄) forms a parabolic Coxeter element of type Dα, given that κ has
length α − 1. We are then in the position to determine all possible factorisations
of the form (6.5), which reduces to

(6.6) (1, 2, . . . , n− 1, 1̄, 2̄, . . . , n− 1) = [1, 2, . . . , n− 1] = κσ′
d · · ·σ1.

This is now a minimal type B factorisation of the form (5.3) with n replaced by
n− 1. We may therefore use formula (5.1) with n replaced by n− 1 and with rkTj

replaced by rkTj − 1. These substitutions lead exactly to (6.1).
Finally, we turn to claim (ii). First we discuss two degenerate cases which

come from the identifications D3 ∼ A3, respectively D2 ∼ A2
1, and which only

occur forNDn
(T1, T2, . . . , Td) (but not for the combinatorial decomposition numbers

Ncomb
Dn

(T1, T2, . . . , Td)). It may happen that one of the factors in (6.4), let us say,
without loss of generality, σd, contains a type B cycle of length 1 and one of length
2 in its disjoint cycle decomposition; that is, σd may contain

(n, n̄) [a, b] = (n, n̄) (a, b, ā, b̄) = [a, b] [b, n] [b, n̄].

As a parabolic Coxeter element, this is of type A3. By the reduction (6.5)–(6.6),
we may count the number of these possibilities by formula (5.1) with n replaced

by n− 1, rkTj replaced by rkTj − 1, and m
(j)
3 replaced by m

(j)
3 − 1. This explains

the second term in the factor in large parentheses on the right-hand side of (6.3).
On the other hand, it may happen that one of the factors in (6.4), let us say again,
without loss of generality, σd, contains two type B cycles of length 1 in its disjoint
cycle decomposition; that is, σd may contain (n, n̄) (a, ā). As a parabolic Coxeter
element, this is of type A2

1. By the reduction (6.5)–(6.6), we may count the number
of these possibilities by formula (5.1) with n replaced by n − 1, rkTj replaced by
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Figure 3. The 3-atoll corresponding to the factorisation (6.7)

rkTj − 1, and m
(j)
1 replaced by m

(j)
1 − 2. This explains the third term in the factor

in large parentheses on the right-hand side of (6.3).
From now on we may assume that none of the σi’s contains a type B cycle in

its (type B) disjoint cycle decomposition. To determine the number of minimal
factorisations (6.4) in this case, we again construct a bijection between these fac-
torisations and certain maps. In what follows, we will still use the concept of a
rotator, introduced in the proof of Theorem 7. We again apply the procedure de-
scribed in that proof. That is, for each (ordinary) cycle (a1, a2, . . . , ak) of σi, we
create a k-gon coloured i, label its vertices a1, a2, . . . , ak in clockwise order, and
glue these polygons into a map by identifying equally labelled vertices such that
the rotator of each vertex is (1, 2, . . . , d). However, this map can be embedded in
the plane only if we allow the creation of an inner face corresponding to the cycle
(n, n̄) on the left-hand side of (6.4) (the outer face corresponding to the large cycle
(1, 2, . . . , n− 1, 1̄, 2̄, . . . , n− 1)). Moreover, this inner face must be bounded by 2d
edges. We call such a map, in which all faces except the outer face and an inner
face intersect only in vertices and are coloured with colours from {1, 2, . . . , d}, and
in which the inner face is bounded by 2d edges, a d-atoll. For example, if we take
n = 10 and d = 3, and consider the factorisation

(6.7) (1, 2, . . . , 9, 1̄, 2̄, . . . , 9̄) (10, 10) = σ3σ2σ1,

where σ3 = ((1, 4, 10, 7̄)), σ2=((1, 3)) ((4, 6, 10)) ((7, 8, 9)), and σ1=((1, 2)) ((4, 5)),
and apply this procedure, we obtain the 3-atoll in Figure 3. In the figure, the faces
corresponding to cycles are shaded. As in Figures 1 and 2, the outer face is not
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Figure 4. A rotation-symmetric 3-atoll with two marked vertices

shaded. Here, there is in addition an inner face which is not shaded, the face formed
by the vertices 4, 10, 4̄, 10. Again, the colours of the shaded faces are indicated by
the numbers 1, 2, respectively 3, placed in the centre of the faces.

Unsurprisingly, the fact that the result of the procedure can be realised as a
d-atoll follows again from Euler’s formula. More precisely, the number of faces corre-

sponding to the polygons is 2
∑d

i=1

∑n
k=0 m

(i)
k , the number of edges is

2
∑d

i=1

∑n
k=0m

(i)
k (k + 1), and the number of vertices is 2n. Hence, if we include

the outer face and the inner face, the number of vertices minus the number of edges
plus the number of faces is

2n− 2

d∑
i=1

n∑
k=0

m
(i)
k (k + 1) + 2

d∑
i=1

n∑
k=0

m
(i)
k + 2 = 2n+ 2− 2

d∑
i=1

n∑
k=0

k ·m(i)
k

= 2n+ 2− 2 rkT1 − 2 rkT2 − · · · − 2 rkTd

= 2,(6.8)

according to our assumption concerning the sum of the ranks of types Ti.
Again, we may further simplify this geometric representation of a minimal fac-

torisation (6.4) by deleting all vertex labels, marking the vertex which had label
1 with • and marking the vertex that had label n with �. If this simplification
is applied to the 3-atoll in Figure 3, we obtain the 3-atoll in Figure 4. Clearly, if
drawn appropriately into the plane, a d-atoll resulting from an application of the
above procedure to a minimal factorisation (6.4) is symmetric with respect to a
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rotation by 180◦, the centre of the rotation being the centre of the inner face; cf.
Figure 4. As earlier, we shall abbreviate this property as rotation-symmetric. In
fact, there is not much freedom for the choice of the vertex marked by � once a
vertex has been marked by •. Clearly, if we run through the vertex labelling process
described in the proof of Theorem 7, labelling as 1 the vertex which is marked by

•, we shall reconstruct the labels 1, 2, . . . , n− 1, 1̄, 2̄, . . . , n− 1. This leaves only 2
vertices incident to the inner face unlabelled, one of which will have to carry the
mark �.

In summary, under the assumptions of claim (ii), the number of minimal factori-
sations (6.4), in which none of the σi’s contains a type B cycle in its disjoint cycle
decomposition, equals twice the number of all rotation-symmetric d-atolls on 2n
vertices, in which one vertex is marked by •, all vertices have rotator (1, 2, . . . , d)O,
and with exactly m

(i)
k pairs of faces of colour i having k+1 vertices, arranged sym-

metrically around the inner face (which is not coloured). Let us denote the number
of these d-atolls by N ′

Dn
(T1, T2, . . . , Td).

We must now enumerate these d-atolls. First of all, introducing a figure of
speech, we shall refer to coloured faces of a d-atoll which share an edge with the
inner face but not with the outer face as faces “inside the d-atoll,” and all others
as faces “outside the d-atoll.” For example, in Figure 4 we find two faces inside the
3-atoll, namely the two loop faces attached to the vertices labelled 10, respectively
10, in Figure 3. Since, in a d-atoll, the inner face is bounded by exactly 2d edges,
inside the d-atoll, we find only coloured faces containing exactly one vertex. Next,
we travel counter-clockwise around the inner face and record the coloured faces
sharing an edge with both the inner and outer faces. Thus we obtain a list of the
form

F1, F2, . . . , F�, F�+1, . . . , F2�,

where, except possibly for the marking, Fh+� is an identical copy of Fh, h =

1, 2, . . . , �. In Figure 4, this list contains four faces, F̃1, F̃2, F̃3, F̃4, where F̃1 and F̃3

are the two quadrangles of colour 3, and where F̃2 and F̃4 are the two triangles of
colour 2 connecting the two quadrangles.

Continuing the general argument, let the colour of Fh be ih. Inside the d-atoll,
because of the rotator condition, there must be {ih+1 − ih − 1}d faces (containing
just one vertex) incident to the common vertex of Fh and Fh+1 coloured {ih +
1}d, . . . , {ih+1 − 1}d, where, by definition,

{x}d :=

⎧⎪⎨⎪⎩
x, if 0 ≤ x ≤ d,

x+ d, if x < 0,

x− d, if x > d,

and where ih+� = ih, h = 1, 2, . . . , �. Here, if {ih +1}d > {ih+1 − 1}d, the sequence
of colours {ih + 1}d, . . . , {ih+1 − 1}d must be interpreted “cyclically,” that is, as
{ih+1}d, {ih+1}d+1, . . . , d, 1, 2, . . . , {ih+1−1}d. As we observed above, the number
of edges bounding the inner face is 2d. On the other hand, using the notation just
introduced, this number also equals

2
�∑

h=1

{ih+1 − ih}d = 2
�∑

h=1

(
(ih+1 − ih) + d · χ(ih+1 < ih)

)
= 2d

�∑
h=1

χ(ih+1 < ih).
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Hence, there is precisely one h for which ih+1 < ih. Without loss of generality, we
may assume that h = �, so that i1 < i2 < · · · < i�.

The ascending colouring of the faces F1, F2, . . . , F� breaks the (rotation) symme-
try of the d-atoll. Therefore, we may first enumerate d-atolls without any marking,
and multiply the result by the number of all possible markings, which is n−1. More
precisely, let N ′′

Dn
(T1, T2, . . . , Td) denote the number of all rotation-symmetric d-

atolls on 2n vertices, in which all vertices have rotator (1, 2, . . . , d)O, and with

exactly m
(i)
k pairs of faces of colour i having k+1 vertices, arranged symmetrically

around the inner face (which is not coloured). Then,

NDn
(T1, T2, . . . , Td) = 2N ′

Dn
(T1, T2, . . . , Td)

= 2(n− 1)N ′′
Dn

(T1, T2, . . . , Td).(6.9)

We use a generating function approach to determine N ′′
Dn

(T1, T2, . . . , Td), which
requires a combinatorial decomposition of our objects. Let G(z) be the generating
function

(6.10) G(z) =
∑
A∈A

w(A),

where A is the set of all rotation-symmetric d-atolls, in which all vertices have
rotator (1, 2, . . . , d)O, and where

w(A) =

d∏
i=1

z
1
2#(faces of A with colour i)
i

d∏
i=1

∞∏
k=1

p
1
2#(faces of A with colour i and k vertices)

i,k .

Here, z = (z1, z2, . . . , zd), with the zi’s, i = 1, 2, . . . , d, and the pi,k’s, i = 1, 2, . . . , d,
k = 1, 2, . . . , being indeterminates. Clearly, in view of the bijection between mini-
mal factorisations (6.4) and d-atolls described earlier, and by (6.9), we have

(6.11) NDn
(T1, T2, . . . , Td) = 2(n− 1)

〈
zc

d∏
i=1

n∏
k=0

p
m

(i)
k

i,k+1

〉
G(z),

where c = (c1, c2, . . . , cd), with ci equal to the number of type A cycles of σi; that

is, ci =
∑n

k=0m
(i)
k , i = 1, 2, . . . , d. Here, and in the sequel, we use the multi-index

notation introduced at the beginning of Section 3. For later use, we observe that,
for all i, ci is related to rkTi via

(6.12) ci = n− rkTi.

Now, let A be a d-atoll in A such that the faces which share an edge with both
the inner and outer faces are

F1, F2, . . . , F�, F�+1, . . . , F2�,

where Fh+� is an identical copy of Fh, where the colour of Fh is ih, h = 1, 2, . . . , �,
and with i1 < i2 < · · · < i�. We decompose A by separating from each other the
polygons which touch in vertices of the inner face. The decomposition in the case
of our example in Figure 4 is shown in Figure 5. Ignoring identical copies which
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K1

2
1

3

C
(1)
1

1
3 2

K23
21

1
3

3

1

2
1 3

1
2

3

L
(2)
1

1

Figure 5. The decomposition of the 3-atoll in Figure 4

are there due to the rotation symmetry, we obtain a list

(6.13) K1, L
(1)
i1+1, . . . , L

(1)
i2−1, C

(1)
i2+1, . . . , C

(1)
d , C

(1)
1 , . . . , C

(1)
i1−1,

K2, L
(2)
i2+1, . . . , L

(2)
i3−1, C

(2)
i3+1, . . . , C

(2)
d , C

(2)
1 , . . . , C

(2)
i2−1, . . .

K�, L
(�)
i�+1, . . . , L

(�)
d , L

(�)
1 , . . . , L

(�)
i1−1, C

(�)
i1+1, . . . , C

(�)
i�−1,

where Kh is the d-cactus containing the face Fh, and, hence, a d-cactus in which
all but two neighbouring vertices have rotator (1, 2, . . . , d)O, the latter two vertices

being incident to just one face, which is of colour ih, where L
(h)
j is a face of colour

j with just one vertex, and where C
(h)
j is a d-cactus in which all but one vertex

have rotator (1, 2, . . . , d)O, the distinguished vertex being incident to just one face,
which is of colour j, h = 1, 2, . . . , � and j = 1, 2, . . . , d. With this notation, our
example in Figure 5 is one in which � = 2, i1 = 2, i2 = 3.

The d-cacti Kh can be further decomposed. Namely, assuming that the face
Fh is a k-gon (of colour ih), let C1, C2, . . . , Ck−2 be the d-cacti incident to this
k-gon, read in clockwise order, starting with the d-cactus to the left of the two
distinguished vertices. Figure 6 illustrates this further decomposition of the d-
cactusK2 from Figure 5. After removal of Fh, we are left with the ordered collection
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3

C121

1
3

3

1

C2

2
1 3

1
2

3

Figure 6. The decomposition of K2 in Figure 5

C1, C2, . . . , Ck−2 of d-cacti, each having the property that the rotator of all but one
vertex is (1, 2, . . . , d)O, the exceptional vertex having rotator (1, . . . , ih − 1, ih +
1, . . . , d)O. By separating from each other the polygons of colours 1, . . . , ih−1, ih+
1, . . . , d which touch in the exceptional vertex, each d-cactus Ci in turn can be
decomposed into d-cacti Ci,1, . . . , Ci,ih−1, Ci,ih+1, . . . , Ci,d with Ci,j ∈ Cj for all k,
where Cj denotes the set of all d-cacti in which all but one vertex have rotator
(1, 2, . . . , d)O, the distinguished vertex being incident to just one face, which is of
colour j.

Let ωj(z) denote the generating function for the d-cacti in Cj , that is,

(6.14) ωj(z) =
∑
C∈Cj

w(C).

Furthermore, for i = 1, 2, . . . , d, define the formal power series Pi(u) in one variable
u via

Pi(u) =

∞∑
k=1

pi,ku
k−1.

Then, by the decomposition (6.13) and the further decomposition of the Kh’s that
we just described, the contribution of the above d-atolls to the generating function
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(6.10) is(
�∏

j=1

zijωij (z)

ω1(z) · · ·ωd(z)

(
Pij

(
ω1(z) · · ·ωd(z)

ωij (z)

)
− pij ,1

))

×
( ∏d

j=1 zjpj,1∏�
j=1 zijpij ,1

)
(ω1(z) · · ·ωd(z))

�−1∏�
j=1 ωij (z)

=

(
d∏

j=1

zjpj,1
ωj(z)

)
�∏

j=1

⎛⎝Pij

(
ω1(z)···ωd(z)

ωij
(z)

)
pij ,1

− 1

⎞⎠ ,

with the term in the first line corresponding to the contribution of the Kj ’s, the

first term in the second line corresponding to the contribution of the L
(j)
k ’s, and

the second term in the second line corresponding to the contribution of the C
(j)
k ’s.

These expressions must be summed over � = 2, 3, . . . , d and all possible choices of
1 ≤ i1 < i2 < · · · < i� ≤ d to obtain the desired generating function G(z), that is,

G(z) =

(
d∏

j=1

zjpj,1
ωj(z)

)
d∑

�=2

∑
1≤i1<i2<···<i�≤d

�∏
j=1

⎛⎝Pij

(
ω1(z)···ωd(z)

ωij
(z)

)
pij ,1

− 1

⎞⎠

=

(
d∏

j=1

zjpj,1
ωj(z)

)⎛⎝ d∏
j=1

Pj

(
ω1(z)···ωd(z)

ωj(z)

)
pj,1

−
d∑

j=1

⎛⎝Pj

(
ω1(z)···ωd(z)

ωj(z)

)
pj,1

− 1

⎞⎠− 1

⎞⎠.

(6.15)

Here we have used the elementary identity

d∑
�=0

∑
1≤i1<i2<···<i�≤d

Xi1Xi2 · · ·Xi� = (1 +X1)(1 +X2) · · · (1 +Xd).

Before we are able to proceed, we must find functional equations for the gen-
erating functions ωj(z), j = 1, 2, . . . , d. Given a d-cactus C in Cj such that the
distinguished vertex is incident to a k-gon (of colour j), we decompose it in a
manner analogous to the decomposition of Kh above. To be more precise, let
C1, C2, . . . , Ck−1 be the d-cacti incident to this k-gon, read in clockwise order,
starting with the d-cactus to the left of the distinguished vertex. After removal
of the k-gon, we are left with the ordered collection C1, C2, . . . , Ck−1 of d-cacti,
each having the property that the rotator of all but one vertex is (1, 2, . . . , d)O,
the exceptional vertex having rotator (1, . . . , j − 1, j + 1, . . . , d)O. By separating
from each other the polygons of colours 1, . . . , j − 1, j + 1, . . . , d which touch in
the exceptional vertex, each d-cactus Ci in turn can be decomposed into d-cacti
Ci,1, . . . , Ci,j−1, Ci,j+1, . . . , Ci,d with Ci,k ∈ Ck for all k. The upshot of these com-
binatorial considerations is that

ωj(z) = zjPj(ω1(z) · · ·ωd(z)/ωj(z)), j = 1, 2, . . . , d,

or, equivalently,

zj =
ωj(z)

Pj(ω1(z) · · ·ωd(z)/ωj(z))
, j = 1, 2, . . . , d.

Licensed to Univ of Minnesota-Twin Cities. Prepared on Tue Aug 26 09:57:35 EDT 2014 for download from IP 128.101.152.245.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



2750 C. KRATTENTHALER AND T. W. MÜLLER

Using this relation, the expression (6.15) for G(z) may now be further simplified,
and we obtain

G(z) = 1−
d∏

j=1

pj,1

Pj

(
ω1(z)···ωd(z)

ωj(z)

) d∑
j=1

Pj

(
ω1(z)···ωd(z)

ωj(z)

)
pj,1

+(d−1)
d∏

j=1

pj,1

Pj

(
ω1(z)···ωd(z)

ωj(z)

) .

This is substituted in (6.11) to obtain

(6.16) NDn
(T1, T2, . . . , Td)

= −2(n− 1)

〈
zc

d∏
i=1

n∏
k=0

p
m

(i)
k

i,k+1

〉⎛⎝ d∏
j=1

pj,1

Pj

(
ω1(z)···ωd(z)

ωj(z)

)
⎞⎠ d∑

j=1

Pj

(
ω1(z)···ωd(z)

ωj(z)

)
pj,1

+ 2(n− 1)(d− 1)

〈
zc

d∏
i=1

n∏
k=0

p
m

(i)
k

i,k+1

〉
d∏

j=1

pj,1

Pj

(
ω1(z)···ωd(z)

ωj(z)

) .

Now the problem is set up for application of the Lagrange–Good inversion formula.
Let fi(z) = zi/Pi(z1 · · · zd/zi), i = 1, 2, . . . , d. If we substitute fi(z) in place of zi,
i = 1, 2, . . . , d, in (6.16), and apply Theorem 1 with

g(z) =

⎛⎝ d∏
j=1

pj,1

Pj

(
z1···zd

zj

)
⎞⎠ d∑

j=1

Pj

(
z1···zd

zj

)
pj,1

,

respectively

g(z) =
d∏

j=1

pj,1

Pj

(
z1···zd

zj

) ,
we obtain that

(6.17) NDn
(T1, T2, . . . , Td)

= −2(n−1)

〈
z0

d∏
i=1

n∏
k=0

p
m

(i)
k

i,k+1

〉(
d∏

i=1

pi,1

)⎛⎝ d∑
j=1

zj
fj(z)pj,1

⎞⎠ f−c(z) det
1≤i,k≤d

(
∂fi
∂zk

(z)

)

+ 2(n− 1)(d− 1)

〈
z0

d∏
i=1

n∏
k=0

p
m

(i)
k

i,k+1

〉(
d∏

i=1

pi,1

)
f−c(z) det

1≤i,k≤d

(
∂fi
∂zk

(z)

)
,

Licensed to Univ of Minnesota-Twin Cities. Prepared on Tue Aug 26 09:57:35 EDT 2014 for download from IP 128.101.152.245.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



DECOMPOSITION NUMBERS FOR FINITE COXETER GROUPS 2751

where 0 stands for the vector (0, 0, . . . , 0). We treat the two terms on the right-hand
side of (6.17) separately. We begin with the second term:〈

z0
d∏

i=1

n∏
k=0

p
m

(i)
k

i,k+1

〉(
d∏

i=1

pi,1

)
f−c(z) det

1≤i,k≤d

(
∂fi
∂zk

(z)

)

=

〈
zc

d∏
i=1

n∏
k=0

p
m

(i)
k

i,k+1

〉(
d∏

i=1

pi,1

)

× det
1≤i,k≤d

⎛⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P ci−1
i

(
z1 · · · zd

zi

)
, i = k

−P ci−2
i

(
z1 · · · zd

zi

)
×P ′

i

(
z1 · · · zd

zi

)
z1 · · · zd

zk
, i �= k

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎠
=

〈
zc

d∏
i=1

n∏
k=0

p
m

(i)
k

i,k+1

〉(
d∏

i=1

pi,1

)

× det
1≤i,k≤d

⎛⎜⎜⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩
P ci−1
i

(
z1 · · · zd

zi

)
, i = k

− 1

ci − 1

(
u
d

du
P ci−1
i (u)

) ∣∣∣∣∣
u=z1···zd/zi

, i �= k

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎟⎟⎠ .

Reading coefficients, we obtain

d∏
i=1

(
ci − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)
det

1≤i,k≤d

⎛⎝⎧⎨⎩ 1, i = k

− rkTi

ci − 1
, i �= k

⎫⎬⎭
⎞⎠

=

d∏
i=1

(
ci − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)
det

1≤i,k≤d

(
1− χ(i �= k)

n− 1

ci − 1

)
,

the second line being due to (6.12). Now we can apply Lemma 2 with Xi = ci − 1
and Yi = n− 1, i = 1, 2, . . . , d. The term

d∑
i=1

Xi −
d∑

i=2

Yi =

d∑
i=1

(ci − 1)− (d− 1)(n− 1)

=
d∑

i=1

(n− rkTi − 1)− (d− 1)(n− 1)

on the right-hand side of (3.2) simplifies to −1 due to our assumption concerning
the sum of the ranks of the types Ti. Hence, if we use the relation (6.12) once more,
the second term on the right-hand side of (6.17) is seen to equal

−2(d− 1)(n− 1)d
d∏

i=1

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)
.

This explains the third term in the factor in large parentheses in (6.2) and the last
term in the factor in large parentheses on the right-hand side of (6.3).
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Finally, we come to the first term on the right-hand side of (6.17). We have〈
z0

d∏
i=1

n∏
k=0

p
m

(i)
k

i,k+1

〉(
d∏

i=1

pi,1

)
zj

fj(z)pj,1
f−c(z) det

1≤i,k≤d

(
∂fi
∂zk

(z)

)

=

〈
zc

d∏
i=1

n∏
k=0

p
m

(i)
k

i,k+1

〉⎛⎜⎜⎝ d∏
i=1
i �=j

pi,1

⎞⎟⎟⎠ det
1≤i,k≤d

⎛⎜⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P
ci−1+χ(i=j)
i

(
z1 · · · zd

zi

)
, i = k

−P
ci−2+χ(i=j)
i

(
z1 · · · zd

zi

)
×P ′

i

(
z1 · · · zd

zi

)
z1 · · · zd

zk
, i �= k

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎠

=

〈
zc

d∏
i=1

n∏
k=0

p
m

(i)
k

i,k+1

〉⎛⎜⎜⎝ d∏
i=1
i �=j

pi,1

⎞⎟⎟⎠

× det
1≤i,k≤d

⎛⎜⎜⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩
P

ci−1+χ(i=j)
i

(
z1 · · · zd

zi

)
, i = k

− 1

ci − 1 + χ(i = j)

(
u
d

du
P

ci−1+χ(i=j)
i (u)

)∣∣∣∣∣
u=z1···zd/zi

, i �= k

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎟⎟⎠ .

Reading coefficients, we obtain

d∏
i=1

(
ci − 1 + χ(i = j)

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)
det

1≤i,k≤d

⎛⎝⎧⎨⎩ 1, i = k

− rkTi

ci − 1 + χ(i = j)
, i �= k

⎫⎬⎭
⎞⎠

=

d∏
i=1

(
ci − 1 + χ(i = j)

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)
det

1≤i,k≤d

({
1− χ(j �= k) n

cj
, i = j

1− χ(i �= k) n−1
ci−1 , i �= j

})
,

the second line being due to (6.12). Now we can apply Corollary 3 with r = j,
Xi = ci− 1, i = 1, . . . , j− 1, j+1, . . . , d, Xj = cj , Y = n− 1, and Z = n. The term

Z

d∑
i=1

Xi + (Y − Z)Xj − (d− 1)Y Z

= n

(
1 +

d∑
i=1

(ci − 1)

)
− cj − (d− 1)(n− 1)n

= n
d∑

i=1

(n− rkTi − 1) + n− cj − (d− 1)(n− 1)n

on the right-hand side of (3.2) simplifies to −cj due to our assumption concerning
the sum of the ranks of types Ti. Hence, if we use the relation (6.12) once more,
the second term on the right-hand side of (6.17) is seen to equal the sum over
j = 1, 2, . . . , d of

2(n− 1)d−1

(
n− rkTj

m
(j)
1 ,m

(j)
2 , . . . ,m

(j)
n

) d∏
i=1
i �=j

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)
.
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This explains the first terms in the factors in large parentheses on the right-hand
sides of (6.2) and (6.3).

The proof of the theorem is complete. �

Combining the previous theorem with the summation formula of Lemma 4, we
can now derive compact formulae for all type Dn decomposition numbers.

Theorem 10. (i) Let types T1, T2, . . . , Td be given, where

Ti = A
m

(i)
1

1 ∗Am
(i)
2

2 ∗ · · · ∗Am(i)
n

n , i = 1, 2, . . . , j − 1, j + 1, . . . , d,

and

Tj = Dα ∗Am
(j)
1

1 ∗Am
(j)
2

2 ∗ · · · ∗Am(j)
n

n ,

for some α ≥ 2. Then

(6.18) Ncomb
Dn

(T1, T2, . . . , Td) = (n− 1)d−1

(
n− 1

rkT1 + rkT2 + · · ·+ rkTd − 1

)
×
(

n− rkTj

m
(j)
1 ,m

(j)
2 , . . . ,m

(j)
n

) d∏
i=1
i �=j

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)
,

where the multinomial coefficient is defined as in Lemma 4. For α ≥ 4, the number
NDn

(T1, T2, . . . , Td) is given by the same formula.
(ii) Let types T1, T2, . . . , Td be given, where

Ti = A
m

(i)
1

1 ∗Am
(i)
2

2 ∗ · · · ∗Am(i)
n

n , i = 1, 2, . . . , d.

Then

(6.19) Ncomb
Dn

(T1, T2, . . . , Td) = (n− 1)d−1

(
n− 1

rkT1 + rkT2 + · · ·+ rkTd − 1

)

×

⎛⎜⎜⎝2

d∑
j=1

(
n− rkTj

m
(j)
1 ,m

(j)
2 , . . . ,m

(j)
n

)( d∏
i=1
i �=j

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

))

+

⎛⎝
(
n−
∑d

�=1 rkT�

)(
n− 1−

∑d
�=1 rkT�

)
∑d

�=1 rkT�

− 2(d− 2)(n− 1)

⎞⎠

·
d∏

i=1

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)⎞⎟⎟⎠ ,
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whereas

(6.20) NDn
(T1, T2, . . . , Td) = (n− 1)d−1

(
n− 1

rkT1 + rkT2 + · · ·+ rkTd − 1

)

×

⎛⎜⎜⎝ d∑
j=1

(
d∏

i=1
i �=j

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

))(
2

(
n− rkTj

m
(j)
1 ,m

(j)
2 , . . . ,m

(j)
n

)

+

(
n− rkTj

m
(j)
1 ,m

(j)
2 ,m

(j)
3 − 1,m

(j)
4 , . . . ,m

(j)
n

)
+

(
n− rkTj

m
(j)
1 − 2,m

(j)
2 , . . . ,m

(j)
n

))

+

⎛⎝
(
n−
∑d

�=1 rkT�

)(
n− 1−

∑d
�=1 rkT�

)
∑d

�=1 rkT�

− 2(d− 2)(n− 1)

⎞⎠

·
d∏

i=1

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)⎞⎟⎟⎠ .

(iii) All of the other decomposition numbers NDn
(T1, T2, . . . , Td) and

Ncomb
Dn

(T1, T2, . . . , Td) are zero.

Remark. The caveats on interpretations of the formulae in Theorem 9 for critical
choices of the parameters (cf. the Remark after the statement of that theorem) also
apply to the formulae of Theorem 10.

Proof. We proceed in a manner similar to the proof of Theorem 8. If we write r
for n− rkT1 − rkT2 − · · · − rkTd and set Φ = Dn, then relation (2.3) becomes

(6.21) NDn
(T1, T2, . . . , Td) =

∑
T :rkT=r

NDn
(T1, T2, . . . , Td, T ),

with the same relation holding for Ncomb
Dn

in place of NDn
.

In order to prove (6.18), we let T = Am1
1 ∗Am2

2 ∗ · · · ∗Amn
n and use (6.1) in (6.21)

to obtain

Ncomb
Dn

(T1, T2, . . . , Td) =
∑

m1+2m2+···+nmn=r

(n− 1)d
1

n− r − 1

(
n− r − 1

m1,m2, . . . ,mn

)

·
(

n− rkTj

m
(j)
1 ,m

(j)
2 , . . . ,m

(j)
n

) d∏
i=1
i �=j

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)
.

If we use (3.4) with M = n− r− 1, we arrive at our claim after little simplification.
Next we prove (6.19). In contrast to the previous argument, here the summation

on the right-hand side of (6.21) must be taken over all types T of the form T =
Dα ∗Am1

1 ∗Am2
2 ∗ · · · ∗Amn

n , α ≥ 2, as well as of the form T = Am1
1 ∗Am2

2 ∗ · · · ∗Amn
n .
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For the sum over the former types, we have to substitute (6.1) in (6.21) to get

(6.22)

n∑
α=2

∑
m1+2m2+···+nmn=r−α

(n− 1)d
(

n− r

m1,m2, . . . ,mn

)

·
d∏

i=1

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)
.

On the other hand, for the sum over the latter types, we have to substitute (6.2)
in (6.21) to get
(6.23)

2
∑

m1+2m2+···+nmn=r

(n− 1)d
(

n− r

m1,m2, . . . ,mn

)

·
d∏

i=1

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)
+

∑
m1+2m2+···+nmn=r

(n− 1)d
1

n− r − 1

(
n− r − 1

m1,m2, . . . ,mn

)

·

⎛⎜⎜⎝2
d∑

j=1

(
n− rkTj

m
(j)
1 ,m

(j)
2 , . . . ,m

(j)
n

) d∏
i=1
i �=j

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)

−2(d− 1)(n− 1)

d∏
i=1

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)⎞⎟⎟⎠ .

We simplify (6.22) by using (3.4) with r replaced by r − α and M = n− r and by
subsequently applying the elementary summation formula

(6.24)

n∑
α=2

(
n− α− 1

r − α

)
=

n∑
α=2

(
n− α− 1

n− r − 1

)
=

(
n− 2

n− r

)
=

(
n− 2

r − 2

)
.

The expression which we obtain in this way explains the fraction in the third line of
(6.19) multiplied by the expression in the last line. On the other hand, we simplify
the sums in (6.23) by using (3.4) with M = n − r, respectively M = n − r − 1.
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Thus, the expression (6.23) becomes

2(n− 1)d
(
n− 1

r

) d∏
i=1

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)

+ (n− 1)d−1

(
n− 1

r

)(
2

d∑
j=1

(
n− rkTj

m
(j)
1 ,m

(j)
2 , . . . ,m

(j)
n

)

·
d∏

i=1
i �=j

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

)

− 2(d− 1)(n− 1)

d∏
i=1

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

))
,

which explains the expression in the second line of (6.19) and the second expression
in the third line of (6.19) multiplied by the expression in the last line.

The proof of (6.20) is analogous, using (6.3) instead of (6.2). We leave the details
to the reader. �

7. Generalised non-crossing partitions

In this section we recall the definition of Armstrong’s [1] generalised non-crossing
partitions poset, and its combinatorial realisation from [1] and [29] for the types
An, Bn, and Dn.

Let Φ again be a finite root system of rank n, and let W = W (Φ) be the
corresponding reflection group. We first define the non-crossing partition lattice
NC(Φ) (cf. [8, 15]). Let c be a Coxeter element in W . Then NC(Φ) is defined to
be the restriction of the partial order ≤T from Section 2 to the set of all elements
which are less than or equal to c in this partial order. This definition makes sense
since any two Coxeter elements in W are conjugate to each other; the induced inner
automorphism then restricts to an isomorphism of the posets corresponding to the
two Coxeter elements. It can be shown that NC(Φ) is in fact a lattice (see [16]
for a uniform proof) and moreover self-dual (this is obvious from the definition).
Clearly, the minimal element in NC(Φ) is the identity element in W , which we
denote by ε, and the maximal element in NC(Φ) is the chosen Coxeter element c.
The term “non-crossing partition lattice” is used because NC(An) is isomorphic to
the lattice of non-crossing partitions of {1, 2, . . . , n + 1}, originally introduced by
Kreweras [30] (see also [20] and below), and since also NC(Bn) and NC(Dn) can
be realised as lattices of non-crossing partitions (see [5, 32] and below).

In addition to a fixed root system, the definition of Armstrong’s generalised non-
crossing partitions requires a fixed positive integer m. The poset of m-divisible non-
crossing partitions associated to the root system Φ has as ground set the following
subset of (NC(Φ))m+1:

(7.1) NCm(Φ) =
{
(w0;w1, . . . , wm) : w0w1 · · ·wm = c and

�T (w0) + �T (w1) + · · ·+ �T (wm) = �T (c)
}
.

The order relation is defined by

(u0;u1, . . . , um) ≤ (w0;w1, . . . , wm) if and only if ui ≥T wi, 1 ≤ i ≤ m.
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(According to this definition, u0 and w0 need not be related in any way. However,
it follows from [1, Lemma 3.4.7] that, in fact, u0 ≤T w0.) The poset NCm(Φ) is
graded by the rank function

(7.2) rk
(
(w0;w1, . . . , wm)

)
= �T (w0).

Thus, there is a unique maximal element, namely (c; ε, . . . , ε), where ε stands for the
identity element in W , but, for m > 1, there are many different minimal elements.
In particular, NCm(Φ) has no least element if m > 1; hence, NCm(Φ) is not a
lattice for m > 1. (It is, however, a graded join-semilattice; see [1, Theorem 3.4.4].)

In what follows, we shall use the notions “generalised non-crossing partitions”
and “m-divisible non-crossing partitions” interchangeably, where the latter notion
will be employed particularly in contexts in which we want to underline the presence
of the parameter m.

In the remainder of this section, we explain combinatorial realisations of the
m-divisible non-crossing partitions of types An−1, Bn, and Dn. In order to be able
to do so, we need to recall the definition of Kreweras’ non-crossing partitions of
{1, 2, . . . , N}, his “partitions non croisées d’un cycle” of [30]. We place N vertices
around a cycle and label them 1, 2, . . . , N in clockwise order. The circular represen-
tation of a partition of the set {1, 2, . . . , N} is the geometric object which arises by
representing each block {i1, i2, . . . , ik} of the partition, where i1 < i2 < · · · < ik, by
the polygon consisting of the vertices labelled i1, i2, . . . , ik and edges which connect
these vertices in clockwise order. A partition of {1, 2, . . . , N} is called non-crossing
if any two edges in its circular representation are disjoint. Figure 7 shows the
non-crossing partition

{{1, 2, 21}, {3, 19, 20}, {4, 5, 6}, {7, 17, 18}, {8, 9, 10, 11, 12, 13, 14, 15, 16}}

of {1, 2, . . . , 21}. There is a natural partial order on Kreweras’ non-crossing parti-
tions defined by refinement: a partition π1 is less than or equal to the partition π2

if every block of π1 is contained in some block of π2.
If Φ = An−1, then the m-divisible non-crossing partitions are in bijection with

the Kreweras-type non-crossing partitions of the set {1, 2, . . . ,mn}, in which all the
block sizes are divisible by m. We denote the latter set of non-crossing partitions

by ÑCm(An−1). This was first considered by Edelman in [18]. In fact, Figure 7
shows an example of a 3-divisible non-crossing partition of type A20.

Given an element (w0;w1, . . . , wm) ∈ NCm(An−1), the bijection, 
m
An−1

say,

from [1, Theorem 4.3.8] works by “blowing up” w1, w2, . . . , wm, thereby “interleav-
ing” them, and then “gluing” them together by an operation which is called the
Kreweras complement in [1]. More precisely, for i = 1, 2, . . . ,m, let τm,i be the
transformation which maps a permutation w ∈ Sn to a permutation τm,i(w) ∈
Smn by letting

(τm,i(w))(mk + i−m) = mw(k) + i−m, k = 1, 2, . . . , n,

and (τm,i(w))(l) = l for all l �≡ i (mod m). At this point, the reader should recall
from Section 2 that W (An−1) is the symmetric group Sn and that the standard
choice of a Coxeter element in W (An−1) = Sn is c = (1, 2, . . . , n). With this choice
of Coxeter element, the announced bijection maps (w0;w1, . . . , wm) ∈ NCm(An−1)
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1
2

3

4

5

6

7

8

9

10
1112

13

14

15

16

17

18

19

20

21

Figure 7. Combinatorial realisation of a 3-divisible non-crossing
partition of type A6

to


m
An−1

(w0;w1, . . . , wm) = (1, 2, . . . ,mn) (τm,1(w1))
−1 (τm,2(w2))

−1

· · · (τm,m(wm))−1.

We refer the reader to [1, Sec. 4.3.2] for the details. For example, let n = 7, m = 3,
w0 = (4, 5, 6), w1 = (3, 6), w2 = (1, 7), and w3 = (1, 2, 6). Then (w0;w1, w2, w3) is
mapped to


3
A6

(w0;w1, w2, w3) = (1, 2, . . . , 21) (7, 16) (2, 20) (18, 6, 3)

= (1, 2, 21) (3, 19, 20) (4, 5, 6) (7, 17, 18) (8, 9, . . . , 16).(7.3)

Figure 7 shows the graphical representation of (7.3) on the circle, in which we repre-
sent a cycle (i1, i2, . . . , ik) as a polygon consisting of the vertices labelled i1, i2, . . . , ik
and edges which connect these vertices in clockwise order.

It is shown in [1, Theorem 4.3.8] that 
m
An−1

is in fact an isomorphism between

the posets NCm(An−1) and ÑCm(An−1). Furthermore, it is proved in [1, Theo-
rem 4.3.13] that

(7.4) ci(w0) = bi(
m
An−1

(w0;w1, . . . , wm)), i = 1, 2, . . . , n,

where ci(w0) denotes the number of cycles of length i of w0 and bi(π) denotes the
number of blocks of size mi in the non-crossing partition π.
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Figure 8. Combinatorial realisation of a 3-divisible non-crossing
partition of type B5

If Φ = Bn, them-divisible non-crossing partitions are in bijection with Kreweras-
type non-crossing partitions π of the set {1, 2, . . . ,mn, 1̄, 2̄, . . . ,mn}, in which all
the block sizes are divisible by m, and which have the property that if B is a block
of π, then also B := {x̄ : x ∈ B} is a block of π. (Here, as earlier, we adopt the
convention that ¯̄x = x for all x.) We denote the latter set of non-crossing partitions

by ÑCm(Bn). A block B with B = B is called a zero block . A non-crossing

partition in ÑCm(Bn) can only have at most one zero block. Figures 8 and 9
give examples of 3-divisible non-crossing partitions of type B5. Figure 8 shows one
without a zero block, while Figure 9 shows one with a zero block. Clearly, the
condition that B is a block of the partition if and only if B is a block translates
into the condition that the geometric realisation of the partition is invariant under
rotation by 180◦.

Given an element (w0;w1, . . . , wm) ∈ NCm(Bn), the bijection, 
m
Bn

say, from
[1, Theorem 4.5.6] works in the same way as for NCm(An−1). That is, recalling
from Section 2 that W (Bn) can be combinatorially realised as a subgroup of the
group of permutations of {1, 2, . . . , n, 1̄, 2̄, . . . , n̄} and that, in this realisation, the
standard choice of a Coxeter element is c = [1, 2, . . . , n] = (1, 2, . . . , n, 1̄, 2̄, . . . , n̄),
the announced bijection maps (w0;w1, . . . , wm) ∈ NCm(Bn) to


m
Bn

(w0;w1, . . . , wm)=[1, 2, . . . ,mn] (τ̄m,1(w1))
−1 (τ̄m,2(w2))

−1 · · · (τ̄m,m(wm))−1,
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Figure 9. A 3-divisible non-crossing partition of type B5 with
zero block

where τ̄m,i is the obvious extension of the above transformations τm,i. Namely, we
let

(τ̄m,i(w))(mk + i−m) = mw(k) + i−m, k = 1, 2, . . . , n, 1̄, 2̄, . . . , n̄,

and (τ̄m,i(w))(l) = l and (τ̄m,i(w))(l̄) = l̄ for all l �≡ i (mod m), where mk̄ + i−m

is identified with mk + i−m for all k and i. We refer the reader to [1, Sec. 4.5]
for the details. For example, let n = 5, m = 3, w0 = ((2, 4)), w1 = [1] = (1, 1̄),
w2 = ((1, 4)), and w3 = ((2, 3)) ((4, 5)). Then (w0;w1, w2, w3) is mapped to


3
B5

(w0;w1, w2, w3) = [1, 2, . . . , 15] [1] ((2, 11)) ((6, 9)) ((12, 15))

= ((1, 2̄, 12)) ((3, 4, 5, 6, 10, 11)) ((7, 8, 9)) ((13, 14, 15)).(7.5)

Figure 8 shows the graphical representation of (7.5).
It is shown in [1, Theorem 4.5.6] that 
m

Bn
is in fact an isomorphism between

the posets NCm(Bn) and ÑCm(Bn). Furthermore, it is proved in [1, proof of
Theorem 4.3.13] that

(7.6) ci(w0) = bi(
m
Bn

(w0;w1, . . . , wm)), i = 1, 2, . . . , n,

where ci(w0) denotes the number of type A cycles (recall the corresponding termi-
nology from Section 4) of length i of w0 and bi(π) denotes one half of the number
of non-zero blocks of size mi in the non-crossing partition π. (Recall that non-zero
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Figure 10. Combinatorial realisation of a 3-divisible non-crossing
partition of type D6

blocks come in “symmetric” pairs.) Consequently, under the bijection 
m
Bn

, the
element w0 contains a type B cycle of length � if and only if 
m

Bn
(w0;w1, . . . , wm)

contains a zero block of size m�.
The m-divisible non-crossing partitions of type Dn cannot be realised as certain

“partitions non croisées d’un cycle,” but as non-crossing partitions on an annulus
with 2m(n− 1) vertices on the outer cycle and 2m vertices on the inner cycle, with
the vertices on the outer cycle being labelled by 1, 2, . . . ,mn−m, 1̄, 2̄, . . . ,mn−m
in clockwise order and the vertices of the inner cycle being labelled by mn −m +
1, . . . ,mn − 1,mn,mn−m+ 1, . . . ,mn− 1,mn in counter-clockwise order. Given
a partition π of {1, 2, . . . ,mn, 1̄, 2̄, . . . ,mn}, we represent it on this annulus in a
manner analogous to Kreweras’ graphical representation of his partitions. Namely,
we represent each block of π by connecting the vertices labelled by the elements of
the block by curves in clockwise order, the important additional requirement being
here that the curves must be drawn in the interior of the annulus. If it is possible
to draw the curves in such a way that no two curves intersect, then the partition is
called a non-crossing partition on the (2m(n− 1), 2m)-annulus. Figure 10 shows a
non-crossing partition on the (15, 6)-annulus.

With this definition, the m-divisible non-crossing partitions of type Dn are in
bijection with non-crossing partitions π on the (2m(n− 1), 2m)-annulus, in which
successive elements of a block (successive in the circular order in the graphical
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Figure 11. A 3-divisible non-crossing partition of type D6 with
zero block

representation of the block) are in successive congruence classes modulo m, which
have the property that, if B is a block of π, then also B := {x̄ : x ∈ B} is a block
of π, and which satisfy an additional restriction concerning their zero block. Here
again, a zero block is a block B with B = B. The announced additional restriction
says that a zero block can only occur if it contains all the vertices of the inner
cycle, that is, mn − m + 1, . . . ,mn − 1,mn,mn−m+ 1, . . . ,mn− 1,mn, and at
least two further elements from the outer cycle. We denote this set of non-crossing

partitions on the (2m(n− 1), 2m)-annulus by ÑCm(Dn). A non-crossing partition

in ÑCm(Dn) can only have at most one zero block. Figures 10 and 11 give examples
of 3-divisible non-crossing partitions of type D6, with Figure 10 one without a zero
block and Figure 11 one with a zero block. Again, it is clear that the condition that
B is a block of the partition if and only if B is a block translates into the condition
that the geometric realisation of the partition is invariant under rotation by 180◦.

In order to clearly sort out the differences of the earlier combinatorial realisations
of m-divisible non-crossing partitions of types An−1 and Bn, we stress that for type
Dn there are three major features which are not present for the former types: (1)
here we consider non-crossing partitions on an annulus; (2) it is not sufficient to
impose the condition that the size of every block is divisible by m: the condition
on successive elements of a block is stronger; (3) there is the above additional
restriction on the zero block (which is not present in type Bn).
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Given an element (w0;w1, . . . , wm) ∈ NCm(Dn), the bijection, 
m
Dn

say, from
[29] works as follows. Recalling from Section 2 that W (Dn) can be combinatori-
ally realised as a subgroup of the group of permutations of {1, 2, . . . , n, 1̄, 2̄, . . . , n̄}
and that, in this realisation, the standard choice of a Coxeter element is c =
[1, 2, . . . , n− 1] [n] = (1, 2, . . . , n− 1, 1̄, 2̄, . . . , n− 1) (n, n̄), the announced bijection
maps (w0;w1, . . . , wm) ∈ NCm(Dn) to


m
Dn

(w0;w1, . . . , wm) = [1, 2, . . . ,m(n− 1)] [mn−m+ 1, . . . ,mn− 1,mn]

◦ (τ̄m,1(w1))
−1 (τ̄m,2(w2))

−1 · · · (τ̄m,m(wm))−1,

where τ̄m,i is defined as above. We refer the reader to [29] for the details. For
example, let n = 6, m = 3, w0 = ((2, 4̄)), w1 = ((2, 6̄)) ((4, 5)), w2 = ((1, 5̄)) ((2, 3)),
and w3 = ((3, 6)). Then (w0;w1, w2, w3) is mapped to


3
D6

(w0;w1, w2, w3)

= [1, 2, . . . , 15] [16, 17, 18]((4, 16)) ((10, 13)) ((2, 14)) ((5, 8)) ((9, 18))

= ((1, 2, 15)) ((3, 4, 17, 18, 10, 14)) ((5, 9, 16)) ((6, 7, 8)) ((11, 12, 13)).(7.7)

Figure 10 shows the graphical representation of (7.7).
It is shown in [29] that 
m

Dn
is in fact an isomorphism between the posets

NCm(Dn) and ÑCm(Dn). Furthermore, it is proved in [29] that

(7.8) ci(w0) = bi(
m
Dn

(w0;w1, . . . , wm)), i = 1, 2, . . . , n,

where ci(w0) denotes the number of type A cycles of length i of w0 and bi(π) denotes
one half of the number of non-zero blocks of size mi in the non-crossing partition
π. (Recall that non-zero blocks come in “symmetric” pairs.) Consequently, under
the bijection 
m

Dn
, the element w0 contains a type D cycle of length � if and only

if 
m
Dn

(w0;w1, . . . , wm) contains a zero block of size m�.

8. Decomposition numbers with free factors, and enumeration

in the poset of generalised non-crossing partitions

This section is devoted to applying our formulae from Sections 4–6 for the de-
composition numbers of the types An, Bn, and Dn to the enumerative theory of
generalised non-crossing partitions for these types. Theorems 11–15 present for-
mulae for the number of minimal factorisations of Coxeter elements in types An,
Bn, and Dn, respectively, where we do not prescribe the types of all the factors as
for the decomposition numbers, but just for some of them, while we impose rank
sum conditions on other factors. Immediate corollaries are formulae for the number
of multi-chains π1 ≤ π2 ≤ · · · ≤ πl−1, l being given, in the posets ÑCm(An−1),

ÑCm(Bn), and ÑCm(Dn), where the poset rank of πi equals ri and where the
block structure of π1 is prescribed; see Corollaries 12, 14, and 16. These results in
turn imply all known enumerative results on ordinary and generalised non-crossing
partitions via appropriate summations; see the remarks accompanying the corollar-

ies. They also imply two further new results on chain enumeration in ÑCm(Dn);

see Corollaries 18 and 19. We want to stress that, since ÑCm(Φ) and NCm(Φ)
are isomorphic as posets for Φ = An−1, Bn, Dn, Corollaries 12, 14, 16, 17, and 18

imply obvious results for NCm(Φ) in place of ÑCm(Φ), Φ = An−1, Bn, Dn, via
(7.4), (7.6), respectively (7.8).
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We begin with our results for type An. The next theorem generalises Theorem 6,
which can be obtained from the former as the special case in which l = 1 and
m1 = 1.

Theorem 11. For a positive integer d, let types T1, T2, . . . , Td be given, where

Ti = A
m

(i)
1

1 ∗Am
(i)
2

2 ∗ · · · ∗Am(i)
n

n , i = 1, 2, . . . , d,

and let l,m1,m2, . . . ,ml, s1, s2, . . . , sl be given non-negative integers with

rkT1 + rkT2 + · · ·+ rkTd + s1 + s2 + · · ·+ sl = n.

Then the number of factorisations

(8.1) c = σ1σ2 · · ·σdσ
(1)
1 σ

(1)
2 · · ·σ(1)

m1
σ
(2)
1 σ

(2)
2 · · ·σ(2)

m2
· · ·σ(l)

1 σ
(l)
2 · · ·σ(l)

ml
,

where c is a Coxeter element in W (An), such that the type of σi is Ti, i = 1, 2, . . . , d,
and such that

(8.2) �T (σ
(i)
1 ) + �T (σ

(i)
2 ) + · · ·+ �T (σ

(i)
mi

) = si, i = 1, 2, . . . , l,

is given by

(8.3) (n+ 1)d−1

(
d∏

i=1

1

n− rkTi + 1

(
n− rkTi + 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

))

×
(
m1(n+ 1)

s1

)(
m2(n+ 1)

s2

)
· · ·
(
ml(n+ 1)

sl

)
,

where the multinomial coefficient is defined as in Lemma 4.

Proof. In the factorisation (8.1), we first also fix the types of the σ
(j)
i ’s. For i =

1, 2, . . . ,mj and j = 1, 2, . . . , l, let the type of σ
(j)
i be

T
(j)
i = A

m
(i,j)
1

1 ∗Am
(i,j)
2

2 ∗ · · · ∗Am(i,j)
n

n .

We know that the number of these factorisations is given by (4.1), with d replaced

by d+m1+m2+ · · ·+ml and the appropriate interpretations of the m
(j)
i ’s. Next we

fix non-negative integers r
(j)
i and sum the expression (4.1) over all possible types

T
(j)
i of rank r

(j)
i , i = 1, 2, . . . ,mj , j = 1, 2, . . . , l. The corresponding summations

are completely analogous to the summation in the proof of Theorem 6. As a result,
we obtain

(n+ 1)d−1

(
d∏

i=1

1

n− rkTi + 1

(
n− rkTi + 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

))

×
(
n+ 1

r
(1)
1

)(
n+ 1

r
(1)
2

)
· · ·
(
n+ 1

r
(1)
m1

)
×
(
n+ 1

r
(2)
1

)(
n+ 1

r
(2)
2

)
· · ·
(
n+ 1

r
(2)
m2

)
× · · · ×

(
n+ 1

r
(l)
1

)(
n+ 1

r
(l)
2

)
· · ·
(
n+ 1

r
(l)
ml

)
for the number of factorisations under consideration. In view of (8.2) and (2.4), to
obtain the final result we must sum these expressions over all non-negative integers

r
(1)
1 , . . . , r

(l)
ml satisfying the equations

(8.4) r
(j)
1 + r

(j)
2 + · · ·+ r(j)mj

= sj , j = 1, 2, . . . , l.
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This is easily done by means of the multivariate version of the Chu–Vandermonde
summation. The formula in (8.3) follows. �

In view of the combinatorial realisation of m-divisible non-crossing partitions of
type An−1 which we described in Section 7, the special case d = 1 of the above
theorem has the following enumerative consequence.

Corollary 12. Let l be a positive integer, and let s1, s2, . . . , sl be non-negative
integers with s1+s2+ · · ·+sl = n−1. The number of multi-chains π1 ≤ π2 ≤ · · · ≤
πl−1 in the poset ÑCm(An−1), with the property that rk(πi) = s1 + s2 + · · · + si,
i = 1, 2, . . . , l−1, and that the number of blocks of size mi of π1 is bi, i = 1, 2, . . . , n,
is given by

(8.5)
1

b1 + b2 + · · ·+ bn

(
b1 + b2 + · · ·+ bn

b1, b2, . . . , bn

)(
mn

s2

)
· · ·
(
mn

sl

)
,

provided that b1 + 2b2 + · · ·+ nbn ≤ n, and is 0 otherwise.

Remark. The conditions in the statement of the corollary imply that

(8.6) s1 + b1 + b2 + · · ·+ bn = n.

Proof. Let

(8.7) π1 ≤ π2 ≤ · · · ≤ πl−1

be a multi-chain in ÑCm(An−1). Suppose that, under the bijection 
m
An−1

, the

element πj corresponds to the tuple (w
(j)
0 ;w

(j)
1 , . . . , w

(j)
m ), j = 1, 2, . . . , l − 1. The

inequalities in (8.7) imply that w
(1)
1 , w

(1)
2 , . . . , w

(1)
m can be factored in the form

w
(1)
i = u

(2)
i u

(3)
i · · ·u(l)

i , i = 1, 2, . . . ,m,

where u
(l)
i = w

(l−1)
i and, more generally,

(8.8) w
(j)
i = u

(j+1)
i u

(j+2)
i · · ·u(l)

i , i = 1, 2, . . . ,m, j = 1, 2, . . . , l − 1.

For later use, we record that

c = w
(j)
0 w

(j)
1 · · ·w(j)

m

= w
(j)
0

(
u
(j+1)
1 u

(j+2)
1 · · ·u(l)

1

)(
u
(j+1)
2 u

(j+2)
2 · · ·u(l)

2

)
· · ·
(
u(j+1)
m u(j+2)

m · · ·u(l)
m

)
.(8.9)

Now, by (7.4), the block structure conditions on π1 in the statement of the

corollary translate into the condition that the type of w
(1)
0 is

(8.10) Ab2
1 ∗Ab3

2 ∗ · · · ∗Abn
n−1.

On the other hand, using (7.2), we see that the rank conditions in the statement
of the corollary mean that

�T (w
(j)
0 ) = s1 + s2 + · · ·+ sj , j = 1, 2, . . . , l − 1.

In combination with (8.9), this yields the conditions

(8.11) �T (u
(j)
1 ) + �T (u

(j)
2 ) + · · ·+ �T (u

(j)
m ) = sj , j = 2, 3, . . . , l.

Thus, we want to count the number of factorisations

(8.12) c = w
(1)
0

(
u
(2)
1 u

(3)
1 · · ·u(l)

1

)(
u
(2)
2 u

(3)
2 · · ·u(l)

2

)
· · ·
(
u(2)
m u(3)

m · · ·u(l)
m

)
,
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where the type of w
(1)
0 is given in (8.10), and where the “rank conditions” (8.11)

are satisfied. So, in view of (2.4), we are in the situation of Theorem 11 with n
replaced by n− 1, d = 1, l replaced by l− 1, si replaced by si+1, i = 1, 2, . . . , l− 1,
T1 the type in (8.10), m1 = m2 = · · · = ml−1 = m, except that the factors are not
exactly in the order as in (8.1). However, by (2.2) we know that the order of factors
is without relevance. Therefore we just have to apply Theorem 11 with the above
specialisations. If we also take (8.6) into account, then we immediately arrive at
(8.5). �

This result is new even for m = 1, that is, for the poset of Kreweras’ non-crossing
partitions of {1, 2, . . . , n}. It implies all known results on Kreweras’ non-crossing
partitions and the m-divisible non-crossing partitions of Edelman. Namely, for
l = 2 it reduces to Armstrong’s result [1, Theorem 4.4.4 with � = 1] on the number

of m-divisible non-crossing partitions in ÑCm(An−1) with a given block structure,
which itself contains Kreweras’ result [30, Theorem 4] on his non-crossing partitions
with a given block structure as a special case. If we sum the expression (8.5) over
all s2, s3, . . . , sl with s2+s3+ · · ·+sl = n−1−s1, then we obtain that the number

of all multi-chains π1 ≤ π2 ≤ · · · ≤ πl−1 in Edelman’s poset ÑCm(An−1) of m-
divisible non-crossing partitions of {1, 2, . . . ,mn} in which π1 has bi blocks of size
mi equals

(8.13)
1

b1 + b2 + · · ·+ bn

(
b1 + b2 + · · ·+ bn

b1, b2, . . . , bn

)(
(l − 1)mn

n− s1 − 1

)
=

1

b1 + b2 + · · ·+ bn

(
b1 + b2 + · · ·+ bn

b1, b2, . . . , bn

)(
(l − 1)mn

b1 + b2 + · · ·+ bn − 1

)
,

provided that b1 + 2b2 + · · · + nbn ≤ n, a result originally due to Armstrong [1,
Theorem 4.4.4]. On the other hand, if we sum the expression (8.5) over all possible
b1, b2, . . . , bn, that is, b2+2b3+· · ·+(n−1)bn = s1, use of Lemma 4 with M = n−s1
and r = s1 yields that the number of all multi-chains π1 ≤ π2 ≤ · · · ≤ πl−1 in

Edelman’s poset ÑCm(An−1) ∼= NCm(An−1) where πi is of rank s1+ s2 + · · ·+ si,
i = 1, 2, . . . , l − 1, equals

(8.14)
1

n

(
n

s1

)(
mn

s2

)
· · ·
(
mn

sl

)
,

a result originally due to Edelman [18, Theorem 4.2]. Clearly, this formula con-
tains at the same time a formula for the number of all m-divisible non-crossing
partitions of {1, 2, . . . ,mn} with a given number of blocks upon setting l = 2
(cf. [18, Lemma 4.1]), as well as implies that the total number of multi-chains
π1 ≤ π2 ≤ · · · ≤ πl−1 in the poset of these partitions is

(8.15)
1

n

(
(l − 1)mn+ n

n− 1

)
upon summing (8.14) over all non-negative integers s1, s2, . . . , sl with s1 + s2 +
· · ·+ sl = n− 1 by means of the multivariate Chu–Vandermonde summation, thus
recovering the formula [18, Cor. 4.4] for the zeta polynomial of the poset of m-
divisible non-crossing partitions of type An−1. As the special case l = 2, we recover
the well-known fact that the total number of m-divisible non-crossing partitions of

{1, 2, . . . ,mn} is 1
n

(
(m+1)n
n−1

)
.
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We continue with our results for type Bn. We formulate the theorem below on
factorisations in W (Bn) only with restrictions on the combinatorial type of some
factors. An analogous result with group-theoretical type instead could be easily
derived as well. We omit this here because, for the combinatorial applications that
we have in mind, the combinatorial type suffices. We remark that the theorem
generalises Theorem 8, which can be obtained from the former as the special case
in which l = 1 and m1 = 1.

Theorem 13. (i) For a positive integer d, let the types T1, T2, . . . , Td be given,
where

Ti = A
m

(i)
1

1 ∗Am
(i)
2

2 ∗ · · · ∗Am(i)
n

n , i = 1, 2, . . . , j − 1, j + 1, . . . , d,

and

Tj = Bα ∗Am
(j)
1

1 ∗Am
(j)
2

2 ∗ · · · ∗Am(j)
n

n ,

for some α ≥ 1, and let l,m1,m2, . . . ,ml, s1, s2, . . . , sl be given non-negative inte-
gers with

(8.16) rkT1 + rkT2 + · · ·+ rkTd + s1 + s2 + · · ·+ sl = n.

Then the number of factorisations

(8.17) c = σ1σ2 · · ·σdσ
(1)
1 σ

(1)
2 · · ·σ(1)

m1
σ
(2)
1 σ

(2)
2 · · ·σ(2)

m2
· · ·σ(l)

1 σ
(l)
2 · · ·σ(l)

ml
,

where c is a Coxeter element in W (Bn), such that the combinatorial type of σi is
Ti, i = 1, 2, . . . , d, and such that

(8.18) �T (σ
(i)
1 ) + �T (σ

(i)
2 ) + · · ·+ �T (σ

(i)
mi

) = si, i = 1, 2, . . . , l,

is given by

(8.19) nd−1

(
n− rkTj

m
(j)
1 ,m

(j)
2 , . . . ,m

(j)
n

)( d∏
i=1
i �=j

1

n− rkTi

(
n− rkTi

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

))

×
(
m1n

s1

)(
m2n

s2

)
· · ·
(
mln

sl

)
,

where the multinomial coefficient is defined as in Lemma 4.
(ii) For a positive integer d, let the types T1, T2, . . . , Td be given, where

Ti = A
m

(i)
1

1 ∗Am
(i)
2

2 ∗ · · · ∗Am(i)
n

n , i = 1, 2, . . . , d,

and let l,m1,m2, . . . ,ml, s1, s2, . . . , sl be given non-negative integers. Then the
number of factorisations (8.17) which satisfy (8.18) plus the condition that the
combinatorial type of σi is Ti, i = 1, 2, . . . , d, is given by

(8.20)

nd−1(n− rkT1 − rkT2 − · · · − rkTd)

(
d∏

i=1

1

n− rkTi

(
n− rkTi

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

))

×
(
m1n

s1

)(
m2n

s2

)
· · ·
(
mln

sl

)
.
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Proof. We start with the proof of item (i). In the factorisation (8.17), we first also

fix the types of σ
(j)
i ’s. For i = 1, 2, . . . ,mj and j = 1, 2, . . . , l let the type of σ

(j)
i be

T
(j)
i = A

m
(i,j)
1

1 ∗Am
(i,j)
2

2 ∗ · · · ∗Am(i,j)
n

n .

We know that the number of these factorisations is given by (5.1) with d replaced

by d+m1 +m2 + · · ·+ml and the appropriate interpretations of m
(j)
i ’s. Next we

fix non-negative integers r
(j)
i and sum the expression (5.1) over all possible types

T
(j)
i of rank r

(j)
i , i = 1, 2, . . . ,mj , j = 1, 2, . . . , l. The corresponding summations

are completely analogous to the first summation in the proof of Theorem 8. As a
result, we obtain

nd−1

(
n− rkTj

m
(j)
1 ,m

(j)
2 , . . . ,m

(j)
n

)( d∏
i=1
i �=j

1

n− rkTi

(
n− rkTi

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

))

×
(

n

r
(1)
1

)(
n

r
(1)
2

)
· · ·
(

n

r
(1)
m1

)
×
(

n

r
(2)
1

)(
n

r
(2)
2

)
· · ·
(

n

r
(2)
m2

)
× · · · ×

(
n

r
(l)
1

)(
n

r
(l)
2

)
· · ·
(

n

r
(l)
ml

)
for the number of factorisations under consideration. In view of (8.18) and (2.4), to
obtain the final result we must sum these expressions over all non-negative integers

r
(1)
1 , . . . , r

(l)
ml satisfying the equations

r
(j)
1 + r

(j)
2 + · · ·+ r(j)mj

= sj , j = 1, 2, . . . , l.

This is easily done by means of the multivariate version of the Chu–Vandermonde
summation. The formula in (8.19) follows.

The proof of item (ii) is completely analogous. We must, however, cope with the
complication that the type B cycle, which, according to Theorem 7, must occur in
the disjoint cycle decomposition of exactly one of the factors on the right-hand side

of (8.17), can occur in any of the σ
(j)
i ’s. So, let us fix the types of σ

(j)
i ’s to

T
(j)
i = A

m
(i,j)
1

1 ∗Am
(i,j)
2

2 ∗ · · · ∗Am(i,j)
n

n ,

i = 1, 2, . . . ,mj , j = 1, 2, . . . , l, except for (i, j) = (p, q), where we require that the

type of σ
(q)
p is

T (q)
p = Bα ∗Am̃1

1 ∗Am̃2
2 ∗ · · · ∗Am̃n

n .

Again, we know that the number of these factorisations is given by (5.1), with d
replaced by d + m1 + m2 + · · · + ml and the appropriate interpretations of the

m
(j)
i ’s. Now we fix non-negative integers r

(j)
i and sum the expression (5.1) over

all possible types T
(j)
i of rank r

(j)
i , i = 1, 2, . . . ,mj , j = 1, 2, . . . , l. Again, the

corresponding summations are completely analogous to the summations in the proof

of Theorem 8. In particular, the summation over all possible types T
(q)
p of rank

r
(q)
p is essentially the summation on the right-hand side of (5.14), with d replaced

by d +m1 +m2 + · · · +ml and r replaced by r
(q)
p . If we use what we know from
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the proof of Theorem 8, then the result of the summations is found to be

(8.21) nd−1

(
d∏

i=1

1

n− rkTi

(
n− rkTi

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

))

×
(

n

r
(1)
1

)(
n

r
(1)
2

)
· · ·
(

n

r
(1)
m1

)
× · · · ×

(
n

r
(q)
1

)
· · · r(q)p

(
n

r
(q)
p

)
· · ·
(

n

r
(q)
mq

)
× · · · ×

(
n

r
(l)
1

)(
n

r
(l)
2

)
· · ·
(

n

r
(l)
ml

)
.

The reader should note that the term r
(q)
p

( n
r
(q)
p

)
in this expression results from the

summation over all types T
(q)
p of rank r

(q)
p (compare (5.15) with r replaced by r

(q)
p ;

we have
( n−1

r
(q)
p −1

)
=

r(q)p

n

( n
r
(q)
p

)
). Using (8.16), (8.18) and (2.4), we see that the sum of

all r
(q)
p over p = 1, 2, . . . ,mq and q = 1, 2, . . . , l must be n−rkT1−rkT2−· · ·−rkTd.

Hence, the sum of the expressions (8.21) over all (p, q) equals

nd−1(n− rkT1 − rkT2 − · · · − rkTd)

(
d∏

i=1

1

n− rkTi

(
n− rkTi

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

))

×
(

n

r
(1)
1

)(
n

r
(1)
2

)
· · ·
(

n

r
(1)
m1

)
× · · · ×

(
n

r
(q)
1

)(
n

r
(q)
2

)
· · ·
(

n

r
(q)
mq

)
× · · · ×

(
n

r
(l)
1

)(
n

r
(l)
2

)
· · ·
(

n

r
(l)
ml

)
.

Finally, we must sum these expressions over all non-negative integers r
(1)
1 , . . . , r

(l)
ml

satisfying the equations

r
(j)
1 + r

(j)
2 + · · ·+ r(j)mj

= sj , j = 1, 2, . . . , l.

Once again, this is easily done by means of the multivariate version of the Chu–
Vandermonde summation. As a result, we obtain the formula in (8.20). �

In view of the combinatorial realisation of m-divisible non-crossing partitions
of type Bn which we described in Section 7, the special case d = 1 of the above
theorem has the following enumerative consequence.

Corollary 14. Let l be a positive integer, and let s1, s2, . . . , sl be non-negative
integers with s1 + s2 + · · · + sl = n. The number of multi-chains π1 ≤ π2 ≤ · · · ≤
πl−1 in the poset ÑCm(Bn) with the property that rk(πi) = s1 + s2 + · · · + si,
i = 1, 2, . . . , l − 1, and that the number of non-zero blocks of π1 of size mi is 2bi,
i = 1, 2, . . . , n, is given by

(8.22)

(
b1 + b2 + · · ·+ bn

b1, b2, . . . , bn

)(
mn

s2

)
· · ·
(
mn

sl

)
,

provided that b1 + 2b2 + · · ·+ nbn ≤ n, and is 0 otherwise.

Remark. The conditions in the statement of the corollary imply that

(8.23) s1 + b1 + b2 + · · ·+ bn = n.

The reader should recall from Section 7 that non-zero blocks of elements π of
ÑCm(Bn) occur in pairs since, with a block B of π, B also is a block of π.

Licensed to Univ of Minnesota-Twin Cities. Prepared on Tue Aug 26 09:57:35 EDT 2014 for download from IP 128.101.152.245.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



2770 C. KRATTENTHALER AND T. W. MÜLLER

Proof. The arguments are completely analogous to those of the proof of Corol-
lary 12. The conclusion here is that we need Theorem 13 with d = 1, l replaced by
l − 1, si replaced by si+1, i = 1, 2, . . . , l − 1, m1 = m2 = · · · = ml−1 = m, and T1

of the type

Bn−b1−2b2−···−nbn ∗Ab2
1 ∗Ab3

2 ∗ · · · ∗Abn
n−1

in the case that b1 + 2b2 + · · · + nbn < n (which enforces the existence of a zero
block of size 2(n− b1 − 2b2 − · · · − nbn) in π1), respectively

Ab2
1 ∗Ab3

2 ∗ · · · ∗Abn
n−1

if not. So, depending on the case which we are in, we have to apply (8.19), re-
spectively (8.20). However, for d = 1 these two formulae become identical. More
precisely, under the above specialisations, they reduce to(

n− rkT1

b2, b3, . . . , bn

)(
mn

s2

)
· · ·
(
mn

sl

)
.

If we also take into account (8.23), then we arrive immediately at (8.22). �

This result is new even for m = 1, that is, for the poset of Reiner’s type Bn non-
crossing partitions. It implies all known results on these non-crossing partitions and
their extension to m-divisible type Bn non-crossing partitions due to Armstrong.
Namely, for l = 2 it reduces to Armstrong’s result [1, Theorem 4.5.11 with � = 1]

on the number of elements of ÑCm(Bn) with a given block structure, which itself
contains Athanasiadis’ result [2, Theorem 2.3] on Reiner’s type Bn non-crossing
partitions with a given block structure as a special case. If we sum the expression
(8.22) over all s2, s3, . . . , sl with s2 + s3 + · · · + sl = n − s1, then we obtain that

the number of all multi-chains π1 ≤ π2 ≤ · · · ≤ πl−1 in ÑCm(Bn) in which π1 has
2bi non-zero blocks of size mi equals
(8.24)(

b1 + b2 + · · ·+ bn
b1, b2, . . . , bn

)(
(l − 1)mn

n− s1

)
=

(
b1 + b2 + · · ·+ bn

b1, b2, . . . , bn

)(
(l − 1)mn

b1 + b2 + · · ·+ bn

)
,

provided that b1 + 2b2 + · · · + nbn ≤ n, a result originally due to Armstrong [1,
Theorem 4.5.11]. On the other hand, if we sum the expression (8.22) over all
possible b1, b2, . . . , bn, that is, over b2 + 2b3 + · · ·+ (n− 1)bn ≤ s1, use of Lemma 4
with M = n − s1 and r = s1 − α (where α stands for the difference between s1
and b2 + 2b3 + · · · + (n − 1)bn) yields that the number of all multi-chains π1 ≤
π2 ≤ · · · ≤ πl−1 in ÑCm(Bn) ∼= NCm(Bn), where πi is of rank s1 + s2 + · · · + si,
i = 1, 2, . . . , l − 1, equals

(8.25)
n∑

α=0

(
n− α− 1

s1 − α

)(
mn

s2

)
· · ·
(
mn

sl

)
=

(
n

s1

)(
mn

s2

)
· · ·
(
mn

sl

)
,

another result due to Armstrong [1, Theorem 4.5.7]. Clearly, this formula contains

at the same time a formula for the number of all elements of ÑCm(Bn) ∼= NCm(Bn)
with a given number of blocks (equivalently, a given rank) upon setting l = 2
(cf. [1, Theorem 4.5.8]), as well as implies that the total number of multi-chains

π1 ≤ π2 ≤ · · · ≤ πl−1 in ÑCm(Bn) ∼= NCm(Bn) is

(8.26)

(
(l − 1)mn+ n

n

)
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upon summing (8.25) over all non-negative integers s1, s2, . . . , sl with s1 + s2 +
· · · + sl = n by means of the multivariate Chu–Vandermonde summation, thus
recovering the formula [1, Theorem 3.6.9] for the zeta polynomial of the poset of
generalised non-crossing partitions in the case of type Bn. As the special case l = 2,

we recover the fact that the cardinality of ÑCm(Bn) ∼= NCm(Bn) is
(
(m+1)n

n

)
(cf.

[1, Theorem 3.5.3]).
The final set of results in this section concerns type Dn. We start with Theo-

rem 15, the result on factorisations in W (Dn), which is analogous to Theorems 11
and 13. Similar to Theorem 13, we formulate the theorem only with restrictions on
the combinatorial type of some factors. An analogous result with group-theoretical
type instead could be easily derived as well. We refrain from doing this here be-
cause, again, for the combinatorial applications that we have in mind, combinatorial
type suffices. We remark that the theorem generalises Theorem 10, which can be
obtained from the former as the special case in which l = 1 and m1 = 1.

Theorem 15. (i) For a positive integer d, let the types T1, T2, . . . , Td be given,
where

Ti = A
m

(i)
1

1 ∗Am
(i)
2

2 ∗ · · · ∗Am(i)
n

n , i = 1, 2, . . . , j − 1, j + 1, . . . , d,

and

Tj = Dα ∗Am
(j)
1

1 ∗Am
(j)
2

2 ∗ · · · ∗Am(j)
n

n ,

for some α ≥ 2, and let l,m1,m2, . . . ,ml, s1, s2, . . . , sl be given non-negative inte-
gers with

rkT1 + rkT2 + · · ·+ rkTd + s1 + s2 + · · ·+ sl = n.

Then the number of factorisations

(8.27) c = σ1σ2 · · ·σdσ
(1)
1 σ

(1)
2 · · ·σ(1)

m1
σ
(2)
1 σ

(2)
2 · · ·σ(2)

m2
· · ·σ(l)

1 σ
(l)
2 · · ·σ(l)

ml
,

where c is a Coxeter element in W (Dn), such that the combinatorial type of σi is
Ti, i = 1, 2, . . . , d, and such that

(8.28) �T (σ
(i)
1 ) + �T (σ

(i)
2 ) + · · ·+ �T (σ

(i)
mi

) = si, i = 1, 2, . . . , l,

is given by

(8.29)

(n− 1)d−1

(
n− rkTj

m
(j)
1 ,m

(j)
2 , . . . ,m

(j)
n

)( d∏
i=1
i �=j

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

))

×
(
m1(n− 1)

s1

)(
m2(n− 1)

s2

)
· · ·
(
ml(n− 1)

sl

)
,

the multinomial coefficient being defined as in Lemma 4.
(ii) For a positive integer d, let the types T1, T2, . . . , Td be given, where

Ti = A
m

(i)
1

1 ∗Am
(i)
2

2 ∗ · · · ∗Am(i)
n

n , i = 1, 2, . . . , d,
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and let l,m1,m2, . . . ,ml, s1, s2, . . . , sl be given non-negative integers. Then the
number of factorisations (8.27) which satisfy (8.28) as well as the condition that
the combinatorial type of σi is Ti, i = 1, 2, . . . , d, is given by

(8.30)

2(n− 1)d−1

(
d∑

j=1

(
n− rkTj

m
(j)
1 ,m

(j)
2 , . . . ,m

(j)
n

) d∏
i=1
i �=j

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

))

×
(
m1(n− 1)

s1

)(
m2(n− 1)

s2

)
· · ·
(
ml(n− 1)

sl

)
+ (n− 1)d

(
d∏

i=1

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

))

×
l∑

j=1

mj

(
m1(n− 1)

s1

)
· · ·
(
mj(n− 1)− 1

sj − 2

)
· · ·
(
ml(n− 1)

sl

)

− 2(d− 1)(n− 1)d

(
d∏

i=1

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

))

×
(
m1(n− 1)

s1

)(
m2(n− 1)

s2

)
· · ·
(
ml(n− 1)

sl

)
.

Proof. The proof of item (i) is completely analogous to the proof of item (i) in
Theorem 13. Making reference to that proof, the only difference is that, instead of
the expression (5.1), we must use (6.1) with d replaced by d+m1 +m2 + · · ·+ml

and the appropriate interpretations of the m
(j)
i ’s. The summations over types T

(j)
i

with fixed rank r
(j)
i are carried out by using (3.4) with M = n−r−1. Subsequently,

the summations over the r
(j)
i ’s satisfying (8.4) are done by the multivariate version

of the Chu–Vandermonde summation. We leave it to the reader to fill in the details
to finally arrive at (8.29).

Similarly, the proof of item (ii) is analogous to the proof of item (ii) in Theo-
rem 13. However, we must cope with the complication that there may or may not

be a type D cycle in the disjoint cycle decomposition of one of the σ
(j)
i ’s on the

right-hand side of (8.27). In the case that there is no type B cycle, we fix the types

of the σ
(j)
i ’s to

T
(j)
i = A

m
(i,j)
1

1 ∗Am
(i,j)
2

2 ∗ · · · ∗Am(i,j)
n

n ,

i = 1, 2, . . . ,mj , j = 1, 2, . . . , l, and sum the expression (6.2) with d replaced by

d +m1 +m2 + · · · +ml and the appropriate interpretations of the m
(j)
i ’s over all

possible types T
(j)
i with rank r

(j)
i , i = 1, 2, . . . ,mj , j = 1, 2, . . . , l. This yields the
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expression

(8.31)

2(n− 1)d−1

(
d∑

j=1

(
n− rkTj

m
(j)
1 ,m

(j)
2 , . . . ,m

(j)
n

) d∏
i=1
i �=j

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

))

×
(
n− 1

r
(1)
1

)(
n− 1

r
(1)
2

)
· · ·
(
n− 1

r
(1)
m1

)
× · · · ×

(
n− 1

r
(l)
1

)(
n− 1

r
(l)
2

)
· · ·
(
n− 1

r
(l)
ml

)
+ 2(n− 1)d

(
l∑

j=1

mj∑
i=1

d∏
i=1

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

))

×
(
n− 1

r
(1)
1

)(
n− 1

r
(1)
2

)
· · ·
(
n− 1

r
(1)
m1

)
× · · · ×

(
n− 1

r
(l)
1

)(
n− 1

r
(l)
2

)
· · ·
(
n− 1

r
(l)
ml

)
− 2(d− 1)(n− 1)d−1

(
d∏

i=1

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

))

×
(
n− 1

r
(1)
1

)(
n− 1

r
(1)
2

)
· · ·
(
n− 1

r
(1)
m1

)
× · · · ×

(
n− 1

r
(l)
1

)(
n− 1

r
(l)
2

)
· · ·
(
n− 1

r
(l)
ml

)
.

In the case that there appears, however, a type B cycle in σ
(q)
p , say, we adopt the

same set-up as above, except that we restrict σ
(q)
p to types of the form

T (q)
p = Dα ∗Am̃1

1 ∗Am̃2
2 ∗ · · · ∗Am̃n

n .

Subsequently, we sum the expression (6.1) with d replaced by d+m1+m2+ · · ·+ml

and the appropriate interpretations of the m
(j)
i ’s over all possible types T

(j)
i of rank

r
(j)
i . This time, we obtain

(8.32) (n− 1)d

(
l∑

q=1

mq∑
p=1

n∑
α=2

d∏
i=1

1

n− rkTi − 1

(
n− rkTi − 1

m
(i)
1 ,m

(i)
2 , . . . ,m

(i)
n

))

×
(
n− 1

r
(1)
1

)(
n− 1

r
(1)
2

)
· · ·
(
n− 1

r
(1)
m1

)
× · · · ×

(
n− 1

r
(q)
1

)
· · ·
(
n− α− 1

r
(q)
p − α

)
· · ·
(
n− 1

r
(q)
mq

)
× · · · ×

(
n− 1

r
(l)
1

)(
n− 1

r
(l)
2

)
· · ·
(
n− 1

r
(l)
ml

)
.

The sum over α can be evaluated by means of the elementary summation formula

n∑
α=2

(
n− α− 1

r − α

)
=

n∑
α=2

(
n− α− 1

n− r − 1

)
=

(
n− 2

n− r

)
=

(
n− 2

r − 2

)
.

Finally, we must sum the expressions (8.31) and (8.32) over all non-negative integers

r
(1)
1 , . . . , r

(l)
ml satisfying the equations

r
(j)
1 + r

(j)
2 + · · ·+ r(j)mj

= sj , j = 1, 2, . . . , l.

Once again, this is easily done by means of the multivariate version of the Chu–
Vandermonde summation. After some simplification, we obtain the formula in
(8.30). �
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In view of the combinatorial realisation of m-divisible non-crossing partitions
of type Dn which we described in Section 7, the special case d = 1 of the above
theorem has the following enumerative consequence.

Corollary 16. Let l be a positive integer, and let s1, s2, . . . , sl be non-negative
integers with s1 + s2 + · · · + sl = n. The number of multi-chains π1 ≤ π2 ≤ · · · ≤
πl−1 in the poset ÑCm(Dn) with the property that rk(πi) = s1 + s2 + · · · + si,
i = 1, 2, . . . , l − 1, and that the number of non-zero blocks of π1 of size mi is 2bi,
i = 1, 2, . . . , n, is given by

(8.33)

(
b1 + b2 + · · ·+ bn

b1, b2, . . . , bn

)(
m(n− 1)

s2

)
· · ·
(
m(n− 1)

sl

)
if b1 + 2b2 + · · ·+ nbn < n− 1, and

(8.34) 2

(
b1 + b2 + · · ·+ bn

b1, b2, . . . , bn

)(
m(n− 1)

s2

)
· · ·
(
m(n− 1)

sl

)
+

m(n− 1)

b1 + b2 + · · ·+ bn − 1

(
b1 + b2 + · · ·+ bn − 1

b1 − 1, b2, . . . , bn

)
×

l∑
j=2

(
m(n− 1)

s2

)
· · ·
(
m(n− 1)− 1

sj − 2

)
· · ·
(
m(n− 1)

sl

)
if b1 + 2b2 + · · ·+ nbn = n.

Remark. The conditions in the statement of the corollary imply that

(8.35) s1 + b1 + b2 + · · ·+ bn = n.

The reader should recall from Section 7 that non-zero blocks of elements π of
ÑCm(Dn) occur in pairs since, with a block B of π, B is also a block of π. The
condition b1 +2b2 + · · ·+nbn < n− 1, which is required for formula (8.33) to hold,
implies that π1 must contain a zero block of size 2(n− b1 − 2b2 − · · · − nbn), while
the equality b1 + 2b2 + · · ·+ nbn = n, which is required for formula (8.34) to hold,
implies that π1 contains no zero block. The extra condition on zero blocks that are

imposed on elements of ÑCm(Dn) implies that b1+2b2+ · · ·+nbn cannot be equal
to n− 1.

Proof. Again, the arguments are completely analogous to those of the proof of
Corollary 12. Here we need Theorem 15 with d = 1, l replaced by l− 1, si replaced
by si+1, i = 1, 2, . . . , l − 1, m1 = m2 = · · · = ml−1 = m, and T1 of the type

Dn−b1−2b2−···−nbn ∗Ab2
1 ∗Ab3

2 ∗ · · · ∗Abn
n−1

in the case that b1 + 2b2 + · · ·+ nbn < n− 1, respectively

Ab2
1 ∗Ab3

2 ∗ · · · ∗Abn
n−1

if not. So, depending on the case which we are in, we have to apply (8.29), re-
spectively (8.30). If we also take into account (8.35), then we arrive at the claimed
result after little manipulation. Since we have already done similar calculations
several times, the details are left to the reader. �

This result is new even for m = 1, that is, for the poset of type Dn non-crossing
partitions of Athanasiadis and Reiner [5], and of Bessis and Corran [9]. Not only
does it imply all known results on these non-crossing partitions and their extension
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to m-divisible type Dn non-crossing partitions due to Armstrong, it allows us as
well to solve several open enumeration problems on the m-divisible type Dn non-
crossing partitions. We state these new results separately in the corollaries below.

To begin with, if we set l = 2 in Corollary 16, then we obtain the following

extension to ÑCm(Dn) of Athanasiadis and Reiner’s result [5, Theorem 1.3] on the
number of type Dn non-crossing partitions with a given block structure.

Corollary 17. The number of all elements of ÑCm(Dn) which have 2bi non-zero
blocks of size mi equals

(8.36)

(
b1 + b2 + · · ·+ bn

b1, b2, . . . , bn

)(
m(n− 1)

b1 + b2 + · · ·+ bn

)

if b1 + 2b2 + · · ·+ nbn < n− 1 and

(8.37) 2

(
b1 + b2 + · · ·+ bn

b1, b2, . . . , bn

)(
m(n− 1)

b1 + b2 + · · ·+ bn

)
+

(
b1 + b2 + · · ·+ bn − 1

b1 − 1, b2, . . . , bn

)(
m(n− 1)

b1 + b2 + · · ·+ bn − 1

)

if b1 + 2b2 + · · ·+ nbn = n.

On the other hand, if we sum the expression (8.33), respectively (8.34), over
all s2, s3, . . . , sl with s2 + s3 + · · · + sl = n − s1, then we obtain the following
generalisation.

Corollary 18. The number of all multi-chains π1 ≤ π2 ≤ · · · ≤ πl−1 in ÑCm(Dn)
in which π1 has 2bi non-zero blocks of size mi equals

(8.38)

(
b1 + b2 + · · ·+ bn

b1, b2, . . . , bn

)(
(l − 1)m(n− 1)

b1 + b2 + · · ·+ bn

)

if b1 + 2b2 + · · ·+ nbn < n− 1, and

(8.39) 2

(
b1 + b2 + · · ·+ bn

b1, b2, . . . , bn

)(
(l − 1)m(n− 1)

b1 + b2 + · · ·+ bn

)
+

(
b1 + b2 + · · ·+ bn − 1

b1 − 1, b2, . . . , bn

)(
(l − 1)m(n− 1)

b1 + b2 + · · ·+ bn − 1

)

if b1 + 2b2 + · · ·+ nbn = n.

Next we sum the expressions (8.33) and (8.34) over all possible b1, b2, . . . , bn;
that is, we sum (8.33) over b2 + 2b3 + · · · + (n − 1)bn < s1 − 1, and we sum the
expression (8.34) over b2 + 2b3 + · · · + (n− 1)bn = s1. With the help of Lemma 4
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and the simple binomial summation (6.24), these sums can indeed be evaluated. In
this manner, we obtain the following result on rank-selected chain enumeration in

ÑCm(Dn).

Corollary 19. The number of all multi-chains π1 ≤ π2 ≤ · · · ≤ πl−1 in ÑCm(Dn)
∼= NCm(Dn), where πi is of rank s1 + s2 + · · ·+ si, i = 1, 2, . . . , l − 1, equals

(8.40) 2

(
n− 1

s1

)(
m(n− 1)

s2

)
· · ·
(
m(n− 1)

sl

)
+m

l∑
j=2

(
n− 1

s1

)(
m(n− 1)

s2

)
· · ·
(
m(n− 1)− 1

sj − 2

)
· · ·
(
m(n− 1)

sl

)

+

(
n− 2

s1 − 2

)(
m(n− 1)

s2

)
· · ·
(
m(n− 1)

sl

)
.

This formula extends Athanasiadis and Reiner’s formula [5, Theorem 1.2(ii)]

from NC(Dn) to ÑCm(Dn). Setting l = 2, we obtain a formula for the number of

all elements in ÑCm(Dn) ∼= NCm(Dn) with a given number of blocks (equivalently,
of given rank); cf. [1, Theorem 4.6.3]. Next, summing (8.40) over all non-negative
integers s1, s2, . . . , sl with s1 + s2 + · · ·+ sl = n by means of the multivariate Chu–
Vandermonde summation, we find that the total number of multi-chains π1 ≤ π2 ≤
· · · ≤ πl−1 in ÑCm(Dn) ∼= NCm(Dn) is given by

(8.41) 2

(
((l − 1)m+ 1)(n− 1)

n

)
+

(
((l − 1)m+ 1)(n− 1)

n− 1

)
=

2(l − 1)m(n− 1) + n

n

(
((l − 1)m+ 1)(n− 1)

n− 1

)
,

thus recovering the formula [1, Theorem 3.6.9] for the zeta polynomial of the poset
of generalised non-crossing partitions for type Dn. The special case l = 2 of

(8.41) gives the well-known fact that the cardinality of ÑCm(Dn) ∼= NCm(Dn)

is 2m(n−1)+n
n

(
(m+1)(n−1)

n−1

)
(cf. [1, Theorem 3.5.3]).

In the following section, Corollary 19 will enable us to provide a new proof of
Armstrong’s F = M (Ex-)Conjecture in type Dn.

9. Proof of the F = M Conjecture for type D

Armstrong’s F = M (Ex-)Conjecture [1, Conjecture 5.3.2], which extends an ear-
lier conjecture of Chapoton [17], relates the “F -triangle” of the generalised cluster
complex of Fomin and Reading [19] to the “M -triangle” of Armstrong’s generalised
non-crossing partitions. The F -triangle is a certain refined face count in the gen-
eralised cluster complex. We do not give the definition here and, instead, refer the
reader to [1, 27], because it will not be important in what follows. It suffices to
know that, again fixing a finite root system Φ of rank n and a positive integer m,
the F -triangle Fm

Φ (x, y) for the generalised cluster complex ∆m(Φ) is a polynomial
in x and y and that it was computed in [27] for all types. What we need here is
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that it was shown in [27, Sec. 11, Prop. D] that

(9.1) (1− xy)nFm
Dn

(
x(1 + y)

1− xy
,

xy

1− xy

)
=
∑
r,s≥0

xsyr

(
2

(
n− 1

s− 1

)(
m(n− 1)

r

)(
m(n− 1) + s− r − 1

s− r

)

+

(
n− 2

s

)(
m(n− 1)

r

)(
m(n− 1) + s− r − 1

s− r

)
+m

(
n− 1

s− 1

)(
m(n− 1)− 1

r − 2

)(
m(n− 1) + s− r − 1

s− r

)
−m

(
n− 1

s− 1

)(
m(n− 1)

r

)(
m(n− 1) + s− r − 2

s− r − 2

))
.

The “M -triangle” of NCm(Φ) is the polynomial defined by

Mm
Φ (x, y) =

∑
u,w∈NCm(Φ)

µ(u,w) xrkuyrkw,

where µ(u,w) is the Möbius function in NCm(Φ). It is called a “triangle” because
the Möbius function µ(u,w) vanishes unless u ≤ w, and, thus, the only coefficients
in the polynomial which may be non-zero are the coefficients of xkyl with 0 ≤ k ≤
l ≤ n.

An equivalent object is the dual M -triangle, which is defined by

(Mm
Φ )∗(x, y) =

∑
u,w∈(NCm(Φ))∗

µ∗(u,w) xrk∗ wyrk
∗ u,

where (NCm(Φ))∗ denotes the poset dual to NCm(Φ) (i.e., the poset which arises
from NCm(Φ) by reversing all order relations), where µ∗ denotes the Möbius func-
tion in (NCm(Φ))∗ and where rk∗ denotes the rank function in (NCm(Φ))∗. It is
equivalent since, obviously, we have

(9.2) (Mm
Φ )∗(x, y) = (xy)nMm

Φ (1/x, 1/y).

Given this notation, Armstrong’s F = M (Ex-)Conjecture [1, Conjecture 5.3.2]
reads as follows.

Conjecture FM. For any finite root system Φ of rank n, we have

Fm
Φ (x, y) = yn Mm

Φ

(
1 + y

y − x
,
y − x

y

)
.

Equivalently,
(9.3)

(1− xy)nFm
Φ

(
x(1 + y)

1− xy
,

xy

1− xy

)
=

∑
u,w∈(NCm(Φ))∗

µ∗(u,w) (−x)rk
∗ w(−y)rk

∗ u.

So, equation (9.1) provides an expression for the left-hand side of (9.3) for Φ =
Dn. With our result on rank-selected chain enumeration in NCm(Dn) given in
Corollary 19, we are now able to calculate the right-hand side of (9.3) directly. As
we mentioned already in the Introduction, together with the results from [27, 28],
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this completes a computational case-by-case proof of Conjecture FM. A case-free
proof had been found earlier by Tzanaki in [38].

The only ingredient that we need for the proof is the well-known link between
chain enumeration and the Möbius function. (The reader should consult [33,
Sec. 3.11] for more information on this topic.) Given a poset P and two elements
u and w, u ≤ w, in the poset, the zeta polynomial of the interval [u,w], denoted
by Z(u,w; z), is the number of (multi-)chains from u to w of length z. (It can be
shown that this is indeed a polynomial in z.) Then the Möbius function of u and
w is equal to µ(u,w) = Z(u,w;−1).

Proof of Conjecture FM in type Dn. We now compute the right-hand side of (9.3),
that is, ∑

u,w∈(NCm(Dn))∗

µ∗(u,w)(−x)rk
∗ w(−y)rk

∗ u.

In order to compute the coefficient of xsyr in this expression,

(−1)r+s
∑

u,w∈(NCm(Dn))∗

with rk∗ u=r and rk∗ w=s

µ∗(u,w),

we compute the sum of all corresponding zeta polynomials (in the variable z),
multiplied by (−1)r+s,

(−1)r+s
∑

u,w∈(NCm(Dn))∗

with rk∗ u=r and rk∗ w=s

Z(u,w; z),

and then put z = −1.
For computing this sum of zeta polynomials, we must set l = z + 2, n− s1 = s,

sl = r, s2 + s3 + · · ·+ sl−1 = s− r in (8.40), and then sum the resulting expression
over all possible s2, s3, . . . , sl−1. (The reader should keep in mind that the roles of
s1, s2, . . . , sl in Corollary 19 have to be reversed, since we are aiming at computing
zeta polynomials in the poset dual to NCm(Dn).) By using the Chu–Vandermonde
summation, one obtains

2

(
m(n− 1)

r

)(
zm(n− 1)

s− r

)(
n− 1

s− 1

)
+m

(
m(n− 1)− 1

r − 2

)(
zm(n− 1)

s− r

)(
n− 1

s− 1

)
+zm

(
m(n− 1)

r

)(
zm(n− 1)− 1

s− r − 2

)(
n− 1

s− 1

)
+

(
m(n− 1)

r

)(
zm(n− 1)

s− r

)(
n− 2

s

)
.

If we put z = −1 in this expression and multiply it by (−1)r+s, then we obtain
exactly the coefficient of xsyr in (9.1). �

10. A conjecture of Armstrong on maximal intervals

containing a random multichain

Given a finite root system of rank n, Conjecture 3.5.13 in [1] says the following:
If we choose an l-multichain uniformly at random from the set

(10.1)
{
π1 ≤ π2 ≤ · · · ≤ πl : πi ∈ NCm(Φ), i = 1, . . . , l, and rk(π1) = i

}
,
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then the expected number of maximal intervals in NCm(Φ) containing this multi-
chain is

(10.2)
Narm(Φ, n− i)

Nar1(Φ, n− i)
,

where Narm(Φ, i) is the i-th Fuß–Narayana number associated to NCm(Φ), that is,
the number of elements of NCm(Φ) of rank i. In particular, this expected value is
independent of l.

We show in this section that, for types An and Bn, the conjecture follows eas-
ily from Edelman’s (8.14), respectively Armstrong’s (8.25) (presumably, this fact
constituted the evidence for setting up the conjecture), while an analogous com-
putation using our new result (8.40) demonstrates that it fails for type Dn. At
the end of this section, we comment on what we think happens for the exceptional
types.

The computation of the expected value in the above conjecture can be ap-
proached in the following way. One first observes that a maximal interval in
NCm(Φ) is an interval between an element π0 of rank 0 and the global maximum
(c; ε, . . . , ε). Therefore, to compute the proposed expected value, we may count the
number of chains

(10.3) π0 ≤ π1 ≤ π2 ≤ · · · ≤ πl, rk(π0) = 0 and rk(π1) = i,

and divide this number by the total number of all chains in (10.1). Clearly, in types
An, Bn, and Dn, this kind of chain enumeration can be easily accessed by (8.14),
(8.25), and (8.40), respectively.

We begin with type An. By (8.14), the number of chains (10.3) equals

∑
s2+···+sl+1=n−i

1

n+ 1

(
n+ 1

0

)(
m(n+ 1)

i

)(
m(n+ 1)

s2

)
· · ·
(
m(n+ 1)

sl+1

)

=
1

n+ 1

(
m(n+ 1)

i

)(
ml(n+ 1)

n− i

)
,

while the number of chains in (10.1) equals

∑
s2+···+sl+1=n−i

1

n+ 1

(
n+ 1

i

)(
m(n+ 1)

s2

)
· · ·
(
m(n+ 1)

sl+1

)

=
1

n+ 1

(
n+ 1

i

)(
ml(n+ 1)

n− i

)
.

In both cases, we used the multivariate Chu–Vandermonde summation to evaluate
the sums over s2, . . . , sl+1. The quotient of the two numbers is

1

n+ 1

(
m(n+ 1)

i

)
1

n+ 1

(
n+ 1

i

) =

1

n+ 1

(
n+ 1

n− i

)(
m(n+ 1)

i

)
1

n+ 1

(
n+ 1

n− i

)(
n+ 1

i

) ,

which by (8.14) with n replaced by n + 1, l = 2, s1 = n − i, and s2 = i agrees
indeed with (10.2) for Φ = An.
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For type Bn, there is an analogous computation using (8.25), the details of which
we leave to the reader. The result is that the desired expected value equals(

mn

i

)
(
n

i

) =

(
n

n− i

)(
mn

i

)
(

n

n− i

)(
n

i

) ,

which by (8.25) with l = 2, s1 = n − i, and s2 = i agrees indeed with (10.2) for
Φ = Bn.

The analogous computation for typeDn uses (8.40). The number of chains (10.3)
equals

2
∑

s2+···+sl+1=n−i

(
n− 1

0

)(
m(n− 1)

i

)(
m(n− 1)

s2

)
· · ·
(
m(n− 1)

sl+1

)

+m
∑

s2+···+sl+1=n−i

(
n− 1

0

)(
m(n− 1)− 1

i− 2

)(
m(n− 1)

s2

)
· · ·
(
m(n− 1)

sl+1

)

+m

l+1∑
j=3

∑
s2+···+sl+1=n−i

(
n− 1

0

)(
m(n− 1)

i

)(
m(n− 1)

s2

)

· · ·
(
m(n− 1)− 1

sj − 2

)
· · ·
(
m(n− 1)

sl+1

)
= 2

(
m(n− 1)

i

)(
ml(n− 1)

n− i

)
+m

(
m(n− 1)− 1

i− 2

)(
ml(n− 1)

n− i

)

+m(l − 1)

(
m(n− 1)

i

)(
ml(n− 1)− 1

n− i− 2

)
,

(10.4)

while the number of chains in (10.1) equals

(10.5)

2
∑

s2+···+sl+1=n−i

(
n− 1

i

)(
m(n− 1)

s2

)
· · ·
(
m(n− 1)

sl+1

)

+m
l+1∑
j=2

∑
s2+···+sl+1=n−i

(
n− 1

i

)(
m(n− 1)

s2

)

· · ·
(
m(n− 1)− 1

sj − 2

)
· · ·
(
m(n− 1)

sl+1

)
+

∑
s2+···+sl+1=n−i

(
n− 2

i− 2

)(
m(n− 1)

s2

)
· · ·
(
m(n− 1)

sl+1

)

= 2

(
n− 1

i

)(
ml(n− 1)

n− i

)
+ml

(
n− 1

i

)(
ml(n− 1)− 1

n− i− 2

)
+

(
n− 2

i− 2

)(
ml(n− 1)

n− i

)
.

The quotient of (10.4) and (10.5) gives the desired expected value. It is, however,
not independent of l, and therefore Armstrong’s conjecture does not hold for Φ =
Dn.

Licensed to Univ of Minnesota-Twin Cities. Prepared on Tue Aug 26 09:57:35 EDT 2014 for download from IP 128.101.152.245.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



DECOMPOSITION NUMBERS FOR FINITE COXETER GROUPS 2781

In the case that Φ is of exceptional type, then, as we outline in the next section,
the knowledge of the corresponding decomposition numbers (see the appendix)
allows one to access the rank selected chain enumeration. Using this, the approach
for computing the expected value proposed by Armstrong that we used above for
the classical types can be carried through as well for the exceptional types. We have
not done this, but we expect that, similarly to the case of Dn, for most exceptional
types the expected value will depend on l, so that Armstrong’s conjecture will
probably also fail in these cases.

11. Chain enumeration in the poset of generalised non-crossing

partitions for the exceptional types

Although it is not the main topic of our paper, we want to briefly demonstrate
in this section that the knowledge of the decomposition numbers also enables one
to do refined enumeration in the generalised non-crossing partition posets NCm(Φ)
for exceptional root systems Φ (of rank n). We restrict the following considerations
to the rank-selected chain enumeration. This means that we want to count the
number of all multi-chains π1 ≤ π2 ≤ · · · ≤ πl−1 in NCm(Φ), where πi is of rank
s1+s2+ · · ·+si, i = 1, 2, . . . , l−1. Let us denote this number by RΦ(s1, s2, . . . , sl),
with sl = n − s1 − s2 − · · · − sl. Now, the considerations at the beginning of
the proof of Corollary 12, leading to the factorisation (8.12) with rank constraints
on the factors, are also valid for NCm(Φ) instead of NCm(An−1), that is, they
are independent of the underlying root system. Hence, to determine the number
RΦ(s1, s2, . . . , sl), we have to count all possible factorisations

c = w
(1)
0

(
u
(2)
1 u

(3)
1 · · ·u(l)

1

)(
u
(2)
2 u

(3)
2 · · ·u(l)

2

)
· · ·
(
u(2)
m u(3)

m · · ·u(l)
m

)
,

under the rank constraints (8.11) and �T (w
(1)
0 ) = s1, where c is a Coxeter element

in W (Φ). As we remarked in the proof of Corollary 12, equivalently we may count
all factorisations

(11.1) c = w
(1)
0

(
u
(2)
1 u

(2)
2 · · ·u(2)

m

)(
u
(3)
1 u

(3)
2 · · ·u(3)

m

)
· · ·
(
u
(l)
1 u

(l)
2 · · ·u(l)

m

)
which satisfy (8.11) and �T (w

(1)
0 ) = s1. We can now obtain an explicit expression

by fixing first the types of w
(1)
0 and all the u

(j)
i ’s. Under these constraints, the

number of factorisations (11.1) is just the corresponding decomposition number.
Subsequently, we sum the resulting expressions over all possible types.

Before we are able to state the formula which we obtain in this way, we need to
recall some standard integer partition notation (cf. e.g. [34, Sec. 7.2]). An integer
partition λ (with n parts) is an n-tuple λ = (λ1, λ2, . . . , λn) of integers satisfying
λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. It is called an integer partition of N , written in symbolic
notation as λ 
 N , if λ1 + λ2 + · · ·+ λn = N . The number of parts (components)
of λ of size i is denoted by mi(λ).

Then, again making use of the notation for the multinomial coefficient intro-
duced in Lemma 4, the expression for RΦ(s1, s2, . . . , sl) which we obtain in the way
described above is

(11.2)
∑′ NΦ(T

(1)
0 , T

(2)
1 , T

(2)
2 , . . . , T (l)

n )
l∏

j=2

(
m

m1(λ(j)),m2(λ(j)), . . . ,mn(λ(j))

)
,
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where
∑ ′ is taken over all integer partitions λ(2), λ(3), . . . , λ(l) satisfying λ(2) 
 s2,

λ(3) 
 s3, . . . , λ
(l) 
 sl, over all types T

(1)
0 with rk(T

(1)
0 ) = s1, and over all types

T
(j)
i with rk(T

(j)
i ) = λ

(j)
i , i = 1, 2, . . . , n, j = 2, 3, . . . , l.

By way of example, using this formula and the values of the decomposition
numbers NE8

(. . . ) given in Appendix A.7 (and a computer), we obtain that the
number RE8

(4, 2, 1, 1) of all chains π1 ≤ π2 ≤ π3 in NCm(E8), where π1 is of rank
4, π2 is of rank 6, and π3 is of rank 7, is given by

75m3 (8055m− 1141)

2

(which, by the independence (2.2) of decomposition numbers from the order of
the types, is also equal to RE8

(4, 1, 2, 1) and RE8
(4, 1, 1, 2)), while the number

RE8
(2, 4, 1, 1) of all chains π1 ≤ π2 ≤ π3 in NCm(E8), where π1 is of rank 2, π2 is

of rank 6, and π3 is of rank 7, is given by

75m3
(
73125m3 − 58950m2 + 15635m− 2154

)
8

(which is also equal to RE8
(2, 1, 4, 1) and RE8

(2, 1, 1, 4)).

Appendix A. The decomposition numbers for the exceptional types

A.1. The decomposition numbers for type I2(a) [27, Sec. 13]. We have
NI2(a)(I2(a)) = 1, NI2(a)(A1, A1) = a, NI2(a)(A1) = a, NI2(a)(∅) = 1, with all other
numbers NI2(a)(T1, T2, . . . , Td) being zero.

A.2. The decomposition numbers for type H3 [27, Sec. 14]. We have
NH3

(H3) = 1, NH3
(A2

1, A1) = 5, NH3
(A2, A1) = 5, NH3

(I2(5), A1) = 5,
NH3

(A1, A1, A1) = 50, plus the assignments implied by (2.2) and (2.3), with all
other numbers NH3

(T1, T2, . . . , Td) being zero.

A.3. The decomposition numbers for type H4 [27, Sec. 15]. We have
NH4

(H4) = 1, NH4
(A1 ∗ A2, A1) = 15, NH4

(A3, A1) = 15, NH4
(H3, A1) = 15,

NH4
(A1 ∗ I2(5), A1) = 15, NH4

(A2
1, A

2
1) = 30, NH4

(A2
1, A2) = 30, NH4

(A2
1, I2(5))

= 15, NH4
(A2, A2) = 5, NH4

(A2, I2(5)) = 15, NH4
(I2(5), I2(5)) = 3,

NH4
(A2

1, A1, A1) = 225, NH4
(A2, A1, A1) = 150, NH4

(I2(5), A1, A1) = 90,
NH4

(A1, A1, A1, A1) = 1350, plus the assignments implied by (2.2) and (2.3), with
all other numbers NH4

(T1, T2, . . . , Td) being zero.

A.4. The decomposition numbers for type F4 [27, Sec. 16]. We haveNF4
(F4)

= 1, NF4
(A1 ∗ A2, A1) = 12, NF4

(B3, A1) = 12, NF4
(A2

1, A
2
1) = 12, NF4

(A2
1, B2) =

12, NF4
(A2, A2) = 16, NF4

(B2, B2) = 3, NF4
(A2

1, A1, A1) = 72, NF4
(A2, A1, A1) =

48, NF4
(B2, A1, A1) = 36, NF4

(A1, A1, A1, A1) = 432, plus the assignments implied
by (2.2) and (2.3), with all other numbers NF4

(T1, T2, . . . , Td) being zero.

A.5. The decomposition numbers for type E6 [27, Sec.17]. We haveNE6
(E6)

= 1, NE6
(A1 ∗A2

2, A1) = 6, NE6
(A1 ∗A4, A1) = 12, NE6

(A5, A1) = 6, NE6
(D5, A1)

= 12, NE6
(A2

1∗A2, A2) = 36, NE6
(A2

2, A2) = 8, NE6
(A1∗A3, A2) = 24, NE6

(A4, A2)
= 24, NE6

(D4, A2) = 4, NE6
(A2

1∗A2, A
2
1) = 18, NE6

(A1∗A3, A
2
1) = 36, NE6

(A4, A
2
1)

= 36, NE6
(D4, A

2
1) = 18, NE6

(A3
1, A

3
1) = 12, NE6

(A1 ∗ A2, A
3
1) = 24,

NE6
(A1 ∗ A2, A1 ∗ A2) = 48, NE6

(A3, A
3
1) = 36, NE6

(A3, A1 ∗ A2) = 72,
NE6

(A3, A3) = 27, NE6
(A2

1 ∗ A2, A1, A1) = 144, NE6
(A2

2, A1, A1) = 24,
NE6

(A1 ∗ A3, A1, A1) = 144, NE6
(A4, A1, A1) = 144, NE6

(D4, A1, A1) = 48,
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NE6
(A3

1, A
2
1, A1) = 180, NE6

(A3
1, A2, A1) = 168, NE6

(A1 ∗ A2, A
2
1, A1) = 360,

NE6
(A1 ∗ A2, A2, A1) = 336, NE6

(A3, A
2
1, A1) = 378, NE6

(A3, A2, A1) = 180,
NE6

(A2
1, A

2
1, A

2
1) = 432, NE6

(A2, A
2
1, A

2
1) = 504, NE6

(A2, A2, A
2
1) = 288,

NE6
(A2, A2, A2) = 160, NE6

(A2
1, A

2
1, A1, A1) = 2376, NE6

(A2, A
2
1, A1, A1) = 1872,

NE6
(A2, A2, A1, A1) = 1056, NE6

(A3
1, A1, A1, A1) = 864, NE6

(A1 ∗ A2, A1, A1, A1)
= 1728, NE6

(A3, A1, A1, A1) = 1296, NE6
(A2

1, A1, A1, A1, A1) = 10368,
NE6

(A2, A1, A1, A1, A1) = 6912, NE6
(A1, A1, A1, A1, A1, A1) = 41472, plus the as-

signments implied by (2.2) and (2.3), with all other numbers NE6
(T1, T2, . . . , Td)

being zero.

A.6. The decomposition numbers for type E7 [28, Sec. 6]. We have NE7
(E7)

= 1, NE7
(E6, A1) = 9, NE7

(D6, A1) = 9, NE7
(A6, A1) = 9, NE7

(A1 ∗ D5, A1)
= 9, NE7

(A1 ∗ A5, A1) = 9, NE7
(A2 ∗ D4, A1) = 0, NE7

(A2 ∗ A4, A1) = 9,
NE7

(A2
1 ∗ D4, A1) = 0, NE7

(A2
1 ∗ A4, A1) = 0, NE7

(A2
3, A1) = 0,

NE7
(A1 ∗ A2 ∗ A3, A1) = 9, NE7

(A3
1 ∗ A3, A1) = 0, NE7

(A3
2, A1) = 0,

NE7
(A2

1 ∗A2
2, A1) = 0, NE7

(A4
1 ∗A2, A1) = 0, NE7

(A6
1, A1) = 0, NE7

(D5, A2) = 18,
NE7

(A5, A2) = 30, NE7
(A1 ∗ A4, A2) = 54, NE7

(A1 ∗ D4, A2) = 9,
NE7

(A2 ∗ A3, A2) = 36, NE7
(A2

1 ∗ A3, A2) = 36, NE7
(A1 ∗ A2

2, A2) = 36,
NE7

(A3
1 ∗ A2, A2) = 12, NE7

(A5
1, A2) = 0, NE7

(D5, A
2
1) = 54, NE7

(A5, A
2
1) = 63,

NE7
(A1 ∗ D4, A

2
1) = 27, NE7

(A1 ∗ A4, A
2
1) = 81, NE7

(A2 ∗ A3, A
2
1) = 27,

NE7
(A2

1 ∗A3, A
2
1) = 27, NE7

(A1 ∗A2
2, A

2
1) = 27, NE7

(A3
1 ∗A2, A

2
1) = 9, NE7

(A5
1, A

2
1)

= 0, NE7
(D5, A1, A1) = 162, NE7

(A5, A1, A1) = 216, NE7
(A1 ∗ D4, A1, A1)

= 81, NE7
(A1 ∗ A4, A1, A1) = 324, NE7

(A2 ∗ A3, A1, A1) = 162,
NE7

(A2
1∗A3, A1, A1) = 162, NE7

(A1∗A2
2, A1, A1) = 162, NE7

(A3
1∗A2, A1, A1) = 54,

NE7
(A5

1, A1, A1) = 0, NE7
(D4, A3) = 9, NE7

(A4, A3) = 54, NE7
(A1∗A3, A3) = 135,

NE7
(A2

2, A3) = 54, NE7
(A2

1 ∗ A2, A3) = 162, NE7
(A4

1, A3) = 27,
NE7

(D4, A1 ∗ A2) = 45, NE7
(A4, A1 ∗ A2) = 162, NE7

(A1 ∗ A3, A1 ∗ A2) = 243,
NE7

(A2
2, A1 ∗ A2) = 54, NE7

(A2
1 ∗ A2, A1 ∗ A2) = 162, NE7

(A4
1, A1 ∗ A2) = 27,

NE7
(D4, A

3
1) = 30, NE7

(A4, A
3
1) = 99, NE7

(A1 ∗ A3, A
3
1) = 126,

NE7
(A2

2, A
3
1) = 18, NE7

(A2
1 ∗ A2, A

3
1) = 54, NE7

(A4
1, A

3
1) = 9, NE7

(D4, A2, A1)
= 81, NE7

(A4, A2, A1) = 378, NE7
(A1 ∗ A3, A2, A1) = 783, NE7

(A2
2, A2, A1) =

270, NE7
(A2

1 ∗ A2, A2, A1) = 810, NE7
(A4

1, A2, A1) = 135, NE7
(D4, A

2
1, A1) =

243, NE7
(A4, A

2
1, A1) = 891, NE7

(A1 ∗ A3, A
2
1, A1) = 1377, NE7

(A2
2, A

2
1, A1) =

324, NE7
(A2

1 ∗ A2, A
2
1, A1) = 972, NE7

(A4
1, A

2
1, A1) = 162, NE7

(D4, A1, A1, A1)
= 729, NE7

(A4, A1, A1, A1) = 2916, NE7
(A1 ∗ A3, A1, A1, A1) = 5103,

NE7
(A2

2, A1, A1, A1) = 1458, NE7
(A2

1 ∗A2, A1, A1, A1) = 4374, NE7
(A4

1, A1, A1, A1)
= 729, NE7

(A3, A3, A1) = 486, NE7
(A3, A1 ∗ A2, A1) = 1458,NE7

(A3, A
3
1, A1) =

891,NE7
(A1∗A2, A1∗A2, A1) = 2430,NE7

(A1∗A2, A
3
1, A1) = 1215,NE7

(A3
1, A

3
1, A1)

= 540, NE7
(A3, A2, A2) = 432, NE7

(A1 ∗ A2, A2, A2) = 1188, NE7
(A3

1, A2, A2) =
711, NE7

(A3, A2, A
2
1) = 1053, NE7

(A1 ∗ A2, A2, A
2
1) = 2349, NE7

(A3
1, A2, A

2
1) =

1323, NE7
(A3, A

2
1, A

2
1) = 2430, NE7

(A1 ∗ A2, A
2
1, A

2
1) = 3402, NE7

(A3
1, A

2
1, A

2
1) =

1539, NE7
(A3, A2, A1, A1) = 3402, NE7

(A1 ∗ A2, A2, A1, A1) = 8262,
NE7

(A3
1, A2, A1, A1) = 4779, NE7

(A3, A
2
1, A1, A1) = 8019, NE7

(A1 ∗A2, A
2
1, A1, A1)

= 13851, NE7
(A3

1, A
2
1, A1, A1) = 7047, NE7

(A3, A1, A1, A1, A1) = 26244, NE7
(A1 ∗

A2, A1, A1, A1, A1) = 52488, NE7
(A3

1, A1, A1, A1, A1) = 28431, NE7
(A2, A2, A2, A1)

= 2916, NE7
(A2, A2, A

2
1, A1) = 6561, NE7

(A2, A
2
1, A

2
1, A1) = 13122,

NE7
(A2

1, A
2
1, A

2
1, A1) = 19683, NE7

(A2, A2, A1, A1, A1) = 21870,
NE7

(A2, A
2
1, A1, A1, A1) = 45927, NE7

(A2
1, A

2
1, A1, A1, A1) = 78732,

NE7
(A2, A1, A1, A1, A1, A1) = 157464, NE7

(A2
1, A1, A1, A1, A1, A1) = 295245,
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NE7
(A1, A1, A1, A1, A1, A1, A1) = 1062882, plus the assignments implied by (2.2)

and (2.3), with all other numbers NE7
(T1, T2, . . . , Td) being zero.

A.7. The decomposition numbers for type E8 [28, Sec. 7]. We have NE8
(E8)

= 1, NE8
(E7, A1) = 15, NE8

(D7, A1) = 15, NE8
(A7, A1) = 15, NE8

(A1 ∗ E6, A1)
= 15, NE8

(A1 ∗ D6, A1) = 0, NE8
(A1 ∗ A6, A1) = 15, NE8

(A2 ∗ D5, A1) = 15,
NE8

(A2 ∗ A5, A1) = 0, NE8
(A2

1 ∗ D5, A1) = 0, NE8
(A2

1 ∗ A5, A1) = 0,
NE8

(A3 ∗ D4, A1) = 0, NE8
(A3 ∗ A4, A1) = 15, NE8

(A1 ∗ A2 ∗ D4, A1) = 0,
NE8

(A1 ∗ A2 ∗ A4, A1) = 15, NE8
(A3

1 ∗ D4, A1) = 0, NE8
(A3

1 ∗ A4, A1) = 0,
NE8

(A1 ∗ A2
3, A1) = 0, NE8

(A2
2 ∗ A3, A1) = 0, NE8

(A2
1 ∗ A2 ∗ A3, A1) = 0,

NE8
(A4

1 ∗ A3, A1) = 0, NE8
(A1 ∗ A3

2, A1) = 0, NE8
(A3

1 ∗ A2
2, A1) = 0,

NE8
(A5

1 ∗ A2, A1) = 0, NE8
(A7

1, A1) = 0, NE8
(E6, A2) = 20, NE8

(D6, A2) = 15,
NE8

(A6, A2) = 60, NE8
(A1 ∗ D5, A2) = 60, NE8

(A1 ∗ A5, A2) = 60,
NE8

(A2 ∗ D4, A2) = 20, NE8
(A2 ∗ A4, A2) = 90, NE8

(A2
3, A2) = 45,

NE8
(A2

1 ∗ D4, A2) = 0, NE8
(A2

1 ∗ A4, A2) = 90, NE8
(A1 ∗ A2 ∗ A3, A2) = 90,

NE8
(A3

1∗A3, A2) = 0, NE8
(A3

2, A2) = 0, NE8
(A2

1∗A2
2, A2) = 45, NE8

(A4
1∗A2, A2) =

0, NE8
(A6

1, A2) = 0, NE8
(E6, A

2
1) = 45, NE8

(D6, A
2
1) = 90, NE8

(A6, A
2
1) = 135,

NE8
(A1 ∗D5, A

2
1) = 135, NE8

(A1 ∗A5, A
2
1) = 135, NE8

(A2 ∗D4, A
2
1) = 45, NE8

(A2 ∗
A4, A

2
1) = 90, NE8

(A2
3, A

2
1) = 45, NE8

(A2
1 ∗ D4, A

2
1) = 0, NE8

(A2
1 ∗ A4, A

2
1) = 90,

NE8
(A1 ∗ A2 ∗ A3, A

2
1) = 90, NE8

(A3
1 ∗ A3, A

2
1) = 0, NE8

(A3
2, A

2
1) = 0, NE8

(A2
1 ∗

A2
2, A

2
1) = 45, NE8

(A4
1 ∗ A2, A

2
1) = 0, NE8

(A6
1, A

2
1) = 0, NE8

(E6, A1, A1) = 150,
NE8

(D6, A1, A1) = 225, NE8
(A6, A1, A1) = 450, NE8

(A1 ∗ D5, A1, A1) = 450,
NE8

(A1 ∗ A5, A1, A1) = 450, NE8
(A2 ∗D4, A1, A1) = 150, NE8

(A2 ∗ A4, A1, A1) =
450, NE8

(A2
3, A1, A1) = 225, NE8

(A2
1∗D4, A1, A1) = 0, NE8

(A2
1∗A4, A1, A1) = 450,

NE8
(A1 ∗ A2 ∗ A3, A1, A1) = 450, NE8

(A3
1 ∗ A3, A1, A1) = 0, NE8

(A3
2, A1, A1) =

0, NE8
(A2

1 ∗ A2
2, A1, A1) = 225, NE8

(A4
1 ∗ A2, A1, A1) = 0, NE8

(A6
1, A1, A1) =

0, NE8
(D5, A3) = 45, NE8

(A5, A3) = 90, NE8
(A1 ∗ A4, A3) = 315, NE8

(A1 ∗
D4, A3) = 45, NE8

(A2 ∗ A3, A3) = 270, NE8
(A2

1 ∗ A3, A3) = 270, NE8
(A1 ∗

A2
2, A3) = 225, NE8

(A3
1 ∗A2, A3) = 225, NE8

(A5
1, A3) = 0, NE8

(D5, A1 ∗A2) = 195,
NE8

(A5, A1 ∗ A2) = 390, NE8
(A1 ∗ A4, A1 ∗ A2) = 690, NE8

(A1 ∗ D4, A1 ∗ A2)
= 195, NE8

(A2 ∗ A3, A1 ∗ A2) = 495, NE8
(A2

1 ∗ A3, A1 ∗ A2) = 495,
NE8

(A1 ∗ A2
2, A1 ∗ A2) = 300, NE8

(A3
1 ∗ A2, A1 ∗ A2) = 300,

NE8
(A5

1, A1 ∗ A2) = 0, NE8
(D5, A

3
1) = 150, NE8

(A5, A
3
1) = 300,

NE8
(A1 ∗ A4, A

3
1) = 375, NE8

(A1 ∗ D4, A
3
1) = 150, NE8

(A2 ∗ A3, A
3
1) = 225,

NE8
(A2

1 ∗ A3, A
3
1) = 225, NE8

(A1 ∗ A2
2, A

3
1) = 75, NE8

(A3
1 ∗ A2, A

3
1) = 75,

NE8
(A5

1, A
3
1) = 0, NE8

(D5, A2, A1) = 375, NE8
(A5, A2, A1) = 750,

NE8
(A1 ∗ A4, A2, A1) = 1950, NE8

(A1 ∗ D4, A2, A1) = 375, NE8
(A2 ∗ A3, A2, A1)

= 1575, NE8
(A2

1 ∗ A3, A2, A1) = 1575, NE8
(A1 ∗ A2

2, A2, A1) = 1200,
NE8

(A3
1 ∗ A2, A2, A1) = 1200, NE8

(A5
1, A2, A1) = 0, NE8

(D5, A
2
1, A1) = 1125,

NE8
(A5, A

2
1, A1) = 2250, NE8

(A1 ∗ A4, A
2
1, A1) = 3825, NE8

(A1 ∗ D4, A
2
1, A1)

= 1125, NE8
(A2 ∗ A3, A

2
1, A1) = 2700, NE8

(A2
1 ∗ A3, A

2
1, A1) = 2700,

NE8
(A1 ∗ A2

2, A
2
1, A1) = 1575, NE8

(A3
1 ∗ A2, A

2
1, A1) = 1575, NE8

(A5
1, A

2
1, A1) = 0,

NE8
(D5, A1, A1, A1) = 3375, NE8

(A5, A1, A1, A1) = 6750, NE8
(A1 ∗A4, A1, A1, A1)

= 13500, NE8
(A1 ∗ D4, A1, A1, A1) = 3375, NE8

(A2 ∗ A3, A1, A1, A1) = 10125,
NE8

(A2
1 ∗ A3, A1, A1, A1) = 10125, NE8

(A1 ∗ A2
2, A1, A1, A1) = 6750,

NE8
(A3

1 ∗ A2, A1, A1, A1) = 6750, NE8
(A5

1, A1, A1, A1) = 0, NE8
(D4, D4) = 5,

NE8
(D4, A4) = 15, NE8

(A4, A4) = 138, NE8
(D4, A1∗A3) = 105, NE8

(A4, A1∗A3) =
390, NE8

(A1∗A3, A1∗A3) = 1155, NE8
(D4, A

2
2) = 35, NE8

(A4, A
2
2) = 180, NE8

(A1∗
A3, A

2
2) = 360, NE8

(A2
2, A

2
2) = 95, NE8

(D4, A
2
1 ∗ A2) = 135,
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NE8
(A4, A

2
1 ∗ A2) = 630, NE8

(A1 ∗ A3, A
2
1 ∗ A2) = 1035, NE8

(A2
2, A

2
1 ∗ A2) =

270, NE8
(A2

1 ∗ A2, A
2
1 ∗ A2) = 495, NE8

(D4, A
4
1) = 30, NE8

(A4, A
4
1) = 165,

NE8
(A1 ∗ A3, A

4
1) = 255, NE8

(A2
2, A

4
1) = 60, NE8

(A2
1 ∗ A2, A

4
1) = 135, NE8

(A4
1, A

4
1)

= 30, NE8
(D4, A3, A1) = 225, NE8

(A4, A3, A1) = 1215, NE8
(A1 ∗ A3, A3, A1)

= 4050, NE8
(A2

2, A3, A1) = 1575, NE8
(A2

1 ∗ A2, A3, A1) = 5400, NE8
(A4

1, A3, A1)
= 1350, NE8

(D4, A1 ∗ A2, A1) = 975, NE8
(A4, A1 ∗ A2, A1) = 4590,

NE8
(A1 ∗ A3, A1 ∗ A2, A1) = 10800, NE8

(A2
2, A1 ∗ A2, A1) = 3450,

NE8
(A2

1 ∗ A2, A1 ∗ A2, A1) = 9900, NE8
(A4

1, A1 ∗ A2, A1) = 2475, NE8
(D4, A

3
1, A1)

= 750, NE8
(A4, A

3
1, A1) = 3375, NE8

(A1 ∗ A3, A
3
1, A1) = 6750, NE8

(A2
2, A

3
1, A1)

= 1875, NE8
(A2

1 ∗ A2, A
3
1, A1) = 4500, NE8

(A4
1, A

3
1, A1) = 1125, NE8

(D4, A2, A2)
= 175, NE8

(A4, A2, A2) = 1140, NE8
(A1 ∗ A3, A2, A2) = 3300, NE8

(A2
2, A2, A2)

= 1300, NE8
(A2

1 ∗ A2, A2, A2) = 4500, NE8
(A4

1, A2, A2) = 1125, NE8
(D4, A2, A

2
1)

= 675, NE8
(A4, A2, A

2
1) = 3015, NE8

(A1 ∗ A3, A2, A
2
1) = 8550, NE8

(A2
2, A2, A

2
1)

= 2925, NE8
(A2

1 ∗ A2, A2, A
2
1) = 9000, NE8

(A4
1, A2, A

2
1) = 2250, NE8

(D4, A
2
1, A

2
1)

= 1800, NE8
(A4, A

2
1, A

2
1) = 8640, NE8

(A1 ∗ A3, A
2
1, A

2
1) = 17550, NE8

(A2
2, A

2
1, A

2
1)

= 5175, NE8
(A2

1 ∗ A2, A
2
1, A

2
1) = 13500, NE8

(A4
1, A

2
1, A

2
1) = 3375,

NE8
(D4, A2, A1, A1) = 1875, NE8

(A4, A2, A1, A1) = 9450, NE8
(A1∗A3, A2, A1, A1)

= 27000, NE8
(A2

2, A2, A1, A1) = 9750, NE8
(A2

1 ∗ A2, A2, A1, A1) = 31500,
NE8

(A4
1, A2, A1, A1) = 7875, NE8

(D4, A
2
1, A1, A1) = 5625, NE8

(A4, A
2
1, A1, A1) =

26325, NE8
(A1 ∗ A3, A

2
1, A1, A1) = 60750, NE8

(A2
2, A

2
1, A1, A1) = 19125,

NE8
(A2

1 ∗ A2, A
2
1, A1, A1) = 54000, NE8

(A4
1, A

2
1, A1, A1) = 13500,

NE8
(D4, A1, A1, A1, A1) = 16875, NE8

(A4, A1, A1, A1, A1) = 81000,
NE8

(A1 ∗ A3, A1, A1, A1, A1) = 202500, NE8
(A2

2, A1, A1, A1, A1) = 67500,
NE8

(A2
1 ∗ A2, A1, A1, A1, A1) = 202500, NE8

(A4
1, A1, A1, A1, A1) = 50625,

NE8
(A3, A3, A2) = 1350, NE8

(A3, A1 ∗ A2, A2) = 5175, NE8
(A3, A

3
1, A2) = 3825,

NE8
(A1 ∗ A2, A1 ∗ A2, A2) = 15000, NE8

(A1 ∗ A2, A
3
1, A2) = 9825,

NE8
(A3

1, A
3
1, A2) = 6000, NE8

(A3, A3, A
2
1) = 4050, NE8

(A3, A1 ∗ A2, A
2
1) = 13500,

NE8
(A3, A

3
1, A

2
1) = 9450, NE8

(A1 ∗A2, A1 ∗A2, A
2
1) = 30825, NE8

(A1 ∗A2, A
3
1, A

2
1)

= 17325, NE8
(A3

1, A
3
1, A

2
1) = 7875, NE8

(A3, A3, A1, A1) = 12150,
NE8

(A3, A1 ∗ A2, A1, A1) = 42525, NE8
(A3, A

3
1, A1, A1) = 30375,

NE8
(A1 ∗ A2, A1 ∗ A2, A1, A1) = 106650, NE8

(A1 ∗ A2, A
3
1, A1, A1) = 64125,

NE8
(A3

1, A
3
1, A1, A1) = 33750, NE8

(A3, A2, A2, A1) = 10575, NE8
(A3, A2, A

2
1, A1)

= 29700, NE8
(A3, A

2
1, A

2
1, A1) = 76950, NE8

(A1 ∗ A2, A2, A2, A1) = 35700,
NE8

(A1 ∗ A2, A2, A
2
1, A1) = 84825, NE8

(A1 ∗ A2, A
2
1, A

2
1, A1) = 171450,

NE8
(A3

1, A2, A2, A1) = 25125, NE8
(A3

1, A2, A
2
1, A1) = 55125, NE8

(A3
1, A

2
1, A

2
1, A1)

= 94500, NE8
(A3, A2, A1, A1, A1) = 91125, NE8

(A3, A
2
1, A1, A1, A1) = 243000,

NE8
(A1 ∗ A2, A2, A1, A1, A1) = 276750, NE8

(A1 ∗ A2, A
2
1, A1, A1, A1) = 597375,

NE8
(A3

1, A2, A1, A1, A1) = 185625, NE8
(A3

1, A
2
1, A1, A1, A1) = 354375,

NE8
(A3, A1, A1, A1, A1, A1) = 759375, NE8

(A1 ∗A2, A1, A1, A1, A1, A1) = 2025000,
NE8

(A3
1, A1, A1, A1, A1, A1) = 1265625, NE8

(A2, A2, A2, A2) = 9350,
NE8

(A2, A2, A2, A
2
1) = 24975, NE8

(A2, A2, A
2
1, A

2
1) = 64350, NE8

(A2, A
2
1, A

2
1, A

2
1)

= 143100, NE8
(A2

1, A
2
1, A

2
1, A

2
1) = 261225, NE8

(A2, A2, A2, A1, A1) = 78000,
NE8

(A2, A2, A
2
1, A1, A1) = 203625, NE8

(A2, A
2
1, A

2
1, A1, A1) = 479250,

NE8
(A2

1, A
2
1, A

2
1, A1, A1) = 951750, NE8

(A2, A2, A1, A1, A1, A1) = 641250,
NE8

(A2, A
2
1, A1, A1, A1, A1) = 1569375, NE8

(A2
1, A

2
1, A1, A1, A1, A1) = 3341250,

NE8
(A2, A1, A1, A1, A1, A1, A1) = 5062500, NE8

(A2
1, A1, A1, A1, A1, A1, A1)

= 11390625, NE8
(A1, A1, A1, A1, A1, A1, A1, A1) = 37968750, plus the assignments

implied by (2.2) and (2.3), with all other numbers NE8
(T1, T2, . . . , Td) being zero.
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Note added in proof. Jang Soo Kim succeeded in finding bijective proofs for Corol-
laries 12, 14, 16–19 in “Chain enumeration of k-divisible noncrossing partitions of
classical types” (arXiv:0908.2641).
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